some papers and preprints

K3 surfaces with non-symplectic involution and compact irreducible G2-manifolds. A.G. Kovalev and Nam-Hoon Lee. Math. Proc. Cambridge Philos. Soc. 151 (2011) 193–218. Available online 10 June 2011,   doi:10.1017/S030500411100003X

Asymptotically cylindrical 7-manifolds of holonomy G2 with applications to compact irreducible G2-manifolds. A.G. Kovalev and J. Nordström.   Ann. Global Anal. Geom. 38 (2010), 221–257. Available online 2 April 2010, doi:10.1007/s10455-010-9210-8   Reprints available.

Deformations of compact coassociative 4-folds with boundary. A.G. Kovalev and J.D. Lotay. J. Geom. Phys. 59 (2009), 63-73.   Available online 30 September 2008,   doi:10.1016/j.geomphys.2008.09.002.

Ricci-flat deformations of asymptotically cylindrical Calabi-Yau manifolds. A.G. Kovalev, pp. 140–156 in Proceedings of Gökova Geometry/Topology Conference 2005, International Press, 2006.

Coassociative K3 fibrations of compact G2-manifolds. A.G. Kovalev.  math.DG/0511150, version 2, 33 pages, October 2009.

From Fano threefolds to compact G2-manifolds. A.G. Kovalev. In `Strings and Geometry', vol.3 of Clay Mathematics Proceedings, pp. 193–202. Amer. Math. Soc., Providence, RI, 2004. Reprints available

Twisted connected sums and special Riemannian holonomy. A.G. Kovalev. J. Reine Angew. Math. 565 (2003), 125–160.    doi: 10.1515/crll.2003.097, 02/12/2003    (abstract) Reprints available
Featured review (MR2024648) by Andrew Swann.

Gluing theorems for complete anti-self-dual spaces. A.G. Kovalev and M.A. Singer. Geom. Funct. Anal. 11 (2001), 1229–1281. (abstract) Reprints available

Gluing theorems for anti-self-dual metrics. A.G. Kovalev and M.A. Singer. math.DG/9802055, 12 pages.

On the reduction of Yang–Mills instantons to Nahm's equations. A.G. Kovalev. Russian Math. Surveys, 52 (1997), 1305–1306.    doi:10.1070/RM1997v052n06ABEH002170

Nahm's equations and complex adjoint orbits. A.G. Kovalev. Quarterly J. Math. Oxford Ser. (2), 47 (1996), 41–58. (abstract)   doi:10.1093/qmath/47.1.41   Reprints available

a.g.kovalev at