Clay Mathematics Proceedings
Volume 3, 2004

From Fano Threefolds to
Compact G,-Manifolds

Alexei Kovalev

ABSTRACT. G>-manifolds are 7-dimensional Riemannian manifolds whose met-
rics have holonomy group G2; these are necessarily Ricci-flat. We explain a
systematic way to construct examples of compact G2-manifolds by gluing a
pair of asymptotically cylindrical manifolds of holonomy SU(3) at their cylin-
drical ends. To obtain the latter SU(3)-manifolds one starts from complex
3-dimensional projective manifolds with ¢; > 0 (Fano threefolds) endowed
with an appropriate choice of the anticanonical K3 divisor. The resulting
G2-manifolds are topologically distinct from those previously constructed by
Joyce.

This article is an informal, introductory account of the ‘generalized connected
sum’ construction of compact Riemannian manifolds with holonomy G5. Full de-
tails and proofs the results can be found in the author’s paper [6]. A good reference
on the Riemannian holonomy groups, including G5 and the previously known con-
struction of compact Ga-manifolds, is the book by Joyce [4].

We briefly review in Section 1 the background results on G2 holonomy. The
method of construction of manifolds of holonomy G5 is explained in Section 2.
Section 3 explains how to obtain examples of this construction using the theory of
Fano threefolds and K3 surfaces, and contains a discussion of the results.

1. Synopsis on the holonomy group G2

The holonomy group Hol(g) of a Riemannian manifold (M, g) is defined as the
group of isometries of the tangent space T,, M generated by parallel transport, using
the Levi—Civita connection of g, over closed loops based at z. Up to conjugation,
the holonomy group is well-defined as a subgroup of O(n), n = dim M. If M is
an oriented simply-connected Riemannian manifold, which is not locally isometric
to a Riemannian product or to a Riemannian symmetric space, then there are
very few groups which may occur as the holonomy of M, according to Berger’s
classification theorem. In fact, if in addition one assumes that the dimension of M
is odd then there are just two possibilities: either Hol(g) = SO(n) or dimM =7
and Hol(g) = Ga.
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The group G may be defined as the group of automorphisms of the cross-
product algebra on R’ arising from the identification of R? with the purely imagi-
nary octonions. It is a compact Lie group and a (proper) subgroup of SO(7). The
cross-product multiplication may be encoded by a 3-form ¢g € A*(R7)*,

(Po(a,b, C) = <a X b, C)a
or, explicitly,

wo =es Neg ANer+ (e1 ANea +e3Nes) Ner
+(erNes—eaxNeg) Neg+ (e1 Aeg+ex Aes) Aes,

(1.1)

where e; denote an orthonormal basis of (R”)*. Conversely, the formula
(1.2) 6(a, b) dvol; = (aipe) A (bawo) A -

expresses the Euclidean inner product in terms of g and the volume form of R”.
The group G5 is thus identified as the stabilizer of ¢ in the natural action of
GL(7,R) on A*(R7)*. The form ¢q is stable, in the sense of Hitchin [2] —the
GL(7,R)-orbit of g is open in A3(R7)*.

A Ga-structure on a 7-manifold, M say, may be given by a 3-form ¢ such that
at each point p € M, ¢(p) is the image of ¢y induced by a linear isomorphism
T,M — R’. Denote by Q3 (M) the subset of 3-forms point-wise modelled on
o in the latter sense; elements of 3 (M) will sometimes be referred to as the
Ga-structure 3-forms. Note that Q3 (M) is an open subset of Q3(M) in the sup-
norm topology, a direct consequence of the stablity property of q.

Every 3-form ¢ € Q3% (M) defines an orientation and a Riemannian metric
g = g(p) on M, as any Go-structure is an instance of an SO(7)-structure. The
formula (1.2) determines g(y) explicitly, up to a conformal factor. The holonomy
group of g(¢) will be a subgroup of G if and only if the form ¢ is parallel, Vyp = 0,
with respect to the Levi—Civita connection of g. The latter condition is equivalent
to the system of partial differential equations on ¢ [9, Lemma 11.5],

(1.3) dp=20 and dx, p=0.

