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When I was young, I used to be surprised when the answer in the back of

the book was wrong. I could not believe that the wise and gifted people who

wrote textbooks could possibly make mistakes. I am no longer surprised.

Here are what I believe to be sketch solutions to the bulk of the exer-

cises. They may be considered proof that the chef has tasted the dishes he

supplied. However the reader should note the following warnings.

(1) Much less care has been put into writing and checking the sketch

solutions than into writing and checking the main book.

(2) There is substantial variation in the amount of detail supplied. These

are sketch solutions — not model solutions.

(3) There are often several ways of proving a result. If your proof differs

greatly from the one supplied, try to understand why the two proofs differ,

but do not ask if one is ‘better’ than the other.

I would appreciate the opportunity to remedy problems. Please tell me of

any errors, unbridgeable gaps, misnumberings etc. I welcome suggestions

for additions.

ALL COMMENTS AND CORRECTIONS GRATEFULLY RECEIVED.

If you can, please use LATEX 2ε or its relatives for mathematics. If not,

please use plain text. My e-mail is twk@dpmms.cam.ac.uk. You may

safely assume that I am both lazy and stupid, so that a message saying

‘Presumably you have already realised the mistake in Exercise Z’ is less

useful than one which says ‘I think you have made a mistake in Exercise

Z because you have assumed that the sum is necessarily larger than the

integral. One way round this problem is to assume that f is decreasing.’

It may be easiest to navigate this document by using the table of contents

which follow on the next few pages. To avoid disappointment, observe that

those exercises marked⋆ have no solution given.
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Exercise 1.1.1

Using commutativity, the distribution law and commutativity again,

(b + c) × a = a × (b + c) = (a × b) + (a × c) = (b × a) + (c × a).

Exercise 1.1.2

(i) We have

a ⊞ b = 2 × (a + b) = 2 × (b + a) = b ⊞ a.

(ii) We have

a × (b ⊞ c) = a × (2 × (b + c)) = (a × 2) × (b + c) = (2 × a) × (b + c)

= ((2 × a) × b) + ((2 × a) × c) = (2 × (a × b)) + (2 × (a × c))

= (a × b) ⊞ (a × c).

(iii) Take a = 1, b = 2, c = 3. We have

1 ⊞ (2 ⊞ 3) = 1 ⊞ 10 = 22,

but

(1 ⊞ 2) ⊞ 3 = 6 ⊞ 3 = 18.

Exercise 1.2.1

(i) We have
α β γ

45 103

22 206 103

11 412

5 824 412

2 1648 824

1 3296

We have 3296 + 824 + 412 + 103 = 4635.

(ii) See Exercise 4.3.15.
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Exercise 1.2.2⋆

See Exercise 4.3.14.

Exercise 1.3.1

The commutative law of multiplication and the equation labelled ‘One is

a unit’ give

a × 1 = 1 × a = a.

Exercise 1.3.2

(Note that this is a special case of Theorem 5.1.13 with p = 2.)

Commutative laws a + b = b + a, a × b = b × a by inspection.

Associative law of addition,

a + (b + c) =















1 if odd number of a, b, c take value 1,

θ otherwise,

(a + b) + c =















1 if odd number of a, b, c take value 1,

θ otherwise,

so a + (b + c) = (a + b) + c.

Associative law of multiplication, a × (b × c) = θ = (a × b) × c unless

a = b = c = 1, but then a × (b × c) = 1 = (a × b) × c.

1 is a multiplicative unit.

Distributive law

θ × (b + c) = θ = θ + θ = (θ × b) + (θ × c)

1 × (b + c) = b + c = (1 × b) + (1 × c)
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Exercise 1.3.5

θ = θ + θ, so θ = θ.

1 = θ + 1, so 1 = θ.

θ = 1 + 1, so θ = 1.

1 = 1 + θ, so 1 = 1.

Exercise 1.3.6

Suppose (i) and (ii) hold.

(1) If a ≥ b and b ≥ a and a , b, then a > b and b > a which is is

impossible by (i).

(2) If a ≥ b and b ≥ c, then, if a = b, we have a ≥ c and, if b = c, we

have a ≥ c. If a , b and b , c, then a > b and b > c so, by (ii), a > c

whence a ≥ c.

(3) By trichotomy (that is to say, by (ii)), a > b so a ≥ b, or a = b, so

a ≥ b or b > a, so b ≥ a.

(4) Follows from trichotomy.

Suppose (1), (2), (3) and (4) hold.

(i) If a > b and b > c, then, certainly, a ≥ b and b ≥ c so a ≥ c. If a = c,

then a ≥ b and b ≥ a so a = b, by (1), which is excluded by the condition

a > b. Thus a > c.

(ii) By (3), we know that at least one of the three conditions a > b, a = b

or b > a holds.

By (4), the two conditions a > b and a = b cannot hold together and the

two conditions b > a and a = b cannot hold together. If a > b and b > a,

then a ≥ b and b ≥ a so, by (1), a = b and we know, by (4), that the two

conditions a > b, a = b cannot hold together. Thus at most one of the three

conditions a > b, a = b or b > a holds
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Exercise 1.3.7

By trichotomy, exactly one of the following is true

a = b or a > b or b > a.

If a = b or a > b, set max{a, b} = a, min{a, b} = b. Otherwise, set

max{a, b} = b, min{a, b} = a.

We now observe that, if a = b or a > b,

max{a, b} +min{a, b} = a + b

and, otherwise,

max{a, b} +min{a, b} = b + a = a + b

(using the commutative law of addition).

Exercise 1.3.10

(ii) If a > b, then a × c > b × c and, by trichotomy, a × c , b × c.

Similarly, if b > a, then b × c > a × c and, by trichotomy, a × c , b × c.

Since a × c = b × c, trichotomy tells us that a = b.

(iii) If a = b, then a + c = b + c which is impossible by trichotomy. If

b > a, then b + c > a + c which is impossible by trichotomy. Thus, by

trichotomy, a > b.

(iv) If a = b, then a × c = a × b which is impossible by trichotomy. If

b > a, then b × c > a × c which is impossible by trichotomy. Thus, by

trichotomy, a > b.

Exercise 2.1.1

9 7 3

5 6 2 ×
5 9 8 1

4 7 2 2

8 5 7

5 3 4 0 0 1

One hundred thousand four hundred and thirty five. (Please pass the as-

pirin.)
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Exercise 2.1.2

Two quadrillion, one hundred and forty trillion, six hundred and seventy

six billion, nine hundred and twelve million, nine hundred and twenty six

thousand nine hundred and twenty seven.

Perhaps:- Count the number of digits. If your expression is (3 × r) + k

digits long with 3 ≥ k ≥ 0, group it as

ArAr−1 . . .A0

where the group Ar is k digits long and each other group is 3 digits long.

Translate As into words as Bs where we suppress initial zeros unless all the

entries are zeros in which case we omit the words entirely. Now say ‘Br

r-illion, Br−1 r − 1-illion, . . . B2 million, B1 thousand and B0’.

I am sure the reader can to better.

Exercise 2.1.3

(i) In octal, 153 + 672 = 1045, 53 × 72 = 4676.

(ii) 104 in decimal is 110100 in binary.

10011 in binary is 35 in decimal.

Exercise 2.1.4⋆

Exercise 2.1.5⋆



13

Exercise 2.2.1

= is reflexive, symmetric and transitive.

≥ is reflexive and transitive, but not symmetric (3 ≥ 2, but 2 � 3).

> is not reflexive (1 ≯ 1) and not symmetric (3 > 2, but 2 ≯ 3), but is

transitive.

Exercise 2.2.2

(i) Not reflexive (x / x), not symmetric (x ∼ y, but y / x), not transitive

(x ∼ y and y ∼ z, but x / z).

(ii) Reflexive, not symmetric (x ∼ y, but y / x), not transitive (x ∼ y and

y ∼ z, but x / z).

(iii) Not reflexive (x / x), symmetric, not transitive (x ∼ y and y ∼ x, but

x / x).

(iv) Not reflexive (x / x), not symmetric (x ∼ y, but y / x), but transitive.

(v) Not reflexive (z / z), but symmetric and transitive.

(vi) Reflexive, not symmetric (x ∼ y but y / x), transitive.

(vii) Reflexive and symmetric, but not transitive (x ∼ y and y ∼ z, but

x / z),

(viii) Reflexive, symmetric and transitive.

Exercise 2.2.3

If x ∈ X, we can find a y ∈ X such that x ∼ y. Since the relation is

symmetric, y ∼ x. By transitivity x ∼ x.
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Exercise 2.2.8

(

d×(a × f )
) × c =

(

(d × a) × f
) × c (associative law multiplication)

= (d × a) × ( f × c) (associative law multiplication)

= (a × d) × (c × f ) (commutative law multiplication)

= (b × c) × (e × d) (substitution)

= b × (

c × (e × d)
)

(associative law multiplication)

= b × (

(e × d) × c
)

(commutative law multiplication)

=
(

b × (e × d)
) × c (associative law multiplication)

=
(

(b × (

d × e)
) × c (commutative law multiplication)

=
(

(b × d) × e)
) × c (associative law multiplication)

=
(

(d × b) × e)
) × c (commutative law multiplication)

=
(

d × (b × e)
) × c (associative law multiplication)
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Exercise 2.2.9

We write =
A

when we use the associative law and =
C

when we use the

commutative law.

((a × b) × c) × d =
A

(a × b) × (c × d) =
C

(a × b) × (d × c) =
A

((a × b) × d) × c)

=
A

(a × (b × d)) × c =
C

(a × (d × b)) × c =
A

((a × d) × b)) × c

=
A

((d × a) × b)) × c =
A

(d × a) × (b × c) =
C

(d × a) × (c × b)

=
A

((d × a) × c) × b =
A

(d × (a × c)) × b =
C

(d × (c × a)) × b

=
A

((d × c) × a) × b =
A

(d × c) × (a × b) =
C

(d × c) × (b × a)

=
A

((d × c) × b) × a

Exercise 2.2.10

1 × 4 = 2 × 2, so [(1, 2)] = [(2, 4)]. However

[(1 + 1, 2 + 1)] = [(2, 3)] and
[(

(1 + 2), (2 + 4)
)]

= [(3, 6)],

whilst 2 × 6 = 12 , 9 = 3 × 3 so

[(1 + 1, 2 + 1)]) ,
[(

(1 + 2), (2 + 4)
)]

.

Exercise 2.2.12

Using the commutative law of multiplication together with the symmetry

of ∼ and⋆
(

(a × m′) + (b × n′), b × m′
)

=
(

(m′ × a) + (n′ × b),m′ × b
)

=
(

(m′ × a′) + (n′ × b′),m′ × b′
)

=
(

(a′ × m′) + (b′ × n′), b′ × m′
)

.
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Exercise 2.2.13

Suppose that (a, b) ∼ (a′, b′) and (n,m) ∼ (n′,m′) so a × b′ = a′ × b and

n × m′ = m × n′

Then, using the associative and commutative laws of multiplication,

(a × n′) × (b × m) = a × (

n′ × (b × m)
)

(associative law)

= a × (

(b × m) × n′)
)

) (commutative law)

= a × (

b × (m × n′)
)

(associative law)

= a × (

b × (n × m′)
)

(substitution)

= a × (

(n × m′) × b)
)

(commutative law)

= a × (

n × (m′ × b)
)

(associative law)

= (a × n) × (m′ × b) (associative law)

= (a × n) × (b × m′) (commutative law)

Thus

(a × n, b × m) ∼ (a × n′, b × m′).

Similarly (or using commutativity),

(a × n′, b × m′) ∼ (a′ × n′, b′ × m′)

so, by the transitivity of ∼,

(a × n, b × m) ∼ (a′ × n′, b′ × m′).

Thus we may define

[(a, b)] ⊗ [(n,m)] = [(a × n, b × m)]

unambiguously.

