
THE IMPORTANCE OF MATHEMATICS

W. T. Gowers

It is with some disbelief that I stand here and prepare to address this gathering on the

subject of the importance of mathematics. For a start, it is an extraordinary honour to

be invited to give the keynote address at a millennium meeting in Paris. Secondly, giving

a lecture on the significance of mathematics demands wisdom, judgment and maturity,

and there are many mathematicians far better endowed than I am with these qualities,

including several in this audience. I hope therefore that you will understand that my

thoughts are not fully formed: if I had been asked to speak on this subject five years ago,

I would have given a completely different lecture, and I am confident that in five years’

time it would again have changed.

My title (which I did not actually choose myself, though I willingly agreed to it) also

places on me a great burden of responsibility. After all, I am speaking to an audience which

contains not just mathematicians but journalists and other influential non-mathematicians.

If I fail to convince you that mathematics is important and worthwhile, I will be letting

down the mathematical community, and also letting down Mr Clay, whose generosity has

made this event possible and is benefiting mathematics in many other ways as well.

Unfortunately, if one surveys in a superficial way the vast activity of mathematicians

around the world, it is easy to come away with the impression that mathematics is not

actually all that important. The percentage of the world’s population, or even of the

world’s university-educated population, who could accurately state a single mathematical

theorem proved in the last fifty years, is small, and smaller still if Fermat’s last theorem is

excluded. If you ask a mathematician to explain what he or she works on, you will usually

be met with a sheepish grin and told that it is not possible to do so in a short time. If

you ask whether this mysteriously complicated work has practical applications (and we all

get asked this from time to time), then there are various typical responses, none of them

immediately impressive.

One is the line taken by the famous Cambridge mathematician G. H. Hardy, who

was perfectly content, indeed almost proud, that his chosen field, Number Theory, had

no applications, either then or in the foreseeable future. For him, the main criterion of

mathematical worth was beauty. At the other end of the spectrum there are mathemati-
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cians who to work in areas such as theoretical computer science, financial mathematics or

statistics, areas of acknowledged practical importance. Mathematicians in these areas can

point to ideas that have had a big impact, such as the Black-Scholes equation for derivative

pricing, which has transformed the operation of the financial markets, and the public-key

cryptosystem invented by Rivest, Shamir and Adelman, which is now the basis for secu-

rity on the internet, and which, as has been pointed out many times, is an application of

number theory that Hardy certainly did not expect.

Also at the applied end of the spectrum there are many mathematicians whose work

has intimate connections with theoretical physics. Actually, it is not obvious that unifying

General Relativity and Quantum Mechanics would have direct practical applications, since

today’s physics already provides us with predictions that are accurate to within the limits

we can measure. But one never knows, and in any case such a breakthrough would be of

absolutely fundamental interest to science, or indeed anybody with the slightest intellectual

curiosity. If mathematicians can make a contribution to this area, then they will at least

be able to point to a huge external application of mathematics.

Most mathematicians, including me, lie somewhere in the middle of the spectrum,

when it comes to our attitude to applications. We would be delighted if we proved a

theorem that was found to be useful outside mathematics - but we do not actively seek to

do so. Given the choice between an interesting but purely mathematical problem and an

uninteresting problem of potential benefit to engineers, computer scientists or physicists,

we will opt for the former, though we would certainly feel awkward if nobody worked on

practical problems.

Actually, this attitude is held even by many of those who work in more practical-

seeming areas. If you press such a person, asking for a specific example of an application

in business, industry or science of their own work as opposed to an application of a result in

their general area, you will often, though not invariably, witness an uncomfortable reaction.

It turns out that a great deal of the research in even the so-called practical areas is in fact

not practical at all. I am not trying to draw attention to some sort of scandal by saying

this - as I hope to demonstrate, this phenomenon is a natural and desirable consequence

of what it means to view the world mathematically.

The reason for it is that mathematics is a two-stage process. Rather than studying

the world directly, mathematicians create so-called models of the world, and study them.
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This applies even to the simplest mathematics. After the age of four or five we do not

study addition by actually combining groups of objects and counting them. Instead we

use an abstract mathematical construction, or model, known as the positive integers (that

is, the numbers 1,2,3,4,5 and so on). Similarly, we do not do basic geometry by cutting

shapes out of paper, partly because it is not necessary and partly because in any case the

resulting shapes would not be exact squares, triangles or whatever they were supposed to

be. Once again, we study a model, a sort of idealized world that contains things that we do

not come across in everyday life, such as infinitely thin lines that stretch away to infinity,

or absolutely perfect circles, and does not contain untidy, worldly things like hamburgers,

chairs or human beings.

If one works in a practical area of mathematics, then there will be two conflicting

criteria for what makes a good model. On the one hand, the model should be accurate

enough to be useful, and on the other, it should be simple and elegant enough to generate

realistic and interesting mathematical problems. It is tempting, as a mathematician, to

attach far more importance to the second criterion - mathematical interest and elegance -

than to the first - accuracy - even if this means not immediately contributing to the gross

national product of one’s country.

A good example of this attitude comes from computer science. Consider the network

shown in Figure 1, and imagine that we have been asked to colour the nodes of the network

with two colours, red and blue, in such a way that no two nodes of the same colour are

ever linked. Such a colouring is called a proper colouring of the network.

If we start with a single node, such as the one marked A, then it doesn’t matter

whether we colour it red or blue, since the roles of the two colours are interchangeable.

However, once we have decided that A should be red, say, then the two nodes marked B

have to be blue, since they are linked to A and therefore must not have the same colour as

A. Having established this, we then see that the nodes marked C must all be coloured red

(since they are linked to blue nodes), and then that all nodes marked D must be coloured

blue. But now we have hit a problem, which is that two of the nodes marked D are linked

to one another. Since all our choices of colour were forced from the moment we coloured

the node A, it follows that it is impossible to give a proper colouring of the nodes with

only two colours.