The second equation in (1.3) is non-linear as the Hodge star %, is taken in the
metric g(¢) and depends on ¢. The holonomy reduction Hol(g(¢)) C G2 implies
that g(¢) is Ricci-flat.

PROPOSITION 1.1 ([4, pp.244-245]). Suppose that a 7-manifold M is compact
and let p € Q3 (M). Then Hol(g(p)) = G2 if and only if ¢ € Q3 (M) is a solution
to (1.3) and the fundamental group of M is finite.

We shall say that a Riemannian 7-manifold (M,g) is a Gz-manifold if
Hol(g) = G» and shall use a similar terminology for other holonomy groups.

The first examples of compact Gy-manifolds were constructed in 1994-5 by
Joyce, using a generalized Kummer construction and resolution of singularities.
The most elaborate form of this construction can be found in [4]. Recently the
author obtained different examples of compact G3-manifolds by a different method
[6] which we shall now describe.
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2. The generalized connected sum construction

Our compact G2-manifolds are constructed by forming a carefully chosen gen-
eralized connected sum of two non-compact Riemannian manifolds with asymptot-
ically cylindrical ends. The construction develops an idea due to Donaldson.

Firstly, we produce a class of complete Ricci-flat Kéhler threefolds W of holo-
nomy SU(3) with an infinite cylindrical end asymptotic to the Riemannian product
D x S' x Rsq, where D is a K3 surface with a hyper-Kéhler metric. This step re-
quires a proof of a non-compact version of the Calabi conjecture, which may be of
independent interest.

The Riemannian product W x S! carries a solution to (1.3). We consider a
pair of such 7-manifolds W; x S' and Wy x S*. For certain pairs of hyper-Kahler
K3 surfaces D; ‘at the infinity of W;’ (i = 1,2), there is a way to join the two
7-manifolds W; x S* at their ends to obtain a compact 7-manifold M having finite
fundamental group and a 1-parameter family of Ga-structures ¢ compatible with
those on W; x St.

A Gs-structure 7 on M is obtained using cut-off functions, which introduce
error terms in the equations (1.3). These error terms are exponentially small in 7T'.
We use ‘stretching the neck’ analysis to prove a gluing theorem, obtaining a solution
to (1.3) on M from the solutions on W; x St.

The three parts of the construction are described in more detail below.

2.1. Asymptotically cylindrical Calabi—Yau manifolds. The equations
(1.3) define a metric g(y) whose holonomy group is only contained in G3. In
particular, the holonomy may be SU(3), a maximal subgroup of G.

We begin by introducing the holonomy SU(n) which will be needed in the cases
n =3 and n = 2. The group SU(n) consists of all the complex linear isomorphisms
of C" preserving the standard Hermitian inner product and the complex volume.
So SU(n) is the stabilizer of the pair of forms on C"*

woz%(dzl/\d21+...+dzn/\d2n) and Qo =dzi A--- Ndzy,

under the action of GL(n,C). Note that both wg and 2 are stable differential forms
(have open orbits under the action of GL(2n,R)). A metric g on a real 2n-manifold
Z will have holonomy contained in SU(n) if and only if Z has an SU(n)-structure
(I,w, Q) parallel with respect to g. Here I is an orthogonal complex structure with
respect to g, and w and 2 are differential forms which are point-wise modelled on
wp and g, via a Clinear identification of tangent spaces to Z with C*. That is
to say, a g-parallel SU(n)-structure makes Z into a Kahler complex n-fold with
the Kihler form w € Q%1(Z), and Z has a nowhere vanishing holomorphic form
Q € Q™9(Z) such that QA Q* is a constant multiple of w™. Such a Q is sometimes
called a holomorphic volume form. In particular, Z has trivial canonical bundle of
(n,0)-forms and ¢;(Z) = 0 and the Kéhler metric is Ricci-flat.

