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Solution for Exercise 1.6. (i) If y ∈ B(x, r) then δ = r − d(x, y) > 0. Now
observe that, if z ∈ B(y, δ), then

d(x, z) ≤ d(x, y) + d(y, z) < d(y, x) + δ < r.

(ii) If yn ∈ B̄(x, r) and yn −→
d
y, then

d(x, y) ≤ d(x, yn) + d(yn, y) ≤ r + d(yn, y)→ r,

so d(x, y) ≤ r and y ∈ B̄(x, r).
(iii) Suppose that X \ E is not open. Then there is a point y /∈ E such

that B(y, r) ∩E 6= ∅ whenever r > 0. Choose yn ∈ B(y, 1/n) ∩E. We have
yn ∈ E, yn −→

d
y and yet y /∈ E. Thus E is not closed.

(iii) Suppose that X \ E is not closed. Then there is a sequence yn /∈ E
with yn −→

d
y and yet y ∈ E. Thus B(y, r) * E for all r > 0 and E is not

open.

Solution for Exercise 1.10. Suppose xn −→
d
x. Let ε > 0. We can find an N

such that d(xn, x) < ε/2 for all n ≥ N . It follows that

d(xn, xm) ≤ d(xn, x) + d(x, xm) < ε/2 + ε/2 = ε

for all n, m ≥ N .

Proof of Lemma 1.11. (i) Let ε > 0. We can find an N such that d(xn, xm) <
ε/2 for m, n ≥ N . We can now find a J such that n(J) ≥ N and d(xn(J), x) <
ε/2. We now observe that, if m ≥ N , we get

d(xm, x) ≤ d(xm, xn(J)) + d(xn(J), x) < ε/2 + ε/2 = ε.

(ii) If xn is Cauchy we can find a strictly increasing sequence n(j) with

d(xn, xm) < ε(j)

for all n, m ≥ n(j). By hypothesis, xn(j) converges as j →∞. Part (i) now
tells us that the sequence xn converges.

Solution to Exercise 1.12. (i) Observe that, whenever x, y, z ∈ Y ,

dY (x, y) = d(x, y) ≥ 0,

dY (x, y) = 0⇔ d(x, y) = 0⇔ x = y,

dY (x, y) = d(x, y) = d(y, x) = dY (y, x),

dY (x, y) + dY (y, z) = d(x, y) + d(y, z) ≥ d(x, z) = dY (x, z).
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(ii) Suppose the sequence xn is Cauchy in (Y, dY ). Then the sequence xn
is Cauchy in (X, d), so xn → x for some x ∈ X. But Y is closed, so x ∈ Y
and xn → x in (Y, dY ).

(iii) If yn ∈ Y and yn → y in (X, d), then yn is Cauchy in (X, d), so
Cauchy in (Y, dY ), so yn → z in (Y, dy) for some z ∈ Y . It follows that
yn → z in (X, d) so, by the uniqueness of limits, y = z ∈ Y . Thus Y is
closed.

Proof of Theorem 1.13 for n = 2. We prove the case when n = 2. Suppose
that xn = (xn, yn) is Cauchy in R2. Since

|xn − xm| ≤ ‖xn − xm‖,

xn is Cauchy in R and by our 1A theorem (Theorem 1.7) converges to a limit
x. Similarly yn converges to a limit y in R. If we set x = (x, y), then

‖xn − x‖ ≤ |xn − x|+ |yn − y| → 0

as n→∞.

Proof of Theorem 2.1. We prove the case m = 2. Write xn = (xn, yn). We
have that xn is a bounded sequence in R and so (by the 1A result) there exists
an x ∈ R and a sequence n(j) → ∞ such that xn(j) → x as j → ∞. Now
yn(j) is a bounded sequence in R and so there exists a y ∈ R and a sequence
j(k) → ∞ such that yn(j(k)) → y as k → ∞. Now set r(k) = n(j(k)) and
x = (x, y) to obtain r(k)→∞ and xr(k) → x as k →∞.

Theorem 2.2. (i) Since xr ∈ E, we know that the xr form a bounded sequence
and so have a convergent subsequence xr(k) → x. Since E is closed, x ∈ E.

(ii) If E is not bounded, we can find xr ∈ E with ‖xr+1‖ ≥ ‖xr‖ + 1. If
r > s

‖xr − xs‖ ≥ ‖xr‖ − ‖xs‖ ≥ 1,

so no subsequence can be Cauchy and so no subsequence can converge.
If E is not closed, we can find xr ∈ E and x /∈ E such that xr → x. Any

subsequence of xr will still converge to x /∈ E.

Solution to Exercise 2.4. (i) Suppose f−1(U) is open whenever U is. If x ∈
X, ε > 0, we know that B(f(x), ε) is an open subset of Y , so f−1

(
B(f(x), ε)

)
is an open subset of X containing x. Thus we can find a δ > 0 with B(x, δ) ⊆
f−1
(
B(f(x), ε)

)
. In other words,

z ∈ B(x, δ)⇒ f(z) ∈ B(f(x), ε).

Thus f is continuous.
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Conversely, if f is continuous and U open in Y , then, given x ∈ X with
f(x) ∈ U , we can find a δ > 0 such that B(f(x), δ) ⊆ U and an ε > 0 such
that

z ∈ B(x, δ)⇒ f(z) ∈ B(f(x), ε).

Thus B(x, ε) ⊆ f−1(U). We have shown that f−1(U) is open.
(ii) Complementation. If f−1(F ) is closed for all F closed then

U open⇒ Y \U closed⇒ X \ f−1(U) = f−1(Y \U) closed⇒ f−1(U) open,

so f is continuous.
The converse is proved similarly.

Proof of Lemma 2.5. If d(x,A) = 0, then we can find xn ∈ A such that
d(xn, x) ≤ 1/n, so xn → x. But A is closed, so x ∈ A.

Let x, y ∈ X. Given ε > 0, we can find a ∈ A such that d(x, a) ≤
d(x,A) + ε. Now

d(y, A) ≤ d(y, a) ≤ d(x, y) + d(x, a) ≤ d(x, y) + d(x,A) + ε.

Since ε was arbitrary,

d(y, A) ≤ d(x, y) + d(x,A).

The same argument shows that d(x,A) ≤ d(x, y) + d(y, A) so

|d(x,A)− d(y, A)| ≤ d(x, y).

This shows that the map x 7→ d(x,A) is continuous.

Proof of Theorem 2.6. Suppose that yn ∈ f(E). Then yn = f(xn) for some
xn ∈ E. By the Bolzano–Weierstrass property, we can find n(j) → ∞ and
x ∈ E such that xn(j) → x as j →∞. Now, by continuity,

yn(j) = f(xn(j))→ f(x) ∈ f(E)

so we are done.

Proof of Theorem 2.7. By Theorem 2.6, f(E) is closed and bounded. Since
f(E) is non-empty, it has a supremum (see 1A), α, say. By the definition of
the supremum, we can find an ∈ E such that

α− 1/n ≤ f(an) ≤ α.

By the Bolzano–Weierstrass property, we can find n(j)→∞ and a ∈ E such
that an(j) → a as j →∞. We have f(an(j))→ f(a), so f(a) = α. Thus

f(a) ≥ f(x)

for all x ∈ E. We find b in a similar manner.
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Proof of Theorem 2.9. Let n ≥ 1. Suppose P (z) =
∑n

j=0 ajz
j where, with-

out loss of generality, we take an = 1.
If R ≥ 2(2 +

∑n−1
j=0 |aj|), then, whenever |z| ≥ R, we have

|P (z)| ≥ |z|n −
n−1∑
j=0

|aj||z|j

= |z|n
(

1−
n−1∑
j=0

|aj||z|j−n
)

≥ |z|n/2 > |a0|.

Since D̄R = {z ∈ C : |z| ≤ R} is closed and bounded (that is to say
compact) and the map z 7→ |P (z)| is continuous, |P | attains a minimum on
D̄R at a point z0, say. By the previous paragraph, |z0| < R (since |P (z0)| ≤
|P (0)|) and so we can find a δ > 0 such that |P (z)| ≥ |P (z0)| for all |z−z0| <
δ.

By replacing P (z) by P (z − z0), we may assume that z0 = 0 so that
|P (z)| ≥ |P (0)| for all |z| < δ. If a0 = 0, then we have P (0) = 0 and we are
done.

We show that the assumption that a0 6= 0 leads to a contradiction. Ob-
serve that

P (z) =
n∑

j=m

ajz
j + a0 = a0

(
1−

n∑
j=m

bjz
j

)
with am 6= 0 and so bm 6= 0. Choose θ so that bm exp(imθ) is real and
positive. Then

|P (η exp iθ)| ≤ |a0| − |bm|ηm + |a0|ηm+1

n∑
j=m

|bj| ≤ |a0| − |bm|ηm/2 < |P (0)|

when η is strictly positive and sufficiently small. We have the required con-
tradiction.

Solution to Exercise 2.10. (i) Let S(m) be the statement that, if P is a poly-
nomial of degree n with n ≤ m and a ∈ C, then there exists a polynomial Q
of degree n− 1 and an r ∈ C such that

P (z) = (z − a)Q(z) + r.

Suppose that S(m) is true and P is a polynomial of degree m+ 1. Then
P (z) = Azm+1 +Q(z) where A 6= 0 and Q is a polynomial of degree at most
m. We have

P (z) = A(z − a)zm + q(z)
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where q(z) = Q(z) + azm, so q is a polynomial of degree at most m and, by
the inductive hypothesis,

q(z) = (z − a)u(z) + r

with u a polynomial of degree at most m− 1. Thus P (z) = (z − a)Q(z) + r
with Q(z) = Azm + u(z). We have shown that S(m+ 1) is true.

Now S(1) is true, since cz+d = c(z−a) + (d− ca), so the required result
follows by induction.

(ii) We have P (z) = (z − a)Q(z) + r by (i). Setting z = a, we have
0 = P (a) = r so r = 0 and the result follows.

(iii) If Pn has degree n ≥ 1, then the fundamental theorem of algebra tells
us that Pn has a root an. By (ii), there exists a polynomial Pn−1 of degree
n− 1 such that

P (z) = (z − an)Pn−1(z).

Using induction, we deduce that

Pn(z) = P0(z)
n∏
j=1

(z − aj),

where P0(z) is a polynomial of degree 0, that is to say, P0(z) = A with A a
constant.

(iv) If P is not the zero polynomial, then (iii) tells we can find m ≤ n
such that

P (z) = A
m∏
j=1

(z − aj)

with A, a1, a2, . . . , am ∈ C and A 6= 0. Now P (z) = 0 if and only if z = aj
for some 1 ≤ j ≤ m. The result follows.

Solution to Exercise 3.2. There are a wide variety of ways of doing this ex-
ercise. Any way that works is fine.

(i) If x ∈ IntE, we can find a δ > 0 such thatB(x, 2δ) ⊆ E. If y ∈ B(x, δ),
then, by the triangle inequality,

z ∈ B(y, δ)⇒ z ∈ B(x, 2δ) ⊆ E.

Thus IntE is open.
If V is open and V ⊆ E, then, if v ∈ V , there exists a δ > 0 with

B(v, δ) ⊆ V ⊆ E. Thus V ⊆ IntE.
(ii) If xn ∈ ClE and xn → x, then we can find yn ∈ E such that

d(yn, xn) < 1/n. By the triangle inequality,

d(yn, x) ≤ d(yn, xn) + d(xn, x)→ 0 + 0 = 0
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so x ∈ ClE.
If F is closed and F ⊇ E, then, whenever xn ∈ E and xn → x, we have

xn ∈ F , so x ∈ F . Thus F ⊇ ClE.
(iii) The complement of an open set is closed and the intersection of two

closed sets is closed, so

∂E = ClE ∩ (IntE)c

is closed.
(iv) If E is closed, then we can find an R > 0 such that E ⊆ B̄(0, R).

Since B̄(0, R) is closed, ClE ⊆ B̄(0, R).

Proof of Lemma 3.3. We prove the result for m = 2. Since Cl Ω is compact,
we know that φ attains a maximum at some point (x0, y0) ∈ Cl Ω. We need
to show that it is impossible that (x0, y0) ∈ Ω.

Suppose, if possible, that (x0, y0) ∈ Ω. Since Ω is open, we can find a
δ > 0 such that B

(
(x0, y0), δ

)
⊆ Ω. Consider the function f(y) = φ(x0, y)

defined for y ∈ (y0−δ, y0+δ). We have f twice differentiable with a maximum
at y0. Thus, by 1A analysis, f ′′(y0) ≤ 0. It follows that

∂2φ

∂y2
(x0, y0) ≤ 0.

The same argument applies for the partial derivatives with respect to x, so

O2φ(x0, y0) =
∂2φ

∂x2
(x0, y0) +

∂2φ

∂y2
(x0, y0) ≤ 0

contradicting our hypotheses.

Proof of Theorem 3.4. Again we prove the result for m = 2. Let ψ(x, y) =
x2 +y2. Since ψ is continuous and Cl Ω is compact, we know that there exists
a M with M ≥ ψ(x, y) for all (x, y) ∈ Cl Ω. By direct calculation, O2ψ = 4
everywhere.