We are thinking of
a

a′
× bb′ =

ab

a′b′
.
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Exercise 2.2.15

(b × m′) × a = b × (a × m′)

> b × (a′ × m) (1)

= (a′ × b) × m

= (a × b′) × m (2)

= (b′ × m) × a.

(Step (1) uses the multiplication law for inequalities from lemma 1.3.8. Step

(2) uses the fact that (a, a′) ∼ (b, b′). The remaining steps use the associa-

tive and commutative laws of multiplication, sometimes condensing several

steps into one.) The cancellation law for multiplication (see Lemma 1.3.9)

now gives

b × m′ > b′ × m

as required.
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Exercise 2.3.2

(i) We have, using the commutative laws of addition and multiplication

for N+,

a ⊕ b =
[

(a × b′) + (b × a′), a′ × b′
]

=
[

(b′ × a) + (a′ × b), b′ × a′
]

=
[

(a′ × b) + (b′ × a), b′ × a′
]

= b ⊕ a.

(ii) We have, using the associative laws of addition and multiplication for

N+, together with the left handed and right handed versions of the distribu-

tive law

a ⊕ (b ⊕ c) = [a, a′] ⊕ [

(b × c′) + (c × b′), b′ × c′
]

= [(a × (b′ × c′)) + (a′ × ((b × c′) + (c × b′))), a′ × (b′ × c′)]

= [(a × (b′ × c′)) + ((a′ × (b × c′)) + (a′ × (c × b′))), a′ × (b′ × c′)]

= [((a × (b′ × c′) + (a′ × (b × c′))) + (a′ × (c × b′)), a′ × (b′ × c′)]

= [((a × b′) × c′) + ((a′ × b) × c′))) + ((a′ × c) × b′), (a′ × b′) × c′)]

= (a ⊕ b) ⊕ c.

(iii) We have, using the commutative law of multiplication for N+,

a ⊗ b = [a × b, a′ × b′] = [b × a, b′ × a′] = b ⊗ a.

(iv) We have, using the associative law of multiplication for N+,

a ⊗ (b ⊗ c) = a ⊗ [b × c, b′ × c′] = [a × (b × c), a′ × (b′ × c′)]

= [(a × b) × c, (a′ × b′) × c′] = [a × b, a′ × b′] ⊗ c

= (a ⊗ b) ⊗ c

(ix) By trichotomy for N+, exactly one of the following will occur

a × b′ > a′ × b, a′ × b > a × b′ or a × b′ = a′ × b.

In other words, exactly one of the following conditions holds: a=b or b=a

or a = b.
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Exercise 2.3.3

Just a word for word copy of the lemmas mentioned in the hint (except

for (b)).

(ix) If a = b and b = c then, by definition, we can find u and v such that

a = b + u, b = c + v. Using the associative law of addition we have

a = b + u = (c + v) + u = c + (v + u),

so a = c.

(x) If a = b, then we can find a u such that a = b + u. By the associative

and commutative laws of addition,

a ⊕ c = (b ⊕ u) ⊕ c = b ⊕ (u ⊕ c) = b ⊕ (c ⊕ u) = (b ⊕ c) ⊕ u

so a ⊕ c = b ⊕ c.

(xi) If a = b, then we can find a u such that a = b⊕ u. By the distributive

law and the commutative law of multiplication

a ⊗ c = (b ⊕ u) ⊗ c = c ⊗ (b ⊕ u) = (c ⊗ b) ⊕ (c ⊗ u) = (b ⊗ c) ⊕ (b ⊗ u)

so a ⊗ c = b ⊗ c.

(a) By trichotomy we know that exactly one of the following holds: a=b,

b = a or b = a. If a = b, then a ⊕ c = b ⊕ c and (by trichotomy again)

a ⊕ c , b ⊕ c. If b > a, then b ⊕ c > a ⊕ c and a ⊕ c , b ⊕ c. Thus, if

a ⊕ c = b ⊕ c, we have a = b.

(b) If a ⊗ c = b ⊗ c then

a = (a ⊗ c) × c−1
= (b ⊗ c) × c−1

= b.

Exercise 3.1.1

In modern notation, the first four girls took

2

7
+

1

12
+

1

6
+

1

3
=

73

84

of the nuts leaving 11/84 of the original quantity. But there are

20 + 12 + 11 + 1 = 44

nuts left over, so the original quantity is

84

11
× 44 = 336.

There were 336 nuts originally.
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Exercise 3.1.2

In modern notation, we must solve

n2 − 64n + 12 × 64 = 0

and, using the standard formula,

n =
64 ±

√
642 − 48 × 64

2
=

64 ± 8
√

64 − 48

2
= 32 ± 4

√
16 = 32 ± 16

There were 16 or 48 monkeys in the troop.

Exercise 3.1.3

(i) It is harder than it looks to make up amusing stories, but the quadratic

(n + 1)(n − 2) = n2 − n − 2 associated with the equation n2
= n + 2 has one

positive and one negative solution. ‘The square of the troop is the same as

the size of the troop joined by two monkeys’.

(ii) The quadratic (n+1)(n+2) = n2
+3n+2 associated with the equation

n2
+ 4n + 4 = n + 2 has two negative solutions. Perhaps ‘if two monkeys

leave the square of the troop of monkeys joined with two more monkeys

then the new troop is the same size as the old’.
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Exercise 3.1.4

In modern notation, we must solve

n = 1 + (n/5 − 3)2,

that is to say,

25n = 25 + (n − 15)2

which yields

n2 − 55n + 10 × 52
= 0.

Using the standard formula,

n =
55 ±

√
552 − 40 × 52

2
=

55 ± 5
√

112 − 40

2
=

55 ± 45

2
,

so n = 50 or n = 5.

Exercise 3.1.5

In modern notation, we must solve

8 + 7
√

n = n

so

7
√

n = n − 8 ⋆

and

49n = n2 − 16n + 64 ⋆⋆

so

n2 − 65n + 64 = 0.

Using the standard formula, so n = 1 or n = 64.

However, although ⋆⋆ follows from ⋆, it is not true that ⋆ follows

from ⋆⋆. Thus the only possible solutions to our initial problem are so

n = 1 or n = 64. By substitution we check that n = 1 is not a solution but

n = 64 is.

Looking at thing in different way, we must solve

8 + 7
√

n = n,

so n = 1 is only a solution to our initial problem if we allow negative square

roots that is to say
√

1 = −1.
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Exercise 3.2.1

Reflexive a + b = a + b, so (a, b) ∼ (a, b).

Symmetric If (a, b) ∼ (c, d), then, using the commutative law of addition,

c + b = b + c = a + d = d + a

and (c, d) ∼ (a, b).

Transitive If (a, b) ∼ (c, d) and (c, d) ∼ (u, v), then a + d = c + b, c + v =

d + u so, using the commutative and associative laws of addition,

(a + v) + c = a + (v + c) = a + (c + v) = a + (d + u)

= (a + d) + u = (c + b) + u = (b + c) + u = b + (c + u)

= b + (u + c) = (b + u) + c.

The cancellation law now gives a + v = b + u, so (a, b) ∼ (u, v).

Exercise 3.2.2

If (a, a′) ∼ (b, b′) and (c, d) ∼ (c′, d′), then

a + b′ = a′ + b, and c + d′ = c′ + d

so, using the commutative and associative laws of addition repeatedly,

(a+ c)+ (b′ +d′) = (a+b′)+ (c+d′) = (a′+b)+ (c′ +d) = (a′+ c′)+ (b+d)

Thus

(a + c, a′ + c′) ∼ (b + d, b′ + d′)

and we may define

[(a, a′)] ⊕ [(b, b′)] = [(a + b, a′ + b′)]

unambiguously.
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Exercise 3.2.4

Using the commutative laws of multiplication and addition and the result

already obtained,
(

(a × d) + (a′ × d′),(a × d′) + (a′ × d)
)

=
(

(d × a) + (d′ × a′), (d′ × a) + (a′ × d)
)

=
(

(d × b) + (d′ × b′), (d′ × b) + (b′ × d)
)

=
(

(b × d) + (b′ × d′), (b × d′) + (d × b′)
)

=
(

(b × d) + (b′ × d′), (d × b′) + (b × d′)
)

so
(

(a×d)+ (a′×d′), (a×d′)+ (a′×d)
) ∼ ((b×d)+ (b′×d′), (b×d′)+ (b′×d)

)

.

Exercise 3.2.5

Suppose (a, a′) ∼ (c, c′) and a + b′ > a′ + b. Then, since a + c′ = a′ + c,

we have, using associativity, commutativity and the addition inequality law

(Lemma 1.3.8 (i), if x > y, then x + z > y + z),

(b′ + c) + a = (c + b′) + a = c + (b′ + a)

= c + (a + b′) > c + (a′ + b)

= (c + a′) + b = (a′ + c) + b

= (a + c′) + b = a + (c′ + b)

= (c′ + b) + a = (b + c′) + a

We now use Lemma 1.3.9 (iii) to obtain b + c′ > b′ + c

A similar calculation shows that, if (b, b′) ∼ (d, d′) and b+c′ > b′+c, then

c + d′ > c′ + d. Thus, if (a, a′) ∼ (c, c′), (b, b′) ∼ (d, d′) and a + b′ > a′ + b,

then c + d′ > c′ + d.

It follows that the definition,

[(a, a′)] = [(b, b′)]

if and only if a + b′ > a′ + b, is unambiguous.
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Exercise 3.2.6

(i) a + 1 = a + 1 so (a, a) ∼ (1, 1) and [a, a] = [1, 1].

Using the associative law of addition, (a + 1) + 1 = a + (1 + 1). Thus

(a + 1, a) ∼ (1 + 1, 1) and [a + 1, a] = [1 + 1, 1].

(ii) Using the commutative law of addition,

[a, a′] ⊗ [b, b′] = [(a × b) + (a′ × b′), (a × b′) + (a′ × b)]

= [(a′ × b′) + (a × b), (a′ × b) + (a × b′)] = [a′, a] ⊗ [b′, b].

Exercise 3.2.8

Using the distributive law (together with the remark of Exercise 1.3.1),

the rule 1×d = d×1 = d, and making repeated use of the commutative and

associative laws of addition,
(

(1 + c) × (1 + c−1)
)

=
(

1 × (1 + c−1)
)

+
(

c × (1 + c−1)
)

= (1 + c−1) +
(

(c × 1) + (c × c−1)
)

= (c−1
+ 1) + (c + 1) = (1 + 1) + (c + c−1).

Thus, again making use the rule 1×d = d×1 = d, and then making repeated

use of the commutative and associative laws of addition,
(

(1 + c) × (1 + c−1)
)

+ (1 × 1) = (1 + 1) +
(

1 + (c + c−1)
)

.

The commutative and associative laws of addition give

(c + 1) + (c−1
+ 1) = 1 +

(

1 + (c + c−1)
)

,

so⋆ follows.
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Exercise 3.2.9

(i) a ⊕ b = [a + b, a′ + b′] = [b + a, b′ + a′] = b ⊕ a.

(ii) We have

a ⊕ (b ⊕ c) = a ⊕ [b + c, b′ + c′] = [a + (b + c), a′ + (b′ + c′)]

= [(a + b) + c, (a′ + b′) + c′] = [a + b, a′ + b′] + c

= (a ⊕ b) ⊕ c.

(iii) (a + 1) + a′ = a + (1 + a′) = a + (a′ + 1), so

0 ⊕ a = [1, 1] ⊕ [a, a′] = [1 + a, 1 + a′] = [a + 1, a′ + 1] = [a, a′] = a.

(v) We have

a ⊗ b = [(a × b) + (a′ × b′), (a′ × b) + (a × b′)]

= [(a × b) + (a′ × b′), (a × b′) + (a′ × b)]

= [(b × a) + (b′ × a′), (b′ × a) + (b × a′)] = b ⊗ a.