Conversely, the following is a direct consequence of Yau’s proof of the Calabi
conjecture [12].

THEOREM 2.1. Let Z be a Kdhler complexr n-fold with wy the Kdhler form
on Z and suppose that c1(Z) = 0. Then there exists on Z a unique Ricci-flat
Kihler metric such that its Kéihler form is given by wz + i00u for some smooth
real function u on Z. If Z is simply-connected then the holonomy of this Ricci-flat
Kdhler metric is contained in SU(n).
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Kéahler manifolds with holonomy in SU(n) are often called Calabi-Yau man-
ifolds. An important example is a K3 surface; recall that it may be defined as a
simply-connected complex surface with ¢; = 0. By Yau’s theorem, a K3 surface
admits a unique Ricci-flat Kéhler metric in every Kéahler class.

Now let n = 3. The group SU(3) is a subgroup of G2 consisting of all those
elements of G5 which fix a particular one-dimensional subspace in R?, thus it deter-
mines a decomposition R = C* ®R. Consider a Kéhler threefold W with holonomy
in SU(3) and let w,Q be respectively the Kahler form and a holomorphic volume
form on W. Then on the 7-manifold W x S' the 3-form

(2.1) p=wAdl+ImQ

is in Q3 (W x S') and defines a product metric, so W x S* has the same holonomy
as W. In this metric, one has *p = 1w Aw —Re QA df and ¢ is a solution to (1.3)
on W x St

We are now ready to introduce the class of complete SU(3)-manifolds that we
need. Let W be a compact simply-connected Kihler threefold, with w' € QU1 (W)
the Kéhler form. Let D be a K3 surface in W such that there is a holomorphic
section s of the anticanonical bundle K%l vanishing to order 1 on D. It is easy to

see that the complement W = W \ D has trivial canonical bundle.
Assume further that the normal bundle of D in W is trivial. Then W can be
written as the union of two pieces,

(2.2) W~ Wept U (D x S* x Ry)

a compact manifold Wep, with boundary and a cylindrical end attached along the
boundary D x S!. Note that the relation (2.2) is only a diffeomorphism of the un-
derlying real manifolds. The complex structure on the end of W is not isomorphic,
but only asymptotic to the ‘obvious’ product complex structure on D x S! x R,.

Let gp denote the Ricci-flat K&hler metric on D in the Kahler class [w'|p]
determined by the embedding in W. We prove that the following non-compact
version of the Calabi conjecture is true.

THEOREM 2.2. Let W and D be as above, so a K3 surface D is an anti-
canonical divisor and has trivial normal bundle in W. Suppose also that W is
simply-connected and the fundamental group of W = W \ D is finite.

Then W admits a complete Ricci-flat Kdahler metric gw. The Kdhler form and
holomorphic volume form of gw are exponentially asymptotic, along the cylindrical
end of W, to those of the product Ricci-flat Kéhler structure on D x S* xRy defined
using the metric gp on D. The holonomy of gw is SU(3).

There is nothing special to threefolds in the proof of Theorem 2.2 and the result
extends, with only minor modifications, to Kahler manifolds of arbitrary dimension.

We also remark at this point that previously a number of other non-compact
versions of the Calabi conjecture were proved by Tian and Yau, Bando and Koba-
yashi, and Joyce. These authors construct complete Ricci-flat Kahler metrics as-
ymptotic at infinity to the quotient C" /T’ of Hermitian C" by a finite subgroup I'
of SU(n).