Set φn = φ + n−1ψ. Then φn satisfies the conditions of Lemma 3.3 with
ε = 4/n. It follows that there is an xn = (xn, yn) ∈ ∂Ω with

φn(xn) ≥ φn(t)

for all t ∈ Cl Ω. Automatically,

φ(xn) ≥ φ(t)− 8M/n.

Since ∂Ω is compact, we can find an x ∈ ∂Ω and n(j) → ∞ such that
xn(j) → x. By continuity

φ(x) ≥ φ(t)

for all t ∈ Cl Ω.
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Solution to Exercise 3.5. The map z 7→ |f(z)| is continuous so, by compact-
ness, there exists a z0 = x0 + iy0 ∈ Cl Ω with |f(z0)| ≥ |f(z)| for all z ∈ Cl Ω.
By replacing f(z) by eiθf(z), we may assume that f(z0) is real and positive.

Write f(x+ iy) = u(x, y) + iv(x, y) with u and v real. We have

u(x0, y0) = |f(z0)| ≥ |f(x+ iy)| ≥ u(x, y)

and u satisfies Laplace’s equation. Thus there exists a x1 + iy1 = z1 ∈ ∂Ω
such that u(x1, y1) = u(x0, y0) and so |f(z1)| ≥ |f(z)| for all z ∈ Cl Ω.

Proof of Theorem 3.6. Observe that, if τ = φ−ψ, then τ satisfies the condi-
tions of Theorem 3.4 and so attains its maximum on ∂Ω. But τ = 0 on ∂Ω.
Thus τ(x) ≤ 0 for x = Cl Ω. The same argument applied to −τ shows that
−τ(x) ≤ 0 for x = Cl Ω. Thus τ = 0 on Cl Ω and we are done.

Solution to Exercise 3.7. (i) If x ∈ Ω, then, setting

δ = min{‖x‖, 1− ‖x‖},

we have δ > 0 and B(x, δ) ⊆ Ω. Thus Ω is open.
Observe that (0, 1/n) → (0, 0), so 0 ∈ Cl Ω. Again, if ‖x‖ = 1, then

(1 − 1/n)x → x, so x ∈ Cl Ω. Thus Cl Ω ⊇ B̄(0, 1). Since B̄(0, 1) is closed
Cl Ω = B̄(0, 1).

Finally,

∂Ω = Cl Ω \ Int Ω = Cl Ω \ Ω = {x ∈ R2 : ‖x‖ = 1} ∪ {0}.

(ii) Let T be a rotation with centre the origin. If ψ = φT , then (using
the chain rule if you do not know the result already from applied courses)

O2ψ = 0.

But

ψ(x) =

{
0 if ‖x‖ = 1,

1 if x = 0.

Thus, by uniqueness, ψ = φ and so, since T was an arbitrary rotation,

φ(x) = f(‖x‖)

for some function f : [0, 1]→ R.
(iii) The chain rule gives

∂φ

∂x
= f ′(r)

x

r
and

∂2φ

∂x2
= f ′′(r)

x2

r2
+ f ′(r)

(
1

r
− x2

r3

)
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so, using the parallel result for derivatives with respect to y,

O2φ = f ′′(r) + f ′(r)r−1 = r−1 d

dr

(
rf(r)

)
.

(Or we can just quote this result from applied courses.) Thus

d

dr

(
rf(r)

)
= 0

so rf ′(r) = B and f(r) = A+B log r for appropriate constants A and B.
(iv) We need f(r) → 1 as r → 0+, so B = 0 and A = 1. This gives

f(1) = 1, contradicting the condition φ(x) = 0 if ‖x‖ = 1.

Proof of Lemma 4.4. Observe that f = g−1Fg is a continuous function from
D̄ to D̄ and so, by Theorem 4.3, has a fixed point w. Set a = g(w).

Proof of Theorem 4.5. (i)⇒ (ii) Suppose, if possible, that there exists a con-
tinuous function g : D̄ → ∂D with g(x) = x for all x ∈ ∂D. If T is a rotation
through π about 0, then f = T ◦ g is a continuous function from D̄ to itself
with no fixed points, contradicting (i).
(ii)⇒ (i) Suppose, if possible, that f : D̄ → D̄ is a continuous function with
no fixed points. If we define

E = {(x,y) ∈ D̄2 : x 6= y}

and u : E → ∂D by taking u(x,y) to be the point where the straight line
joining x to y in the indicated direction cuts ∂D then u is continuous. (We
shall take this as geometrically obvious. The algebraic details are messy (but
made easier if you use the fact that the composition of continuous functions is
continuous). The really conscientious student can do Exercise 18.14.) Using
the chain rule for continuous functions, we see that

g(x) = u
(
x, f(x)

)
defines a retraction mapping from D̄ to ∂D, contradicting (ii).

Proof of Lemma 4.6. (i)⇒(ii) Suppose, if possible, that k̃ exists with the
properties stated in (ii), Then, if T is a rotation through π, about 0, we see
that f = T ◦ k̃ is a continuous map from D̄ to D̄ without a fixed point. By
Theorem 4.5 this contradicts (i).
(ii)⇒(i) If k̃ is a continuous retract from D̄ to ∂D, then it certainly satisfies
(ii).
(iii)⇔(ii) We use an argument of the type used for Lemma 4.4.
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Proof of Lemma 4.7. (ii)⇒(i) Let h : T̄ → ∂T be continuous with h(I) ⊆ I,
h(J) ⊆ J , h(K) ⊆ K. Let A = h−1(I), B = h−1(J), C = h−1(K). Since h is
continuous A, B and C are closed. Since I ∪ J ∪K = ∂D, A ∪ B ∪ C = D̄.
But

A ∩B ∩ C = h−1(I) ∩ h−1(J) ∩ h−1(K) = h−1(I ∩ J ∩K) = h−1(∅) = ∅

contradicting (ii).
(i)⇒(ii) Suppose that A, B and C are closed subsets of T with A ⊇ I, B ⊇ J ,
C ⊇ K, A ∪B ∪ C = T , and A ∩B ∩ C = ∅.

We consider T as the triangle

T = {(x, y, z) ∈ R3 : x+ y + z = 1, x, y, z ≥ 0}.

(In my school days we called these ‘barycentric coordinates’.) If x ∈ T , we
know that x lies in at most two of the sets A, B and C so (by Lemma 2.5)
at least one of d(x, A), d(x, B) and d(x, C) is non-zero. Thus

h(x) =
1

d(x, A) + d(x, B) + d(x, C)

(
d(x, A), d(x, B), d(x, C)

)
defines a continuous function h : T → T . If x ∈ I, then d(x, A) = 0 and so
h(x) ∈ I. Similarly h(J) ⊆ J and h(K) ⊆ K contradicting (i).

Proof of Theorem 4.8. Given an edge of the grid joining vertices u and v we
assign a value E(u, v) to the edge by a rule which ensures that, if u and v
have the same colour, E(u, v) = 0, if u and v, have different colours X and
Y , then E(u, v) = ζ(X, Y ) with ζ(X, Y ) = −ζ(Y,X) and ζ(X, Y ) = ±1.

The table which follows gives an example.

colour u colour v E(u, v)
R R 0
R G 1
R B -1
G R -1
G G 0
G B 1
B R 1
B G -1
B B 0

If uvw is a grid triangle then, by inspection, the sum of the edge values (going
round anticlockwise) is zero unless all of the vertices have different colours.
By considering internal cancellation, the total sum of the edge values is the
sum of the edge values going round the outer edge and this is non-zero. Thus
one of the grid triangles must have all three vertices of different colours.
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Proof of Lemma 4.7 (ii). Suppose that A, B and C are closed subsets of T
with A ⊇ I, B ⊇ J and C ⊇ K and A ∪B ∪ C = T .

Take a triangular grid formed by n equally spaced parallel lines for each
of the three sides dividing T into a grid of congruent triangles. Colour the
vertices red, blue or green so that all the red vertices lie in A, all the blue
vertices lie in B and all the green vertices lie in C, making sure that the
outside edges are coloured as required by Lemma 4.8.

Lemma 4.8 tells us that there is a grid triangle with vertex an red, so in
A, vertex bn ∈ B and cn ∈ C. By compactness, we can find n(j)→∞ and
x ∈ T such that an(j) → x and so bn(j) → x, cn(j) → x. Since A, B and C
are closed x ∈ A ∩B ∩ C, so A ∩B ∩ C 6= ∅

Solution for Exercise 4.11. T is a closed triangle in the appropriate plane. If
X ∈ T and we write y = Tx, then yi ≥ 0 and

3∑
i=1

yi =
3∑
i=1

3∑
j=1

aijxj =
3∑
j=1

3∑
i=1

aijxj =
3∑
j=1

xj = 1,

so y ∈ T . Thus T is a continuous map of T into itself and has a fixed point
e. We observe that e is an eigenvector lying in T with eigenvalue 1.

Proof of Theorem 5.1. Let Ẽ = {(p, 1− p, q, 1− q) : 0 ≤ p, q ≤ 1}. (Thus Ẽ
is a two dimensional square embedded in R4.)

Suppose (p,q) ∈ Ẽ. Write

u1(p,q) = max{0, A(1, 0,q)− A(p,q)}.

Thus u1 is Albert’s expected gain if, instead of choosing p when Bertha
chooses q, he chooses (1, 0) and Bertha maintains her choice provided this is
positive and u1 is zero otherwise. Similarly

u2(p,q) = max{0, A(0, 1,q)− A(p,q)},

so u2 is Albert’s expected gain if, instead of choosing p when Bertha chooses
q, he chooses (0, 1) and Bertha maintains her choice provided this is positive
and u2 is zero otherwise. In the same way, we take

v1(p,q) = max{0, B(p, 1, 0)−B(p,q)}.

and
v2(p,q) = max{0, B(p, 0, 1)−B(p,q)}.

Now define
g(p,q) = (p′,q′)
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with

p′ =
p + u(p,q)

1 + u1(p,q) + u2(p,q)

and

q′ =
q + v(p,q)

1 + v1(p,q) + v2(p,q)
.

We observe that g is a well defined continuous function from Ẽ into itself
and so has a fixed point (p∗,q∗).

We claim that (p∗,q∗) is a Nash stable point.
Suppose, if possible, that A

(
(r, 1− r),q∗

)
> A

(
(p∗, 1− p∗),q∗

)
. Without

loss of generality, we may suppose that r > p∗ so that

A
(
(1, 0),q∗

)
> A

(
(p∗, 1− p∗),q∗

)
and

A
(
(0, 1),q∗

)
< A

(
(p∗, 1− p∗),q∗

)
.

Thus u1(p∗,q∗) > 0 and u2(p∗,q∗) = 0, whence p∗ = (1, 0) and u1(p∗,q∗) =
0 which contradicts our earlier assertion.

We have shown that

A
(
p∗,q∗

)
≥ A

(
(p, 1− p),q∗

)
for all 1 ≥ p ≥ 0. The same argument shows that

B
(
p∗,q∗

)
≥ B

(
p∗, (q, 1− q)

)
for all 1 ≥ q ≥ 0 so we are done.

Solution of Exercise 5.2. Suppose that A swerves with probability a and B
with probability b. The value of the game to A is

V (a, b) = −ab+ 10(1− a)b− 5a(1− b)− 100(1− a)(1− b).

If 0 < a < 1,0 < b < 1
∂V

∂a
(a, b) = 95− 106b,

so by symmetry we have a Nash equilibrium point (a, b) = (95/106, 95/106).
However

V (a, 0) = −5a− 100(1− a) = 95a− 100, V (a, 1) = 10− 11a

so, again using symmetry, (1, 0) and (0, 1) are also Nash equilibrium points.
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Solution of Exercise 6.3. If x′, y′ ∈ E ′ and 0 ≤ t ≤ 1, then

x′j = ajxj + bj, y
′
j = ajyj + bj

with x, y ∈ E and so

tx′j + (1− t)y′j = aj(txj + (1− t)yj) + bj

for all j. But tx + (1 − t)y ∈ E, since E is convex, so tx′ + (1 − t)y′ ∈ E ′
and is convex.

We now recall Theorem 2.6 and observe that E ′ is the continuous image
of a compact set so compact.

Proof of Lemma 6.4. If x ∈ K and 0 ≤ t ≤ 1, then, since 1 ∈ K and K is
convex, we have

(1− t)1 + tx ∈ K

so, by our hypothesis,

1 ≥
n∏
j=1

(
txj + (1− t)

)
=

n∏
j=1

(
1 + t(xj − 1)

)
= 1 + t

n∑
j=1

(xj − 1) + t2P (t)

where P is a polynomial with coefficients depending on x. It follows that, if
0 ≤ t ≤ 1, we have

0 ≥
n∑
j=1

(xj − 1) + tP (t).

Allowing t→ 0+ gives

0 ≥
n∑
j=1

(xj − 1),

which is the desired result.

