1. For each \(n \), let \(f_n : [0, 1] \to \mathbb{R} \) be a function and suppose that the functions \(f_n \) converge uniformly to a function \(f \). Suppose also that \(f \) is bounded (above and below). Prove that for any positive integer \(m \) the functions \(g_n(t) = f_n(t)^m \) converge uniformly to \(g(t) = f(t)^m \).

2. Prove that there is no sequence of analytic functions \(f_n \) that converges uniformly on the unit circle to the function \(1/z \) (which on the circle is the same as \(\bar{z} \)). Why does this not contradict Runge’s theorem?

3. Construct a sequence of polynomials that converges uniformly to \(1/z \) on the semicircle consisting of all points of the unit circle that have real part greater than or equal to 0.

4. Work out continued-fraction expansions for \(71/49 \) and \(\sqrt{3} \).

5. Define a sequence \((x_n) \) by \(x_1 = 1, x_2 = 3 \) and \(x_n = x_{n-1} + x_{n-2} \) for \(n \geq 3 \). Prove that \(x_n/x_{n-1} \) converges to the golden ratio \((1 + \sqrt{5})/2 \). Describe the continued-fraction expansion of \(x_n/x_{n-1} \).

6. Let \(x \) have continued-fraction expansion

\[
1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{z + \frac{1}{z + \ldots}}}}
\]

with the 1s and 2s continuing to alternate. Calculate the value of \(x \).

7. What rational with denominator less than 10 best approximates the number \(71/49 \)?

8. Let \(C \) be a circle with centre 0 in the complex plane, traversed anticlockwise, and let \(K \) be a compact set disjoint from \(C \). Define a function on \(K \) by

\[
f(z) = \frac{1}{2\pi i} \int_C \frac{dw}{w - z}.
\]

By splitting up the path integral into small pieces and approximating the contribution from each piece, prove that \(f \) can be uniformly approximated on \(K \) by functions of the form \(f_n(z) = \sum_{i=1}^{N} a_i/(w_i - z) \), where the \(a_i \) and \(w_i \) are complex numbers with the \(w_i \) lying in \(C \).

9. Prove that \(\sqrt{3} + \sqrt{5} \) and \(e^2 \) are irrational.