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T.W.KÖRNER

Definition 1. Let an, a ∈ Rk. We say that an → a as n→∞, if given
ε > 0, we can find N(ε) such that ||an − a|| < ε for all n > N(ε).

Theorem 2. (i) If an → a and bn → b in Rk then an + bn → a+ b
as n→∞.
(ii) If an → a and bn → b in R (or C) then anbn → ab as n→∞.
(iii) If an → a as n→∞ in R (or C) and a 6= 0, an 6= 0 [n = 1, 2, . . .]

then a−1
n → a−1 as n→∞.

There are many related definitions.

Definition 3. (i) If f : Rl → Rk we say that f(x) → a as x → y if
given ε > 0 we can find a δ(ε) > 0 such that, whenever 0 < ||x− y|| <
δ(ε) it follows that ||f(x)− a|| < ε.
(ii) Let an ∈ R. We say that an → ∞ if, given any K we can find

N(K) such that an > K for all n > N(K).

Axiom 4 (Fundamental Axiom of Analysis). If a1, a2,. . . is an increas-
ing sequence in R and there exists an A ∈ R such that an ≤ A for all
n, then there exists an a ∈ R such that an → a as n→∞.

Definition 5. We say that the series an in Rk converges to the sum a
if

N
∑

n=1

an → a as N →∞.

We write
∞
∑

n=1

an = a.

Lemma 6 (Absolute Convergence implies Convergence). If an ∈ Rk

and
∑∞

n=1 ||an|| converges then
∑∞

n=1 an converges.

Lemma 7 (Comparison Test). If an, bn ∈ R and 0 ≤ an ≤ bn then
whenever

∑∞

n=1 bn converges
∑∞

n=1 an must converge.
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Corollary 8 (Ratio Test). If an ∈ R, 0 < an and an+1/an → l then
(i) If l < 1 then

∑∞

n=1 an converges.
(ii) If l > 1 then

∑∞

n=1 an diverges.

Example 9. If a2n = 2−2n, a2n+1 = 2−2n−2 then the ratio test fails but
comparison with 2−n show that the series an is convergent.

Lemma 10 (Integral Test). Suppose that f : [0,∞) → [0,∞) is a
decreasing continuous function. Then if one of

∫ N

0

f(x)dx and
N
∑

n=0

f(n)

tends to a (finite) limit as N →∞ so does the other.

Corollary 11.
∑∞

n=1 n
−p converges if and only if p > 1.

Note the failure of the ratio test for the series n−p.

Example 12. If f(x) = 1 − cos(2πx) then
∫ N

0
f(x)dx diverges and

∑N

n=0 f(n) converges as N →∞.

Lemma 13 (Alternating Series Test). (Not in syllabus.) Suppose that
an is a decreasing sequence of positive terms with an → 0 as n → ∞.
Then

∑∞

n=1(−1)
nan converges.

Example 14.
∑∞

n=1(−1)
nn−p converges for p > 0 but only converges

absolutely for p > 1.

Theorem 15 (Rearrangement of Positive Series). Let σ : N → N be
a bijection. If an ≥ 0 then, if the series an converges, so does the
rearranged series aσ(n) and

∞
∑

n=1

an =
∞
∑

n=1

aσ(n).

Corollary 16 (Rearrangement of Absolutely Convergent Series). (Not
in syllabus.) Let σ : N → N be a bijection. If an ∈ Rk then, if the series
an is absolutely convergent, so is the rearranged series aσ(n) and

∞
∑

n=1

an =
∞
∑

n=1

aσ(n).

Example 17. Let a2n−1 = n−1, a2n = −n−1 [n = 1, 2, . . .]. Then (by
comparison with appropriate integrals)

kN
∑

n=1

a2n−1 +
lN
∑

n=1

a2n =
kN
∑

n=lN+1

n−1 → log(k/l)
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as N →∞ whenever k and l are integers with k ≥ l > 0.

Theorem 18. Let an ∈ C.
(i)If

∑∞

n=0 anz
n
0 converges then

∑∞

n=0 anz
n converges absolutely for

all z ∈ C with |z| < |z0|.
(ii)If

∑∞

n=0 anz
n
0 diverges then the sequence |anz

n| is unbounded for
all z ∈ C with |z| > |z0|.