The main novelty of Theorem 2.2 is that it deals with the class of asymptot-
ically cylindrical manifolds. We build up on Theorem 5.2 in [11] using analysis
on exponentially weighted Sobolev spaces to work out the details of asymptotic
behaviour and provide control on the boundary data at infinity.
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2.2. K3 surfaces and a hyper-Kihler rotation. A remarkable property
of a Ricci-flat Kéhler metric on a complex surface D is that such a metric is hyper-
Kahler: the underlying real 4-manifold admits, in addition to the given complex
structure I, another complex structure J, such that IJ = —JI and the metric is
Kahler with respect to J too. Further, K = IJ is also a complex structure on
D, and I,J, K satisfy the quaternionic relations (and define an identification of
each tangent space of D with the quaternions). The three respective Kahler forms
K1,k7,KK satisfy kK = k% = k%. There is a complete SO(3) symmetry between
I, J, K, in particular, they generate a 2-sphere of complex structures al + bJ + cK
on D, where a? + b + ¢ = 1, and the metric is Kéhler with respect to each of
these.

Let D be a Ricci-flat Kihler K3 surface and let kr be the Kéhler form on D.
Then k; + ikg defines a holomorphic volume form on D. Considering on D the
complex structure J we obtain in general a different Ricci-flat K&hler K3 surface D .
It has Kéahler form x; and holomorphic volume form x5 — ikk and is sometimes
called a hyper-Kihler rotation of D. Note that there is an S'-ambiguity in choosing
J, as one may take any bJ + cK instead with b2 4+ ¢2 = 1.

Consider two asymptotically cylindrical SU(3)-manifolds Wy and W, satisfy-
ing the assertions of Theorem 2.2 and, respectively, let D;,D2 be the Ricci-flat
Kahler K3 surfaces which determine the asymptotic model on the cylindrical ends
of Wi, Ws. Fori = 1,2, let t; > 0 be the real parameter along the cylindrical end of
W, as defined by (2.2). Cut off at t; = T'— 1 the Kahler and holomorphic volume
form on each W; to their asymptotic model on the cylindrical end and consider
Wi(T) = Weps U (D x S* x [0,T]). Then W1(T) x S! is a manifold with boundary
D; x S* x S and with a Gy-structure form which on a collar neighbourhood of the
boundary is given by

(2.3) ©(py) = K7 ANdBy + K AdOs + K A dt + dfy A dfy A dt.

Here we used (2.1) and the cylindrical asymptotic model w = &} + df2 A dt, Q =
(k!y + iK% ) A (dO2 + idt) of the Kahler and holomorphic volume forms on the end of
W1. In particular, ¢(p,) is a solution to (1.3) on the cylinder (Dy x S* x R) x S.
Similar expressions hold for Wy x S1.

Now assume that the Ricci-flat Kdhler K3 surface D3 is isomorphic to a hyper-
Kahler rotation of D;. Let f : Dy ; — D, denote the isomorphism. Then the
pull-back action of f on the K&hler forms is given by

koK), B e R Ko (KR
Define
(2.4) F: (y,61,09,t) € Dy x S* x S* x [T - 1,T] -
(f(y),02,601,2T —1—1t) € Dy x S* x S* x [T — 1,T]
and join the two manifolds with boundary to construct a closed oriented 7-manifold
M = (Wy(T) x SY)Up (Wa(T) x SY),

using the map F’ to identify collar neighbourhoods of the boundaries. The compact
7-manifold M is a generalized connected sum with the neck having the cross-section
D x §' x S'. We have F*¢(p,) = ¢(p,), by the construction of F, therefore there
is a well-defined 1-parameter family of G5-structures o1 on M induced from those
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on W;(T) x S1, defined above using cut-off functions. Here the parameter T is
approximately half the length of the neck of M, measured by g(pr).

The fundamental group of M is finite. This is because in the construction of M
the circle factor in W1 (T') x S is identified with a circle in W> and the circle factor
in Wa(T) x S! is identified with a circle in Wi, and we assumed that 1 (W;) are
finite. Therefore, by Proposition 1.1 any solution ¢ € Q3 (M) of the equations (1.3)
will define on M a metric g(¢) of holonomy GS.

