
Reader in Probability
Research Interests: Schramm-Loewner evolution, Gaussian free field, Liouville quantum gravity, random planar maps, random walks, mixing times for Markov chains.
Publications
Quantum Loewner evolution
– Duke Mathematical Journal
(2016)
165,
3241
(doi: 10.1215/00127094-3627096)
Imaginary geometry III: reversibility of \SLE_\kappa for \kappa \in (4,8)
– Annals of Mathematics
(2016)
184,
455
(doi: 10.4007/annals.2016.184.2.3)
Convergence of the self-avoiding walk on random quadrangulations to
SLE$_{8/3}$ on $\sqrt{8/3}$-Liouville quantum gravity
(2016)
(doi: 10.24033/ast.1153)
Imaginary geometry II: Reversibility of $\operatorname{SLE}_{\kappa}(\rho_{1};\rho_{2})$ for $\kappa\in(0,4)$
– The Annals of Probability
(2016)
44,
1647
(doi: 10.1214/14-aop943)
Uniformity of the late points of random walk on ${\mathbb {Z}}_{n}^{d}$ Z n d for $d \ge 3$ d ≥ 3
– Probability Theory and Related Fields
(2016)
167,
1001
(doi: 10.1007/s00440-016-0697-1)
Imaginary geometry I: interacting SLEs
– Probability Theory and Related Fields
(2016)
164,
553
(doi: 10.1007/s00440-016-0698-0)
Extreme nesting in the conformal loop ensemble
– The Annals of Probability
(2016)
44,
1013
(doi: 10.1214/14-aop995)
Intersections of SLE Paths: the double and cut point dimension of SLE
– Probability Theory and Related Fields
(2016)
167,
45
(doi: 10.1007/s00440-015-0677-x)
The conformal loop ensemble nesting field
– Probability Theory and Related Fields
(2015)
163,
769
(doi: 10.1007/s00440-014-0604-6)
Uniform mixing time for random walk on lamplighter graphs
– Annales de l Institut Henri Poincaré Probabilités et Statistiques
(2014)
50,
1140
(doi: 10.1214/13-AIHP547)
- <
- 5 of 6