Theorem 19 (Radius of Convergence). (Proof next year.) Let an ∈ C.
Then, either

∑∞

n=0 anz
n converges for all z ∈ C (and we say that the

power series has radius of covergence infinity) or there exists an R with
R ≥ 0 such that
(i)
∑∞

n=0 anz
n converges for all |z| < R,

(ii)
∑∞

n=0 anz
n diverges for all |z| > R.

We call R the radius of convergence.

Example 20. (i) If an = 1/n! then R =∞.
(ii) If an = n! then R = 0.
(iii) If an = r−n then R = r.
(iv) If a4n = 0, a4n+1 = 1, a4n+2 = 2, a4n+3 = 1 then R = 1.
(v) If a0 = 1, an = np then R = 1. If p < −1 then we have

convergence of
∑∞

n=0 anz
n for |z| = 1, if p ≥ 0 we have divergence. If

−1 ≤ p < 0 have convergence when z = −1 and divergence when z = 1.

Definition 21. We say that a function f : Rn → Rm is continuous at
x ∈ Rn if given ε > 0 we can find a δ(ε,x) > 0 such that, whenever
||h|| < δ(ε,x), we have ||f(x+ h)− f(x)|| < ε.

Theorem 22. (i) If f : Rn → Rm is continuous at x ∈ Rn and
g : Rm → Rp is continuous at f(x) then the composed function g ◦ f
(defined by g ◦ f(y) = g(f(y)) is continuous at x.
(ii) If F,G : Rn → Rm are continuous at x ∈ Rn then so is F +G.

Definition 23. We say that a function f : Rn → Rm is differentiable
at x ∈ Rn with derivative the linear map α : Rn → Rm if given ε > 0
we can find a δ(ε,x) > 0 such that, whenever ||h|| < δ(ε,x), we have

||f(x+ h)− f(x)− α(h)|| < ε||h||

We shall write α = (Df)(x). If we consider the special case m =
n = 1 then (Df)(x) is a linear map R → R and so there exists a λ ∈ R
such that (Df)(x)h = λh for all h ∈ R. We thus have

|f(x+ h)− f(x)− λh|| < ε|h|

for |h| < δ(ε, x), and so

f(x+ h)− f(x)

h
→ λ.
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If we set λ = f ′(x) we recover our old definition of differentiation.
(Sometimes people write f ′(x) = (Df)(x) in the general case, but we
must then remember that f ′(x) is a linear map.)

Lemma 24. Suppose that f : Rn → Rm is differentiable at x ∈ Rn

with derivative Df(x). If u is a vector in Rn and v is a vector in Rm

then

guv(t) = v.f(x+ tu)

defines a function guv : R → R which is differentiable at 0 with deriv-
ative v.(Df(x))(u).

Lemma 25. Suppose that u1, u2,. . . , un is a basis for Rn and v1,
v2,. . . , vm is a basis for Rm. If write fi,j(x) = vi.(Df(x))(uj) then
the linear map Df(x) : Rn → Rm has matrix (fi,j(x)) with respect to
the given bases.

There is an older and, in many circumstances, more convenient no-
tation called the partial derivative. Suppose g is a well behaved real
function of n real variables x1, x2,. . . , xn. Then we write

∂g

∂xi
= lim

h→0

g(x1, x2, . . . , xi + h, . . . , xn)− g(x1, x2, . . . , xi, . . . , xn)

h

for the derivative of g with respect to xi when x1, x2, . . . , xi−1, xi+1, . . . , xn
are kept fixed. With this notation, if we write fj for the jth component
of the function f of the preceding lemma, we have

fj,i(x) =
∂fj
∂xi

However when reading material which uses partial derivatives (as in
Classical Thermodynamics) it is important to be aware of possible am-
biguities.

Example 26. Let f(x, y) = x + y. If we keep y fixed and allow x to

vary then
∂f

∂x
= 1, but if we keep x + y fixed and allow x to vary then

∂f

∂x
= 0

Lemma 27. If α : Rn → Rm is linear there exists a constant A such
that

||α(x)|| ≤ A||x||

for all x ∈ Rn.
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Theorem 28 (Chain Rule). If f : Rn → Rm is differentiable at x ∈ Rn

and g : Rm → Rp is differentiable at f(x) then the composed function
g ◦ f (defined by g ◦ f(y) = g(f(y)) is differentiable at x with

D(g ◦ f)(x) = (D(g)(f(x))D(f)(x).

