
My research lies at the intersection of computational mathematics and machine learning for applications to large-scale real world problems. My central research is to develop new data-driven algorithmic techniques that allow computers to gain high-level understanding from vast amounts of data, this, with the aim of aiding the decisions of users. These methods are based on mathematical modelling and machine learning methods.
Keywords: Applied Mathematics
Computational Mathematics
Inverse problems
Image Analysis
Graph Learning
Machine Learning.
Publications
Contrastive Registration for Unsupervised Medical Image Segmentation.
– IEEE transactions on neural networks and learning systems
(2023)
PP,
1
(doi: 10.1109/TNNLS.2023.3332003)
Learning Homeomorphic Image Registration via Conformal-Invariant
Hyperelastic Regularisation
(2023)
NorMatch: Matching Normalizing Flows with Discriminative Classifiers for
Semi-Supervised Learning
(2022)
SCOTCH and SODA: A Transformer Video Shadow Detection Framework
(2022)
(doi: 10.48550/arxiv.2211.06885)
LaplaceNet: A Hybrid Graph-Energy Neural Network for Deep Semisupervised Classification.
– IEEE transactions on neural networks and learning systems
(2022)
PP,
1
(doi: 10.1109/tnnls.2022.3203315)
- 1 of 5