2.3. The gluing theorem. A Ga-structure form 7 is constructed by patch-
ing the solutions of (1.3) when joining the two pieces of M. This uses cut-off
functions which introduce ‘error terms’ in the equations. In fact we can achieve
dpr = 0 for all T and satisfy one of the two equations in (1.3), but the term dxr o7
in general will not vanish. The error terms depend on the difference between the
SU (3)-structures on the end of W; and on its cylindrical asymptotic model, and we
have an estimate

ld *7 prllLe < Cpre ™,
where 0 < A < 1. Here xr denotes the Hodge star of the metric g(pr).
We prove the following.

THEOREM 2.3. There exists Top € R and for every T > Ty a unique smooth
2-form nr on M so that the following holds.
(1) |Intllcr < const-e#T, for some 0 < pu < 1, where the C*-norm is defined using
the metric g(¢r). In particular, o7 + dnr is in Q% (M).
(2) The closed 3-form o1 + dnr satisfies

(2.5) d *prtdnr (1 + dnr) = 0.
and so w1 + dnr defines a metric of holonomy G2 on M.

The equation (2.5) can be rewritten, using the results of [4, §10.3] as a non-linear
elliptic PDE for 5. For small n, this PDE has the form a(n) = ag + An+ Q(n) = 0,
where ag = d x7 T, the linear elliptic operator A = Ar is a compact perturbation
of the Hodge Laplacian of the form dd* + d*d + O(e~°T), and Q(n) = O(|dn|?).

The central idea in the proof of Theorem 2.3 may be informally stated as
follows. For small 5, the map a(n) is approximated by its linearization and so there
is a unique small solution 7 to the equation a(n) = 0, for every small ag in the range
of A. This perturbative approach requires the invertibility of A and a suitable upper
bound on the operator norm ||A7'[|, as T — co. This bound determines what is
meant by ‘small’ a¢ in this paragraph.

As we actually need the value of dn rather than 7, there is no loss in restrict-
ing the equation (2.5) for 1 to the orthogonal complement of harmonic 2-forms
on M where the Laplacian is invertible. We use the technique of [5, §4.1] based on
Fredholm theory for the asymptotically cylindrical manifolds and weighted Sobolev
spaces to find an upper bound ||A}'|| < Ge?T. Here the constant G is independent
of T and § > 0 can be taken arbitrary small. So, for large T, the growth of || A7"|
is negligible compared to the decay of ||d 1 ¢r|| and the ‘inverse function theorem’
strategy applies to give the required small solution nr. Standard elliptic methods
show that this 57 is in fact smooth.
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3. Examples arising from Fano threefolds

For applications of the construction given in Section 2 we need, as a start, to
find Kahler threefolds satisfying the hypotheses of Theorem 2.2.

3.1. Introduction to Fano threefolds. The following example is classical
in algebraic geometry.

The intersection of three generically chosen quadric hypersurfaces in CP® de-
fines a smooth Kahler threefold Xg. It is simply-connected and the characteristic
class ¢1(Xs) of its anticanonical bundle is the pull-back to Xg of the positive gen-
erator of the cohomology ring H*(CP®). That is to say, the anticanonical bundle
K)_(; is the restriction to Xg of the tautological line bundle O(1) over CP®. Tt fol-
lows that any anticanonical divisor D on Xg is obtained by taking an intersection
D = XgN H with a hyperplane H in CP%. A generic such hyperplane section D is
a complex surface, isomorphic to a smooth complete intersection of three quadrics
in CP%. This is a well-known example of a K3 surface.

We next look at the normal bundle of Xg in D. An adjunction-type argument
shows that the normal bundle will be trivial if we can find another anticanonical
divisor D' on X3 such that D' does not meet D. But D' = XgN H' and the second
hyperplane section C = DN D' = Xg N H N H' is never empty—it is an algebraic
curve (intersection of three quadrics) in CP*. Fortunately, a suitable threefold can
be obtained by blowing up the curve C. The K3 divisor D lifts via the blow-up
map X5 — X to an isomorphic K3 surface D which is an anticanonical divisor in
Xg and has trivial normal bundle. Moreover, a Kihler metric on X may be chosen
so that D and D are isometric Kahler manifolds.