Proof of Theorem 6.5. The Nash conditions mean that the problem is invari-
ant under affine transformation (i.e. transformations of the type discussed
in Exercise 6.3). Thus we may assume that s = 0. If the hyperboloid∏n

j=1 yj = K touches the convex set E ′ at y (with yj > 0) then the transfor-

mation xj = K−1/nyj/y
∗
j gives a hyperboloid

∏n
j=1 xj = 1 touching a convex

set E at (1, 1, . . . , 1).
Thus we may assume that s = 0 and x∗1 = x∗2 = · · · = x∗n = 1.

13



By Lemma 6.4, we have

K ⊆ L = {x :
n∑
j=1

xj ≤ n},

and, by the independence of irrelevant alternatives, if x∗ is best for L, it
is best for K. Now L is symmetric so any best point x for L must lie on
x1 = x2 = . . . = xn. But, amongst these points, only x∗ is Pareto optimal so
we are done.

Proof of Lemma 6.6. By compactness, there is a point x∗ where f attains its
maximum. By translation, we may suppose s = 0 and, re-scaling the axes,
we may suppose x∗ = e = (1, 1, . . . , 1).

Lemma 6.4 tells us that

{k ∈ K : kj ≥ 0 ∀j} ⊆ {x ∈ K : xj ≥ 0 ∀j and x1 + x2 + . . .+ xn = n}.

The uniqueness of the maximum now follows from the conditions for equality
in the arithmetic geometric inequality.

Solution for Exercise 7.1. (i) We use induction on n to show that E is n
times differentiable with

E(n)(t) = Pn(1/t)E(t)

for all t 6= 0 and some polynomial Pn.
The result is certainly true for n = 0 with P0 = 1. If it is true for n = m,

then the standard rules for differentiation show that E(m) is differentiable
with

E(m+1)(t) = t−2P ′m(1/t)E(t)− 2t−3Pm(1/t)E(t) = Pm+1(1/t)E(t)

for all t 6= 0 and the polynomial Pm+1(s) = s2P ′m(s)− 2s3Pm(s).
(ii) We use induction on n to show that E is n times differentiable at 0

with
E(n)(0) = 0.

The result is true for n = 0. If it is true for n = m, then

E(m)(h)− E(m)(0)

h
= h−1P (h−1)E(h)→ 0

as h→ 0, so it is true for n = m+ 1.
(iii) We have

E(t) 6= 0 =
∞∑
n=0

0

n!
tn =

∞∑
n=0

E(n)(0)

n!
tn

for all t 6= 0, as stated.
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Proof of Lemma 7.2. (i) If P and Q have degree at most n and

P (xj) = Q(xj) = f(xj)

for 0 ≤ j ≤ n, then P −Q is a polynomial of degree at most n vanishing at
at least n+ 1 points. Thus P −Q = 0, by Exercise 2.10, so P = Q.

(ii) We observe that ej(xi) = 1 if i = j, but ej(xi) = 0 otherwise and that
ej is a polynomial of degree n. Thus

P =
n∑
j=0

f(xj)ej

is a polynomial of degree at most n with

P (xi) =
n∑
j=0

f(xj)ej(xi) = f(xi)

for 0 ≤ i ≤ n.
(iii) It is easy to check that Pn is a vector space. Part (ii) shows that the

ej span Pn. If
n∑
j=0

λjej = 0,

then

λi =
n∑
j=0

λjej(xi) = 0

for each i, so the the ej are linearly independent.
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Proof of Theorem 7.3. By de Moivre’s theorem,

cosnθ + i sinnθ = (cos θ + i sin θ)n

=
n∑
r=0

ir
(
n

r

)
(cos θ)n−r(sin θ)r

=
∑

0≤2r≤n

(−1)r
(
n

2r

)
(cos θ)n−2r(sin θ)2r

+ i sin θ
∑

0≤2r≤n−1

(−1)r
(

n

2r + 1

)
(cos θ)n−1−2r(sin θ)2r

=
∑

0≤2r≤n

(−1)r
(
n

2r

)
(cos θ)n−2r

(
1− (cos θ)2

)r
+ i sin θ

∑
0≤2r≤n−1

(−1)r
(

n

2r + 1

)
(cos θ)n−1−2r

(
1− (cos θ)2

)r
= Tn(cos θ) + i sin θUn−1(cos θ),

where Tn is a polynomial of degree at most n and Un−1 a polynomial of degree
at most n− 1.

Taking real and imaginary parts, we obtain

Tn(cos θ) = cosnθ

for all θ and

Un−1(cos θ) =
sinnθ

sin θ

for sin θ 6= 0, Un−1(1) = n, Un−1(−1) = (−1)n−1n . The roots of Un−1 and Tn
can be read off directly and show that the two polynomials have full degree.

The coefficient of tn in Tn is∑
0≤2r≤n

(
n

2r

)
=

1

2

(
(1 + 1)n + (1− 1)n

)
= 2n−1

for n ≥ 1.

Solution of Exercise 7.4. The key result that we use in (i) and (ii) is that, if

f ∈ C([0, 1]), f(t) ≥ 0 for all t ∈ [0, 1] and
∫ 1

0
|f(t)| dt = 0, then f(t) = 0 for

all t ∈ [0, 1].
(i) Observe that

‖f‖1 =

∫ 1

0

|f(t)| dt ≥ 0
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and that, if ‖f‖1 = 0, then ∫ 1

0

|f(t)| dt = 0,

so |f(t)| = 0 for all t, so f(t) = 0 for all t and f = 0.
Further

‖λf‖1 =

∫ 1

0

|λ||f(t)| dt = |λ|
∫ 1

0

|f(t)| dt = |λ|‖f‖1

and, since |f(t) + g(t)| ≤ |f(t)|+ |g(t)|, we have

‖f + g‖1 =

∫ 1

0

|f(t) + g(t)| dt ≤
∫ 1

0

|f(t)|+ |g(t)| dt = ‖f‖1 + ‖g‖1,

so we have a norm.
(ii) We have

〈f, f〉 =

∫ 1

0

f(t)2 dt ≥ 0.

If 〈f, f〉 = 0, then
∫ 1

0
f(t)2 dt = 0, so f(t)2 = 0 for all t, so f(t) = 0 for

all t and f = 0.
We have

〈f, g〉 =

∫ 1

0

f(t)g(t) dt =

∫ 1

0

g(t)f(t) dt = 〈g, f〉

and

〈f + g, h〉 =

∫ 1

0

(f(t) + g(t))h(t) dt

=

∫ 1

0

f(t)h(t) dt+

∫ 1

0

g(t)h(t) dt = 〈f, h〉+ 〈g, h〉

whilst

〈λf, g〉 =

∫ 1

0

λf(t)g(t) dt = λ

∫ 1

0

f(t)g(t) dt = λ〈f, g〉,

so we have an inner product.
(iii) Observe that |f(t)| ≥ 0,so

‖f‖∞ = sup
t∈[0,1]

|f(t)| ≥ 0,
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that
‖f‖∞ = 0⇒ sup

t∈[0,1]

|f(t)| = 0⇒ |f(t)| = 0 ∀t⇒ f = 0,

that

‖λf‖∞ = sup
t∈[0,1]

|λf(t)| = sup
t∈[0,1]

|λ||f(t)| = |λ| sup
t∈[0,1]

|f(t)| = λ‖f‖∞,

and, that, since |f(t) + g(t)| ≤ |f(t)|+ |g(t)|,

‖f + g‖∞ = sup
t∈[0,1]

|f(t) + g(t)| ≤ sup
t∈[0,1]

(|f(t)|+ |g(t)|)

≤ sup
t,s∈[0,1]

(|f(t)|+ |g(s)|) = ‖f‖∞ + ‖g‖∞,

so we are done.
The Cauchy–Schwarz inequality gives

‖f‖2 = ‖f‖2‖1‖2 ≥ 〈|f |, 1〉 = ‖f‖1.

First year analysis gives

‖f‖∞ = ‖f 2‖1/2
∞ =

(∫ 1

0

f(t)2 dt

)1/2

= ‖f‖1.

.
If fn is as stated, ‖fn‖1 = 2

∫ 1/n

0
nt dt = 1/n, ‖fn‖∞ = 1 and

‖fn‖2 =

(
2

∫ 1/n

0

(nt)2 dt

)1/2

=

(
2

3n

)1/2

.

Thus ‖fn‖∞/‖fn‖1 = n → ∞ and ‖fn‖1/‖fn‖2 = (3/2)1/2n1/2 → ∞ as
n→∞. We have genuinely different measures of distance.

Proof of Theorem 7.7. Suppose that f is not uniformly continuous. Then we
can find an ε > 0 and xn, yn ∈ E such that

‖xn − yn‖ ≤ 1/n and ‖f(xn)− f(yn)‖ ≥ ε.

By compactness, we can find e ∈ E and n(j)→∞ such that xn(j) → e. The
triangle inequality tells us that yn(j) → e and so

‖f(xn(j))− f(yn(j))‖ ≤ ‖f(xn(j))− f(e)‖+ ‖f(yn(j))− f(e)‖ → 0 + 0 = 0.

We have a contradiction.
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Proof of Theorem 7.8. By replacing X by Y = X − EX, we may suppose
that EX = 0.

Let

IR\(−a,a)(t) =

{
0 if |t| < a,

1 otherwise.

Then
t2

a2
≥ IR\(−a,a)(t)

for all t, so, automatically,

X2

a2
≥ IR\(−a,a)(X)

and
σ2

a2
= E

X2

a2
≥ EIR\(−a,a)(X) = Pr(|X| ≥ a).

Proof of Theorem 7.9. (i) We have

pn(t) = Ef(Yn(t))

=
n∑
j=0

f(j/n) Pr(X1 +X2 + · · ·+Xn = j)

=
n∑
j=0

(
n

j

)
f(j/n)tj(1− t)n−j.

(ii) Automatically,

EYn = E
X1 +X2 + · · ·+Xn

n
=

EX1 + EX2 + · · ·+ EXn

n
=
nt

n
= t

and, since the Xj are independent,

varYn = var
X1 +X2 + · · ·+Xn

n
= n−2 var(X1 +X2 + · · ·+Xn)

= n−2(varX1 + varX2 + . . .+ varXn)

= n−1 varX1 = n−1t(1− t) ≤ n−1.

Let ε > 0. By uniform continuity we can find an η > 0 such that |f(t)−
f(s)| ≤ ε for |t− s| ≤ η and t, s ∈ [0, 1]. Thus, using Chebychev’s inequality,

|pn(t)− f(t)| =
∣∣E(f(Yn)− f(t)

)∣∣ ≤ E|f(Yn)− f(t)|
≤ εPr(|Yn − t| < η) + 2‖f‖∞ Pr(|Yn − t| ≥ η)

≤ ε+ 2‖f‖∞ Pr(|Yn − EYn| ≥ η)

≤ ε+ 2‖f‖∞η−2/n ≤ 3ε,
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provided only that n ≥ ε−1(2‖f‖ + 1)η−2. Since ε is arbitrary, the result
follows.

Proof of Theorem 8.1. Without loss of generality, suppose that

f(aj)− P (aj) = (−1)jσ for all 0 ≤ j ≤ n.

Suppose, if possible, that Q is a polynomial of degree n− 1 or less such that
‖P − f‖∞ > ‖Q− f‖∞.

We look at R = P − Q. Note first that R is a polynomial of degree at
most n− 1. If j is odd,

R(aj) =
(
P (aj)− f(aj)

)
+
(
f(aj)−Q(aj)

)
= |P (aj)− f(aj)|+

(
f(aj)−Q(aj)

)
≥ |P (aj)− f(aj)| − ‖Q− f‖∞ = ‖P − f‖∞ − ‖Q− f‖∞ > 0.

and a similar argument shows that

R(aj) < 0

when j is even.
The intermediate value theorem now tells that R has at least n zeros, so

R = 0 and P = Q, contradicting our initial assumption.

Proof of Theorem 8.2. If t = cos θ, then

tn − Sn(t) = 21−nTn(t) = 21−n cosnθ

Thus
|tn − Sn(t)| ≤ 21−n

for t ∈ [−1, 1] and
tn − Sn(t) = (−1)j21−n

for t = cos jπ/n [0 ≤ j ≤ n].
The stated result now follows from the equiripple criterion.

Proof of Corollary 8.3. (i) This is just a restatement of Theorem 8.2.
(ii) Let Γ(n) be the statement given in (ii) with the extra condition εn ≤ 1.

Γ(0) is true with ε0 = 1 by inspection.
Suppose that Γn is true, that P (t) =

∑n+1
j=0 ajt

j is a polynomial of degree
at most n + 1, and that |ak| ≥ 1 for some n + 1 ≥ k ≥ 0. If |an+1| ≤ εn/2,
then

P (t) = an+1t
n+1 +Q(t)
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where Q(t) =
∑n

j=0 ajt
j is a polynomial of degree at most n+ 1 and |ak| ≥ 1

for some n ≥ k ≥ 0. Thus

‖P‖∞ ≥ ‖Q‖∞ − |an+1| ≥ εn/2.

On the other hand, if |an+1| ≥ εn/2, then part (i) tells us that

‖P‖∞ ≥ 2−n+1εn/2 = 2−nεn.