(vi) Making use of the distributive law at the beginning and the distribu-

tive law together with the commutative law of multiplication at the end and

making free use of the associative and commutative laws of addition and

multiplication, we have

a ⊗ (b ⊗ c) = a ⊗ [(b × c) + (b′ × c′), (b × c′) + (b′ × c)]

= [(a × ((b × c) + (b′ × c′))) + (a′ × ((b′ × c) + (b × c′)),

(a′ × ((b × c) + (b′ × c′))) + (a × ((b′ × c) + (b × c′)))]

= [((a × (b × c)) + (a × (b′ × c′)) + ((a′ × (b′ × c)) + (a′ × (b × c′)),

((a′ × (b × c)) + (a′ × (b′ × c′)) + ((a × (b′ × c)) + (a × (b × c′))]

= [((a × b) × c) + ((a × b′) × c′)) + ((a′ × b′) × c) + ((a′ × b) × c′)),

((a′ × b) × c) + ((a′ × b′) × c′) + ((a × b′) × c)) + ((a × b) × c′))]

= [((a × b) × c) + ((a′ × b′) × c)) + ((a′ × b) × c′) + ((a × b′) × c′)),

((a′ × b) × c) + (a × b′) × c)) + ((a′ × b′) × c′) + ((a × b) × c′))]

= [((a × b) + (a′ × b′)) × c) + (((a′ × b) + (a × b′)) × c′)),

(((a′ × b) + (a × b′)) × c)) + (((a′ × b′) + ((a × b)) × c′))]

= (a ⊗ b) ⊗ c

(vii) We have

1 ⊗ a = [((1 + 1) × a) + 1 × a′, ((1 + 1) × a′) + 1 × a]

= [(a + a) + a′, (a′ + a′) + a] = [a + (a + a′), a′ + (a′ + a)]

= [a + (a + a′), a′ + (a + a′)] = [a, a′] = a



26

(ix) We have, making use of the distributive law and free use of the asso-

ciative and commutative laws of addition for Q+,

a ⊗ (b + c) = a ⊗ [b + c, b′ + c′]

= [(a × (b + c)) + (a′ × (b′ + c′)), (a′ × (b + c)) + (a × (b′ + c′))]

= [((a × b) + (a × c)) + ((a′ × b′) + (a′ × c′)),

((a′ × b) + (a′ × c)) + ((a × b′) + (a × c′))]

= [((a × b) + (a′ × b′)) + ((a × c) + (a′ × c′)),

((a′ × b) + (a × b′)) + ((a × c′) + (a′ × c))]

= [(a × b) + (a′ × b′), (a × b′) + (a′ × b)]

+ [(a × c) + (a′ × c′), (a × c′) + (a′ × c)]

= (a ⊗ b) ⊕ (a ⊗ c)

(x) If a = b and b = c, then a + b′ > a′ + b, b + c′ > b′ + c. Thus

(a + c′) + (b + b′) = ((a + c′) + b) + b′ = (a + (c′ + b)) + b′

= (a + (b + c′)) + b′ = a + ((b + c′) + b′)

= a + (b′ + (b + c′)) = (a + b′) + (b + c′)

> (a + b′) + (b′ + c) = (b′ + c) + (a + b′)

> (b′ + c) + (a′ + b) = (a′ + c) + (b + b′)

and, by the cancellation law of Lemma 1.3.9 (iii), a + c′ > a′ + c, whence

a = c.

(xi) By trichotomy for Q+, exactly one of the following is true

a + b′ > a′ + b, a + b′ = a′ + b, or a′ + b > a + b′,

so exactly one of the corresponding results a = b or a = b or b = a is true.

(xii) If a = b, then a + b′ > a′ + b, so

(a + c) + (b′ + c′) = ((a + c) + b′) + c′) = (a + (c + b′)) + c′

= (a + (b′ + c)) + c′ = ((a + b′) + c) + c′

= (a + b′) + (c + c′) > (a′ + b) + (c + c′)

= (a′ + c′) + (b + c)

and a ⊕ c = b ⊕ c.

(xiv) By the order rule stated as part (viii) Theorem 2.3.1 we have

(1 + 1) + 1 > 1 + 1

so 1 = 0 and, by trichotomy, 1 , 0.
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Exercise 3.2.10

Secretly we know that 1 > 0, but (−1) × 1 ≯ (−1).

In the language of the theorem (repeating our proof of (xiv))

(1 + 1) + 1 > 1 + 1 so 1 = [1 + 1, 1] = [1, 1] = 0.

However

(−1) ⊗ 1 = −1

and

(−1) ⊗ 0 = [1, 1 + 1] ⊗ [1, 1]

= [(1 × 1) + ((1 + 1) × 1), (1 × 1) + ((1 + 1) × 1] = [1, 1] = 0

whilst 1 × 1 = 1 ≯ 1 + 1 = 1 × (1 + 1) so

(−1) ⊗ 0 = (−1) ⊗ 1.

Exercise 3.2.11

(i) Using commutativity of addition for A,

0̃ = 0̃ ⊕ 0 = 0 ⊕ 0̃ = 0.

(ii) Using commutativity and associativity for addition,

a• = a• ⊕ 0 = a• ⊕ (a ⊕ (−a))

= (a• ⊕ a) ⊕ (−a) = (a ⊕ a•) ⊕ (−a)

= 0 ⊕ (−a) = (−a) ⊕ 0 = −a

(iii) Using commutativity of multiplication for A,

1̃ = 1̃ ⊗ 1 = 1 ⊗ 1̃ = 1.

(iv) Using commutativity and associativity for multiplication,

a⋆ = a⋆ ⊗ 1 = a⋆ ⊗ (a ⊗ a−1)

= (a⋆ ⊗ a) ⊗ a−1
= (a ⊗ a⋆) ⊗ a−1

= 1 ⊗ a−1
= a−1 ⊗ 1 = a−1.
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Exercise 3.2.12

(i) If a ⊕ c = b ⊕ c, then

a = 0 ⊕ a = a ⊕ 0

= a ⊕ (c ⊕ (−c)) = (a ⊕ c) ⊕ (−c)

= (b ⊕ c) ⊕ (−c) = b ⊕ (c ⊕ (−c))

= b ⊕ 0 = 0 ⊕ b = b

as required.

(ii) If a ⊗ c = b ⊗ c and c , 0, then

a = 1 ⊗ a = a ⊗ 1

= a ⊗ (c ⊗ c−1) = (a ⊗ c) ⊗ c−1

= (b ⊗ c) ⊗ c−1
= b ⊗ (c ⊗ c−1)

= b ⊗ 1 = 1 ⊗ b = b

as required.

(iii) If c = (−a) ⊕ b, then

a ⊕ c = a ⊕ ((−a) ⊕ b) = (a ⊕ (−a)) ⊕ b

= ((−a) ⊕ a) ⊕ b = 0 ⊕ b = b.

(iv) If c = a−1 ⊗ b, then

a ⊗ c = a ⊗ (a−1 ⊗ b) = (a ⊗ a−1) ⊗ b

= (a−1 ⊗ a) ⊗ b = 1 ⊗ b = b.
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Exercise 3.2.13

By trichotomy, exactly one of these three things must be true:-

0 = −a or − a = 0 or − a = 0.

If −a = 0 or −a = 0, then

0 = a ⊕ (−a) = 0.

Thus the only possibility is 0 = −a.

The second part follows by a similar argument.

Exercise 3.2.14

(i) We have

(−a) ⊕ a = a ⊕ (−a) = 0,

so, by the uniqueness result of Exercise 3.2.11 (ii), −(−a) = a.

(ii) We have

a = 1 ⊗ a = a ⊗ 1

= a ⊗ (1 ⊕ 0) = (a ⊗ 1) ⊕ (a ⊗ 0)

= (1 ⊗ a) ⊕ (0 ⊗ a) = a ⊕ (0 ⊗ a)

Thus, using the associative and commutative laws of addition,

0 = a ⊕ (−a) =
(

a ⊕ (0 ⊗ a)
) ⊕ (−a)

=
(

a ⊕ (−a)
) ⊕ (0 ⊗ a) = 0 ⊕ (0 ⊗ a)

= (0 ⊗ a) ⊕ 0 = 0 ⊗ a = a ⊗ 0

(iii) We have

0 = b ⊗ 0 = b ⊗ (a ⊕ (−a))

= (b ⊗ a) ⊕ (b ⊗ (−a)) = (a ⊗ b) ⊕ ((−a) ⊗ b)

so, by the uniqueness result of Exercise 3.2.11 (ii), (−a) ⊗ b = −(a ⊗ b).

(iv) We have

(−a) ⊗ (−b) = −(a ⊗ (−b)
)

= −((−b) ⊗ a
)

= −( − (b ⊗ a)
)

= b ⊗ a = a ⊗ b.
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Exercise 3.2.15

(i) Using the commutative and associative laws for addition.

(a ⊕ b) ⊕ (−a) ⊕ (−b) = (a ⊕ (−a)) ⊕ (b) ⊕ (−b)) = 0 ⊕ 0 = 0

so by uniqueness of additive inverses (see Exercise 3.2.11).

(ii) Using the commutative and associative laws for multiplication

(a ⊗ b) ⊗ (a−1 ⊗ b−1) = (a ⊗ a−1) ⊗ (b) ⊗ b−1) = 1 ⊗ 1 = 1

so a ⊗ b , 0 and, by uniqueness of multiplicative inverses, (see Exer-

cise 3.2.11) (a ⊗ b)−1
= a−1 ⊗ b−1.

Using the distributive law, the commutative laws for addition and multi-

plication and the associative law of addition freely together with part (i) of

this question and parts (ii) and (iv) of the previous question, we have

(a ⊕ (−a′)) ⊗ (b ⊕ (−b′)) = ((a ⊕ (−a′)) ⊗ b) ⊕ ((a ⊕ (−a′)) ⊗ (−b′))

= ((a ⊗ b) ⊕ ((−a′) ⊗ b)) ⊕ ((a ⊗ −b) ⊕ ((−a′) ⊗ −b))

= ((a ⊗ b) ⊕ (−(a′ ⊗ b)) ⊕ ((−(a ⊗ b)) ⊕ (a′ ⊗ b′))

= ((a ⊗ b) ⊕ (a′ ⊗ b′)) ⊕ ((−(a′ ⊗ b) ⊕ (−(a ⊗ b′))

= ((a ⊗ b) ⊕ (a′ ⊗ b′)) ⊕ (−((a′ ⊗ b) ⊕ (a ⊗ b′))).

Exercise 3.2.16

(i) (−1) ⊗ (−1) = 1 ⊗ 1 = 1.

(ii) Apply condition (xiii) of Theorem 3.2.7 with c = a and b = 0.

(iii) If a = 0 we use (ii). If not, 0 = a and using condition (xii) from

Theorem 3.2.7, we have

−a = 0 ⊕ (−a) = a ⊕ (−a) = 0

(iv) We note that, if we consider Q, then 1 ⊗ 0 = 0 = 0 ⊗ 0 yet 1 , 0.

(v) We have

1 = 1 ⊗ 1 = 0

so

0 = 1 ⊕ (−1) = (−1) ⊕ 1 = (−1) ⊕ 0 = −1.

(vi) 0 ⊗ 0 = 0 and, if a , 0, then

a ⊗ a = 0.

Part (v) and trichotomy tell us that

a ⊗ a , −1.
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Exercise 3.2.17

If we define f : Q+ → B/∼ by f (a) = [a + 1, 1], then, if f (a) = f (b), we

have

a + (1 + 1) = (a + 1) + 1 = (b + 1) + 1 = b + (1 + 1)

so, by the cancellation law for addition, a = b. Thus f is injective.