Corollary 29. (i) If f, g : Rn → Rm are differentiable at x ∈ Rn then
so is f + g and

D(f + g)(x) = D(f)(x) +D(g)(x).

(ii) If f, g : R → R are differentiable at x then so is their product
and

d(f(x)g(x))

dx
= g(x)

d(f(x))

dx
+ f(x)

d(g(x))

dx
.

In the matrix notation of Lemma 25 the chain rule of Theorem 28
becomes

(g ◦ f)i,k(x) =
m
∑

j=1

gi,j(f(x))fj,k(x).

Still more briefly we may use the summation convention with i ranging
from 1 to p, j from 1 to m and k from 1 to n to write

(g ◦ f)i,k(x) = gi,j(f(x))fj,k(x).

If g is a real function of the real variables y1, y2,. . . ,ym which are
themselves functions of the real variables x1, x2,. . . ,xn we recover the
traditional form

∂g

∂xk
=

∂g

∂y1

∂y1

∂xk
+

∂g

∂y2

∂y2

∂xk
+ . . .+

∂g

∂ym

∂ym
∂xn

.

If f : C → C then, just as in the real case we may define the derivative
f ′(z) by

f ′(z) = lim
h→0

f(z + h)− f(z)

h
where it exists (a C → C differentiable function is also called analytic).
Since C and R are so similar those parts of the real theory which ought
to go over to the complex case do.

Example 30. If P and Q are polynomials and Q has roots at ω1, ω2, . . . , ωn
then P/Q is differentiable at all z ∈ C \ {ω1, ω2, . . . , ωn}.

As the next theorem shows analytic functions are rather special.

Theorem 31 (Characterisation of Analytic Functions). Let f : C → C
be given and write

f(x+ iy) = u(x, y) + iv(x, y)
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with x, y, u, v real. Let z0 = x0 + iy0. The following statements are
equivalent.
(i) f is differentiable as a function C → C at z0.
(ii) f(z0 + h) = f(z0) + λh + ε(h)|h| with λ ∈ C and |ε(h)| → 0 as

|h| → 0. (We have f ′(z0) = λ.)
(iii) Near z0, f is the composition of translations, rotations, and

(possibly zero) dilatations with an error which decreases faster than
linear.
(iv) The function (u, v) : R2 → R2 is differentiable at (x0, y0) with

derivative
D(u, v)(x0, y0) = lα

where l ≥ 0 and α ∈ SO(2) the special orthogonal group.
(v) (Cauchy Riemann Equations) The function (u, v) : R2 → R2 is

differentiable at (x0, y0) and (at that point)

∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −

∂u

∂y
.

(vi) The function (u, v) : R2 → R2 is differentiable at (x0, y0) and
(at that point)

∂u

∂X
=

∂v

∂Y
,

∂v

∂X
= −

∂u

∂Y
.

for any orthogonal coordinate system (X,Y ).

If f ′(z0) 6= 0 then (iii) tells us that f is locally conformal (i.e. angle
preserving).

Example 32. (i) The map z 7→ z2 is analytic but is not conformal at
0.
(ii) The mapping z 7→ z∗ is a reflection and nowhere analytic. It

preserves the magnitude of angles but changes their sense.

Example 33. (This non-examinable example shows the need
for a rigorous treatment of the calculus) Define f : Q → Q by

f(q) = q if q < 0 or q2 < 2,

f(q) = q − 3 otherwise.

Then, considered as a function Q → Q, f is continuous, yet f(1) = 1,
f(2) = −1 and f(t) 6= 0 for all t ∈ Q with 1 ≤ t ≤ 2. Further,
considered as a function Q → Q, f is differentiable with derivative 1
everywhere, but f(1) > f(2) so f is not everywhere increasing.