Thus, whatever the value of an+1,

‖P‖∞ ≥ 2−n−1εn

and Γ(n+ 1) holds with εn+1 = 2−n−1εn.
The required result holds by induction.

Proof of Theorem 8.4. By rescaling and translation, we may suppose that
[a, b] = [−1, 1]. Consider the map F : Rn+1 → R given by F (a) = ‖f −Q‖∞
where

Q(t) =
n∑
j=0

ajt
j.

Recalling the inequality
∣∣|d(f, g)| − |d(f, h)|

∣∣ ≤ d(g, h), we have

|F (a)− F (b)| ≤ sup
t∈[−1,1]

∣∣∣∣∣
n∑
j=0

ajt
j −

n∑
j=0

bjt
j

∣∣∣∣∣ ≤
n∑
j=0

|aj − bj| ≤ (n+ 1)‖a− b‖,

so F is continuous. Also

F (a) ≥ sup
t∈[−1,1]

∣∣∣∣∣
n∑
j=0

ajt
j

∣∣∣∣∣− ‖f‖∞
so, by Corollary 8.3 (ii), we can find a K > 0 such that

a /∈ [−K,K]n+1 ⇒ F (a) ≥ F (0).

By compactness, F attains a minimum at some point p ∈ [−K,K]n+1

and

P (t) =
n∑
j=0

pjt
j

is the required polynomial.
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Proof of Lemma 9.1. As in Lemma 7.2, we take

ek(x) =
∏
j 6=k

x− xj
xk − xj

.

If ∫ b

a

P (x) dx =
n∑
j=0

AjP (xj)

for all polynomials of degree n or less, then, setting P = ek, gives us

Ak =

∫ b

a

ek(x) dx,

proving uniqueness.
On the other hand, if P has degree n or less,

Q = P −
n∑
j=0

P (xj)ej

has degree n or less but vanishes at the n+ 1 points xj. Thus Q = 0 and

P =
n∑
j=0

P (xj)ej,

whence ∫ b

a

P (x) dx =
n∑
j=0

AjP (xj)

with

Aj =

∫ b

a

ej(x) dx.

Proof of Lemma 9.2. Linear independence shows that v 6= 0. We have
‖en+1‖ = ‖v‖−1‖v‖ = 1. Now

〈v, ek〉 =

〈
f −

n∑
j=1

〈f , ej〉ej, ek

〉

= 〈f , ek〉 −
n∑
j=1

〈f , ej〉〈ek, ej〉

= 〈f , ek〉 − 〈f , ek〉 = 0

so 〈en+1, ek〉 = 0 for all 1 ≤ k ≤ n.
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Proof of Lemma 9.4. Suppose that pn has k roots αj of odd order (that is
to say the polynomial changes sign at the root) on (−1, 1). If we set Q(t) =∏k

j=1(t − αj), then pn(t)Q(t) is a continuous single signed not everywhere
zero function so ∫ 1

−1

Q(t)pn(t) dt 6= 0.

Thus Q has degree at least n, so k ≥ n.
It follows that k = n and all of the roots of pn are simple lying in (−1, 1).

Proof of Theorem 9.5. (i) By long division, Q = pnS+T , where S and T are
polynomials of degree at most n− 1. Thus∫ 1

−1

Q(x) dx =

∫ 1

−1

S(x)pn(x) dx+

∫ 1

−1

T (x) dx =

∫ 1

−1

T (x) dx

=
n∑
j=1

AjT (αj) =
n∑
j=1

AjT (αj) +
n∑
j=1

Ajpn(αj)S(αj) =
n∑
j=1

AjQ(αj).

(ii) Let P (x) =
∏n

j=1(x−βj). If R is a polynomial of degree n−1 or less,
then RP has degree at most 2n− 1, so∫ 1

−1

R(x)P (x) dx =
n∑
j=1

BjR(βj)P (βj).

Thus 〈P,R〉 = 0 for all polynomials of degree n − 1 or less, so P is a scalar
multiple of the nth Legendre polynomial pn and the βj are the roots pn.

Proof of Theorem 9.6. (i) Let

Pk(x) =

(∏
j 6=k

x− xj
xk − xj

)2

.

Then Pk has degree 2n− 2, so

0 <

∫ 1

−1

Pk(x) dx =
n∑
j=1

AjPk(αj) = Ak.

(ii) Taking P = 1 in the formula, we obtain

2 =

∫ 1

−1

1 dx =
n∑
j=1

Aj.
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(iii) We have∣∣∣∣∫ 1

−1

f(x) dx −
n∑
j=1

Ajf(αj)

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

−1

(
f(x)− P (x)

)
dx−

n∑
j=1

Aj
(
f(αj)− P (αj)

)∣∣∣∣∣
≤
∣∣∣∣∫ 1

−1

(
f(x)− P (x)

)
dx

∣∣∣∣+

∣∣∣∣∣
n∑
j=1

Aj
(
f(αj)− P (αj)

)∣∣∣∣∣
≤
∫ 1

−1

|f(x)− P (x)| dx+
n∑
j=1

Aj|f(αj)− P (αj)|

≤ 2‖f − P‖∞ +
n∑
j=1

Aj‖f − P‖∞ ≤ 4‖f − P‖∞.

(iv) Let ε > 0. By Weierstrass’s theorem, we can find a polynomial P
such that ‖f − P‖∞ ≤ ε/4. Then, if n is greater than the degree of P ,
part (iii) tells us that∣∣∣∣∫ 1

−1

f(x) dx−Gnf

∣∣∣∣ ≤ 4‖f − P‖∞ ≤ ε.

Proof. (i) Let

Pk(x) =

(∏
j 6=k

x− xj
xk − xj

)2

.

Then Pk has degree 2n− 2, so

0 <

∫ 1

−1

Pk(x) dx =
n∑
j=1

AjPk(αj) = Ak.

(ii) Taking P = 1 in the formula, we obtain

2 =

∫ 1

−1

1 dx =
n∑
j=1

Aj.
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(iii) We have∣∣∣∣∫ 1

−1

f(x) dx −
n∑
j=1

Ajf(αj)

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

−1

(
f(x)− P (x)

)
dx−

n∑
j=1

Aj
(
f(αj)− P (αj)

)∣∣∣∣∣
≤
∣∣∣∣∫ 1

−1

(
f(x)− P (x)

)
dx

∣∣∣∣+

∣∣∣∣∣
n∑
j=1

Aj
(
f(αj)− P (αj)

)∣∣∣∣∣
≤
∫ 1

−1

|f(x)− P (x)| dx+
n∑
j=1

Aj|f(αj)− P (αj)|

≤ 2‖f − P‖∞ +
n∑
j=1

Aj‖f − P‖∞ ≤ 4‖f − P‖∞.

(iv) Let ε > 0. By Weierstrass’s theorem, we can find a polynomial P
such that ‖f − P‖∞ ≤ ε/4. Then, if n is greater than the degree of P ,
part (iii) tells us that∣∣∣∣∫ 1

−1

f(x) dx−Gnf

∣∣∣∣ ≤ 4‖f − P‖∞ ≤ ε.

Proof of Lemma 10.1. It is a standard observation about metric spaces (X, d)
that, since d(x, y) + d(y, z) ≥ d(x, z), we have d(y, z) ≥ d(x, z)− d(x, y) and
similarly d(y, z) = d(z, y) ≥ d(x, y)− d(x, z), so that

d(y, z) ≥ |d(x, z)− d(x, y)|.

Thus, if we write f(x) = ‖a− x‖, we have

|f(x)− f(y)| ≤ ‖x− y‖,

so f is continuous and attains its minimum on the compact set E.

Solution of Exercise 10.2. (i) Consider n = 2,

E = {(x, y) : x2 + y2 = 1} and e = 0.

Any point of E will do.
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(ii) Suppose that E is convex, e, f ∈ E and ‖a− e‖ = ‖a− f‖. Then

e + f

2
∈ E

but the parallelogram law tells us that

4‖a− e‖2 = 2‖a− e‖2 + ‖a− f‖2

= ‖(a− e) + (a− f)‖2 + ‖(a− e)− (a− f)‖2

= 4

∥∥∥∥a− e + f

2

∥∥∥∥2

+ ‖e− f‖2

and so ∥∥∥∥a− e + f

2

∥∥∥∥ ≤ ‖a− e|

with equality only if e = f . (Alternatively draw a diagram and use a little
school geometry to obtain the same result.)

Proof of Lemma 10.3. (i) Recall that, if u ∈ Rn, then we can find v ∈ F
such that ‖u− v‖ = d(u, F ). If u′ ∈ Rn, then

d(u′, F ) ≤ ‖u′ − v‖ ≤ ‖u′ − u‖+ ‖u− v‖ = ‖u′ − u‖+ d(u, F ).

The same argument shows that d(u, F ) ≤ ‖u′ − u‖+ d(u′, F ). Thus

|d(u, F )− d(u′, F )| ≤ ‖u′ − u‖.

and the map u 7→ d(u, F ) is continuous. By compactness, it attains its
minimum on E and this is the required result.

(ii) Chose u ∈ E. Since F is bounded we can find an R such that
B(u, R) ⊇ F . Let

E∗ = B̄(u, 2R + 1) ∩ E.
If e ∈ E \ E∗, then d(e, F ) ≥ d(u, F ) + 1.

Since E∗ is compact, part (i) tells us that there exist a e ∈ E∗ and a
f ∈ F such that

‖e− f‖ = inf
y∈E∗

d(y, F )

and so by the previous paragraph

‖e− f‖ = inf
y∈E

d(y, F )

(iii) Let n = 1, E = {r+1/r : r ∈ Z, r ≥ 2} and F = {r : r ∈ Z, r ≥ 2}.
We have E and F closed and τ(E,F ) = 0, but |e − f | > 0 for all e ∈ E,
f ∈ F .
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Solution of Exercise 10.4. Repeat the counter-example of Exercise 10.2. Take
n = 2,

E = {(x, y) : x2 + y2 = 1}, F = {0}.

Solution of Exercise 10.5. (i) follows directly from the definition. (Alterna-
tively take the e and f of Lemma 10.3 (i) and observe that τ(E, f) = ‖e−f‖ ≥
0.)

Lemma 10.3 (i) also shows that

τ(F,E) ≤ ‖e− f‖ = τ(E,F ).

Interchanging E and F , yields τ(E,F ) ≤ τ(F,E) so τ(E,F ) = τ(F,E).
If we work with n = 1, setting E = {0}, F = {0, 1}, gives τ(E,F ) = 0,

but E 6= F .
If we work with n = 1, then setting E = {0}, F = {0, 1}, G = {1} gives

τ(E,F ) + τ(F,G) = 0 + 0 = 0, but τ(E, g) = 1.

Solution of Exercise 10.6. In our proof of Lemma 10.3 (i) we showed that
u 7→ d(u, F ) is continuous. It follows that it attains its maximum on the
compact set E.

Solution of Exercise 10.7. Since d(e, F ) ≥ 0 for all e, we have σ(E,F ) ≥ 0.
If n = 1, E = {0}, F = [0, 1], then σ(E,F ) = 0, but σ(F,E) = 1, so

conditions (ii) and (iii) fail.

σ(E,F ) = 0⇔ d(e, F ) = 0 ∀e ∈ E ⇔ e ∈ F ∀e ∈ E ⇔ E ⊆ F.

Proof of Lemma 10.8. Given e ∈ E, we can find f ∈ F such that ‖e− f‖ =
d(e, F ). If g ∈ G, then

d(e, G) ≤ ‖e− g‖ ≤ ‖e− f‖+ ‖f − g‖
= d(e, F ) + ‖f − g.‖

Since g ∈ G was arbitrary,

d(e, G) ≤ d(e, F ) + d(f , G) ≤ σ(E,F ) + σ(F,G)

and so
σ(E,G) ≤ σ(E,F ) + σ(F,G).
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Proof of Theorem 10.10. Observe that

ρ(E,F ) = σ(E,F ) + σ(F,E) ≥ 0

ρ(E,F ) = 0⇔ σ(E,F ) = σ(F,E) = 0⇔ E ⊆ F, F ⊆ E ⇔ E = F

ρ(E,F ) = σ(E,F ) + σ(F,E) = σ(F,E) + σ(E,F ) = ρ(F,E)

ρ(E,F ) + ρ(F,G) = σ(E,F ) + σ(F,G) + σ(G,F ) + σ(F,E)

≥ σ(E,G) + σ(G,E) = ρ(E,G),

as desired.

Proof of Theorem 10.12. (i) This part may be familiar from 1B. (Indeed the
reader may well be able to supply a more sophisticated proof.) Since the
intersection of closed sets is closed and the intersection of bounded sets is
bounded we only have to show that K is non-empty.

Choose xn ∈ Kn. Since K1 is compact and xn ∈ K1 for every n we can
find an x ∈ K1 and n(j) ≥ j such that xn(j) → x (in the Euclidean metric)
as j →∞

Automatically,
xn(j) ∈ Kn(j) ⊆ Kj ⊆ Kp

for all j ≥ p, so, since Kp is closed, x ∈ Kp for all p ≥ 1. It follows that
x ∈ K and K is non-empty.