Further

f (a) ⊕ f (b) = [a + 1, 1] ⊕ [b + 1, 1] = [(a + 1) + (b + 1), 1 + 1]

= [((a + b) + 1) + 1, 1 + 1] = [a + b + 1, 1] = f (a + b)

and, using the distributive, commutative and associative laws and multi-

plicative property of 1,

f (a × b) = [a + 1, 1] ⊗ [b + 1, 1]

=
[

(a + 1) × (b + 1) + (1 × 1), ((a + 1) × 1) + (1 × (b + 1))
]

=
[

(a × b) + (((a + (b + 1)) + 1), (a + 1) + (b + 1)
]

=
[

((a × b) + 1) + ((a + b) + 1), 1 + ((a + b) + 1)
]

=
[

(a × b) + 1, 1] = f (a) ⊗ f (b)

Finally, if a > b, then a + 1 > b + 1 and (a + 1) + 1 > (b + 1) + 1, so

f (a) = [a + 1, 1] = [b + 1, 1] = f (b).

Exercise 3.2.20

(i) If a ∈ N+, then a = (a + 1) − 1 ∈ Z.

(ii) If a, b ∈ Z, then a = a1 − a2, b = b1 − b2 with a j, b j ∈ N+ [ j = 1, 2].

Thus

a + b = (a1 + b1) − (a2 + b2) ∈ Z,
a × b = (a1b1 + a2b2) − (a1b2 + a2b1) ∈ Z,
−a = a2 − a1 ∈ Z.

Exercise 3.2.21

(i) 2 − 1 = 1 , −1 = 1 − 2.

(ii) 2 ÷ 1 = 1 , 1/2 = 1 ÷ 2.

(iii) 3 − (2 − 1) = 2 , 0 = (3 − 2) − 1.

(iv) 12 ÷ (6 ÷ 2) = 4 , 1 = (12 ÷ 6) ÷ 2.
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Exercise 3.4.3

The first paragraph of the exercise is a simple (but therefore long) modi-

fication of Section 3.2.

Consider the collection X of ordered pairs (n, n′) with n, n′ ∈ N+. We say

that (n, n′) ∼ (m,m′) if n + m′ = n′ + m.

(a) We observe that, since n + n = n + n, we have (n, n) ∼ (n, n).

(b) If (n, n′) ∼ (m,m′), then m + n′ = n′ + m = n + m′ = m′ + n and so

(m,m′) ∼ (n, n′).

(c) If (n, n′) ∼ (m,m′), (m,m′) ∼ (p, p′), then, making free use of the

commutative and associative laws of addition,

(n+p′)+(m+m′) = (n+m′)+(m+p′) = (n′+m)+(m′+p) = (n′+p)+(m+m′),

so, using the cancellation law, n + p′ = n′ + p. Thus (n, n′) ∼ (p, p′).

Thus ∼ is an equivalence relation and we may consider X/∼.

Observe that if (n, n′) ∼ (m,m′) and (u, u′) ∼ (v, v′) we have, making free

use of the commutative and associative laws of addition,

(n+u)+(m′+u′) = (n+m′)+(u+u′) = (n′+m)+(u+u′) = (n′+u′)+(m+u)

so (n+u, n′+u′) ∼ (m+u,m′+u′). Similarly (m+u,m′+u′) ∼ (m+v,m′+v′),
so, by transitivity, (n + u, n′ + u′) ∼ (m + v,m′ + v′). Thus we may define

[(n, n′)] ⊕ [(m,m′)] = [(n + m, n′ + m′)]

unambiguously.

Now suppose (a, a′) ∼ (b, b′) and (c, c′) ∼ (d, d′).
(

(a × c) + (a′ × c′)
)

+
(

(a × d′) + (a′ × d)
)

=
(

(a × c) + (a × d′)
)

+
(

(a′ × c′) + (a′ × d′)
)

=
((

a × (c + d′)
))

+
((

a′ × (c′ + d)
))

(1)

=
((

a × (c′ + d)
))

+
((

a′ × (c + d′)
))

=
(

(a × c′) + (a × d)
)

+
(

(a′ × c) + (a′ × d′)
)

(2)

=
(

(a × d) + (a′ × d′)
)

+
(

(a × c′) + (a′ × c)
)

as required. (In addition to the commutative and associative laws of addition

and multiplication, we used the distributive law for N+ at steps (1) and (2).)

A similar calculation now shows that
(

(a×d)+ (a′×d′), (a×d′)+ (a′×d)
) ∼ ((b×d)+ (b′×d′), (b×d′)+ (b′×d)

)

so
(

(a× c)+ (a′× c′), (a× c′)+ (a′× c)
) ∼ ((b×d)+ (b′×d′), (b×d′)+ (b′×d)

)

.
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Thus we may define

[(a, a′)] ⊗ [(c, c′)] = [((a × c) + (a′ × c′), (a × c′) + (a′ × c))]

unambiguously

Suppose (a, a′) ∼ (c, c′) and a + b′ > a′ + b. Then, since a + c′ = a′ + c

we have, using associativity commutativity and the addition inequality law

(if x > y then x + z > y + z),

(c + b′) + a = c + (b′ + a) = c + (a + b′)

> c + (a′ + b) = (c + a′) + b

= (a + c′) + b = a + (c′ + b)

= (c′ + b) + a = (b + c′) + a

We now use Lemma 1.3.9 (iii) to obtain b + c′ > b′ + c

A similar calculation shows that, if (b, b′) ∼ (d, d′) and b+c′ > b′+c, then

c + d′ > c′ + d. Thus, if (a, a′) ∼ (c, c′), (b, b′) ∼ (d, d′) and a + b′ > a′ + b,

then c + d′ > c′ + d.

It follows that the definition

[(a, a′)] = [(b, b′)] if and only if a + b′ > a′ + b

is unambiguous.

The statements and proofs of Theorem 3.2.7 supplemented by Exercise 3.2.9

go over without change, except for Theorem 3.2.7 (viii) which must be re-

placed by a cancellation law.

If b , 0 and a ⊗ b = 0 then a = 0. (Multiplicative cancellation)

To prove this, suppose b , 0. and a ⊗ b = 0. This means that b , b′ but

(a× b)+ (a′ × b′) = (a′ × b)+ (a× b′). Trichotomy tells us that either b > b′

or b′ > b. Suppose that b′ > b. Then we know by the rules for N+ that we

can find a c ∈ N+ such that b′ = b + c.

Thus

(a × b) + (a′ × (b + c)) = (a′ × b) + (a × (b + c))

so, using the distributive law,

(a × b) + ((a′ × b) + (a′ × c)) = (a′ × b) + ((a × b) + (a × c)).

Thus, using the associative and commutative laws of addition freely,

(a × c) + ((a × b) + (a′ × b)) = (a′ × c) + ((a × b) + (a′ × b))

so, by the cancellation law for addition in N+,

a × c = a′ × c

so, by the cancellation law for multiplication in N+, a = a′ and a = 0. A

similar argument applies if b > b′.
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The verification of the laws for an ordered integral domain (see Defini-

tions 10.4.1 and 10.4.7) follow very closely the verifications we made for

Theorem 3.2.7 with one exception.

The construction of an ordered field from an integral domain undertaken

in Section 10.4 (Exercises 10.4.11, 10.4.13 and 10.4.15, all of which have

written out solutions in these notes) will produce Q from N.
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Exercise 3.4.4

We write out the winning plays (in increasing order within a game).

1 5 9

1 6 8

2 4 9

2 5 8

2 6 7

3 4 8

3 5 7

4 5 6

These are the reordered horizontal, vertical and diagonal lines of the magic

square.

6 1 8

7 5 3

2 9 4

If the first player puts an X on any number she chooses and the second

player puts a O on any number she chooses, we recover ‘Noughts and

Crosses’.
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Exercise 3.4.8

(i) Not injective, f1(1) = f1(2). Not surjective, f1(x) , 2 for all x ∈ X.

Therefore not bijective.

(ii) Injective, surjective, so bijective from definition.

(iii) Injective since f3(1) , f3(2). Not surjective, f3(x) , 3 for all x ∈ X.

Therefore not bijective.

(iv) Surjective, since f4(1) = 1, f4(2) = 2. Not injective, since f4(1) =

f4(3). So not bijective.

Exercise 3.4.9

(i) Injective since f1(r) = f1(s) implies 2 × r = 2 × s and so (considering

Z as embedded in Q) r = s. Not surjective, since f1(r) , 1 for all r ∈ Z.

Thus not bijective.

(ii) Injective, since f2(r) = f2(s) yields 2 × r = 2 × s so r = s Surjective

since f2(2−1 × r) = r. Thus bijective.

(iii) Surjective, since f3(2r) = r for every r ∈ Z. Not injective since

f3(0) = f3(1) = 0. Thus not bijective.

(iv) Not injective, since f4(1) = f4(−1). Not surjective, since f4(r) ≥ 0

for all r ∈ Z, but 0 > −1, so f4(r) , −1 for all r ∈ Z. So not bijective.
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Exercise 3.4.11

(i) If y ∈ Y , then, setting x = g(y), we have f (x) = y. Thus f is surjective.

If g(u) = g(v), then u = f (g(u)) = f (g(v)) = v. Thus g is injective.

(ii) By (i), f and g are bijective. Theorem 3.4.10 and the definition that

follows it tell us that g = f −1.

(iii) and (iv) Let X = {0, 1}, Y = {0}, f (0) = f (1) = 0, g(0) = 0.

Exercise 3.4.15

(ii) Define the identity function ι : A→ A by ι(a) = a for all a ∈ A. Then

ι is bijective and ι(a) + ι(b) = a + b = ι(a + b) for all a, b ∈ A.

It follows that ι is an isomorphism and (A,+) ∼ (A,+).

(iii) We know that there exist bijections f : A → B and g : B → C such

that f (a + a′) = f (a) ⊕ f (a′) for all a, a′ ∈ A and g(b ⊕ b′) = g(b) ⊞ g(b′)
for all b, b′ ∈ A.

We define h : A→ C by h(a) = g( f (a)) for a ∈ A.

If h(a) = h(a′), then g( f (a)) = g( f (a′), so, since g is injective, f (a) =

f (a′) so, since f is injective, a = a′. Thus h is injective.

If c ∈ C then, since g is surjective, we can find b ∈ B such that g(b) = c

and, since f is surjective we can find a ∈ A such that f (a) = b and so

h(a) = c. Thus h is surjective.

Finally

h(a+a′) = g( f (a+a′)) = g( f (a)⊕ f (a′)) = g( f (a))⊞g( f (a′)) = h(a)⊞h(a′).

It follows that h is an isomorphism and (A,+) ∼ (C,⊞).
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Exercise 4.1.2

(i) If m ∈ Z, then m > m − 1.

(If you want to make a meal of this, m = (m − 1) + 1 > m − 1.)

(ii) If a ∈ E, then (a + 1)/2 ∈ E, but a > (a + 1)/2.

Formally,

a = 2−1a + 2−1a > 2−1a + 2−1
= 2−1(a + 1) = (a + 1)/2

and

(a + 1)/2 = 2−1(a + 1) = 2−1a + 2−1 > 2−1
+ 2−1

= 1.

Exercise 4.1.3

Since r > n the subtraction principle tells us that there is a u ∈ N+ such

that r = n + u. We then have n + 1 ≥ n + u so, by cancellation, 1 ≥ u. By

the base number principle u = 1. Thus r = n + 1.

Exercise 4.1.9

(i) If u and v are greatest members, u ≥ v and v ≥ u so, by trichotomy,

u = v.

(ii) N+ itself has no greatest member. (If n ∈ N+, then n + 1 ∈ N+ and

n + 1 > n.)
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Exercise 4.1.10

Let E be the set of r for which Q(r) is false. If E is non-empty, then it

has a least member e0. By hypothesis, Q(1) is true, so (since 1 is the least

element of N+) we have e0 > 1.

The subtraction rule tells us that, if a > b, then we can find a c such that

b + c = a. Taking a = e0, b = 1 we see that there there is a c such that

e0 = 1 + c = c + 1. Now e0 is the least natural number e such that P(e) is

false, so P(r) is true for all r ≤ c and, by hypothesis, P(e0) = P(c + 1) is

true.

Since the assumption that E is non-empty leads to a contradiction, we

must have E empty and we are done.