Now this argument does more than merely establish that one particular network can-
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not be properly coloured. We have used a general procedure, or algorithm, as it is called in

mathematics and computer science, for testing whether any given network can be properly

coloured with two colours. Briefly, this procedure can be described as follows: colour one

node arbitrarily and then continue by colouring nodes whenever the choice of colour is

forced. If you are eventually forced to give two linked nodes the same colour then the

network cannot be properly coloured, and if you are not then it can.

This procedure is sufficiently well determined that a computer can easily be pro-

grammed to carry it out. Obviously, the larger the network, the longer the procedure

takes, and hence the longer the computer will take to run the program. A careful analysis

shows that if the network has n nodes, then the number of steps needed by the computer is

proportional to n2. (It may seem to be only linear, but this is because for a small network

represented visually one can see at a glance where the neighbours of any given node are.

For a large network encoded as a string of bits this is no longer the case.) To give some

idea of what this means, if the network has 100 nodes, then the number of computer steps

will be around 10,000, and if it has 1,000 nodes then the number of steps rises to around

1,000,000.

Now let us modify our problem slightly. Figure 2 shows a new network. It can be

shown quite easily that this network cannot be properly coloured with two colours (for

example, consider the triangles towards the left of the network), but what happens if we

allow ourselves three colours? Is there a proper colouring?

This question turns out to be much harder, in general. The reason is that if one tries

to colour the network by colouring nodes in turn, then many of the choices one makes

are not forced in the way that they were with two colours. For example, if one wishes to

colour a node which is linked to two other nodes both of which have been coloured red,

one can do so with either green or blue. Then, if one runs into difficulty later, it may be

that this difficulty was an indirect consequence of this bad decision made much earlier. To

make things worse, there may have been several other decisions, of which some were bad

and some good, with no easy way to tell which was which. As a result, it is very hard to

establish conclusively that a proper colouring with three colours does not exist, and if it

does exist it can be very hard to find.

One method we could try is simply to examine all possible choices of colours and see

if one of them works. Of course, this would be very tedious, but isn’t tedious repetitive
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calculation what computers are good at? The answer is yes, but only if the number of

repetitions is not too large. For this problem, the amount of time needed by the computer

would be prohibitively large. If a network has n nodes, then the number of ways of assigning

each node one of three colours is 3n, and for each assignment of the colours it takes the

computer about n2 steps (at worst) to check whether there are two linked nodes of the

same colour. Hence, the number of steps needed by the computer is something like 3n.n2.

Again, one can understand what this means by considering a specific value of n such as

100. For a network with 100 nodes, the number of steps needed is 3100.1002, or

5153775207320113310364611297656212727021075220010000.

It would take all the world’s computers combined far longer than the universe has existed

to perform this number of steps.

It follows that a second procedure I have just outlined, namely check all possible

colourings and see if one of them is a proper colouring, is impractical in the extreme. As

it happens, there is no known practical way of determining whether a general network can

be properly coloured with three colours. However, you may be interested to know that the

network in Figure 2 can be: see Figure 3.

Obviously, if one is programming a computer, it is worth knowing whether one’s

program is likely to run in a reasonably short time. Hence, it is important in theoretical

computer science to establish what one means by a practical algorithm, or procedure. The

most widely used convention is that an algorithm is regarded as efficient if the number

of steps is no worse than a polynomial function of the size of the input. For example, if

somebody were to find a way of determining whether a network with n nodes could be

properly coloured with three colours using no more than 100n8 + 73n6 + 12n3 + n + 1

computational steps, then this would be regarded as the first practical solution of the

problem and a breakthrough of the first importance.

However, a computer programmer could make only limited use of such a breakthrough.

For example, when n = 100,

100n8 + 73n6 + 12n3 + n+ 1 = 1000073000012000101

which is still far too many steps for a computer. So the practical solution would only be

‘practical in theory’ as opposed to ‘practical in practice’.

5



The point I wish to make is that theoretical computer scientists have a notion of

practicality of algorithms which is different from genuine practicality, though related to

it. The reason they use this notion is that for mathematical reasons it is natural, elegant

and convenient. From a mathematical point of view, this definition of practicality leads to

questions which are often more interesting than those that arise from the genuine needs of

computer programmers. Thus, even in a very practical subject, practical problems are not

always of the highest priority. (I should add that theoretical computer scientists are well

aware of what I am saying, and are not indifferent to questions of genuine practicality.)

To summarize what I have said so far, most mathematicians, including those who work

in useful-sounding branches of mathematics, do not work on problems with direct practical

applications. It would be dishonest of me to argue for the importance of mathematics by

trying to pretend that this was not so. Instead, my task will be to explain why, despite

this fact, mathematics is a worthwhile endeavour, and why it should be supported. I will

give two arguments, the first based on the practical utility of mathematics (despite what

I have just said) and the second on its cultural value.

It may look as though I have been trying to convince you that mathematics is a useless

subject, but in fact all I have claimed is that a typical mathematician does not actively

try to be useful. These are two very different statements. They are different because there

is an important distinction between the collective result of an activity and the individual

motives of the participants. Let me give an example of this from outside mathematics.

Some capitalist economies are based on the premise that individual greed and selfishness,

to use somewhat emotive terms, can act for the collective good of society. The greed

causes people to strive to become wealthy, and this benefits the entire economy in many

ways, such as increasing the tax revenue for the government, which can then be spent on

hospitals, schools, public transport and so on, or causing companies to be set up, which

provide livelihoods for many people. The individuals need have absolutely no interest in

whether other members of society have satisfactory lives, provided that sufficient social

order is maintained, but in an indirect way their activity does benefit others.

Of course, not everybody agrees that economies such as I have briefly described are a

good thing, and the last thing I wish to do is let politics intrude on a mathematical lecture.