Finally, as both D and X§ are simply-connected we find that the only possibil-
ity for a nontrivial generator of m;(Xg \ D) would be a circle around D. But this
circle contracts in an exceptional curve as this curve meets D is exactly one point.
Hence X3 \ D is simply connected. The pair X5, D now satisfies all the hypothe-
ses of Theorem 2.2, and so the quasiprojective threefold W = Xj \ D admits an
asymptotically cylindrical Ricci-flat Kahler metric of holonomy SU (3).

The threefold X in the above example can be replaced by an arbitrary (smooth)
projective-algebraic threefold V with ¢; (V) > 0, i.e. a Fano threefold. Fano three-
folds have been extensively studied over the past few decades and a lot is known
about them. In particular, they are simply-connected and a generic anticanonical
divisor D on a Fano threefold is a K3 surface [10]. It can be shown that the three-
folds f/\f) are again simply-connected and we obtain, by application of Theorem 2.2
the following.

PROPOSITION 3.1. LetV be a Fano 3-fold, D € |— K| a K3 surface, and V the
blow-up of V along a self-intersection curve D-D, and D the proper transform of D.
Then V \ D has a complete Ricci-flat Kihler metric with holonomy SU(3). This
metric is asymptotic to the Riemannian product D x S* x Ry, where the Ricci-flat
Kahler metric on D 1is in the Kdhler class induced by the embedding in V.

3.2. Matching the K3 divisors. Let V;,V; be Fano threefolds and Dy, D,
respectively, anticanonical K3 divisors on these. Recall that by Yau’s theorem each
of the Kahler K3 surfaces D; has a uniquely determined Ricci-flat K&hler metric
in its Kahler class. If the two Ricci-flat Ké&hler structures in the Kéihler classes of
D; C V; are hyper-Kéhler rotations of each other then, in view of Proposition 3.1,
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we can proceed to the construction of a generalized connected sum M from V; \ D;,
as described in Section 2.2. The 7-manifold M admits metrics of holonomy G4
by Theorem 2.3. In this case, we shall say that a compact Ga-manifold M is
constructed from the pair of Fano threefolds Vi and V>. Can we choose Dy and D,
so as to satisfy the required hyper-Kéahler rotation condition?

We have the freedom to move a K3 surface in the anticanonical linear system
of V and to deform V in its algebraic family of Fano threefolds. Recall also from
Section 2.2 that there is an S'-family of choices for the second complex structure
J on each D;. It turns out that, with this freedom, a pair of ‘matching divisors’
Dy, Dy can always be found. We now briefly explain, ignoring some important
technical points, the ideas in the solution of the matching problem.

All the K3 surfaces are deformations of each other and are diffeomorphic as
real 4-manifolds. In particular, their second cohomology lattices are isomorphic
to the (unique) even unimodular lattice L of signature (3,19), known as the K3
lattice. Respectively, L ® C is isomorphic to the second cohomology with complex
coefficients and inherits the Hodge decomposition. A Kéihler isometry between
two K3 surfaces induces a so-called effective Hodge isometry between their second
cohomology lattices, preserving the Hodge decomposition and mapping the Kahler
class of one K3 to the Kahler class of the other. Surprisingly, the global Torelli
theorem for K3 surfaces asserts that the converse is also true: any effective Hodge
isometry between second cohomology of two K3 surfaces arises as the pull-back of
a unique biholomorphic map between these K3 surfaces [1, Ch.VIII]. The latter
map will necessarily be an isometry between Ricci-flat Kéhler K3 surfaces because
of the uniqueness of a Ricci-flat K&hler metric in a Kéahler class.