Inspite of this, we shall be able next year to use the Fundamental
Axiom (Axiom 4) to prove rigorously the following two fundamental
theorems.
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Theorem 34 (Intermeadiate Value Theorem). (Proof next year.) If
f : [a, b] → R is continuous and f(a) ≤ d ≤ f(b) then there exists a c
with a ≤ c ≤ b and f(c) = d.

Theorem 35. (Proof next year.) If f : [a, b] → R is continuous then
f is bounded and attains its bounds. In other words we can find c1 and
c2 with a ≤ c1, c2 ≤ b and f(c1) ≤ f(t) ≤ f(c2) for all t ∈ [a, b].

We use Theorem 35 to give rigorous proofs of the results that follow.

Theorem 36 (Rolle’s Theorem). If f : [a, b] → R is continuous, f
is differentiable on (a, b) and f(a) = f(b) then there exists a c with
a < c < b and f ′(c) = 0.

Theorem 37 (Mean Value Theorem). If f : [a, b] → R is continuous
and f is differentiable on (a, b) then there exists a c with a < c < b and
f(b)− f(a) = (b− a)f ′(c).

Corollary 38. Suppose b > a and f : [a, b] → R is continuous and f
is differentiable on (a, b).
(i) If |f ′(t)| ≤M for all a < t < b then |f(a)− f(b)| ≤M(b− a).
(ii) If f ′(t) = 0 for all a < t < b then f(b) = f(a).
(iii) If f ′(t) ≥ 0 for all a < t < b then f(b) ≥ f(a).
(iv) If f ′(t) > 0 for all a < t < b then f(b) > f(a).

Corollary 39. If f and g are differentiable functions (a, b)→ R with
f ′(t) = g′(t) for all a < t < b then we can find a constant c such that
f(t) = g(t) + c for all a < t < b.

Example 40. If f(t) = t3 then f is strictly increasing yet f ′(0) = 0.

The Mean Value Theorem does not go over unchanged to higher
dimension.

Example 41. (i) Define f : R → R2 by f(t) = (cos(t), sin(t)). Then
f(0) = f(2π) but Df(t) has matrix (− sin(t), cos(t)) and so is never
zero.
(ii) Define g : C → C by g(z) = exp(iz). Then g(0) = g(2π) but

g′(z) = i exp(iz) 6= 0.

However there is a modified version which is just as useful.

Theorem 42 (Modified Mean Value Theorem). (i) Suppose f : Rn →
Rm is differentiable with

||Df((1− t)a+ tb)h|| ≤M ||h||

for all h ∈ Rn and all 0 ≤ t ≤ 1. Then

||f(b)− f(a)|| ≤M ||b− a||.
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(ii) Suppose f : Rn → Rm is differentiable with Df(x) = 0 for all x
with ||x− a|| < r.Then f(x) = f(a) for all x with ||x− a|| < r.
(iii) Suppose g : C → C is analytic with

|g′((1− t)z1 + tz2)| ≤M

for all 0 ≤ t ≤ 1. Then

|g(z2)− g(z2)| ≤M |z2 − z1)|.

(iv) Suppose g : C → C is analytic with g′(z) = 0 for all z ∈ C with
|z − w| < r. Then g(z) = g(w) for all z with |z − w| < r.

Lemma 43 (Operations Within Radius of Convergence). (Proof next
year.)
(i) If

∑∞

n=0 anz
n has radius of convergence R and

∑∞

n=0 bnz
n has

radius of convergence S then, writing

cn =
n
∑

r=0

an−rbr,

∑∞

n=0 cnz
n has radius of convergence T ≥ min(R,S) and

∞
∑

n=0

anz
n

∞
∑

n=0

bnz
n =

∞
∑

n=0

cnz
n

for all |z| < min(R,S).
(ii) If

∑∞

n=0 anz
n has radius of convergence R then

∑∞

n=1 nanz
n−1

has the same radius of convergence. Futher
∑∞

n=0 anz
n is differentiable

and
d

dz

∞
∑

n=0

anz
n =

∞
∑

n=1

nanz
n−1

for all |z| < R.

Theorem 44. The infinite sum

exp(x) =
∞
∑

n=0

xn

n!

defines a function exp : R → R with the following properties.
(i) exp is differentiable with exp′(x) = exp(x) for all x ∈ R.
(ii) exp(x+ y) = exp(x) exp(y) for all x, y ∈ R.
(iii) exp(x) increases strictly from 0 to ∞ as x increases from −∞

to ∞.