Exercise 4.1.11

If m = 1, there is nothing to prove. If m > 1, the subtraction rule tells

us that there exists a c such that m = c + 1. Let Q(r) be the statement that

P(c+r) is true. Then Q(1) is true and Q(u) implies Q(u+1) so, by induction,

Q(u) is true for all u ∈ N+.
If n ≥ m then since m > c, we have n > c, so there exists a u ∈ N+ with

n = c + u so, since Q(u) is true, P(n) is true.

Exercise 4.1.13

(i) Suppose, if possible, that

n1 > n2 > n3 > . . . .

Then, automatically,

n1 ≥ n2 ≥ n3 ≥ . . .
so, by Lemma 4.1.12, there exists an N such that n j = nN for all j ≥ N. In

particular nN = nN+1, so nN ≯ nN+1 contrary to our original assumption.

(ii) −1 > −2 > −3 > . . .
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Exercise 4.2.2

Define h : S p → X by h(r) = fn(r) for all r ∈ S p. We have h(1) = fn(1) =

x1 and

h(r + 1) = fn(r + 1) = gr+1( fn(r)) = gr+1(h(r))

for all r ∈ S p with r + 1 ≤ p. Thus, by uniqueness h(r) = fp(r) for all

r ∈ S p. In particular

fn(m) = h(m) = fp(m).

Exercise 4.2.5

(i) Let n ∈ N+, a ∈ Q, a > 0. Then an+0
= an

= an × 1 = an × a0,

By commutativity of addition and multiplication, a0+n
= a0 × an. Finally

a0+0
= a0

= 1 = 1 × 1 = a0 × a0.

(ii) If a, b ∈ Q, then a0 × b0
= 1 × 1 = 1 = (a × b)0.

(iii) If n is an integer with n ≥ 0 and a ∈ Q, then

(a0)n
= 1n

= 1 = a0
= a0×n

and

(an)0
= 1 = a0

= a0×n.
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Exercise 4.2.6

(i) Let P(n) be the statement that a−n
= (a−1)n. Since

(a−1)1
= a−1,

it follows that P(1) is true.

Now suppose that P(n) is true for some n ∈ N+. Then

(a(n+1))−1
= (an × a)−1

= (an)−1 × a−1
= (a−1)n × a−1

= (a−1)n+1

so P(n + 1) is true.

By induction, P(n) is true for all n ≥ 1, so a−n
= (a−1)n for all n ≥ 1.

Certainly a−0
= a0

= 1 = (a−1)0.

If n is a negative integer, then, setting m = −n,

an
= a−m

= (a−1)m
= (am)−1

so

(an)−1
=

(

(am)−1)−1
= am

= a−n.

(i) We wish to show that an+m
= anam. We know that the result is true for

n, m ≥ 0. Using the commutativity of addition and multiplication, we need

only check the cases n ≥ 0 ≥ m and 0 > n, m.

If 0 > n, m then

an+m
= (a−1)−(n+m)

= (a−1)−n(a−1)−m
= anam.

.

If n ≥ 0 ≥ m, set p = −m. If n ≥ p, then

apan+m
= apan−p

= an

so

an+m
= (ap)−1an

= a−pan
= aman

= anam.

If p > n then, using the result just obtained,

(an+m)−1
= a(−n)+(−m)

= a−na−m
= (an)−1(am)−1

= (anam)−1

so an+m
= anam again.

(ii) We wish to check that, if a, b > 0, then (ab)n
= anbn for all integers

n. We know this true for n ≥ 0, so we need only check it for n < 0.

In this case,

(ab)n
=

(

(ab)−1)−n
= (a−1b−1)−n

= (a−1)−n(b−1)−n
=

(

(a−1)−1)n(
(b−1)−1)n

= anbn,

so we are done.

(iii) We wish to show that (an)m
= anm for all integers n and m.
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We first prove it in the case that m ≥ 0. If n ≥ 0, we know the result is

true. If n < 0, then

(an)m
=

(

(a−1)−n)m
= (a−1)(−n)×m

= a−((−n)×m)
= anm,

and we are done.

We now prove the result for general m. If m ≥ 0 we know the result to be

true. If m < 0 then

(an)m
=

(

(an)−1)−m
=

(

(a−1)n)−m
= (a−1)n×(−m)

= a−(n×(−m))
= anm,

and we are done.
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Exercise 4.2.7

(i) Suppose b > a. Let P(n) be the statement that bn > an. Since b1
= b >

a = a1, P(1) is true.

If P(n) is true,

an+1
= a × an < a × bn < b × bn

= bn+1

so P(n + 1) is true.

The required result follows by induction

(ii) We set 1! = 1, (n + 1)! = (n + 1) × n!

Let P(n) be the statement that 2n−1 ≤ n! ≤ nn. Since

21−1
= 20

= 1 = 1! = 1 = 11

P(1) is true.

If P(n) is true

2n+1
= 2 × 2n ≤ 2 × n! = (1 + 1) × n! ≤ (n + 1) × n! = (n + 1)!.

and

(n + 1)! = (n + 1) × n! ≤ (n + 1) × nn ≤ (n + 1) × (n + 1)n
= (n + 1)n+1.

The required result follows by induction

Exercise 4.3.2

Suppose that E is a non-empty subset of the integers bounded above by

M. Then the set F of elements −n with n ∈ E is a non-empty subset of the

integers bounded below by −M. Thus F has a least element f . We have

e = − f ∈ E and −e ≤ −g for all g ∈ E, so e ≥ g for all g ∈ E and e is the

greatest member of E.

Exercise 4.3.3

Let Q(n) = P(n − m + 1). Then Q(n) implies Q(n + 1) for all n ≥ 1 and

that Q(1) is true. By induction Q(n) is true for all n ≥ 1 and so P(n) is true

for all n ≥ m.
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Exercise 4.3.6

Without loss of generality, we may suppose r ≥ r′. Thus m > r − r′ ≥ 0.

Since m(k − k′) = r − r′ this gives us

m > m(k − k′) ≥ 0

so, by cancellation, 1 > k − k′ ≥ 0, so, since no strictly positive integer is

less than 1, we have k − k′ = 0 so k = k′ and r = r′.

Exercise 4.3.9

(i) 6. (Note that, so far as this book is concerned, justification will come

later.)

(ii) See Exercise 4.3.10.

Exercise 4.3.10

(i) We have

156 = 3 × 42 + 30

42 = 1 × 30 + 12

30 = 2 × 12 + 6

12 = 2 × 6

Euclid delivers 6.

(ii) We have

107748 = 1 × 69126 + 38622

69126 = 1 × 38622 + 30504

38622 = 1 × 30504 + 8118

30504 = 3 × 8118 + 6150

8118 = 1 × 6150 + 1968

6150 = 3 × 1968 + 246

1968 = 8 × 246

Euclid delivers 246.

Note 107748 = 438 × 246, 69126 = 281 × 246.

(iii) You are on your own.
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Exercise 4.3.13

Suppose that we apply one step of Euclid’s algorithm to a pair (u, v) with

u ≥ v ≥ 1. If v divides u, then v is, indeed, the highest common factor of u

and v, so the algorithm has delivered the right answer. Since e divides v, e

divides d = v.

If not, then the algorithm delivers a new pair (u′, v′) with u′ = v and

u = kv + v′

We know that then u = ae, v = be for some natural numbers a and b, so

u′ = be,

v′ = u − kv = ae − kbd = (a − kb)e

and e divides u′ and v′.

Thus e divides each of the entries in the ordered pairs produced by Eu-

clid’s algorithm. Since the final pair has d as second entry, e divides d.



46

Exercise 4.3.14

(i) Observe that, if r ≥ k + 1, then

p

q
>

1

r
.

thus there must be a least natural number k′ such that

p

q
≥ 1

k′
.

We have

1

k′ − 1
>

p

q
≥ 1

k′
⋆

as required.

If p/q = 1/k′, there is nothing to do. Otherwise,

p

q
=

1

k′
+

p′

q′

with

p′ = k′p − q, q′ = qk′.

Using⋆, we have

q > p(k′ − 1)

so p− p′ = q− p(k′ − 1)k′p− q > q− q = 0 and p > p′. Observe that if q/p

is an integer u, then k′ = u and, if p/q is not, then k′ is the smallest integer

greater than q′/p′.

Applying the Egyptian algorithm r times gives

x =
1

k1

+
1

k2

+ . . . +
1

kr

+
pr

qr

where the pr form a strictly decreasing sequence and the k j form a strictly

increasing sequence. Since a strictly decreasing sequence of positive in-

tegers must terminate the algorithm halts and it will halt at an Egyptian

fraction expansion.
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(ii) Observe that

17

4
= 4 +

1

4
4

17
=

1

5
+

3

85
85

3
= 28 +

1

3
3

85
=

1

29
+

2

2465
2465

2
= 1232 +

1

2
2

2465
=

1

1233
+

1

3039345
,

so
4

17
=

1

5
+

1

29
+

1

1233
+

1

3039345
.

Direct calculation (once we are told what to look for) gives

4

17
=

1

5
+

1

30
+

1

510
.
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Exercise 4.3.15

(i) In both cases m even and m odd, we have m > m′. We have n′ = 2n >

n ≥ m > m′ ≥ 2/2 = 1. Further

n′m′ + a′ =















2n × (m/2) + a = nm + a if m is even

2n(m − 1)/2 + (a + n) = nm + a if m is odd

so n′m′ + a′ = nm + a.

Let (n1,m1, a1) = (N, M, 0) We get a sequence of triples (n j,m j, a j) with

m j > m j+1, so since a strictly decreasing sequence of natural numbers must

halt, the system must halt at j = k, say, with mk = 1 (since otherwise we

could continue). Since n j+1m j+1 + a j+1 = n jm j + a j, we have n jm j + a j =

n1m1 + a1 = NM for each j. Thus writing (u, 1,w) = (nk,mk, ak) we have

MN = u + w.

Note that n j, m j are the first two numbers in the jth row for Egyptian

multiplication and a j is the result of adding the numbers in the third column

for the first j rows. Thus Egyptian multiplication works as promised.

(ii) Suppose n = 2s−1ǫs + 2s−2ǫs−1 + . . . + 20ǫ1 (with ǫ j taking the value 0

or 1) and m = 2r−1ηr + 2r−2ηr−1 + . . .+ 20η1 (with ηt taking the value 0 or 1).

Then long multiplication instructs us to add those numbers

2t(2s−1ǫs + 2s−2ǫs−1 + . . . + 20ǫ1)

for which ηt = 1 and this is the Egyptian method.

Thus computers, which work in binary, are in some sense, using the

Egyptian algorithm.



49

Exercise 4.3.17

(i) We have u = rd, v = sd for some integers r and s, so, if n = au + bv,

we have n = ard + bsd = (ar + bs)d so d divides n.

By Bézout’s identity

d = k|u| + l|v|
for some integers k and l, so

d = Ku + Lv

for some integers K and L. If d divides n, n = Rd for some integer R so

n = au + bv with a = RK, b = RL integers.

(ii) If u, v > 1 (so, for example, if u = 2, v = 3) any non-zero score

exceeds 1, so 1 is not a possible score.

By Bézout’s identity we can find integers a and b so that

1 = au + bv.

Let N = u × (u|a| + v|b|). If r ≥ N, then

r = N + uk + s

with k ≥ 0, u > s ≥ 0. Thus

r = u × (u|a| + v|b|) + uk + s(au + bv) = (u|a| + sa)u + (u|b| + sb)v

and u|a| + sa ≥ (u − s)|a| > 0, u|b| + sb ≥ (u − s)|b| > 0.

Exercise 4.3.18

We have u = ǫ |u|, v = δ|v| with ǫ = ±1, and δ = ±1. We can find A, B

such that A|u|+B|v| = d, so, setting r = ǫA and s = δB, we have ru+ sv = d.
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Exercise 4.3.19

(i) We have au + bv = 1 for some integers a and b so

k = (au + bv)k = a(ku) + (bk)v = a(lv) + (bk)v = (al + bk)v

and v divides k.