(ii) Since K ⊆ Kp it follows that

ρ(K,Kp) = sup
e∈Kp

inf
k∈K
‖e− k‖

and, in particular that ρ(K,Kp) is a decreasing positive sequence.
Thus if Kp 9

ρ
K there must exist an η > 0 with

ρ(K,Kp) ≥ 2η

and there must exist kp ∈ Kp with

‖kp − k‖ ≥ η

for all k ∈ K.
Since K1 is compact and kp ∈ K1 for every p we can find an x ∈ K1 and

p(j) ≥ j such that kp(j) → x (in the Euclidean metric) as j → ∞. As in
part (i), we know that x ∈ K so

‖kp(j) − x‖ ≥ η.

for all j giving us a contradiction.
Part (ii) follows by reductio ad absurdum.
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Proof of Lemma 10.13. If zn ∈ K+ B̄(0, r), then zn = xn+yn with xn ∈ K,
‖yn‖ ≤ r. By compactness, we can first extract a convergent subsequence
xn(j) ∈ K and then a convergent subsequence yn(j(k)) ∈ B̄(0, r). It follows
that zn(j(k)) = xn(j(k)) +yn(j(k)) converges to a point in K + B̄(0, r) so we are
done.

Proof of Theorem 10.11. By Lemma 1.11, it suffices to show that, if we have
sequence of non-empty compact sets with ρ(En, En+1) < 8−n for n ≥ 1, then
the sequence converges. Set

Kn = En + B̄(0, 6× 8−n).

Then Kn is compact and ρ(En, Kn) = 6× 8−n so it is sufficient to show that
Kn converges.

To do this, we observe that Kn+1 ⊆ Kn and so we may apply Theo-
rem 10.12.

Proof for Example 11.1. Observe that, taking C to be the contour z = eiθ as
θ runs from 0 to 2π, we have

sup
z∈D̄
|f(z)− p(z)| ≥ 1

2π

∣∣∣∣∫
C

f(z)− p(z) dz

∣∣∣∣
=

1

2π

∣∣∣∣∫
C

f(z) dz

∣∣∣∣ =
1

2π

∣∣∣∣∫ 2π

0

e−iθieiθ dθ

∣∣∣∣
=

1

2π

∣∣∣∣∫ 2π

0

i dθ

∣∣∣∣ = 1.

Proof for Example 11.3. By exactly the same computations as in Example 11.1,

sup
z∈T
|f(z)− p(z)| ≥ 1

2π

∣∣∣∣∫
C

f(z)− p(z) dz

∣∣∣∣ = 1.

Solution for Exercise 11.9. (i) Just observe that

1

z
=

1

w + (z − w)
=

1

w(1 + (z − w)/w)
=
∞∑
j=0

(−1)j(z − w)j

wj+1

for |(z − w)/w| < 1.
(ii) It is easy to check that Ω is open and bounded. To see that Ω is

connected, suppose that w1, w2 ∈ Ω. Then we can find rk and θk with
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10−2 < rk < 1 and −π < θ < π such that wk = rke
iθk [k = 1, 2]. If we define

γ : [0, 1]→ Ω by

γ(t) =
(
(1− t)r1 + tr2

)
exp

(
i(1− t)θ1 + itθ2

)
,

then γ gives a path from w1 to w2.
Suppose, if possible, that

z−1 =
∞∑
j=0

bj(z − z0)j

for all z ∈ Ω. Then the power series converges on some open disc D centre
z0 with D ⊇ Ω. Thus D ⊇ {z : |z| < 1}. By Lemma 11.8,

z−1 =
∞∑
j=0

bj(z − z0)j

for all z with 0 < |z| < 1. Allowing z → 0, gives a contradiction.

Proof of Lemma 11.12. We may suppose K non-empty. Since K is compact,
C\Ω closed and the two sets are disjoint, it follows that η = τ(K,C\Ω)/8 > 0
(i.e. |k − w| > 8η for all k ∈ K, w /∈ Ω).

Consider a grid of squares side η. We consider the collection Γ of closed
squares S lying entirely within Ω with boundary contours C(S). Observe
that ⋃

S∈Γ

C(S) ⊇ {k + u : k ∈ K, |u| ≤ 2η}

By Cauchy’s theorem

f(z) =
1

2πi

∑
S∈Γ

∫
C(S)

f(w)

w − z
dw

for all z ∈ K such that z does not lie on the boundary of some S. By
cancelling internal sides,

f(z) =
M∑
m=1

∫
Cm

f(w)

w − z
dw F

with the piece-wise linear contours Cm [1 ≤ m ≤ M ] lying entirely within
Ω \K.

We deal with the case when z lies on the boundary of some S by erasing
any sides through z and repeating the argument with the new (non-regular)
grid. (Alternatively, we could observe that both sides of equation F are
continuous.)
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Proof of Lemma 11.13. Observe that K and
⋃M
m=1 Cm are compact and dis-

joint.

Proof of Lemma 11.14. By Lemma 11.13 it is sufficient to show that, if C
is a straight line segment joining lying in Ω \K, then, given ε, we can find
Bm ∈ C and βm ∈ C with∣∣∣∣∣ 1

2πi

∫
C

f(w)

w − z
dw −

M∑
m=1

Bm

z − βm

∣∣∣∣∣ < ε

for all z ∈ K.
To this end, note that

1

2πi

∫
C

f(w)

w − z
dw =

∫ 1

0

F (t, z) dt

where F : [0, 1]×K → C is defined by

F (t, z) =
1

2πi

f(γ(t))

γ(t)− z
γ′(t)

with γ(t) = (1− t)z1 + tz2. Since [0, 1]×K is compact and F is continuous,
F must be uniformly continuous so there exists a δ > 0 such that

|F (t, z)− F (s, z)| < ε for all |t− s| < δ.

If we choose an integer M > δ−1 and set FM(t, z) = F (m/M, z) whenever
(m− 1)/M < t ≤ m/M [1 ≤ m ≤M ], then |F (t, z)− FM(t, z)| ≤ ε so∣∣∣∣∫ 1

0

F (t, z) dt−
∫ 1

0

FM(t, z) dt

∣∣∣∣ ≤ ε.

Since ∫ 1

0

FM(t, z) dt =
M∑
m=1

Bm

z − βm

for appropriate Bm and βm, we are done.

Proof of Theorem 11.11 from Lemma 11.15. We use the result and notation
of Lemma 11.14. Choose polynomials Pn such that∣∣∣∣Pn(z)− 1

z − αn

∣∣∣∣ ≤ ε

(N + 1)(|An|+ 1)
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for all z ∈ K. Then, if

P (z) =
N∑
n=1

AnPn(z),

P is a polynomial and

|f(z)− P (z)| ≤

∣∣∣∣∣f(z)−
N∑
n=1

An
z − αn

∣∣∣∣∣+
N∑
n=1

|An|
∣∣∣∣Pn(z)− 1

z − αn

∣∣∣∣
≤ ε+N

ε

N + 1
≤ 2ε.

Since ε was arbitrary the result follows.

Proof of Lemma 11.17. Since K is compact, it is bounded and we can find
an R > 0 such that |z| < R/2 whenever z ∈ K. The standard geometric
series result shows that if |α| > R

−1

α

n∑
r=0

zr

αr
→ −1

α
× 1

1− (z/α)
=

1

z − α

uniformly for |z| ≤ R/2 and so for z ∈ K.

Proof of Lemma 11.18. Since α ∈ Λ(K) we know that there exists a sequence
of polynomials Pn such that

Pn(z)→ 1

z − α

uniformly on K. Moreover, since (by compactness) z 7→ (z−α)−1 is bounded
on K, the Pn are uniformly bounded.

On the other hand,

1

z − β
=

1

z − α− (β − α)
=

1

z − α
× 1

1− β−α
z−α

.

Since ∣∣∣∣β − αz − α

∣∣∣∣ ≤ |β − α|d(α,K)
< 1

for all z ∈ K, we know that, given ε > 0, there exists an N with∣∣∣∣∣ 1

z − β
−

N∑
j=0

(β − α)j

(z − α)j+1

∣∣∣∣∣ < ε/2
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for all z ∈ K. By the first paragraph, we can find an M such that∣∣∣∣ (β − α)j

(z − α)j+1
− (β − α)jPM(z)j

∣∣∣∣ < ε/(2N + 4)

for each 0 ≤ j ≤ N and so∣∣∣∣∣ 1

z − β
−

N∑
j=0

(β − α)jPM(z)j

∣∣∣∣∣ < ε

for all z ∈ K. We have shown that β ∈ Λ(K).

Proof of Lemma 11.19. Let a ∈ C\K. By Lemma 11.17, Λ(K) is non-empty
so we may choose a b ∈ Λ(K). Since C \K is path connected we can find a
continuous γ : [0, 1]→ C \K with γ(0) = b, γ(1) = a. The continuous image
of a compact set is compact and γ([0, 1])∩K = ∅ so (see Lemma 10.3) there
exists a δ > 0 such that |γ(t)− k| > δ for all k ∈ K and all t ∈ [0, 1].

By uniform continuity, we can find an N such that

|s− t| ≤ 1/N ⇒ |γ(t)− γ(s)| < δ/2.

Writing xr = γ(r/N), we see that x0 = b ∈ Λ(K) and, applying Lemma 11.18,

xr−1 ∈ Λ(K)⇒ xr ∈ Λ(K)

for 1 ≤ r ≤ N . Thus a = xN ∈ Λ(K) and we are done.

Proof of Example 11.20. Consider the map Tn given by

Tn(z) = (2−n + z) exp(−2−niπ)

(a translation followed by a rotation).
Let gn = T−1

n fTn and

ln = {r exp(i2−n)− 2−n : r ∈ R, r ≥ 0} = T−1
n {x : x ∈ R, x ≥ 0}

so gn is analytic on C \ ln. We see that gn(z) → f(z) pointwise as n → ∞.
(The reader may find it convenient to examine the case when z = x with x
real and x ≥ 0 separately.)

We now set

Un = ln + IntD(0, 2−8n) = {z + w, : z ∈ ln, |w| < 2−8n}

so that Un is open and Un ∩ Um = ∅ for n 6= m. Finally we take

Kn = ClD \ Un
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so that Kn is compact. By Runge’s theorem we can find a polynomial Pn
such that |Pn(z)− gn(z)| ≤ 2−n for all z ∈ Kn.

Now choose a particular z ∈ D. We know that there exists an N (depend-
ing on z) such that z ∈ Kn for all n ≥ N . Considering only n ≥ N , we have
|Pn(z)−gn(z)| → 0 and (as we observed in the first paragraph) gn(z)→ f(z)
so Pn(z)→ f(z) as n→∞. Since z was arbitrary, we are done.

Proof of Theorem 12.1. This is probably familiar from 1A.
Suppose, if possible, that e = p/q with p and q integers and q ≥ 2. Then

q!e and q!

q∑
r=0

1

r!

are integers so

M = q!
∞∑

r=q+1

1

r!
= q!e− q!

q∑
r=0

1

r!

is an integer. But

0 < M = q!
∞∑

r=q+1

1

r!
≤

∞∑
r=q+1

1

qr−q
=

1

q
× 1

1− q−1
=

1

q − 1
< 1

and there is no integer strictly between 0 and 1. Our assumption has led to
a contradiction so emust be irrational.

Proof of Lemma 12.3. Observe that

fn(x) =
n∑
s=0

(
n

s

)
πn−sxn+s

Thus
f (r)(0) = 0

if 0 ≤ r ≤ n− 1 or 2n+ 1 ≤ r and

f (n+r)(0) = (n+ r)!

(
n

r

)
πn−r

for 0 ≤ r ≤ n. By symmetry about π/2,

f (r)(π) = (−1)rf (r)(0).

Thus f (r)(0) and f (r)(π) always take the form of M × n!× πk where M is an
integer and k is an integer with 0 ≤ k ≤ n.
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Now integration by parts gives∫ π

0

f (m)(x) cosx dx =
[
f (m)(x) sinx

]π
0
−
∫ π

0

f (m+1)(x) sinx dx

= −
∫ π

0

f (m+1)(x) sinx dx

and ∫ π

0

f (m)(x) sinx dx = −
[
f (m)(x) cosx

]π
0

+

∫ π

0

f (m+1)(x) cosx dx

= (f (m)(π)− f (m)(0)) +

∫ π

0

f (m+1)(x) cosx dx.

Thus integration by parts 2n+ 1 times gives∫ π

0

f(x) sinx dx = n!U(π)

where U is a polynomial of degree at most n with integer coefficients.

Proof of Theorem 12.2 from Lemma 12.3. Suppose that π = p/q with p and
q integers and q ≥ 1. It follows from Lemma 12.3 that

qn

n!

∫ π

0

fn(x) sinx dx = qn
n∑
j=0

ajπ
j =

n∑
j=0

ajq
n−jpj ∈ Z.