Theorem 45. There exists a unique function log : (0,∞) → R such
that log(exp(x)) = x for all x ∈ R and exp(log(y)) = y for all y ∈
(0,∞). The function log has the following properties.
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(i) log is differentiable with log′(x) = 1/x for all x > 0.
(ii) log(xy) = log(x) + log(y) for all x, y > 0.
(iii) log(x) increases strictly from −∞ to ∞ as x increases from 0

to ∞.

Corollary 46. The additive group (R,+) and the multiplicative group
((0,∞),×) are isomorphic.

Theorem 47. If we set xα = exp(α log(x)) for x > 0, α ∈ R then
(i) xαyα = (xy)α,
(ii) xαxβ = x(α+β),
(iii) (xα)β = xαβ,
(iv) x1 = x,

for all x, y > 0, α, β ∈ R. Further, if α ∈ R is fixed, xα is differentiable
with

dxα

dx
= αxα−1.

Theorem 48. If we write

sin(x) =
∞
∑

n=0

(−1)nx2n+1

(2n+ 1)!
,

cos(x) =
∞
∑

n=0

(−1)nx2n

(2n)!
,

then sin and cos are well defined differentiable functions R → R such
that
(i) sin′(x) = cos(x) and cos′(x) = − sin(x),
(ii) sin(x+y) = sin(x) cos(y)+cos(x) sin(y), cos(x+y) = cos(x) cos(y)−

sin(x) sin(y) and (cos(x))2 + (sin(x))2 = 1, for all x, y ∈ R.
Moreover there exists a real number π such that 2 < π < 4 and (for

x ∈ R)
(iii) cos(x) ≥ 0 for 0 ≤ x < π/2, cos(π/2) = 0,
(iv) sin(x) = cos(x− π/2), cos(x+ π) = − cos(x),
(v) If u, v ∈ R and u2+v2 = 1 then the equation (u, v) = (cos(θ), sin(θ))

has exactly one solution θ with 0 ≤ θ < 2π.

Corollary 49. If (x, y) ∈ R2 and (x, y) 6= (0, 0) then there is a unique
r > 0 and a unique θ with 0 ≤ θ < 2π with x = r cos(θ), x = r sin(θ).

Theorem 50. We can extend the function exp in a consistent manner
to a function C → C by setting

exp(z) =
∞
∑

n=0

zn

n!
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With this definition,
(i) exp is differentiable with exp′(z) = exp(z) for all z ∈ C.
(ii) exp(z1 + z2) = exp(z1) exp(z2) for all z1, z2 ∈ C.
(iii) If x and y are real, then

exp(x+ iy) = exp(x)(cos(y) + i sin(y)).

Theorem 51. We can extend the functions cos and sin in a consistent
manner to functions C → C by setting

sin(z) =
exp(iz)− exp(−iz)

2i
,

cos(z) =
exp(iz) + exp(−iz)

2
.

With these definitions,
(i) cos and sin are differentiable with sin′(z) = cos(z) and cos′(z) =

− sin(z),
(ii) sin(z+w) = sin(z) cos(w)+cos(z) sin(w), cos(z+w) = cos(z) cos(w)−

sin(z) sin(w) and (cos(z))2 + (sin(z))2 = 1, for all z, w ∈ C.

Lemma 52. If x is real, cosh(x) = cos(ix) and sinh(x) = −i sin(ix).

Theorem 53. (i) If w ∈ C the equation z2 = w has a solution. How-
ever there is no continuous function f : C → C such that f(w)2 = w
for all w ∈ C.
(ii) The equation exp(z) = 0 has no solution. If w 6= 0 then the set

of solutions for exp(z) = w has the form

{log(|w|) + i(θ + 2nπ) : n ∈ Z}
for some real θ. However there is no continuous function g : C\{0} →
C such that exp(g(w)) = w for all w ∈ C \ {0}.