However, it is surely not controversial to state that individual selfishness can lead to public

good, and I wish to argue that something similar happens in mathematics. Although
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individual mathematicians are motivated primarily by a subtle mixture of ambition and

intellectual curiosity, and not by a wish to benefit society, nevertheless, mathematics as a

whole does benefit society. I would now like to examine in more detail why this is.

One straightforward answer is this: mathematics is cheap, and occasionally produces

breakthroughs of enormous economic benefit, either directly, as in the case of public-key

cryptography, or indirectly, as a result of providing the necessary theoretical underpinning

for science. If you were to work out what mathematical research has cost the world in

the last 100 years, and then work out what the world has gained, in crude economic

terms, then you would discover that the world has received an extraordinary return on a

very small investment. And I haven’t even mentioned the fact that those who engage in

mathematical research also teach very bright students, many of whom do not themselves

become mathematicians, but rather use their mathematical training in ways that directly

contribute to the world economy.

Taken as a whole, then, mathematics is undeniably important. However, a cost-cutting

finance minister will notice a gap in the above argument: might it not be possible to achieve

the same benefits more cheaply? If the benefits of mathematics come from teaching and

a few breakthroughs, while most mathematicians get on with their interesting but useless

research, then why not cut the research funding to the useless areas and just support the

teaching and the more practically oriented mathematics? One of my main objectives today

is to expose the fallacy, or rather fallacies, that would lie behind such a proposal.

The first one is the idea that it is possible to identify the areas of mathematics that

will turn out to be useful. In fact, it is notoriously hard to predict this, and the history of

mathematics is littered with examples of areas of research that were initially pursued for

their own sake and later turned out to have a completely unexpected importance. I could

mention the RSA algorithm yet again. A more fundamental example is the non-Euclidean

geometry of Gauss, Bolyai and Lobachevsky, which is internally consistent despite such

apparently paradoxical phenomena as the existence of triangles with angles not adding to

180o. This paved the way for Riemannian geometry, which seemed to be an example of

pure mathematics par excellence until it turned out to be exactly what Einstein needed

for his general theory of relativity.

A recent and celebrated example is provided by the theory of knots. Figure 3 shows

seven examples of what mathematicians call knots. These differ from ordinary knots in
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that the ends of the knotted string are fused together - perhaps ‘knotted loops’ would be

a more accurate term. A particularly simple knot is shown at the bottom. This is known

as the unknot, because, as one can easily see, it can be untwisted into a simple loop. The

other knots are more genuinely knotted, but this is surprisingly hard to prove, and to this

day there is no known practical method (that is, algorithm again) of deciding whether or

not a more complicated diagram of the kind appearing in Figure 3 represents a knot that

can be untied into a simple loop. Another central problem in knot theory is to decide

when two diagrams in fact represent the same knot, in the sense that one can be twisted

into the other. For example, though it is not obvious from the diagram, a good mental

gymnast can eventually see that the fourth and fifth diagrams (reading from the top, and

from left to right) represent the same knot.

Once again, these looked like amusing puzzles until, after work of Vaughan Jones

and Edward Witten, it was realized that knot theory had fundamental connections with

theoretical physics.

So - mathematicians can tell their governments - if you cut funding to pure mathe-

matical research, you run the risk of losing out on unexpected benefits, which historically

have been by far the most important.

However, the miserly finance minister need not be convinced quite yet. It may be very

hard to identify positively the areas of mathematics likely to lead to practical benefits, but

that does not rule out the possibility of identifying negatively the areas that will quite

clearly be useless, or at least useless for the next two hundred years. In fact, the finance

minister does not even need to be certain that they will be useless. If a large area of

mathematics has only a one in ten thousand chance of producing economic benefit in the

next fifty years, then perhaps that at least could be cut.

You will not be surprised to hear me say that this policy would still be completely

misguided. A major reason, one that has been commented on many times and is implied

by the subtitle of this conference, “A Celebration of the Universality of Mathematical

Thought”, is that mathematics is very interconnected, far more so than it appears on the

surface. The picture in the back of the finance minister’s mind might be something like

Figure 4. According to this picture, mathematics is divided into several subdisciplines, of

varying degrees of practicality, and it is a simple matter to cut funding to the less practical

ones.
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A more realistic picture, though still outrageously simplified, is given in Figure 5.

(Just for the purposes of comparison, Figure 6 shows Figures 4 and 5 superimposed.) The

nodes of Figure 5 represent small areas of mathematical activity and the lines joining them

represent interrelationships between those areas. The small areas of activity form clusters

where there are more of these interrelationships, and these clusters can perhaps be thought

of as subdisciplines. However, the boundaries of these clusters are not precise, and many

of the interrelationships are between clusters rather than within them.

In particular, if mathematicians work on difficult practical problems, they do not do so

in isolation from the rest of mathematics. Rather, they bring to the problems several tools

- mathematical tricks, rules of thumb, theorems known to be useful (in the mathematical

sense), and so on. They do not know in advance which of these tools they will use, but they

hope that after they have thought hard about a problem they will realize what is needed to

solve it. If they are lucky, they can simply apply their existing expertise straightforwardly.

More often, they will have to adapt it to some extent. Perhaps it will be helpful if I show

another two pictures, this time illustrating what it is like to solve a mathematical problem.

Figure 7 is a naive view: you start at the boundary of what is known, with a definite

goal in mind. You then have a succession of brilliantly clever ideas after which the solution

pops out. A more realistic view, which I have tried to represent pictorially in Figure 8,

takes into account numerous important features of mathematical research such as false

starts, promising ideas that lead nowhere or insights that unexpectedly solve a different

problem.

Thus, a good way to think about mathematics as a whole is that it is a huge body of

knowledge, a bit like an encyclopaedia but with an enormous number of cross-references.