But (by school calculus or completing the square or the AM-GM inequality)
x(π − x) takes its maximum when x = π/2 so

0 ≤ fn(x) ≤ (π/2)2n

and, since fn(x) sinx is strictly positive for 0 < x < π,

0 <

∫ π

0

fn(x) sinx dx ≤
∫ π

0

(π/2)2n dx = π2n+12−2n.

Thus

0 <
qn

n!

∫ π

0

fn(x) sinx dx ≤ 1

n!
π2n+12−2nqn < 1

for n sufficiently large.
However there is no integer strictly between 0 and 1. Our assumption

has led to a contradiction. Thus π is irrational.
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Solution of Exercise 12.5. Only if is trivial since integers are rational num-
bers.

To see if, observe that, if α satisfies

N∑
j=0

pj
qj
αj = 0

with pj, qj integers, qj 6= 0 for all j, pN 6= 0, N ≥ 1, then

N∑
j=0

pj
∏
i 6=j

qiα
j = 0.

Proof of Lemma 12.6. This was done in 1A. There are only finitely many
polynomials of the form

N∑
j=0

ajx
j

with n ≥ N ≥ 1, aN 6= 0 and all aj integers with |aj| ≤ n. A polynomial has
only finitely many roots, so the set En of roots of such polynomials is finite
so countable. Thus E =

⋃∞
n=1 En is the countable union of countable sets so

countable. But E is the set of algebraic numbers, so we are done.

Proof of Theorem 12.7. Let

P (x) = anx
n + an−1x

n−1 + · · ·+ a0.

Since a polynomial has only finitely many roots, we can find an R ≥ 1 such
that all the roots of P lie in [−R + 1, R − 1]. If we take 0 < c ≤ 1, the
required result will be automatic for p/q /∈ [−R,R].

Now P ′ is continuous, so, by compactness, there exists an M > 1 such
that |P ′(t)| ≤M for t ∈ [−R,R]. (We could also prove this directly.) If α is
an irrational root, p, q ∈ Z with q 6= 0, p/q ∈ [−R,R] and P (p/q) 6= 0, then
the mean value theorem yields

|P (α)− P (p/q)| ≤M

∣∣∣∣α− p

q

∣∣∣∣
so, since P (α) = 0,

|P (p/q)| ≤M

∣∣∣∣α− p

q

∣∣∣∣ .
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Now qnP (p/q) is a non-zero integer, so |qnP (p/q)| ≥ 1 and

q−n ≤M

∣∣∣∣α− p

q

∣∣∣∣ ,
that is to say

M−1q−n ≤
∣∣∣∣α− p

q

∣∣∣∣ .
Since there are only a finite number of roots and so only a finite number

of irrational roots, we know that there is a c′ > 0 such that∣∣∣∣α− p

q

∣∣∣∣ ≥ c′q−n

whenever α is an irrational root, p, q ∈ Z with q 6= 0 and P (p/q) = 0.
Taking c = min{M−1, c′, 1}, we have the required result.

Proof of Theorem 12.8. Let

L =
∞∑
n=0

1

10n!
.

We observe that L is irrational since its decimal expansion is not recurring.
If qm = 10m! and

pm = qm

m∑
n=0

1

10n!
,

then pm and qm are integers with qm 6= 0.
We observe that∣∣∣∣L− pm

qm

∣∣∣∣ =
∞∑

j=m+1

1

10j!
≤ 1

10(m+1)!

∞∑
j=0

1

10j
≤ 2

10(m+1)!

and, given any c > 0 and any integer n ≥ 1, we can find an m such that∣∣∣∣L− pm
qm

∣∣∣∣ ≤ 2

10(m+1)!
<

c

qn
.

Thus Theorem 12.7 tells us that L is transcendental.

Solution of Exercise 12.9. Essentially the same argument as for Theorem 12.8
tells us that

∞∑
n=0

bj
10n!
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with bj ∈ {1, 2} is transcendental.
The map

θ : {0, 1}N → R

given by

θ(ζ) =
∞∑
n=0

ζ(j) + 1

10n!

is injective and its image (as we have just seen) consists of transcendental
numbers. Since, as we saw in 1A, the set {0, 1}N is uncountable and θ is
injective, θ(N) is uncountable and we are done.

Proof of Theorem13.1. We construct xj ∈ X and δj > 0 inductively as fol-
lows. Choose any x0 ∈ X and set δ0 = 1.

Suppose that xj and δj have been found. Since X \ Uj+1 has empty
interior, we can find an xj+1 ∈ Uj+1 with d(xj+1, xj) ≤ δj/4. Since Uj+1 is
open we can find a δj+1 > 0 with δj+1 ≤ δj/4 such that B(xj+1, δj+1) ⊆ Uj+1.

By induction, δj+k ≤ 4−kδj for j, k ≥ 0, so, if m ≥ n ≥ 0,

d(xn, xm) ≤
m−n−1∑
r=0

d(xn+r, xn+r+1)

≤
m−n−1∑
r=0

δn+r/4 ≤
m−n−1∑
r=0

δn4−r−1 ≤ δn/2,

so the sequence xn is Cauchy and so converges to some point a.
We observe that

d(xn, a) ≤ d(xn, xm) + d(xm, a) ≤ δn/2 + d(xm, a)→ δn/2

as m→∞. Thus

d(xn, a) ≤ d(xn, xm) + d(xm, a) ≤ δn/2 + d(xm, a)→ δn/2

as m→∞. Thus
a ∈ B(xj, δj) ⊆ Uj

for all j ≥ 1 and

a ∈
∞⋂
j=1

Uj.

The result is proved

Proof of the equivalence of Theorems 13.1 and 13.2. Set Fj = X \ Uj.
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Proof of the equivalence of Theorems 13.1 and 13.3. Let x have the property
Pj if and only if x /∈ Uj.

Proof of Lemma 13.5. (i) This is just a restatement of Theorem 13.2.
(ii) The countable union of countable sets is countable.

Proof of Theorem 13.7. Suppose that (E, d) is a non-empty countable com-
plete space with no isolated points. Then each {e} with e ∈ E is closed
(since singletons are always closed in metric spaces). However, since e not
isolated, B(x, δ) 6⊆ {e} for all δ > 0, so {e} is not open and {e} has empty
interior. Thus E is the countable union of closed sets {e} with empty inte-
rior contradicting Theorem 13.2. The required result follows by reductio ad
absurdum.

Proof of Corollary 13.8. Observe that R with the usual metric is complete
without isolated points. Theorem 13.7 now tells us that R is uncountable.

Proof of Theorem 13.9. Banach’s clever idea is to consider the set Em con-
sisting of all those f ∈ C([0, 1]) such that there exists an x ∈ [0, 1] with the
property

|f(x)− f(y)| ≤ m|x− y|
for all y ∈ [0, 1]. Our proof falls into several parts.

(a) We show that, if f is differentiable at some point x ∈ [0, 1], then there
exists a positive integer m such that f ∈ Em. It will then follow that any
g ∈ C([0, 1]) \

⋃∞
m=1Em is nowhere differentiable.

To this end, suppose that f is differentiable at x. We can find an ε > 0
such that ∣∣∣∣f(x+ h)− f(x)

h
− f ′(x)

∣∣∣∣ ≤ 1

for all 0 < |h| < ε, when x+ h ∈ [0, 1]. Thus

|f(x+ h)− f(x)| ≤ (|f ′(x)|+ 1)|h|

for all 0 < |h| < ε when x+ h ∈ [0, 1]. We thus have

|f(x)− f(y)| ≤ (|f ′(x)|+ 1)|x− y|

for all y ∈ [0, 1] such that |y − x| < ε. If we choose m with m ≥ |f ′(x)| + 1
and m ≥ 2Kε−1, we will have f ∈ Em.

(b) We now show that Em is closed.
Suppose that fn ∈ Em and ‖fn− f‖∞ → 0. By definition, there exists an

xn ∈ [0, 1] with the property

|fn(xn)− f(y)| ≤ m|xn − y|
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for all y ∈ [0, 1]. By the Bolzano–Weierstrass property, we can find x ∈ [0, 1]
and n(r)→∞ such that xn(r) → x as r →∞.

Let y ∈ [0, 1]. We have

|f(x)− f(y)| ≤ |f(x)− f(xn(r))|+ |f(xn(r))− fn(r)(xn(r))|
+ |fn(r)(xn(r))− fn(r)(y)|+ |fn(r)(y)− f(y)|

≤ 2‖f − fn(r)‖∞ + |f(x)− f(xn(r))|+m|xn(r) − y|
→ 0 + 0 +m|x− y| = m|x− y|.

Since y was arbitrary, f ∈ Em.
(c) Next we show that Em has a dense complement.
Suppose that f ∈ C([0, 1]) and ε > 0. By Weierstrass’s theorem on

polynomial approximation (see Theorem 7.9), we can find a polynomial P
such that

‖f − P‖∞ ≤ ε/3.

Since P is continuously differentiable, there is a K such that |P ′(t)| ≤ K for
all t ∈ [0, 1]. By the mean value theorem, it follows that

|P (x)− P (y)| ≤ K|x− y|

for all x, y ∈ [0, 1].
Let g(t) = P (t) + (ε/3) cos 2πNt. Automatically,

‖g − f‖∞ ≤ ‖f − P‖∞ + ε/3 ≤ 2ε/3 < ε.

We claim that, provided only that N is large enough, g /∈ Em.
To see this choose r an integer with 0 ≤ r ≤ N − 1 such that 0 ≤

x− r/N ≤ 1/N . We have

max{|g(r/N)− g(x)|, |g((r + 1)/N)− g(x)|}

≥ |g(r/N)− g(x)|+ |g((r + 1)/N)− g(x)|
2

≥ |g(r/N)− g((r + 1)/N)|
2

≥ 2ε/3− |P (r/N)− P ((r + 1)/N)|
2

≥ ε/3−K/N ≥ ε/6 ≥ 4m/N.

Thus at least one of the statements

|g(r/N)− g(x)| > m|r/n− x| or |g((r + 1)/N)− g(x)| > m|(r + 1)/n− x|

is true for N sufficiently large (with N not depending on the choice of x).
(d) Thus

⋃∞
m=1 Em is a set of first category and we are done.
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Proof of Corollary 13.10. Observe that a closed subset of a complete metric
space is complete under the inherited metric and that R is complete under
the standard metric.

Proof of Lemma 13.11. (i) Suppose that En ∈ Ek and En → E in the Haus-
dorff metric. By definition we can find xn ∈ En with B(xn, 1/k)∩E = {xn}.
By Bolzano–Weierstrass, we can find n(j) → ∞ and x ∈ [0, 1] such that
|xn(j)− x| → 0. We observe that x ∈ E.

Suppose, if possible, that B(x, 1/k)∩E 6= {x}. Then we can find a y ∈ E
such that |x − y| < 1/k. Set δ = (1/k − |x − y|)/2. Since En → E and
n(j)→∞, we can find a J such that the Hausdorff distance ρ(En(J), E) < δ
and so there exists a y′ ∈ En(J) with |y′−y| < δ and so with |xn(J)−y′| < 1/k,
contrary to our hypothesis.

Thus E ∈ Ek and Ek is closed.
(ii) Let G ∈ K and let ε > 0. Choose an integer N > 5(ε−1 + k + 1). Let

F = {r/N : |r/N − x| ≤ 4/N for some x ∈ G}.

By construction,

σ(G,F ) = sup
y∈G

d(y, F ) ≤ 1/N and σ(F,G) = sup
y∈F

d(y,G) ≤ 4/N

so
ρ(G,F ) = σ(G,F ) + σ(F,G) ≤ 5/N < ε

But, if y ∈ G, then either y+ 1/N or y− 1/N (or both) lies in G, so G /∈ Ek.
(iii) Observe that E = ∪∞k=1Ek.

Proof of Lemma 13.12. (i) Suppose that Fn ∈ Fj,k and Fn → F in the Haus-
dorff metric. By definition, Fn ⊇ [j/k, (j + 1)/k], so F ⊇ [j/k, (j + 1)/k].

Thus Fj,k is closed.
(ii) Let G ∈ K and let ε > 0. Choose an integer N > 2ε−1 + 1. Let

E = {r/N : |r/N − x| ≤ 1/N for some x ∈ G}.

By construction,

σ(G,E) = sup
y∈G

d(y, E) ≤ 1/N and σ(E,G) = sup
y∈E

d(y,G) ≤ 1/N

so
ρ(G,E) = σ(G,E) + σ(E,G) ≤ 2/N < ε

but E /∈ Fj,k.
(iii) Observe that F =

⋃∞
k=1

⋃k
j=0Fj,k, so F is the countable union of

closed nowhere dense sets.
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Proof of Theorem 13.13. With the notation of Lemmas 13.11 and 13.12,

K \ C = E ∪ F .

Since the union of two first category sets is of first category, K \ C is of the
first category.

Solution of Exercise 13.14. (i) (This may be familiar from 1B.) Set

gn(x) =


22nx if 0 ≤ x ≤ 2−n−1,

22n(2−n − x) if 2−n−1 ≤ x ≤ 2−n,

0 otherwise.