We can identify, using a version of the Kodaira—Spencer—Kuranishi deforma-
tion theory, the data of Hodge decomposition and Kahler class which occurs in
the anticanonical K3 divisors in a given algebraic family of Fano threefolds. The
problem of choosing a matching pair of K3 divisors D; in Fano threefolds V; then
reduces to a problem in the arithmetic of the K3 lattice.

The solution of this problem gives us the following general result.

THEOREM 3.2. For any pair of algebraic families V1 ,Vo of Fano threefolds there
exists (smooth) Vi € Vi, Vo € V5 such that a compact Go-manifold M can be
constructed from V1 ,Vs.

This Ga-manifold satisfies

0 <by(M) < max{bs(V1),b2(V2)} — 1

and
ba(M) + bs(M) = b3(V1) — K. + b3(Va) — K, +27.

EXAMPLE 3.3. A smooth complete intersection Xg of three quadrics in CP®
has % = 1, b¥® = 28, and —K3 = 8. According to Theorem 3.2, an appropriate

choice of two such complete intersections Vs(l), 8(2) C CP® and of a hyperplane

section D; in each of the Vs(i) provides data for the construction of a compact G»-
manifold M. We obtain bs(M) = 0 and b3(M) = 99. Also M is simply-connected.
This G»-manifold is not homeomorphic to any of the examples constructed in [4].

3.3. Discussion of the results. There is a complete classification of smooth
Fano threefolds into 104 algebraic families [3, 8]. This provides 5,460 different
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pairs to form the generalized connected sums, leading to examples of compact
G»-manifolds. As any Fano threefold has 1 < b% < 10, we have

b2(M) S 95

for any G2-manifold M constructed from a pair of Fanos. Further inspecting the
classification list of Fanos, we find that

39 < by(M) + bs(M) < 239

and, in particular, b3(M) > 30. (Recall that b! = 0 for any G2-manifold, therefore
b?,b% determine all the Betti numbers of M.)

It is an interesting question to identify the most general class of Kéhler three-
folds W for which the hypotheses of Theorem 2.2 hold. If the anticanonical linear
systems on a pair of such W are ‘large enough’ then the connected sum defined in
Section 2 can be formed and will admit G2-metrics. It seems that the blow-ups Vv
of smooth Fano threefolds discussed in this section can be generalized to include
at least manifolds obtained by resolution of singularities in some singular Fano
varieties.

A pair of Fano threefolds in general yields several topologically distinct compact
Go-manifolds. Example in [6, §8] shows two topologically distinct G2-manifolds
constructed from a pair of CP2 x CP!’s, realizing both of the values by(M) = 0
and by(M) = 1 allowed in this case by Theorem 3.2. Of course, the counting of
pairs of Betti numbers (b?,b3) only gives a lower estimate of the actual number of
topological types realized by our examples of compact Gs-manifolds.

In any event, the majority of smooth Fano threefolds have the Betti number
b? < 4 and respectively the G»-manifolds constructed from these have b?> < 3. On
the other hand, a majority of the compact G2-manifolds constructed in [4] have
b?> > 3. Thus most of the compact Ga-manifolds constructed from smooth Fano
threefolds can be easily identified as new examples, topologically distinct from those
previously known.

Another interesting property of the connected sum construction is that it ex-
hibits a new type of boundary point in the moduli space of all Ga-metrics on the
given compact 7-manifold M. Any l-parameter family o1 + dnr of Ga-metrics
given by the gluing Theorem 2.3 defines a path in the moduli space. The boundary
point attained as T — oo corresponds to pulling apart a Go-manifold at a cross-
section K3x (2-torus), obtaining a pair of asymptotically cylindrical pieces. The
approach to the boundary of the moduli space in this case involves no development
of singularities, nor a curvature growth. This becomes important in [7] where we
construct the first examples of fibrations of compact G2-manifolds by certain min-
imal submanifolds called coassociative calibrated submanifolds. The fibrations are
an odd-dimensional non-holomorphic analogue of the well-known elliptic fibrations
of K3 surfaces.
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