This knowledge is stored in books, papers, computers and the brains of thousands of

mathematicians round the world. It is not as convenient to look up a piece of mathematics

as it is to look up a word in an encyclopaedia, especially as it is not always easy to

specify exactly what it is that one wants to look up. Nevertheless, this “encyclopaedia” of

mathematics is an incredible resource. And just as, if one were to try to get rid of all the

entries in an encyclopaedia, or, to give a different comparison, all the books in a library,

that nobody ever looked up, the result would be a greatly impoverished encyclopaedia or

library, so, any attempt to purge mathematics of its less useful parts would almost certainly

be very damaging to the more useful parts as well.
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So far I have simply stated that mathematics is full of surprising connections. Any

mathematician will happily confirm that statement and be able to give examples from

his or her experience. Indeed, discovering surprising connections is one of the great joys

of the subject. I would like to illustrate the interconnectedness of mathematics with an

example in which I played a small part. To do this I must briefly describe a few unsolved

mathematical problems.

The first one is simple enough that I can explain it precisely. Consider the following

three sequences of numbers:

5 11 17 23 29

7 19 31 43

11 41 71 101 131

They have two important features in common. First, they go up in regular steps: thus, the

first one goes up by 6 each time, the second by 12 and the third by 30. Such a sequence

is called an arithmetic progression. Secondly, and more interestingly, they all consist only

of prime numbers.

If you try to extend one of these sequences in the natural way, then it will no longer

consist solely of primes. For example, 29 + 6 = 35, which is 5× 7. Similarly, 55 = 5× 11

and 161 = 7 × 23. In fact, it is relatively straightforward to show that any arithmetic

progression, if continued far enough, contains numbers that are not prime. However, this

observation still leaves open the following two questions:

Problem 1. Are there infinitely many arithmetic progressions of length four consisting

of prime numbers?

Problem 2. Can arithmetic progressions of primes have any (finite) length or is there

some upper limit to how long they can be?

I should say in passing that if you replace ‘four’ by ‘three’ in question (1), then the answer is

known to be yes, but the proof is by no means easy. Secondly, the longest known arithmetic

progression consisting of prime numbers has length in the early twenties and was found by

a computer. Of course, no such example leaves us any the wiser about question (2).

The next problem I wish to describe is more geometrical in character. Figure 9a shows

a triangle divided up into eight tall thin triangles. This is done in the most obvious way:
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the base of the triangle is divided into eight equal lengths and these form the bases of the

small triangles, which all have as their top corner the top corner of the original triangle.

Now imagine that we are allowed to slide the small triangles about horizontally, and

even to do so in such a way that they overlap. Suppose that we wish to do this in such a

way that the area of the shape formed by the overlapping triangles is as small as possible.

One approach to this challenge is the following. First, group the triangles into overlapping

pairs, as shown in Figure 9b. Having done that, group the pairs themselves into pairs,

obtaining two groups of four overlapping triangles (Figure 9c). Finally, slide these groups

so that they overlap and form the tree-like picture in Figure 9d.

It turns out that by a method of this kind, one can make the area of the final figure

as small as one likes, provided that one divides the original triangle into enough pieces.

However, it is also known that the number of pieces must be large: roughly speaking if

you want to end up with an area of one nth of the area of the original triangle, you will

have to divide its base into 2n pieces. (This means that to reduce the area to five percent

of what it was to start with, the number of thin triangles will have to be over a million.)

Now look at Figure 10. This illustrates the corresponding three-dimensional problem,

so that instead of a triangle, one begins with a pyramid, and instead of dividing the base

of the triangle into small lines, one divides the base of the pyramid into small squares.

These form tall thin pyramids that point in various directions. Also in Figure 10 I have

drawn what it might look like if four of these smaller pieces were moved horizontally until

they overlapped.

By a method very similar to the method I described for two dimensions it can be

shown that, once again, if you divide the original pyramid into enough pieces, then you

can slide these pieces horizontally until they overlap enough for their combined volume

to be as small as you like. However, now the question of how many pieces are needed to

obtain a specified decrease in the volume is wide open. Let me state this question, which

is known as the Kakeya problem, more formally.

Problem 3. Suppose that you wish to divide a pyramid into N tall thin pyramids as

described above, then slide the thin pyramids horizontally so that they overlap and form

a new shape with volume 1/n times that of the original pyramid. Then how large do you

need N to be?
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The method that worked in two dimensions can be used to show that around N = 4n

pieces will be enough. However, in three dimensions there is much more flexibility to move

the pieces, and it is not at all obvious that there is not some much more efficient method

of doing it. For the benefit of those with more mathematical experience, let me say that

the question of greatest interest is whether N has a power-like dependence on n, and one

would like to know this for every dimension. If N could be bounded above by n100, say,

then many important conjectures would be disproved. On the other hand, showing that

N is greater than any power of n would be a big step towards proving those conjectures.

Next, I would like to describe a theorem rather than an unsolved problem. Figure

11 shows a sequence of numbers, and I have drawn attention to certain groups of four of

them. For example, I have picked out the numbers 8, 14, 29 and 35 in one group, and I

have done so for the simple reason that 14− 8 = 35− 29. Similarly, 5− 3 = 29− 27, and

so on. Let us call such a group of four numbers a special quadruple.

Now forget about special quadruples for a moment and consider the following set of

numbers: {1, 2, 4, 6, 23, 29}. (It is traditional to enclose mathematical collections, or sets

as they are known, in curly brackets.) To help us think about this set, let us give it a

name, A. Then A has size 6, in the sense that it consists of six numbers. Let us define

a new set, denoted A + A, be the set of all numbers that you can make by adding two

numbers (which are allowed to be the same) from A. A brief calculation shows that

A+A = {2, 3, 4, 5, 6, 7, 8, 10, 13, 24, 25, 27, 29, 30, 31, 33, 35, 46, 52, 58} .