If x 6= 0, then x ≥ 2−m for some m and so gn(x) = 0 for n ≥ m. Since
gn(0) = 0 for all n, we have gn(x)→ 0 as n→∞ for all x.

However,
sup
t∈[0,1]

gn(t) = g(2−n−1) = 2n−1 →∞

as n→∞.
(ii) Extend gn to a function on R by setting gn(t) = 0 for t /∈ [0, 1]. Set

fn(t) =
∑∞

j=1 2−jgn
(
2j(t− 2−j)

)
and use (i).

Proof of Theorem 13.15. Observe that

En,m = {x : |fn(x)| ≤ m} = f−1
n ([−m,m])

is closed (since fn is continuous), so

Em =
∞⋂
n=1

En,m

is.
If we fix x ∈ [0, 1] for the moment, we know that fn(x) → 0 as n → ∞.

In particular, we can find an N(x) such that |fn(x)| ≤ 1 for all n ≥ N(x).
Thus

|fn(x)| ≤ max{1, max
1≤j≤N(x)

|fn(x)|}

and so x ∈ Em(x) for some integer m(x).
The previous paragraph shows that

[0, 1] =
∞⋃
m=1

Em,

but Baire’s category theorem tells us that [0, 1] cannot be the countable
union of closed sets with empty interior. Thus there must exist an M such
that EM has non-empty interior, so EM ⊇ (a, b) for some non-empty interval
(a, b).
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Solution of Exercise 14.1.

100

37
= 2 +

26

37
,

37

26
= 1 +

11

26
,

26

11
= 2 +

4

11
,

11

4
= 2 +

3

4
,

4

3
= 1 +

1

3
.

Thus
100

37
= 2 +

1

1 +
1

2 +
1

2 +
1

1 +
1

3

.

Lemma 14.2. (i) This is immediate.
(ii) We saw in 1A that the Euclidean algorithm terminates. (Or we could

repeat the 1A proof by observing that the elements of the pairs are strictly
decreasing.)

Solution of Exercise 14.3. ] We know that 1 <
√

2 < 2, so
√

2 = 1 + α

with 0 < α =
√

2− 1 < 1.
Now

1

α
=

1√
2− 1

=
√

2 + 1 = 2 + α

so N(α) = 2 and T (α) = 2 +α. Thus
√

2 has the non-terminating continued
fraction

1 +
1

2 +
1

2 +
1

2 +
1

2 + . . .
and cannot be rational.
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Solution of Exercise 14.4. We have

Dx = 10x− [10x] = 10x−Nx

so
x = 10−1(Dx+Nx).

Since Dx ∈ [0, 1), we have

x = 10−1(Dx+Nx) = 10−1
(
10−1

(
D(Dx) +N(Dx)

)
+Nx

)
= 10−1Nx+ 10−2NDx+ 10−2D2x

= 10−1Nx+ 10−2NDx+ 10−3ND2x+ 10−3D3x

= . . . .

We have

Pr(NDrX = kr for 1 ≤ r ≤ n)

= Pr

(
n∑
r=1

kr10−r ≤ X < 10−n +
n∑
r=1

kr10−r

)
= 10−n,

so
Pr(NDkX = j) = 1/10

for 0 ≤ j ≤ 9 and

Pr(NDrX = kr for 1 ≤ r ≤ n} = 10−n =
n∏
r=1

Pr(NDrX = kr),

showing that NX, NDX, ND2X, . . . are independent
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Proof of Lemma 14.5. Observe that

Pr(TX ≤ a) = Pr(n ≤ X−1 ≤ n+ a for some integer n ≥ 1)

= Pr
(
(n+ a)−1 ≤ X ≤ n−1 for some integer n ≥ 1

)
=
∞∑
n=1

Pr
(
(n+ a)−1 ≤ X ≤ n−1

)
=
∞∑
n=1

1

log 2

∫ n−1

(n+a)−1

1

1 + x
dx

=
∞∑
n=1

1

log 2

[
log(1 + x)

]n−1

(n+a)−1

=
1

log 2

∞∑
n=1

(
log(1 + n−1)− log(1 + (n+ a)−1)

)
=

1

log 2

∞∑
n=1

((
log(n+ 1)− log n

)
)−

(
log(1 + n+ a)− log(n+ a)

))
=

1

log 2
lim
N→∞

(
log(N + 1)− log(1 +N + a) + log(1 + a)

)
=

1

log 2

(
log(1 + a) + lim

N→∞
log

N + 1

1 +N + a

)
=

log(1 + a)

log 2
= Pr(X ≤ a).

Proof of Corollary 14.6. By Lemma 14.5,

Pr(NTmX = j) = Pr(NX = j)

=
1

log 2

∫ (j+1)−1

j−1

1

1 + x
dx

=
1

log 2

[
log(1 + x)

]j−1

(j+1)−1

=
1

log 2

(
log

j + 1

j
− log

j + 2

j + 1

)
=

1

log 2
log

(j + 1)2

j(j + 2)
.

Proof of Lemma 15.2. (i) We use backwards induction on k. Since

rn
sn

= an
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the result is true for k = n.
Suppose the result is true for m + 1 with 0 ≤ m ≤ n − 1. Then, by

definition, (
rm
sm

)
=

(
am 1
1 0

)(
rm+1

sm+1

)
=

(
amrm+1 + sm+1

rm+1

)
,

and, by the inductive hypothesis,

am+
1

am+1 +
1

am+2 +
1

am+3 +
1

am+4 +
1

. . .

an−1 +
1

an

= am +
1

rm+1/sm+1

= am +
sm+1

rm+1

=
amrm+1 + sm+1

rm+1

=
rm
sm
.

The required result now follows.
(ii) Apply (i) repeatedly.

Proof of Lemma 15.3. (i) This is just a restatement of Lemma 15.2 (ii).
(ii) We have(

pn−1

qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
an−2 1

1 0

)(
an−1

1

)
and (

an−1

1

)
=

(
an−1 1

1 0

)(
1
0

)
.
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Proof of Theorem 15.4. (i) Using Lemma 15.3 (ii), we have

pkqk−1 − qkpk−1 = det

(
pk pk−1

qk qk−1

)
= det

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
ak 1
1 0

)
= det

(
a0 1
1 0

)
det

(
a1 1
1 0

)
· · · det

(
ak 1
1 0

)
= (−1)k+1.

(ii) Either use the matricial formula(
pk pk−1

qk qk−1

)
=

(
pk−1 pk−2

qk−1 qk−2

)(
ak 1
1 0

)
or direct computation.

(iii) Follows from the formula of (i).
(iv) By (ii) (or direct observation), the qk form a strictly increasing se-

quence of strictly positive integers. Thus the qk−1qk form a strictly increasing
sequence of strictly positive integers.

The formula of (i) gives

pk
qk
− pk−1

qk−1

= (−1)k+1 1

qkqk−1

,

so the remark of the previous paragraph shows that

pk
qk
− pk−1

qk−1

is an alternating sequence with decreasing magnitude. Thus

p2k

q2k

<
p2k−2

q2k−2

,
p2k−1

q2k−1

<
p2k+1

q2k+1

.

We also have ∣∣∣∣pkqk − pk−1

qk−1

∣∣∣∣ =
1

qkqk−1

→ 0.

(v) A decreasing sequence bounded below tends to a limit, so

p2k+1

q2k+1

→ α

as k →∞ for some α. Since ∣∣∣∣pkqk − pk−1

qk−1

∣∣∣∣→ 0
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this tells us that
p2k

q2k

→ α

as k →∞. Thus
pn
qn
→ α

and
p2k+1

q2k+1

> α >
p2k

q2k

.

Solution of Exercise 15.5. Observe that if a > 0

s > t > 0⇒ 1

a+ t
>

1

a+ s
.

Thus (using a formal induction if more details are required)

p2k

q2k

< x <
p2k−1

q2k−1

.

We know from Theorem 15.4 (v) that

pn
qn
→ α,

so α = x.

Proof of Theorem 15.6. Observe that if q and u are positive integers with
q ≤ qn, then ∣∣∣∣uq − pn+1

qn+1

∣∣∣∣ ≥ 1

qqn+1

,

with equality only if q = qn and, in this case, only if u = pn. Thus pn/qn is
the closest fraction of the form u/q (with q ≤ qn) to pn+1/qn+1. But α lies
between pn/qn and pn+1/qn+1, so pn/qn is also the closest fraction of the form
u/q (with q ≤ qn) to α.

Proof of Theorem 15.7. We may assume that 0 < x < 1 without loss of
generality. Using the notation of this section we observe that x lies between
pn/qn and pn+1/qn+1 so∣∣∣∣pnqn − x

∣∣∣∣ < ∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣ =
1

qnqn+1

<
1

q2
n

.
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Solution of Exercise 15.8. Theorem 12.7 with n = 2.

Solution of Exercise 15.9. (i) Observe that

σ =
1

1 + σ

so that
σ2 + σ − 1 = 0

and

σ =
−1±

√
5

2
.

Since σ > 0, we must have

σ =
−1 +

√
5

2
.

(ii) By Theorem 15.4 (iii), qk = akqk−1 + qk−2 and pk = akpk−1 + pk−2

with ak = 1. Thus

qk = qk−1 + qk−2 and pk = pk−1 + pk−2.

Now q0 = 1 = F1, q1 = 1 = F2, p0 = 0 = F0, p1 = 1 = F1, so by an inductive
argument (or general knowledge of recurrence relations),

qn = Fn+1 and pn = Fn.

(iii) By Theorem 15.4 (i),

Fn+1Fn−1 − F 2
n = −(pn−1qn − qn−1pn) = (−1)n+1.

Solution of Exercise 15.10. By Theorem 15.6 Fn/Fn+1 is closer to σ than any
other fraction with denominator no larger than Fn+1. Thus∣∣∣∣pq − σ

∣∣∣∣ ≥ max

{∣∣∣∣ FnFn+1

− σ
∣∣∣∣ , ∣∣∣∣Fn+1

Fn+2

− σ
∣∣∣∣} ≥ 1

2

(∣∣∣∣ FnFn+1

− σ
∣∣∣∣+

∣∣∣∣Fn+1

Fn+2

− σ
∣∣∣∣)

=
1

2

∣∣∣∣ FnFn+1

− Fn+1

Fn+2

∣∣∣∣ =
1

2Fn+1Fn+2

whenever q ≤ Fn and so whenever Fn−1 ≤ q ≤ Fn.
Now Fr ≤ 2Fr−1 so∣∣∣∣pq − σ

∣∣∣∣ ≥ 1

2Fn+1Fn+2

≥ 1

64F 2
n−1

≥ 1

64q2

whenever Fn−1 ≤ q ≤ Fn for all n ≥ 2 and the result follows.
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Solution of Exercise 15.11. Observe that F5 = 5, F6 = 8, F7 = 13 so the
difference in areas is 1 so we only need to hide one unit of area.

Identify the Fibonacci numbers in the diagram and generalise.

Solution of Exercise 16.2. (i) The proof follows the lines of that of Lemma 15.2.
Observe that, if s, r 6= 0,(

r′

s′

)
=

(
a b
1 0

)(
r
s

)
=

(
ar + bs

r

)
,

and
ar + bs

r
= a+

b

r/s
.

Thus, by induction, if(
pn
qn

)
=

(
a0 b0

1 0

)(
a1 b1

1 0

)
. . .

(
an−1 bn−1

1 0

)(
an
1

)
,

then
pn
qn

= a0 +
b0

a1 +
b1

a2 +
b2

a3 +
b3

a4 +
b4

. . .

an−1 +
bn−1

an

.

Observe that(
a0 b0

1 0

)(
a1 b1

1 0

)
. . .

(
an−1 bn−1

1 0

)(
1
0

)
=

(
a0 b0

1 0

)
. . .

(
an−2 bn−2

1 0

)(
an−1

1

)
=

(
pn−1

qn−1

)
and thus (

pn bnpn−1

qn bnqn−1

)
=

(
a0 b0

1 0

)(
a1 b1

1 0

)
. . .

(
an bn
1 0

)
.

We deduce that(
pn bnpn−1

qn bnqn−1

)
=

(
pn−1 bn−1pn−2

qn−1 bn−1qn−2

)(
an bn
1 0

)
.

50



Looking at the first column gives

pn = anpn−1 + bn−1pn−2,

qn = anqn−1 + bn−1qn−2,

as required.

Proof of Lemma 16.3. We have

S0(x) =

∫ x

0

cos t dt = sinx,

so p0(x) = 0, q0(x) = 1. Integration by parts gives

S1(x) =
1

2

∫ x

0

(x2 − t2) cos t dt

=

[
1

2
(x2 − t2) sin t

]x
0

+

∫ x

0

t sin t dt =

∫ x

0

t sin t dt

= [−t cos t]x0 +

∫ x

0

t cos t dt = −x cosx+ sinx

so p1(x) = x, q1(x) = 1.
If n ≥ 2, a similar repeated integration by parts gives

Sn(x) =
1

2nn!

∫ x

0

(x2 − t2)n cos t dt

=

[
1

2nn!
(x2 − t2)n sin t

]x
0

+
1

2n−1(n− 1)!