Definition 54. A continous map r : [a, b] → R3 is called a curve
in R3. If r(a) = r(b) we say that the curve is closed. We agree to
identify (i.e. consider as the same) the two curves r1 : [a1, b1] → R3

and r2 : [a2, b2] → R3 if there exists a continuous bijective function
γ : [a1, b1] → [a2, b2] with γ(a1) = a2 and γ(b1) = b2 such that r1(t) =
r2(γ(t)).

Example 55. If the curves rj : [0, 1]→ R3 are defined by

r1(t) = (cos(2πt), sin(2πt), 0),

r2(t) = (cos(2πt2), sin(2πt2), 0),

r3(t) = (cos(4πt), sin(4πt), 0),

then r1 and r2 represent the same curve but r3 represents a different
curve.
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We say that r1 and r2 in the preceding definition are two parame-
terisations of the same curve.

Definition 56. If r : [0, l]→ R3 is continuous and
∣

∣

∣

∣

∣

∣

∣

∣

r(s+ δs)− r(s)

δs

∣

∣

∣

∣

∣

∣

∣

∣

→ 1

as δs→ 0 we say that r is an arc length parameterisation of the curve.

Just as in the case of functions f : R → R where it is natural to
identify the linear map Df(t) : R → R which takes h to f ′(t)h with
the real number f ′(t) so, in the case of functions r : [0, l] → R3, it is
natural to identify the linear map Dr(t) : [0, l]→ R3 which takes takes
h to (ṙ1(t)h, ṙ2(t)h, ṙ3(t)h) with the vector ṙ(t) = (ṙ1(t), ṙ2(t), ṙ3(t)).
We observe that (when r is well behaved)

∣

∣

∣

∣

∣

∣

∣

∣

r(t+ δt)− r(t)

δt
− ṙ(t)

∣

∣

∣

∣

∣

∣

∣

∣

→ 0

as δt→ 0.

Theorem 57. If r : [0, l]→ R3 is an arc length parameterisation of a
well behaved curve then

ṙ(s) = t(s),

where t(s) is a unit vector defining the direction of the tangent. Either
ṫ(s) = 0, or

ṫ(s) =
n(s)

ρ(s)
,

where n(s) is a unit vector, perpendicular to t(s), defining the direction
of the normal. The scalar ρ(s) > 0 is called the radius of curvature (not
in the syllabus).

Theorem 58 (Taylor’s Theorem With Integral Remainder). Suppose
that f : R → R is n+ 1 times continuously differentiable. Then

f(x) = f(a)+f ′(a)(x−a)+
f ′′(a)(x− a)2

2!
+
f ′′′(a)(x− a)3

3!
+. . .+

f (n)(a)(x− a)n

n!
+Rn(f, x),

where

Rn(f, x) =
1

n!

∫ x

a

f (n+1)(t)(x− t)ndt.

Corollary 59 (Local Taylor Theorem). If f : R → R is n times
continuously differentiable then, given any ε > 0, there exists a δ(ε, a)
such that
∣

∣

∣

∣

f(x)−

(

f(a) + f ′(a)(x− a) +
f ′′(a)(x− a)2

2!
. . .+

f (n)(a)(x− a)n

n!

)∣

∣

∣

∣

< ε|x−a|n
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for all x with |x− a| < δ(ε, a).

Theorem 60 (Binomial Theorem). If α and and x are real and |x| < 1
then

(1− x)α =
∞
∑

n=0

α(α− 1)(α− 2) . . . (α− (n− 1))

n!
xn.

If α is a positive integer there are only a finite number of non-zero
terms; otherwise the sum diverges if |x| > 1.

Example 61 (Cauchy). Let

E(x) = exp(−1/x2) for x 6= 0,

E(0) = 0.

Then E is infinitely differentiable with

E(n)(x) = Qn(1/x) exp(−1/x
2) for x 6= 0,

E(n)(0) = 0,

where Qn is a polynomial. The Taylor expansion

E(x) =
∞
∑

n=0

E(n)(0)

n!
xn

is only valid at the single point x = 0.

Next year we shall see that analytic functions (i.e. differentiable
functions f : C → C) form such a restricted class that a Taylor expan-
sion is always possible. (We shall make no essential use of this result
so it serves mainly as a trailer for sensational results to come.)

