- 1. A coin with probability p of heads is tossed n times. Let E be the event "a head is obtained on the first toss2 and let F_k be the event "exactly k heads are obtained". For which pairs of integers (n, k) are the events E and F_k independent?
- **2.** The events A_1, \ldots, A_n are independent. Show that the events A_1^c, \ldots, A_n^c are independent.
- **3.** A sequence of n independent trials is performed, with each trial having a probability p of success. Show that the probability that the total number of successes is even is $(1 + (1 2p)^n)/2$.
- **4.** Two darts players, A and B, throw alternately at a board and the first to score a bull's eye wins the contest. The outcomes of different throws are independent, and on each throw A has probability p_A of scoring a bull's eye, while B has a probability p_B . If A goes first, then what is the probability that A wins the contest?
- 5. The number of mispsrints on a page has a Poisson distribution with parameter λ , and the numbers on different pages are independent. What is the probability that the second misprint will occur on page r?
- **6.** Suppose that X and Y are independent random variables with the Poisson distribution, with parameters λ and μ , respectively. Prove that the conditional distribution of X, given that X + Y = n, is binomial with parameters n and $\lambda/(\lambda + \mu)$.
- 7. Suppose that X_1, \ldots, X_n are independent, identically distributed random variables with mean μ and variance σ^2 . Find the mean of the random variable $S^2 = n^{-1} \sum_{i=1}^n (X_i \overline{X})^2$, where \overline{X} is the random variable $n^{-1} \sum_{i=1}^n X_i$. (\overline{X} and S^2 are called the *sample mean* and *sample variance*, respectively.)
- **8.** In a sequence of independent trials, the probability of a success at the *i*th trial is p_i . Show that the mean and variance of the total number of successes are $n\overline{p}$ and $n\overline{p}(1-\overline{p}) \sum_i (p_i \overline{p})^2$, where $\overline{p} = \sum_i p_i/n$. For a given mean, when is the variance maximized?
- **9.** Let K be a random variable with $\mathbf{P}(K=r)$ equal to 1/8, for integers r between 0 and 7. Let $\theta = K\pi/4$ and let $X = \cos \theta$ and $Y = \sin \theta$.

Prove that the covariance of X and Y is zero, but that X and Y are not independent.

- 10. Elmo's bowl of spaghetti contains n strands. He selects two ends at random and joins them together. He does this until there are no ends left. What is the expected number of loops of spaghetti in the bowl?
- 11. Julia collects figures from cornflakes packets. Each packet contains one figure, and n distinct figures are needed to make a complete set. What is the expected number of packets that Julia will need to buy in order to collect a complete set?
- 12. Let $X_1, X_2, ...$ be independent identically distributed positive random variables with $\mathbf{E}X_1 = \mu < \infty$ and $\mathbf{E}(X_1^{-1}) < \infty$. Let $S_n = \sum_{i=1}^n X_i$. Show that $\mathbf{E}(S_m/S_n) = m/n$ when $m \le n$ and $1 + (m-n)\mu \mathbf{E}(S_n^{-1})$ when $m \ge n$.
- 13. For each non-negative integer n, the probability that a football team will score n goals in a match is $p^n(1-p)$, independently of the number of goals scored by the other team. What is the probability of a score draw if teams with probabilities p_1 and p_2 meet? If $p_1 = p_2 = p$, what value of p gives the highest probability of a score draw, and what is this probability? [A score draw means a draw where both teams score at least one goal.]
- 14. A sample space Ω contains 2^n points, and \mathbf{P} is some probability distribution on Ω . Let A_1, \ldots, A_m be events, and suppose that no A_i is equal to \emptyset or Ω . Prove that if the A_i are independent then $m \leq n$. If \mathbf{P} is the uniform distribution on Ω , how many events is it possible to find such that each event has probability 1/2 and any two of those events are independent?
- 15. You are playing a match against an opponent in which at each point either you serve or your opponent does. If you serve then you win the point with probability p_1 ; if your opponent serves then you win the point with probability p_2 . Consider two possible conventions for serving:
 - (i) serves alternate;
- (ii) the player serving continues to serve until he or she loses a point. You serve first and the first player to reach n points wins the match. Show that your probability of winning the match does not depend on the serving convention adopted.