(ii) Suppose that ru + sv = 1 and r′u + s′v = 1. Then

0 = 1 − 1 = (ru + sv) − (r′u + s′v) = (r − r′)u + (s − s′)v

and

(r − r′)u = (s′ − s)v.

By part (i), s− s divides u, so there exists an integer k such that s′ − s = ku.

We now have r − r′ = kv.

(iii) We may write u = Ud, v = Vd. Bézout’s identity au + bv = d gives

aU + bV = 1, so U and V coprime.

If r, s are integers with

ru + sv = d

(that is to say rU + sV = 1) then integers r′ and s′ also satisfy

r′u + s′v = d

(that is to say r′U + s′V = 1) if and only if there exists an integer k such that

r − r′ = kv and s′ − s = ku.

(iv) If u and v have highest common factor d then Bézout’s theorem give

au+ bv = d for some a and b. If e divides u and v, then u = EU, v = eV for

some U and V , so

d = a(eU) + b(eV) = e(aU + bV)

and e divides d.
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Exercise 4.3.20

Our initial calculations repeat Exercise 4.3.10.

(i) We have

156 = 3 × 42 + 30

42 = 1 × 30 + 12

30 = 2 × 12 + 6

12 = 2 × 6

Euclid delivers 6.

Reversing we get

6 = 30 − (2 × 12)

= (42 − 12) − (2 × 12) = 42 − (3 × 12)

= 42 − (3 × (42 − 30)) = (−2 × 42) + (3 × 30)

= (−2 × 42) + (3 × (156 − (3 × 42)) = 3 × 156 + (−11 × 42)

so 6 = 3 × 156 + (−11) × 42.

(ii) We have

107748 = 1 × 69126 + 38622

69126 = 1 × 38622 + 30504

38622 = 1 × 30504 + 8118

30504 = 3 × 8118 + 6150

8118 = 1 × 6150 + 1968

6150 = 3 × 1968 + 246

1968 = 8 × 246

Euclid delivers 246.

Reversing we get

246 = 6150 − (3 × 1968)

= 6150 − (3 × (8118 − 6150)) = (−3 × 8118) + (4 × 6150)

= (−3 × 8118) + (4 × (30504 − (3 × 8118))) = −(15 × 8118) + (4 × 30504)

= (4 × 30504) − (15 × (38622 − 30504) = −(15 × 38622) + (19 × 30504)

= −(15 × 38622) + (19 × (69126 − 38622)) = (19 × 69126) − (34 × 38622)

= (19 × 69126) − (34 × (107748 − 69126)) = ((−34) × 107748) × (53 × 69126)

so 246 = (−34) × 107748 + 53 × 69126.

Exercise 4.3.21⋆
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Exercise 4.4.4

If a, b ∈ S , then a = 10n + 1, b = 10m + 1 for some integers n, m ≥ 0.

We have

ab = (10n+1)(10m+1) = 102nm+10m+10n+1 = (10nm+n+m)×10+1 ∈ S .

Let E be the collection of elements in S which are not the product of

irreducibles. If E is non-empty, E has a least member e. Automatically,

e is not itself irreducible. Thus e = uv with u, v ∈ S and u , 1, v , 1.

Thus u, v < e, so u and v are the product of irreducibles, so e is, in fact, the

product of irreducibles. This contradiction shows that E is empty and every

element S can be written as the product of irreducibles.

3 × 7 = 21 which is irreducible (since only factors 3 and 7)

13 × 17 = 221 which is irreducible (since only factors 13 and 17)

3 × 7 × 13 × 17 = (3 × 7) × (13 × 17)

3 × 17 = 51 which is irreducible (since only factors 3 and 17)

7 × 13 = 101 which is irreducible (since only factors 7 and 13)

21 × 221 = (3 × 7) × (13 × 17) = (3 × 17) × (7 × 13) = 51 × 101.

Exercise 4.4.6

If u and v are natural numbers and p is a prime which divides ab, then

ab = kp for some k. If p does not divide a, then, since p is a prime, p and a

are coprime and, by Exercise 4.3.19 (i), p divides b.

Exercise 4.4.7

Let p be a prime and P(n) be the statement that, if u1, u2, . . . un are natural

numbers and p divides u1u2 . . . un, then p must divide at least one of the u j.

P(1) is trivially true. Suppose P(n) is true. Then, if u1, u2, . . . un+1 are nat-

ural numbers and p divides u1u2 . . . un+1, we have, writing u = u1u2 . . . un,

v = un+1, and applying Theorem 4.4.5, that either p divides un+1 or p di-

vides u1u2 . . . un in which case, since P(n) is true, p must divide at least one

of the u j with 1 ≤ j ≤ n. Thus p must divide at least one of the u j with

1 ≤ j ≤ n + 1.

Since we have shown that P(n) implies P(n + 1), the result follows by

induction.
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Exercise 4.4.8

(i) Just another way of stating the uniqueness of factorisation.

(ii) If r j and s j are simultaneously non-zero, then p j is a common factor.

Thus a necessary condition for coprimality is that r j and s j are never both

non-zero [1 ≤ j ≤ n].

Conversely, if r j and s j are never both non-zero, k is a common factor of

p
r1

1
pr2 . . . p

rn
n and p

s1

1
ps2 . . . p

sn
n , then k cannot have p j as a factor for any j

and cannot be divisible by any prime not of the form p j. Thus k = 1 and the

two numbers are coprime.

Exercise 4.4.10

(2 × 3 × 5 × 7 × 11 × 13) + 1 = 30031 = 509 × 59.

Thus it may not be true that, if p1, p2, . . . pn are all primes less than or equal

to pn

N = p1 p2 . . . pn + 1.

is itself a prime.

Exercise 4.4.13

Suppose that x is a rational number with x2
= a/b. We may suppose

x > 0 and so we can write x = u/v with u and v coprime positive integers.

Since n, u and v are strictly positive integers, we can find distinct primes p1,

p2, . . . pn and integers h j, k j, s j, t j ≥ 0 [1 ≤ j ≤ n] such that

a = p
h1

1
p

h2

2
. . . phn

n , b = p
k1

1
p

k2

2
. . . pkn

n , u = p
s1

1
p

s2

2
. . . psn

n , and v = p
t1
1

p
t2
2
. . . ptn

n

where h j and k j are never simultaneously non-zero.

Since a/b = x2
= u2/v2, we have au2

= bv2, so

p
h1+2t1
1

p
h2+2t2
2

. . . phn+2tn
n = p

k1+2s1

1
p

k2+2s2

2
. . . pkn+2sn

n

and, by the uniqueness of factorisation,

h j + 2t j = k j + 2s j.

Since h j and k j are never simultaneously non-zero, they must both be even,

so a and b are squares of integers.
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Exercise 4.4.14⋆

Exercise 5.1.2⋆

Exercise 5.1.3⋆

Exercise 5.1.4

As in Exercise 3.2.14 (ii), we have a × 0 = 0 so

a = a × 1 = a × 0 = 0

for all a ∈ F.

Exercise 5.1.6

f (0) = f (0 + 0) = f (0) ⊕ f (0)

so

0 = f (0) ⊕ (− f (0)) = ( f (0) ⊕ f (0)) ⊕ (− f (0))

= f (0) ⊕ ( f (0) ⊕ (− f (0)) = f (0) ⊕ 0 = f (0).

Again

f (1) = f (1 × 1) = f (1) ⊗ f (1)

so, either f (1) = 0, or multiplying both sides by f (1)−1, we have f (1) = 1.

But f is injective, so f (1) , f (0) and f (1) = 1.

Exercise 5.1.8

Typical checks.

(i) If a, b ∈ G, then a, b ∈ F so a + b = b + a.

(iv) If a ∈ G, then −a ∈ G and a + (−a) = 0.
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Exercise 5.1.9

Everything goes through word for word.

Exercise 5.1.10

Reflexive r − r = 0 = 0 × n so r ∼n r.

Symmetric If r ∼n s, then r− s = kn and s− r = (−k)n for some k, so s ∼n r.

Transitive If r ∼n s and s ∼n t, then r − s = kn, s − t = ln and r − t =

(r − s) + (s − t) = (k + l)n for some integers k and l so r ∼n t.

If n = 1, then r− s = (r− s)×1, so r ∼1 s for all r and s. There is a single

equivalence class Z.

If n = 0, then r ∼0 s if and only if r = s. The equivalence classes are the

one point sets {r}.
If |n| > |m| > 0, then m /n n so the equivalence classes for ∼n and ∼m are

different. If |n| > 0 = m then n /m m but n ∼m n so the equivalence classes

are distinct. Thus the equivalence classes are the same for ∼n and ∼m only

if m = n or m = −n.

If a ∼m b, then a − b = km and b − a = −km so a ∼−m b. Thus the

equivalence classes are the same for ∼n and ∼m if m = n or m = −n.
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Exercise 5.1.12

Since u − u′ = kn and v − v′ = ln for some integers l and k we have

u′ + v′ = (u − kn) + (v − ln) = u + v + (−k − l)n,

so u + v ∼n u′ + v′.

Exercise 5.1.14

(ii) We have [a]+ ([b]+ [c]) = [a]+ [b+c] = [a+ (b+c)] = [(a+b)+c] =

[a + b] + [c] = ([a] + [b]) + [c].

(v) We have [a] × [b] = [a × b] = [b × a] = [b] × [a]

(vi) We have [a]× ([b]× [c]) = [a]× [b×c] = [a× (b×c)] = [(a×b)×c] =

[a × b] × [c] = ([a] × [b]) × [c].

(vii) We have [1] × [a] = [1 × a] = [a].

Since n ≥ 2, 1 /n 0, so [0] , [1].

Exercise 5.1.15

23 ∼ 8 ∼ 2 / 1 ∼ 20.

Exercise 5.1.16

Since a = a1, we have [a1] = [a]. Further [an+1] = [an × a] = [an] × [a].

Exercise 5.1.17

(i) If u , 0, and uv = 0, then

0 = u−1 × 0 = u−1 × (uv) = (u−1u)v = 1 × v = v.

(ii) Since 1 ≤ u, v < n, we have u . 0 mod n and v . 0 mod n, but

uv ≡ n ≡ 0 mod n.

By part (i), (Zn,+,×) is not a field.
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Exercise 5.1.19

Since n and a are coprime, Euclid’s algorithm followed by Bézout’s

method gives us b and c such that ac + bn = 1 and so ac ≡ 1 mod n.

Exercise 5.2.2

If r . 0, then, by Fermat’s little theorem (Theorem 5.2.1), rp−1 ≡ 1

mod p so rp ≡ r × rp−1 ≡ r mod p. If r ≡ 0, then rp ≡ 0p ≡ 0 ≡ r mod p.

Exercise 5.2.3

(p − 1)p ≡ p − 1 . 1 ≡ (p − 1)0, although p ≡ 0 mod p.

If p = 2, rk ≡ r mod 2 for all k, r ≥ 1.

Exercise 5.2.4

Since F is a field (and, in particular, condition (viii) of Definition 5.1.1

holds) we know that if a , 0 then a × r = a × s implies r = s. Thus, as x

ranges over the n−1 non-zero elements of F, a× x ranges over n−1 distinct

non-zero elements of F, so over the n − 1 non-zero elements of F.

We thus have, using the commutative and associative laws of multiplica-

tion together with the product notation, (see Appendix A, if necessary)
∏

x∈F,x,0

ax =
∏

x∈F,x,0

x,

so

an−1
∏

x∈F,x,0

x =
∏

x∈F,x,0

x

and, since
∏

x∈F,x,0 x is the product of non-zero elements,
∏

x∈F,x,0 x , 0

(proof by induction). Thus an−1
= 1.
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Exercise 5.2.5

(i) If 1 ≤ s ≤ p − 1, then p and s are coprime. Thus, if 1 ≤ r ≤ p − 1, it

follows that r! and (p − r)! are coprime to p. Thus
(

p

r

)

=
p!

r!(p − r)!

is divisible by p and
(

p

r

)

≡ 0 mod p.