For example, 27 belongs to A + A because it can be written 4 + 23 and both 4 and 23

belong to A. Similarly, 7 = 1 + 6 and 58 = 29 + 29. The size of A+A is 20, which is over

three times larger than the size of A. However, if we drop the numbers 23 and 29 from A,

we obtain a new set B = {1, 2, 4, 6}, and then

B +B = {2, 3, 4, 5, 6, 7, 8, 10, 12} ,

which has size 9 and is therefore only just over twice the size of B.

Thus, although A+A was considerably larger than A, we were able to form a new set

B, consisting of a reasonable proportion of the numbers in A, in such a way that B + B

was not all that much larger than B.
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Suppose we now choose a new set of numbers as our set A and that A + A is much

larger than A. Will we always be able to pick out a reasonably large set B in such a way

that B +B is not too much larger than B? In general, the answer is no, as can be shown

quite easily. However, a theorem of Balog and Szemerédi tells us that the answer is yes

if A has a particular property, and this property brings us back to the special quadruples

defined earlier. Let me give an imprecise statement of their result.

Theorem. If A is a set of numbers and if A contains many special quadruples, then A

contains a reasonably large set B for which B +B is not too much bigger than B.

A precise statement of the above theorem would require me to say how my notions of

‘reasonably large’ and ‘not too much bigger than’ depend on my notion of ‘many’. However,

the details need not concern us here.

Notice that there is a certain initial plausibility about the theorem. If B + B is to

be small, then there must be several numbers that can be written in many different ways

as a sum of two numbers in B. However, every time a number m can be written both as

x + y and as z + w we then have x + y = z + w, and therefore x − z = w − y. In other

words, we have a special quadruple. The interest in the theorem is that in a certain sense

this argument can be reversed: starting with the special quadruples one finds a set B for

which B +B is small.

The final problem I wish to discuss is not so much a single problem as an entire area

of research, which I shall describe in only the vaguest terms. It has been realized since

Newton that huge numbers of physical phenomena can be described by means of what

are known as partial differential equations. Some examples of these phenomena are the

behaviour of water waves (or indeed light waves, sound waves, and many other kinds of

waves), the flow of heat, the motion of fluids, the growth of populations, the spread of

disease and the wave functions of quantum mechanics.

Partial differential equations can be divided into two kinds: the so called linear ones,

which are (relatively) easy to analyse and can often be solved completely, and the non-

linear ones, which are much harder to analyse and can almost never be solved completely.

Unfortunately (or fortunately - it depends on your attitude) many extremely interesting

and important physical phenomena are best modelled by the non-linear kind. One example

is turbulence, which is ubiquitous, but very hard to understand mathematically.
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Because of the difficulties in analysing non-linear partial differential equations, mathe-

maticians are forced not to set their sights too high. Instead of searching for a formula that

perfectly describes the physical situation, they try to answer more qualitative questions.

For example, one might wish to know whether the physical quantity under investigation

will become more and more violent and unstable as time goes on, or whether it will gradu-

ally die out. At an even more basic level, instead of trying to find a solution, one might be

content merely to determine whether a solution exists. Thus, one could describe research

in partial differential equations as an attempt to answer the following general problem.

Problem 4. Given a partial differential equation, does it have a solution, and if so, how

does that solution behave?

I have now described a somewhat miscellaneous collection of four problems and one

theorem. Why did I do so? Because they are not so miscellaneous after all. In fact, despite

apparently coming from completely different areas of mathematics, they are intimately

related to each other. Figure 12 shows the various links in diagrammatic form. As in my

earlier, more fanciful diagram I have linked two areas of investigation with a line if there

is a close connection between them. Let me describe briefly these links, which are typical

of the surprising connections that occur all over mathematics.

In order to investigate arithmetic progressions in the primes, it is very natural and

fruitful to think about arithmetic progressions in more general sets of numbers. A famous

conjecture of Erdős and Turán from 1936, finally proved by Endre Szemerédi 40 years later,

asserts that every reasonably large set of numbers (for the mathematician, this means

every set of integers with positive lower density) contains arithmetic progressions of every

length. A few years after Szemerédi proved this theorem, Hillel Furstenberg discovered a

completely different proof, relating the theorem to ergodic theory, a branch of mathematics

with close connections to physics. Much more recently, I found a third proof of Szemerédi’s

theorem, and for this proof I needed to use the Balog-Szemerédi theorem that I mentioned

earlier. However, I had to improve the theorem a little, in the sense that my ‘reasonably

large’ was larger than theirs and my ‘not too much bigger’ was smaller.

Jean Bourgain then realized that he could adapt my proof of the Balog-Szemerédi

theorem and use the adaptation to improve greatly what is known about the Kakeya

problem in large dimensions. Subsequently, Nets Katz and Terence Tao found a different
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argument that improved Bourgain’s result and did not use my work. So in a sense the

connection is weakened, but it is not entirely invalidated - that, after all, is one of the ways

that mathematics progresses.

The Kakeya problem is closely related to problems in harmonic analysis that have

a direct bearing on the behaviour of partial differential equations, as Terence Tao will

explain in his lecture tomorrow. And as I have already said, the study of partial differential

equations includes a high proportion of physics. Thus we have found a chain from a very

purely mathematical question about prime numbers all the way to the heart of physics.

It is amusing to note that there is a route back from the Kakeya problem to the

primes. A fascinating discovery of Bourgain is that the Kakeya problem is closely related,

via a conjecture of Montgomery, to the distribution of the zeros of the famous Riemann

zeta function. Why is the Riemann zeta function so famous? Because it is intimately

related to the distribution of the prime numbers. Indeed, it is so closely related that many

questions about the prime numbers are actually equivalent to questions about the zeros of

the Riemann zeta function. Finally, if one wants to know about the existence of arithmetic

progressions in the primes, then information about how the primes are distributed is of

course helpful.