Theorem 62 (Taylor’s Theorem For Analytic Functions). If f : {z ∈
C : |z| < r} → C is once complex differentiable it is infinitely complex
differentiable and

f(z) =
∞
∑

n=0

f (n)(0)

n!
zn

for all |z| < r.

So far in this course we have been able to express the concepts in a
direct geometric manner and then give computational rules for them
involving coordinates. Our treatment of higher derivatives will, how-
ever, be purely computational. (This will be remedied in more ad-
vanced courses but the standard geometric approach requires a certain
amount of multilinear algebra.)
In what follows we shall consider Rn and Rm each with a fixed basis

and so fixed coordinate systems (x1, x2, . . . , xn) and (y1, y2, . . . , yn). Let
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f be a function Rn → Rm. Then, if 1 ≤ i ≤ m, fi is a function Rn → R
and (if f is well behaved) fi,j is just another such function Rn → R
[1 ≤ j ≤ n]. We can therefore form (fi,j),k [1 ≤ k ≤ n] and so on. To
simplify notation we write

fi,jk = (fi,j),k, fi,jkl = (fi,jk),l, . . .

and so on [1 ≤ l ≤ n]. In partial derivative notation

fi,jk =
∂2fi

∂xk∂xj
, fi,jkl =

∂3fi
∂xl∂xk∂xj

,

Applying the Local Taylor Theorem of Corollary 59 to the function
F : R → R given by F (t) = fi(a + (x− a)t) we obtain the following
multidimensional version.

Theorem 63 (Local Multidimensional Taylor Theorem). Let f be a
function Rn → Rm. If f is sufficiently well behaved (more exactly if f
has continuous partial derivatives of sufficiently high order) then, given
any ε > 0, there exists a δ(ε, a) such that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

fi(x)−

(

fi(a) +
∑

1≤j≤n

fi,j(a)(xj − aj) +
∑

1≤j,k≤n

fi,jk(a)(xj − aj)(xk − ak)

2!
+ . . .

+
∑

1≤j,k,...,p≤n

fi,jk...p(a)(xj − aj)(xk − ak) . . . (xp − ap)

N !

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< ε||x− a||N .

By a careful exploitation of these ideas (which we leave to next year)
it is possible to prove the following useful result.

Theorem 64 (Partial Differentiation Commutes). Let f be a func-
tion R → Rm. If f is sufficiently well behaved (more exactly if f has
continuous second partial derivatives) then f,jk = f,kj.

In other words
∂2f

∂xk∂xj
=

∂2f

∂xj∂xk
.

Applied to the function of Theorem 63 the result shows that fi,jk = fi,kj
and that the higher order terms have similar symmetries. Note that
some condition on the behaviour of f is required in Theorem 64 since
it is possible to construct pathological functions for which f,jk and f,kj
exist but are not equal.
Combining Theorem 62 which says that analytic functions are well

behaved, with Theorem 64 which says that, for well behaved functions,
the partial derivatives commute and with the Cauchy Riemann equa-
tions of Theorem 31 we obtain the following result which turns out to
be very important for later work.
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Theorem 65. If f : C → C is a well behaved analytic function and
we write f(x+ iy) = u(x, y) + iv(x, y) as in Theorem 31 then u and v
both satisfy Laplace’s equation

∂2φ

∂x2
+
∂2φ

∂y2
= 0.

Functions which satisfy Laplace’s equation are called harmonic. In
the second half of this course you will see that the converse to Theorem
65 holds and every harmonic function is (at least locally) the real part
of an analytic function.
We now return to the local Taylor expansion of Theorem 63 in the

special but important case when m = 1 concentrating particularly on
the cases when n ≤ 3 which are easiest to visualise. If f : Rn → R is
well behaved Theorem 63 tells us that

f(x) = f(a)+
∑

1≤j≤n

f,j(a)(xj−aj)+
∑

1≤j,k≤n

f,jk(a)(xj − aj)(xk − ak)

2!
+error,

where the error term decreases faster than ||x− a||2 as x approaches a.
Bearing in mind the symmetry of the second derivative, we may write
this in matrix terms as

f(a+ h) = f(a) + bTh+ 1
2
hTBh+ error, (∗′)

where h is a column vector, b is a column vector with bj = f,j(a) and
B is an n × n symmetric matrix with bjk = f,jk(a). We call B the
Hessian matrix. We give b the name grad(f), ∇f , or ∇f(a) so that
(∗) becomes

f(a+ h) = (f(a) +∇f(a)Th+ 1
2
hTBh+ error, (∗′′)