(ii) By the binomial theorem,

(k + 1)p ≡
(

p

0

)

+

(

p

1

)

k +

(

p

2

)

k2
+ . . . +

(

p

p − 1

)

kp−1
+

(

p

p

)

kp

≡ 1 + 0 + 0 + . . . + 0 + kp ≡ 1 + kp mod p.

(iii) 1p ≡ 1 and, if kp ≡ k, then (k + 1)p ≡ kp
+ 1 ≡ k + 1 mod p. Thus,

by induction, kp ≡ k mod p for all k ∈ N+ and so kp ≡ k mod p for all k.

Exercise 5.2.7

If x2 ≡ 0 mod p, then p divides x2, so (since if p divides uv, then p

divides u and or p divides v) p divides x and so x ≡ 0 mod p. We observe

that 02 ≡ 0.
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Exercise 5.2.8

Recall that x2 ≡ a has two distinct roots or none, unless a ≡ 0, in which

case, there is one root. Now observe that

−r . r, r2 ≡ (−r)2

for 1 ≤ r ≤ (p − 1)/2 and that [0] together with the [r] and [−r] where

1 ≤ r ≤ (p − 1)/2 form the distinct elements of Zp. The squares in Zp are

thus precisely the distinct elements [0], [1]2, . . . , [(p − 1)/2]2 and there are

(p − 1)/2 + 1 = (p + 1)/2 of them.

Exercise 5.2.9

By inspection, both elements 0 ≡ 02 and 1 ≡ 12 of Z2 are squares and

x2 ≡ a mod 2 always has exactly one solution.

Exercise 5.2.11

We have (2 − 1)! ≡ 1! ≡ 1 ≡ −1 mod 2.

Exercise 5.3.1

− • • ⋆ − − − ⋆ ⋆ − − ⋆ − − − ⋆ • − • ⋆ • ⋆ ⋆

Exercise 5.3.2

(ii) 00001011000110000000101110010101100011000000000000

(iii) WELL⋆DONE⋆⋆
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Exercise 5.3.3

(i) We have

ζ8 ≡ −ζ8 ≡ 0 − ζ8 ≡ (ζ1 + ζ2 + . . . + ζ8) − ζ8 ≡ ζ1 + ζ2 + . . . + ζ7 mod 2

Completely symmetric over the ζ j, so any one particular ζ j may be consid-

ered a check digit.

(ii) Dull answer, no. If the jth person takes n j lumps and all the n j are

odd, then

n1 + n2 + . . . + n7 ≡ 1 + 1 + . . . + 1 ≡ 1 . 0 ≡ 20 mod 2.

Joke answer, yes. Let each of the first 6 take one lump. The final par-

ticipant must take 14, which is very odd number of lumps to put in your

tea.

Exercise 5.3.4

If ζ j , ζ
′
j for r values of j,

ζ′1 + ζ
′
2 + . . . + ζ

′
8 ≡ (ζ′1 + ζ

′
2 + . . . + ζ

′
8) − 0

≡ (ζ′1 + ζ
′
2 + . . . + ζ

′
8) − (ζ1 + ζ2 + . . . + ζ8)

≡ (ζ′1 − ζ1) + (ζ′2 − ζ2) + . . . + (ζ′8 − ζ8)

≡ r ≡ 0 mod 2

if and only if r is even.
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Exercise 5.3.5

(i) A typical example is 0201541998 for which

10 × 0 + 9 × 2 + 8 × 0 + 7 × 1 + 6 × 5 + 5 × 4 + 4 × 1 + 3 × 9 + 2 × 9 + 1 × 8

≡ 0 − 4 + 0 − 4 − 3 − 2 + 4 + 5 − 4 − 3 ≡ −11 ≡ 0 mod 11.

(ii) If a and b are ISBNs and ai = bi for i , j, then

0 ≡ 0 − 0

≡ (10a1 + 9a2 + . . . + 2a9 + a10) − (10b1 + 9b2 + . . . + 2b9 + b10)

≡ j(a j − b j)

so, since 11 is a prime and 1 ≤ j ≤ 10 (so j . 0), we have a j − b j ≡ 0

mod 11 and so a j − b j = 0, so a = b. Thus two ISBNs cannot differ in

exactly one place.

(iii) Let a10 = 1, a1 = 1, b10 = 2, b1 = 2 and a j = b j = 0 otherwise. Then

a and b are ISBNs differing in two places only.

(iv) and (v) [Treated together since the answer to (v) is yes] Suppose that

10 ≥ j > k ≥ 1. If a and b are ISBNs, ai = bi for i , j, k and a j = bk,

ak = b j then

0 ≡ 0 − 0

≡ (10a1 + 9a2 + . . . + 2a9 + a10) − (10b1 + 9b2 + . . . + 2b9 + b10)

≡ ( j − k)(a j − ak)

so, since 11 is a prime and 1 ≤ j−k ≤ 10 (so j−k . 0), we have a j−ak ≡ 0

mod 11 and so a j − ak = 0, a j = ak = b j = bk and a = b.

(vi) If there is a single error taking x to x′

x′1 + 3x′2 + x′3 + 3x′4 + · · · + x′11 + 3x′12 + x′13

is congruent to 3y or y with 1 ≤ |y| ≤ 9 and so (since 3 is coprime to 10) is

not congruent to 0. Thus single errors are detected.

However if x1 = x′
2
= 0, x2 = x′

1
= 5 and x j = x′

j
= 0 otherwise, x

and x′ satisfy the check-sum condition. Thus not all transpositions can be

detected.



62

Exercise 5.3.6

c1 ≡ c3 + c5 + c7 mod 2

c2 ≡ c3 + c6 + c7 mod 2

c4 ≡ c5 + c6 + c7 mod 2

Since each of c3, c5, c6, c7 can be chosen freely in 2 ways and the remaining

c j are fixed, it follows that there are exactly 2×2×2×2 = 24
= 16 possible

words.

Exercise 5.3.8

Observe that the correcting system sees eight possible outcomes. Each

of these is produced by either no mistake (in which case, the correcting

system makes no change) or one mistake (in which case, the correcting

system makes one change correcting the one mistake). Thus whatever the

system sees, it returns a code word and changes at most one entry.

Thus, if there are two (or more) mistakes, it will return a code word, but

will have made at most one change, so it will not return the initial code

word.

Exercise 5.3.9

Observe that the numbers chosen are the

u = c1 + 2c2 + 4c3 + . . . + 27c7

with the (c1, c2, . . . , c7) Hamming code words. We place u in A j if and only

if c j = 1. When you state whether or not u is in A j, I take c′
j
= 1 if you

answer yes and c′j = 0 if you answer no. The Hamming procedure reveals

the j (if any) with c′
j
, c j, so I can find which j (if any) has c j , c′

j
(that is

to say, where you lied) and recover u.
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Exercise 5.3.10

(i) The tape will be accepted if each line contains an even number of

errors. Since the probability of errors is small (and the number of bits, that

is to say, zeros and ones, on each line is small) the probability of one error

is much greater than the probability of an odd number of errors greater than

1. Thus

Pr(odd number of errors in one line) ≈ Pr(exactly one error in one line)

= 8 × 10−4 × (1 − 10−4)7 ≈ 8 × 10−4.

Since the the probability λ of an odd number of errors in one line is very

small, but there are a large number N of lines, we may use the Poisson

approximation to get

1 − Pr(odd number of errors in some line) ≈ e−λN ≈ e−8 ≈ 0.00034

and conclude that the probability of acceptance is less than .04%.

If we use the Hamming scheme, then, instead of having 7 freely chosen

bits (plus a check bit) on each line, we only have 4 freely chosen bits (plus

three check bits plus an unused bit) per line so we need approximately

1

4
× 7 × 104

= 1.75 × 104

lines.

If a line contains at most one error, it will be correctly decoded. A line

will fail to be correctly decoded if it contains two errors or more (see Exer-

cise 5.3.8). Since the probability of errors is small (and the number of bits

on each line is small), the probability of two errors is much greater than the

probability of more than two. Thus

Pr(decoding failure for one line) ≈ Pr(exactly two errors in one line)

=

(

7

2

)

× (10−4)2 × (1 − 10−4)5 ≈ 21 × 10−8.

Since the the probability of a decoding error in one line is very small but

there are a large number of lines, we may use the Poisson approximation

(or just a calculator) to get

Pr(decoding error for some line) = 1 − Pr(no decoding error in any line)

≈ 1 − e−21×10−8×17500 ≈ 1 − e−.003675 ≈ 1 − .9963 ≈ 0.0037

and conclude that the probability of a correct decode is greater than 99.6%.

(ii) The probability of one error or less in one particular line is

(9/10)7
+ 7 × (1/10) × (9/10)6 < .86

so with high probability many lines will be wrongly corrected.
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Exercise 5.3.11

We work in Z2 and use words of length 15 The words c1c2c3 . . . c15 with

c j ∈ Z2 are chosen to satisfy four conditions obtained as follows.

Observe that (working in Z) each integer r with 1 ≤ r ≤ 15 can be written

uniquely as

r = ǫ0(r) + ǫ1(r)2 + ǫ2(r)22
+ ǫ3(r)23

with ǫ j taking the values 0 or 1. Our four conditions are

(The sum of those cr with ǫ j(r) = 1) ≡ 0 mod 2

or more briefly
∑

ǫ j(r)=1

cr ≡ 0 mod 2 (j)

for 0 ≤ j ≤ 3.

If one mistake is made in the kth place and c′ is received then c′
j
= c j for

j , k and c′
k
≡ ck + 1 mod 2. Thus

∑

ǫ j(r)=1

c′r ≡ 0 mod 2

if ǫ j(k) = 0 and
∑

ǫ j(r)=1

c′r ≡ 1 mod 2

if ǫ j(k) = 1.

If the received word satisfies all the Hamming conditions then we take it

to be the sent word. Otherwise we proceed as follows. If the received word

satisfies the jth condition that is to say
∑

ǫ j(r)=1

c′r ≡ 0 mod 2 (j)

write η j = 0. If the received word fails to satisfy the jth Hamming condi-

tion, that is to say,
∑

ǫ j(r)=1

c′r ≡ 1 mod 2 (j)

write η j = 1. Then k = η0 + 2η1 + 22η2 + 23η3 and c j = c′
j

for j , k,

ck ≡ c′
k
+ 1 mod 2.

In constructing a code word, we can choose c j freely for j , 1, 2, 4, 8,

c1, c2, c4 and c8. are then fixed. The original Hamming code uses 3 out

of 7 places for check digits, so 3/7 of the transmitted bits do not convey

information. Thus the coded message costs 7/4 times as much to transmit

as the uncoded message. The new scheme only uses 4 out of 15 places

for check digits, so 4/15 of the transmitted bits do not convey information

and the coded message only costs 15/11 times as much to transmit as the

original message. However it will fail to correct if there are more than one
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error in a 15 bit word and the probability of this happening is not negligible

unless the error rate is very low.
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Exercise 5.4.1

We have found u1 and u2 such that

u1n1 + u2n2 = 1.

Thus, if we set y2 = u1n1,

y2 ≡ u1n1 ≡ 1 − u2n2 ≡ 1 mod n2

y2 ≡ u1n1 ≡ 0 mod n1.

Exercise 5.4.4

We first solve

x ≡ 2 mod 3

x ≡ 3 mod 5

Applying Euclid’s algorithm to 3 and 5,

5 = 1 × 3 + 2

3 = 1 × 2 + 1

and now applying Bézout’s method,

1 = 3 − 1 × 2 = 3 − 1 × (5 − 1 × 3) = −1 × 5 + 2 × 3.