I should make it clear that I am not saying that research into arithmetic progressions

in the primes has had a direct impact, via physics, on our everyday lives, since after two or

three links in the chain, the connection becomes somewhat tenuous. The point I wish to

make is simply that the way mathematics as a whole progresses is complicated, and often

depends on unexpected links between apparently very different areas.

As a final cautionary tale for the hypothetical finance minister, let me also demonstrate

that problems that look like nothing more than fun and games can turn out to be of direct

practical importance after all. To do this, I shall look at the undoubtedly real-world

problem of timetabling. As an example of this problem, let us imagine that seven students

are about to take some examinations, and they have each made a different choice of papers.

I have numbered the candidates from 1 to 7, labelled the papers A to H, and laid out the

choices of the candidates in the table in Figure 13.

How should we schedule the examinations? Well, it is important not to do so in such

a way that some candidate is expected to take two papers at once, and it is also important

(to avoid any possibility of cheating) that all candidates taking a given paper do so at the

15



same time. One way of meeting these requirements is simply to have the examinations for

all the papers at different times, but it may be expensive to hire an examination hall, and

if it is, we can save money by having two papers taken simultaneously, provided that no

candidate has signed up for both.

The question that now arises is this. For how few sessions do we need to book the

examination hall? Going back to Figure 13, we could note that no candidate is taking

both paper A and paper D, so there is nothing to stop the examinations for these two

papers being simultaneous. Before we go any further though, let us try to represent the

problem in a more visual way. In Figure 14 I have drawn a network, with nodes labelled

from A to H representing the papers. I have joined two of these nodes with a line when

the corresponding two papers are not allowed to be at the same time. Thus, node A is

joined to node C because candidates 1 and 5 are taking both papers A and C. Similarly,

node B is joined to node D because of candidate 2, and so on.

Now we obviously cannot get away with hiring the examination hall only twice, since

candidate 1 is taking three papers. Can we manage with three sessions? If we can, then

we will be able to divide the papers into three sets, and put the first set of papers into

session 1, the second into session 2 and the third into session 3. What we need to do then

is put a number between 1 and 3 next to each node (telling us in which session the paper

will be taken) in such a way that nodes that are joined do not have the same number.

To make this still more visual, we could represent the three sessions not by numbers

but by the colours red, blue and green. (For example, if paper C is to be taken in session 2

then we could colour node C blue.) Now what we are trying to do is colour the nodes A to

H with three colours in such a way that nodes that are joined never have the same colour.

This is, as you will undoubtedly have noticed, exactly the problem that I discussed near

the beginning of this lecture. Figure 15 shows that the colouring is possible, and hence

that it is only necessary to hire the examination hall three times, one for papers A, D and

F, one for papers B, E and H and once for papers C and G. Thus, whereas I earlier showed

that seemingly very different problems can be closely connected, this example shows that

seemingly very different problems are sometimes precisely the same problem. There are

many other examples of this phenomenon throughout mathematics.

I think I have said enough on the economic case for supporting pure mathematical

research in more or less its current form, and I would now like to turn to the cultural
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case. I, as I have said, am one of those individual mathematicians who do not directly

strive to swell the national coffers, so let me spend some time explaining what it is about

mathematical research that so appeals to me. Since mathematics is a very broad subject,

and tastes and mathematical styles differ widely from one branch of this subject to another,

this part of the lecture will inevitably be less universal and more personal than the first.

However, I believe my experience is fairly typical.

I hope that in France, of all places, a cultural argument will be taken seriously. My

home country, England, was famously described by Napoleon as ‘une nation de boutiquiers’

- a nation of shopkeepers. In England, the word ‘intellectual’ is sometimes regarded as

virtually a synonym for ‘pretentious’, whereas in France intellectuals are widely admired,

and abstract thought greatly appreciated, or at least so one reads.

The cultural case, in brief, is that knowledge is worth pursuing for its own sake.

Just as one of the rewards for individual mathematical or other cultural success is a form

of immortality, so entire societies, ancient Greece being the most obvious example, are

remembered for their contributions to knowledge long after their political and economic

influence has faded. A society that deliberately turns its back on the pursuit of knowledge

is, to put it bluntly, a boring society. [After I gave the lecture, Ilan Vardi suggested Rome

as a counterexample to this assertion.]

On the other hand, it would be foolish to suggest that all knowledge, or even all

mathematical knowledge, is of equal value. What I shall do now is talk a little about a

theorem that I definitely do find worth knowing for its own sake. Perhaps one day it will

be useful as well, but for now I present it as an example of beauty in mathematics. The

idea that a piece of mathematics could have an aesthetic appeal puzzles those who have

never experienced it, or perhaps I should say never knowingly experienced it. The theorem

I have chosen as my example is very well known in the right mathematical circles, but it

is not one of the giant theorems of the twentieth century, and it is completely unknown

outside mathematics. This is a deliberate decision on my part, because I want to make

the point that mathematical beauty is not confined to one or two spectacular and famous

theorems, but lurks everywhere, waiting to surprise and delight us.

Figure 16 is, as you can see, a table of numbers. If you examine it for a few seconds

you will see that the numbers on the left of each column are simply the numbers 2,3,4,5

and so on, all the way to 100, but they are written as products of prime numbers. Thus,
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for example, the number 63 appears as 3 × 3 × 7 and 64 as 2 × 2 × 2 × 2 × 2 × 2. It has

been known since Euclid that every number can be written in this way, and that for each

number there is only one way of doing it (except that you can change the order in which

you write the primes, but this is not a genuine difference). Hence, for each number n we

can ask, ‘How many prime factors does n have?’ Here, if a prime number is repeated I

count it multiply, so for example 64 has six prime factors.

In isolation, this is not a particularly interesting question, since all you can do to

answer it is work out the prime factorization of n and count how many primes you used. On

the right hand side of the columns of the table I have shown the result of this calculation for

every n between 2 and 100, and as can be seen the numbers do not follow any recognizable

pattern.