Alternatively we may write the equation in terms of linear maps as

f(a+ h) = f(a) + (Df(a))(h) + 1
2
h.βh+ error, (∗∗)

where the dot denotes inner product and β is the linear map with
matrix B. Combining the ideas of (∗′′) and (∗∗) gives yet annother
form of the equation.

f(a+ h) = f(a) +∇f(a).(h) + 1
2
h.βh+ error. (∗)

To help follow the rest of this discussion the reader should draw
contour lines (that is lines in R2 on which f is constant) for f when
n = 2 and imagine contour surfaces (that is surfaces in R3 on which f
is constant) for f when n = 3. Observe that (∗) tells us that

f(a+ δa)− f(a) = ∇f(a).δa+ error,
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or, still more briefly

δf = ∇f.δa+ error,

where the error decreases faster than linearly. If we move along a
line (or surface) on which f is constant then δf = 0 so ∇f must be
perpendicular to contour lines (or surfaces). Working in this context it
is clear that ∇f is a vector in the direction that f changes most rapidly
of length proportional to the rate of change of f in that direction1

So long as ∇f 6= 0 the linear term ∇f.δh dominates all the other
non-constant terms in (∗) (so, in particular, we cannot have a maximum
or a minimum at such a point). At, so called, stationary points ∇f = 0
and (∗) becomes

f(a+ h)− f(a) = 1
2
h.βh+ error. (∗)

If we consider the case when n = 2 and write (∗) in coordinate form
we get

f(a1 + h1, a2 + h2)− f(a1, a2) =
1
2
(f,11h

2
1 + 2f,12h1h2 + f,22h

2
2) + error,

with the error decreasing faster than quadratically. Using the ideas of
the previous course we see that
(i) If f,11 > 0 and detB = f,11f,22 − f 2

,12 > 0 then the Hessian

B =

(

f,11 f,12
f,21 f,22

)

is positive definite and a is a minimum.
(ii) If f,11 < 0 and detB < 0 then the Hessian is negative definite

and a is a maximum.
(iii) If f,11 and detB are non-zero and of opposite signs then a is not

a maximum nor a minimum. (We have a saddle point.)
(iv) In all other cases the behaviour depends on higher order terms.

(But see part (ii) of Remark 66 below.)
No new phenomena emerge in higher dimensions (n ≥ 3) but the cal-
culations become a bit more complicated.
We make the following remarks which are non-examinable and will

be proved by hand waving.

1WARNING The geometric introduction of ∇f above depends on using a par-

ticular inner product. ∇f behaves as a vector so long as we confine ourselves to

orthogonal changes of coordinates. If we change our scales of measurement then

it behaves in an unexpected manner. The Pure Mathematician explains this by

saying that ∇f is indeed a vector but lives in a dual space and the Applied Math-

ematician explains this by saying that ∇f is indeed a vector but of contravariant

type. Fortunately the problem does not arrise until Part II, and, possibly, not even

then, so you may snopake this footnote out and forget it.
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Remark 66. (i) If f : R → R is a well behaved function and ε > 0 there

exists a well behaved perturbation f̃ : R → R such that |f(t)− f̃(t)| < ε

for all t ∈ R and all the stationary points of f̃ are maxima and minima.
(ii) If g : R2 → R is a well behaved function and ε > 0 there exists a

well behaved perturbation g̃ : R2 → R such that |g(t)− g̃(t)| < ε for all
t ∈ R2 and, at each stationary point the matrix

(

g̃,11 g̃,12
g̃,21 g̃,22

)

is invertible and g̃,11 6= 0.

The following theorem (which is not in the syllabus) indicates why
saddle points cannot be perturbed away.

Theorem 67 (Lakes, Peaks and Passes). Consider the sphere

S2 = {x ∈ R3 : ||x|| = 1}.

If f : S2 → R is well behaved with L minima, P maxima and S saddle
points then P − S + L = 2.

More generally the number P −S +L is a ‘topological invariant’ for
the associated surface.