∫ x

0

t(x2 − t2)n−1 sin t dt

=
1

2n−1(n− 1)!

∫ x

0

t(x2 − t2)n−1 sin t dt

=
1

2n−1(n− 1)!

[
−t(x2 − t2)n−1 cos t

]x
0

+
1

2n−1(n− 1)!

∫ x

0

(
(x2 − t2)n−1 − 2(n− 1)t2(x2 − t2)n−2

)
cos t dt

= Sn−1(x)− 1

2n−2(n− 2)!

∫ x

0

(
t2(x2 − t2)n−2

)
cos t dt

= Sn−1(x) +
1

2n−2(n− 2)!

(∫ x

0

(
(x2 − t2)t2(x2 − t2)n−2

)
cos t dt

−x2

∫ x

0

(x2 − t2)n−2 cos t dt

)
= (2n− 1)Sn−1(x)− x2Sn−2(x).
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Thus

pn(x) = (2n− 1)pn−1(x)− x2pn−2(x),

qn(x) = (2n− 1)qn−1(x)− x2qn−2(x)

and we are done.

Proof of Theorem 16.1. Since

Sn(x) = qn(x) sinx− pn(x) cosx,

rearrangement gives

tanx =
pn(x)

qn(x)
+

Sn(x)

qn(x) cosx

so we need to show that
Sn(x)

qn(x) cosx
→ 0.

It is easy to see that

|Sn(x)| ≤
∣∣∣∣ 1

2nn!

∫ x

0

(x2 − t2)n cos t dt

∣∣∣∣
≤ 1

2nn!
|x||x|2n → 0

as n→∞ for all x.
We shall show that if |x| ≤ 1 then qn(x)→∞. (Actually it can be shown

that |qn(x)| → ∞ for all x.) Observe that

qn(x) = (2n− 1)qn−1(x)− x2qn−2(x)

so, if |x| ≤ 1,

qn(x) ≥ (2n− 1)qn−1(x)− qn−2(x) ≥ 3qn−1(x)− qn−2(x)

for n ≥ 2. Since q0(x) = q1(x) = 1 we have q2(x) ≥ 2 and a simple induction
gives qn(x) ≥ 2n−1 for n ≥ 1 and |x| ≤ 1.

Notice the rapidity of convergence of the continued fraction in this case.

Proof of Theorem 17.1. leaving uniqueness to follow from Exercise 17.2. Let
E be the set of u ∈ [0, 1] for which there exists a continuous function θ :
[0, u]→ R with θ(0) = θ0 such that g(t) = eiθ(t) for all t ∈ [0, u]. Since 0 ∈ E
(just take θ(0) = θ0) and E is bounded, E must have an upper bound w.
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Suppose that w ∈ (0, 1). Since g is continuous, we can find a δ > 0 such
that (w− 2δ, w+ 2δ) ⊆ [0, 1] and |g(t)− g(w)| < 1/2 for t ∈ (w− 2δ, w+ 2δ)
We know that there is a unique continuous function

φ : {z : |z − 1| < 1/2, |z| = 1} → [−π/2, π/2]

such that
z = eiφ(z) for all |z − 1| < 1/2, |z| = 1.

Thus, if we choose θ1 such that eiθ1 = g(w) and define θ̃ : (w− 2δ, w+ 2δ)→
[−π/2, π/2] by

θ̃(t) = θ1 + φ
(
g(t)/g(w)

)
we will have θ̃ continuous and

g(t) = eiθ̃(t)

for t ∈ (w − 2δ, w + 2δ).
By the definition of an upper bound, we can find u ∈ (w − δ, w] and a

continuous function ψ : [0, u]→ R with ψ(0) = θ0 such that g(t) = eiψ(t) for
all t ∈ [0, u]. Since

eiθ̃(u) = g(u) = eiψ(u)

we must have θ̃(u) = ψ(u) + 2Nπ for some integer N . Taking

θ(t) =

{
ψ(t) for t ∈ [0, u]

θ̃(t)− 2Nπ for t ∈ [u, u+ δ]

we see that θ : [0, u + δ] → R is a continuous function with θ(0) = θ0 such
that g(t) = eiθ(t) for all t ∈ [0, u + δ]. Thus u + δ ∈ E and u + δ > w,
contradicting our assumption that u is an upper bound.

A similar argument show that 0 is not an upper bound. Thus supE = 1
and much the same argument as above shows that 1 ∈ E, so we are done.

Solution of Exercise 17.2. Observe that f : [0, 1]→ R defined by

f(t) =
ψ(t)− φ(t)

2π

is an integer valued continuous function on [0, 1] and so must be constant.
(Or quote the intermediate value theorem directly.)

Proof of Corollary 17.3. Set g(t) = γ(t)/|γ(t)| and use Theorem 17.1.
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Solution of Exercise 17.5. (i) Since γ(0) 6= 0 and

|γ(0)|eiθ(0) = γ(0) = γ(1) = |γ(1)|eiθ(1) = |γ(0)|eiθ(1),

we have ei(θ(1)−θ(0)) = 1, so θ(1)− θ(0) is an integer multiple of 2π.
(ii) If we take γ(t) = exp(irt), we get w(γ, 0) = r [r ∈ Z]

Proof of Lemma 17.6. By Corollary 17.3, we can write

γj(t) = |γj(t)| exp
(
iθj(t)

)
with θj : [0, 1]→ R continuous. We now have

γ1(t)γ2(t) = |γ1(t)| exp
(
iθ1(t)

)
|γ2(t)| exp

(
iθ2(t)

)
= |γ1(t)γ2(t)| exp

(
i(θ1(t) + θ2(t))

)
,

so that

w(γ1γ2, 0) =
1

2π

((
θ1(1) + θ2(1)

)
−
(
θ1(0) + θ2(0)

)
=

1

2π

(
θ1(1)− θ1(0)

)
+

1

2π

(
θ2(1)− θ2(0)

)
= w(γ1, 0) + w(γ2, 0).

Proof of Lemma 17.7. This argument may be familiar from 1B complex vari-
able.

Write γ(t) =
(
1 + γ2(t)/γ1(t)

)
. By Lemma 17.6,

w(γ1 + γ2, 0) = w(γ1γ, 0) = w(γ1, 0) + w(γ, 0),

so it suffices to prove that w(γ, 0) = 0. We shall do this by noting that
|γ2(t)/γ1(t)| < 1 and so

<γ(t) > 0

for all t ∈ [0, 1].
By Corollary 17.3, we can write

γ(t) = |γ(t)| exp
(
iθ(t)

)
with θ : [0, 1] → R continuous and θ(0) ∈ (−π/2, π/2). If |θ(t)| ≥ π/2
for any t ∈ [0, 1], the intermediate value theorem tells us that there is an
s ∈ [0, t] such that |θ(s)| = π/2 and so <γ(s) = 0, which is impossible. Thus
|θ(t)| < π/2 for all t ∈ [0, 1].

In particular |θ(0)|, |θ(1)| < π/2, so |θ(1) − θ(0)| < π. It follows that
w(γ, 0) is an integer with |w(γ, 0)| < 1/2 and so w(γ, 0) = 0.
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Solution of Exercise 17.9. Setting

Γ(s, t) = γ(t),

we see that γ ' γ.
If γ0 ' γ1, then we can find a continuous function Γ : [0, 1]2 → C \ {0}

such that

Γ(s, 0) = Γ(s, 1) for all s ∈ [0, 1],

Γ(0, t) = γ0(t) for all t ∈ [0, 1],

Γ(1, t) = γ1(t) for all t ∈ [0, 1].

If we set Γ̃(s, t) = Γ(1 − s, t), then Γ̃ : [0, 1]2 → C \ {0} is a continuous
function such that

Γ̃(s, 0) = Γ̃(s, 1) for all s ∈ [0, 1],

Γ̃(0, t) = γ1(t) for all t ∈ [0, 1],

Γ̃(1, t) = γ0(t) for all t ∈ [0, 1],

and so γ1 ' γ0.
If γ0 ' γ1 and γ1 ' γ2, then we can find a continuous functions Γj :

[0, 1]2 → C \ {0} such that

Γj(s, 0) = Γj(s, 1) for all s ∈ [0, 1],

Γj(0, t) = γ0+j(t) for all t ∈ [0, 1],

Γj(1, t) = γ1+j(t) for all t ∈ [0, 1]

for j = 0, 1.
If we set

Γ(s, t) =

{
Γ0(2s, t) for all s ∈ [0, 1/2], t ∈ [0, 1]

Γ1(2s− 1, t) for all s ∈ (1/2, 1], t ∈ [0, 1]

then Γ : [0, 1]2 → C \ {0} is a continuous function such that

Γ̃(s, 0) = Γ̃(s, 1) for all s ∈ [0, 1],

Γ̃(0, t) = γ0(t) for all t ∈ [0, 1],

Γ̃(1, t) = γ2(t) for all t ∈ [0, 1],

and so γ0 ' γ2.
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Proof of Theorem 17.10. Let Γ be as in Definition 17.8. The map (s, t) 7→
|Γ(s, t)| is continuous so, by compactness, |Γ(s, t)| attains a minimum m on
the compact set [0, 1]2. Since Γ is never zero, we must have m > 0.

By compactness (see Theorem 7.7 if necessary), Γ is uniformly continuous
and so we can find a strictly positive integer N such that

|s− s′|, |t− t′| < 2/N ⇒ |Γ(s, t)− Γ(s′, t′)| < m/2.

If 0 ≤ r ≤ N let us define

βr(t) = Γ(r/N, t)

for t ∈ [0, 1]. We observe that

|βr(t)| = |Γ(r/N, t)| ≥ m > m/2

>
∣∣Γ(r/N, t)− Γ

(
(r + 1)/N, t

)∣∣ = |βr(t)− βr+1(t)|

for all t ∈ [0, 1], so by the dog walking lemma (Lemma 17.7),

w(βr, 0) = w(βr+1, 0)

for all 0 ≤ r ≤ N − 1. It follows that

w(γ0, 0) = w(β0, 0) = w(βN , 0) = w(γ1, 0).

Proof of Corollary 17.11. Suppose, if possible, that f(z) 6= 0 for z ∈ D. The
nowhere-zero function G : [0, 1]2 7→ C given by

G(s, t) = f(se2πit)

is continuous with G(s, 0) = G(s, 1) for all s ∈ [0, 1], G(1, t) = γ(t) and
G(0, t) = γ0(t) where γ0(t) = f(0) for all t ∈ [0, 1]. Thus γ and γ0 are
homotopic closed curves not passing through 0. By Theorem 17.10, w(γ, 0) =
w(γ0, 0) = 0 contradicting our hypothesis.

Proof of Corollary 17.12. It is sufficient to consider polynomials P of the
form

P (z) = zn +Q(z)

with Q(z) =
∑n−1

j=0 ajz
j. If we set R = 1 +

∑n−1
j=0 |aj| and consider p(z) =

R−np(Rz) we see that P has a root if p has root and that

p(z) = zn + q(z)

with |q(z)| < 1 when |z| = 1.
By the dog walking lemma, the map t 7→ p(e2πit) for t ∈ [0, 1] has the same

winding number as t 7→ (e2πit)n = e2πint, that is to say, n. By Corollary 17.11,
there must exist a z ∈ D with p(z) = 0, so we are done.
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Proof of Corollary 17.13. Suppose such a function existed. The continuous
map G : [0, 1]2 → ∂D given by

G(s, t) = f(se2πit)

gives a homotopy between γ0 defined by γ0(t) = f(0) and γ1 defined by
γ1(t) = f(t) = e2πt using closed curves not passing through 0. By Theo-
rem 17.10, this gives

1 = w(γ1, 0) = w(γ0, 0) = 0,

which is absurd.
The required result follows by reductio ad absurdum.
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‘You are old, Father William’ the young man said,
And your hair has become very white;
And yet you incessantly stand on your head
Do you think, at your age, it is right?’

‘In my youth’ Father William replied to his son,
‘I feared it might injure the brain;
But, now that I’m perfectly sure I have none,
Why, I do it again and again.’

‘You are old’ said the youth ‘as I mentioned before,
And have grown most uncommonly fat;
Yet you turned a back-somersault in at the door –
Pray, what is the reason of that?’

‘In my youth’ said the sage, as he shook his grey locks,
‘I kept all my limbs very supple
By the use of this ointment – one shilling the box –
Allow me to sell you a couple?’

‘You are old’ said the youth ‘and your jaws are too weak
For anything tougher than suet;
Yet you finished the goose, with the bones and the beak –
Pray how did you manage to do it?’

‘In my youth’ said his father ‘I took to the law,
And argued each case with my wife;
And the muscular strength, which it gave to my jaw,
Has lasted the rest of my life.’

‘You are old’ said the youth ‘one would hardly suppose
That your eye was as steady as ever;
Yet you balanced an eel on the end of your nose –
What made you so awfully clever?’

‘I have answered three questions, and that is enough’
Said his father; ‘don’t give yourself airs!
Do you think I can listen all day to such stuff?
Be off, or I’ll kick you down stairs!’

Lewis Carroll
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