A mathematically unsophisticated response to this situation would be to hope that one

day somebody will discover a beautiful formula that gives, as if by magic, the numbers in

the right of the columns. However, it is almost certain that no such formula exists, so it is

more sensible to set our sights lower. If there is not a clean way to generate these numbers,

then we can instead ask less precise questions about how they behave. Notice that this

situation is similar to the situation for most non-linear partial differential equations - even

if you can’t solve them with a crisp formula, you may still be able to show that a solution

exists and that it has certain properties.

What properties should we look for in our strange sequence of numbers? To help

answer this question, I have compiled a new table in Figure 17, which shows, for each

number between 1 and 6, how many numbers between 2 and 99 have that number of prime

factors. In other words, for each number I have shown how many times it appears on the

right in the previous table. For example, 5 appears four times, because the only numbers

between 2 and 99 with exactly five prime factors are 32,48,72 and 80. Below the new table

is a diagram which gives exactly the same information but in the form of a bar chart. You

will notice that the height of the bars rises to a peak and then tails away again.

You may have been wondering what sort of less precise question should be asked about

the fairly random seeming numbers in Figure 16. I can now give an example. Having seen

the bar chart, it is natural to ask (and mathematicians, who are trained as much to ask

questions as to provide answers, would do so instinctively) whether the shape of this bar

chart is just a fluke, or whether it is a sign of some underlying mathematical fact. To be
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more precise still, suppose we were to repeat the experiment but with a far larger number.

For instance, we could get a computer to calculate the number of prime factors of every

number up to a billion, and provide us with a bar chart similar to the one in Figure 17,

telling us how many times each number had occurred. Would the new bar chart also rise

to a peak and then tail away? If so, roughly what shape would it have?

There is one shape that bar charts often seem to have, sometimes called the bell curve.

Mathematicians call such phenomena normally distributed. It seems a little outrageous to

suggest it, but might the number of factors of numbers up to n be normally distributed

when n gets large. We have something a bit like a bell (though unfortunately much of the

left of it has been cut off) in Figure 17, but this is hardly conclusive, or even persuasive,

evidence.

Remarkably, however, this guess is correct, as was proved by Erdős and Kac in 1939. I

find this result beautiful for at least five reasons. First, the shape of the normal distribution

is itself aesthetically satisfying, though this is true of many mathematical curves. Secondly,

the theorem is unexpectedly simple. If you are not a mathematician then this may not

be immediately apparent, since the bell curve is defined by the formula y = ae−b(x−c)
2
.

However, the normal distribution has all sorts of properties that make it particularly easy

to deal with, and it occurs throughout mathematics and science. In a certain precise sense,

it is the simplest of all distributions.

A third reason for the theorem being beautiful is that it is unexpected. Behind the

disorder and irregular behaviour of the primes there lies the simplicity and regularity of

the normal distribution. This is particularly surprising because the primes are defined

deterministically (there is no choice about whether a given number is a prime or not)

while the normal distribution usually describes very random phenomena.

A fourth reason is that the phenomenon uncovered by Erdős and Kac is not one we can

directly experience. If you wanted to produce a bar chart that gave a good approximation

to the normal distribution, you would have to calculate the prime factorizations of more

numbers than a computer could handle. Thus, the result of Erdős and Kac is, in a sense,

purely theoretical. Though we can appreciate the pattern, we have to do this by math-

ematical thought, rather than by experiment. (We can of course imagine an experiment,

and, thanks to Erdős and Kac, we know exactly what the result would be.)

The fifth reason is that the proof of the theorem is very satisfying. Let me give a very
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brief outline of it. For the benefit of those who are afraid of logarithms, when I say log n,

then you will not lose much if you interpret this as 2 · 3 times the number of digits of n.

In particular, when n is a large number, log n is much smaller than n. I shall divide the

proof into four steps.

Step 1. When n is large, most numbers near n have roughly log logn prime factors.

(That is, with a few exceptions, it m is near n then you can approximate the number of

prime factors of m by taking its logarithm twice.) This result was proved by Hardy and

Ramanujan in 1920, and again in 1934, with a much simpler argument, by Paul Turán.

Step 2. Therefore, most prime factors of most numbers near n are small. This follows

because a significant number of large prime numbers would multiply to a number bigger

than n.

Step 3. If m is chosen to be a random number near n, then the events ‘m is divisible by

p’, where p is a small prime, are roughly independent. For example, if you know that m is

divisible by 3 and 5, but not by 11, it gives you almost no information about whether m

is divisible by 7. By a technique known as the Brun sieve, this means that if we think of

the events as being exactly independent, then the conclusions we draw from this will be

approximately correct.

Step 4. If these events were exactly independent, then a normal distribution would result,

because (subject to certain technical conditions that hold here) it always arises when one

counts how many of a large number of independent events have occurred.

An important comment about the above proof is that it works. The steps may be

reasonably convincing (at least to a mathematician) but there are many vague words such

as ‘large’, ‘small’, ‘approximately’ and so on. As with the Balog-Szemerédi theorem, one

must make these precise by saying exactly how large counts as large, what is regarded as a

good approximation and so on. The way the Erdős-Kac theorem was proved is one of the

great romantic stories of mathematics: Kac gave a seminar at the Institute for Advanced

Study in Princeton in which he suggested that the theorem (as yet unproved) might be

true; Erdős, apparently not concentrating, was in fact thinking hard; intimately familiar

with the Brun sieve, he rapidly conceived of the above proof outline; at the end of the

seminar Erdős went up to Kac and said that he had a proof. There are many other stories
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of a similar kind: mathematicians who are at the top of a mountain when the solution to

a problem suddenly hits them, and so on. However, if one does have a bright idea, it is

important to sit down and check the details thoroughly. If my own experience is anything

to go by, the great majority of bright ideas are either wrong, or have been had by hundreds

of people before.

I hope that, even if the Erdős-Kac theorem has not just given you an intense aesthetic

experience, you can at least see how it might do so for those who spend their lives devoted to

mathematics. Clearly, mathematical beauty is not the same as the beauty of a painting, but

then neither is the beauty of a painting the same as that of a piece of music, or a tree, or a

poem, or a human face. Though I would hesitate to define beauty, there are certain features

commonly associated with beauty that definitely occur within mathematics. Some of these

are symmetry, balance (for this to be good, excessive symmetry may well be undesirable),

and tension between simplicity and complexity, between regularity and irregularity, and

between predictability and unpredicability. In general, beauty has to arouse our interest,

for which reason it often involves patterns that we can appreciate but not fully understand.

These concepts make sense even in very simple situations. For example, Figure 18

shows four grids of 13× 13 squares, each with some squares filled in. Most people, if asked

to rank the four patterns in order of beauty (or if that is too strong a word, of aesthetic

preference), will have opinions on the matter. For example, the first pattern, though similar

to the second, is somehow more satisfying. There is even a mathematical reason for this,

which is that the first one represents the eight times table in base 13, and 8 and 13 are

consecutive Fibonacci numbers. This means that 13/8 approximates the famous golden

ratio, which (for reasons I do not have time to explain) is directly connected with the fact

that the first pattern does not have the ‘ugly’ almost vertical stripes of the second. What

is it about those stripes that is ugly? Perhaps it is that we somehow apprehend them too

easily, and they force us to look at the pattern in only one way, making it less mysterious

than the first.

Of course the first isn’t particularly mysterious itself, and I don’t want to sound too

aesthetically excited about any of them. Nevertheless, it is interesting that some sort of

aesthetic discussion is possible. If you want to know how the other patterns were generated,

the second fills in every 9th square rather than 8th. The third is the graph of y = x2 modulo

13 (and would perhaps look better if I removed zero), while for the fourth I chose each
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square entirely randomly with probability 1/10. (In my opinion, although the resulting

pattern does not yield up a deeper meaning, its composition is not too bad.)

I would like to end by returning to the word “importance”, because, interestingly

enough, the beauty of some mathematics contributes to its importance. This is not just

because we want as much beauty in the world as possible - after all, the beauty of higher

mathematics is appreciated by only a tiny minority of the world’s population. A more seri-

ous reason is that there is a remarkable correlation between mathematics that is beautiful,

and mathematics that is important.

This is partly for reasons internal to mathematics. There are two ways in which

the subject develops. One is the solution of problems, which involves clever, unexpected

ideas and hard, technical work (in varying proportions). Now if mathematics were nothing

but problem-solving, then as it grew and grew it would become more and more chaotic,

specialized and difficult. Indeed, to some extent this does in fact happen. Fortunately,

there is a tendency in the opposite direction as well. It often happens that there are

similarities between the solutions to problems, or between the structures that are thrown

up as part of the solutions. Sometimes, these similarities point to more general phenomena

that simultaneously explain several different pieces of mathematics. These more general

phenomena can be very difficult to discover, but when they are discovered, they have a

very important simplifying and organizing role, and can lead to the solutions of further

problems, or raise new and fascinating questions. I have just argued that an important

component of aesthetic appreciation is the feeling that a complicated pattern has been

generated in a simple way, but not so that one can immediately apprehend it. It should

not come as a total surprise, therefore, that when a number of loosely related specific

results turn out to be consequences of the same general one, mathematicians should have

an aesthetic response.

In fact, an appreciation of beauty is essential, or at least very useful indeed, for solving

problems as well. Often, one can reject a line of attack on the grounds that it is simply

not elegant enough to work. One may be wrong, but it is still efficient to look for beautiful

solutions first, and settle for ugly ones only as a last resort. Similarly, finding the solution

of a problem involves a great deal of rather vague reasoning, following hunches, making

guesses and so on. How does one know whether one of these guesses will survive a later,

more rigorous scrutiny? Well, one doesn’t, as I stressed earlier, but it is a good rule of
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thumb that the more beautiful the guess, the more likely it is to survive.

My final illustration comes from a children’s book, and I give it as an example of a

picture that I find distinctly lacking in beauty. An surprised elephant is squirting water

out of its trunk and over a train. I hope you will agree with me that the shape of the jet of

water looks wrong. Indeed, it is wrong - it should be a parabola, which it clearly isn’t, but

at a more basic level, if the water comes out of the elephant’s trunk almost vertically, then

it should continue more or less vertically, rather than miraculously going a short horizontal

distance and then dropping vertically again. However, the point I wish to make is not so

much that the artist was ignorant of physics as that one’s first reaction against the picture

is an aesthetic one. It just looks wrong, and unsatisfying, an initial impression that can

easily be backed up with elementary physics later.

There are also external reasons for the importance of beauty. The mathematician

Eugene Wigner once gave a famous lecture entitled “The Unreasonable Effectiveness of

Mathematics” (in fact, so famous that it is something of a cliché in mathematical circles

to mention it). He was referring to the fact that the physical world obeys very simple

mathematical laws - such as Newton’s inverse square law of gravitation - and it is very

hard to explain why this should be. Could one not conceive of a world in which science

was impossible, because there simply wasn’t enough regularity? Mathematics would still

be possible in such a world, though whether it would be pursued is another matter because

simple and elegant mathematical models would have no physical counterparts.

I don’t think this philosophical question has been satisfactorily answered, but we can

be grateful that in our world it is possible to use simple mathematical models. These can

describe, or even explain, the great complexities of physics and to a lesser extent the other

sciences. Once again, complexity arises from simplicity, and, once again, beauty reveals

itself to be important. Thanks to this piece of good fortune, we can be confident that

mathematicians, if they are given the freedom to pursue the subject that gives them so

much pleasure, will continue to produce a body of work that is important in every sense

of the word.
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