Thus

−5 ≡ 1 mod 3

−5 ≡ 0 mod 5

6 ≡ 0 mod 3

6 ≡ 1 mod 5

Thus if we consider 2 × (−5) + 3 × 6 = 8 we have

8 ≡ 2 mod 3

8 ≡ 3 mod 5

We now solve

x ≡ 8 mod 15

x ≡ 2 mod 7

Euclid’s algorithm applied to 7 and 15 stops at once, giving

15 = 2 × 7 + 1

and the Bézout equation

1 = 15 − 2 × 7.



67

Thus

−14 ≡ 1 mod 15

−14 ≡ 0 mod 7

15 ≡ 0 mod 15

15 ≡ 1 mod 7

Thus if we consider 8 × (−14) + 2 × 15 = −82 we have

−82 ≡ 8 mod 15

−82 ≡ 2 mod 7

Thus

x ≡ 2 mod 3

x ≡ 3 mod 5

x ≡ 2 mod 7.

if and only if x = −82 + n× (3× 5× 7) = −82 + n × 105 for some integer n,

or, equivalently, if and only if x = 23 + m × 105 for some integer m.

Of course we could have got here sooner by judicious guess work, but, if

the numbers chosen are even a little bigger, judicious guess work is much

harder.
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Exercise 5.4.5

Consider the the system⋆m

x ≡ a1 mod n1

x ≡ a2 mod n2

...

x ≡ am mod nm

where n1, n2,. . . nm are positive integers with each pair ni, n j [i , j] coprime.

⋆1 is solved just by repeating the equation x ≡ a1 mod n1.

If the general solution of⋆m−1 has been obtained as

x ≡ bm−1 mod n1n2n3 . . . nm−1

then, since n1n2n3 . . . nm−1 and nm are coprime, applying the method of this

chapter gives the general solution

x ≡ bm mod n1n2n3 . . . nm

to the system

x ≡ bm−1 mod n1n2 . . . nm−1

x ≡ am mod nm

and so to⋆m.
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Exercise 5.4.6

We have

n = p
r(1)

1
× p

r(2)

2
× . . . p

r(k)

k

with the p j distinct primes and r( j) ≥ 1. There are two cases.

If k = 1 then, since n is not a prime, r(1) ≥ 2 and, since n ≥ 5,

p1, 2p1, 3p1, . . . , r(1)p1 ≤ n − 1,

so

r(1)!n = r(1)!p
r(1)

1
= p1 × (2p1) × (3p1) × . . . (r(1)p1)

divides (n − 1)! and so (n − 1)! ≡ 0 mod n.

If k ≥ 2, then p j, 2p j, 3p j, . . . , r( j)p j ≤ n − 1 so

r( j)!n = r( j)!p
r( j)

j
= p j × (2p j) × (3p j) × . . . (r( j)p j)

divides p
r( j)

j
and so (n− 1)! ≡ 0 mod p

n( j)

j
for each j. The Chinese remain-

der theorem tells us that (n − 1)! ≡ 0 mod n.

(2 − 1)! ≡ 1! ≡ 1 . 0 mod 2

(3 − 1)! ≡ 2! ≡ 2 . 0 mod 3

(4 − 1)! ≡ 3! ≡ 6 . 0 mod 4
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Exercise 5.4.7

(i) If

y ≡ a1 mod n1

y ≡ a2 mod n2

then, since d divides n1 and n2,

y ≡ a1 mod d

y ≡ a2 mod d

so a1 − a2 ≡ (a1 − y) − (a2 − y) ≡ 0 − 0 = 0 mod d

(ii) By Bézout’s theorem we can find integers u1 and u2 with

u1n1 + u2n2 = d

If z = u1n1, then

z ≡ 0 mod n1

z ≡ d mod n2

(iii) If a1 − a2 ≡ 0 mod d, then a2 = a1 + kd for some k and the system

x ≡ a1 mod n1

x ≡ a2 mod n2

is solved by x = a1 + kz with z as in (ii).
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Exercise 5.5.2

(i) The equation

x2 ≡ 1 mod p

has exactly two solutions 1 and −1. The equation

x2 ≡ 0 mod q

has one root 0.

The Chinese remainder theorem tells us that the equation x2 ≡ 1 mod pq

has two distinct roots given by the two different sets of modular equations














x ≡ 1 mod p

x ≡ 0 mod q















x ≡ −1 mod p

x ≡ 0 mod q

If we denote the solution of the first set by η, then the the solution of the

second set is −η.

Thus x2 ≡ a2 mod pq has 2 distinct roots ηa and −ηa, so we are done.

(ii) If a ≡ 0 mod p and a ≡ 0 mod q then a ≡ 0 mod pq. The equation

x2 ≡ 0 mod p

has one root 0 and the equation

x2 ≡ 0 mod q

has one root 0. The Chinese remainder theorem tells us that the equation

x2 ≡ 0 mod pq has one root, 0.

(iii) Consider the integers 0 ≤ r ≤ pq − 1. Exactly one of them is 0.

Exactly (p−1) are divisible by p but not q and of these (p−1)/2 are squares

(since each square of this form has two roots of the same type). Exactly

(q−1) are divisible by q but not p and of these (q−1)/2 are squares. Exactly

pq− (p− 1)− (q− 1)− 1 are not divisible by p or q so (pq− p− q+ 1)/4 of

these are squares (since each square of this form has four roots of the same

type). Thus

1 +
p − 1

2
+

q − 1

2
+

pq − (p − 1) − (q − 1) − 1

4

=
4 + 2(p − 1) + 2(q − 1) + pq − (p − 1) − (q − 1) − 1

4

=
1 + p + q + pq

4
=

(p + 1)(q + 1)

4

elements of Zpq are squares.
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Exercise 5.5.3

We seek the solution of

x ≡ 1 mod 7

x ≡ −1 mod 13

Euclid’s algorithm gives

13 = 7 + 6

7 = 6 + 1

so using Bézout’s method

1 = 7 − 6 = 7 − (13 − 7) = (2 × 7) − 13

so

−13 ≡ 1 mod 7

−13 ≡ 0 mod 13

14 ≡ 0 mod 7

14 ≡ 1 mod 13

Thus x = −13− 14 = −27 is a solution. The two required roots are −27 and

27 (as may be checked by direct calculation).
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Exercise 5.5.6

We apply Euclid’s algorithm to 437 and 112.

437 = (3 × 112) + 101

112 = 101 + 11

101 = (9 × 11) + 2

11 = (5 × 2) + 1

so, using Bézout’s method,

1 = 11 − (5 × 2) = 11 − (5 × (101 − (9 × 11))) = (46 × 11) − (5 × 101)

= (46 × (112 − 101)) − (5 × 101) = (46 × 112) − (51 × 101)

= (46 × 112) − (51 × (437 − (3 × 112)))

= ((−51) × 437) + (199 × 112).

Thus, if we take c ≡ 199 mod 437, we have c × 112 ≡ 1 mod 437.

Now consider η ≡ c × 302 ≡ 229. We know that η is a square root of 1

modulo 437.

Applying Euclid’s algorithm to 437 and 229 + 1 = 230 we get

437 = 230 + 207

230 = 207 + 23

207 = 9 × 23

so 23 is one prime factor of 437 and, by division, the other is 19

Exercise 5.5.7

210
= 1024 > 103

so 2−10 < 10−3 (and 210 ≈ 10−3).

The probability of failure in 400 attempts is

2−400
= (2−10)40 ≤ (10−3)40

= 10−120
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Exercise 5.5.8

u = ku′ + v′ ≥ u′ + v′ > v′ + v′ = 2v′ = 2u′′

Thus the first entry in (u, v) at least halves every two steps. Thus in 2r steps

the first entry decreases by a factor of at least 2−r. In 20m steps the first entry

deceases by a factor of at least 210m so if U ≤ 103m the process terminates

in less than 20m steps.

Exercise 5.5.9

(i) We require m−1 squarings (so multiplications) to obtain a2, a4, . . . , a2m

and we then need to multiply at most m+1 numbers together which requires

at most m multiplications. We require at most 2m − 1 multiplications.

(ii) We have (working modulo 23)

72 ≡ 3

74 ≡ 9

78 ≡ −11

716 ≡ 6

732 ≡ −10

764 ≡ 8

so

7100 ≡ 764 × 732 × 74 ≡ 8 × (−10) × 9 ≡ (−11) × 9 ≡ −7 ≡ 16.
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Exercise 5.5.10

(i) Observe that, if q j ≡ 1 mod 4, then

q1q2 . . . qr ≡ 1r ≡ 1 mod 4.

Thus, if N has the prime factorisation

N = q1q2 . . . qr,

we have N = 4n + 1 for some n.

It follows that N = 4M + 3 (note N is odd, so 2 is not a factor) must have

a prime factor p with p ≡ 3 mod 4.

(ii) Suppose, if possible, that there are only finitely many primes p0 = 3,

p1, p2, . . . , pk of the form 4n + 3. Then

N = 4(p1 p2 . . . pk) + 3

is not divisible by any of p1, p2, . . . , pk, but is divisible by some prime of

the form 4n + 3. Thus our initial assumption is false and the required result

is true.

Exercise 5.5.11

If 4M2
+ 1 is divisible by a prime p then

(2M)2 ≡ −1 mod p

so, by lemma 5.2.12 (i), p must have the form 4n + 1.

Suppose, if possible, that there are only finitely many primes p1, p2, . . . ,

pk of the form 4n + 1. Then

N = 4(p1 p2 . . . pk)
2
+ 1

is not divisible by any of p0, p1, p2, . . . , pk, but is divisible by some prime

which, by the previous paragraph, must have the form 4n + 1. Thus our

initial assumption is false and the required result is true.
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Exercise 5.5.12

Write u and v for the first and second encoded message. Observe that

N and N′ are coprime. (If not, I really have been stupid, since Euclid’s

algorithm will now give SNDO the common factor.) SNDO can use the

known N and N′ together with the Chinese remainder theorem to compute

w with w ≡ m2 (mod NN′) and 0 ≤ w ≤ NN′ − 1. But 0 ≤ m2 ≤ NN′ − 1,

so w = m2 and m is the positive square root of w.

[SNDO uses Euclid’s algorithm to find a, b with aN + bN′ = 1. If w ≡
bN′u + aNv (mod NN′), then w ≡ u (mod N) and w ≡ v (mod N′).]

SNDO is no further forward in reading other messages. Effectively SNDO

knows m and m2 (modulo N) in one case and nothing else (since N′ and m2

(modulo N′) are irrelevant).

Exercise 6.1.1

(i) (P1) False, since 1 = S 1(1).

(P2) True. If x, y ∈ N+1 , then y = x.

(P3) True. If 1 ∈ E, then E = {1} = N+1 .

(ii) (P1) True, since 1 , S (1), S (2).

(P2) False. 1 , 2 and S 2(1) = S 2(2).

(P3) True. Suppose 1 ∈ E and whenever x ∈ E, we have S (x) ∈ E, Then

2 = S 2(1) ∈ E, so E = N+
2
.

(iii) (P1) True. If x is a positive integer then S (x) = x + 1 > 1. If

x = n + 1/2 with n an integer then S (x) = (n + 1) + 1/2 is not an integer. In

either case S x , 1.

(P2) True. If x, y ∈ N+
3

and S x = S y, then x + 1 = y + 1, so x = y.

(P3) False. Let E be the set of all strictly positive integers. Then 1 ∈ E and

x ∈ E implies S x = x + 1 ∈ E, but 1/2 < E.
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Exercise 6.3.2

Uniqueness We first prove that there is at most one function with the

desired properties. Suppose that µx and φx have the properties stated so that

(a) φx(1) = x

(b) φx(y
′) = φx(y) + y for all natural numbers y.

Let E be the set of natural numbers y such that φx(y) = µx(y). Condi-

tion (a) tells us that

µx(1) = x = φx(1),

so 1 ∈ E. On the other hand, if y ∈ E, condition (b) tells us that

φx(y
′) = φx(y) + y = µx(y) + y = µx(y

′),

so y′ ∈ E. The axiom of induction (P3) now tells us that E = N+ which is

what we wished to prove.

Existence Let E be the collection of natural numbers x such that we can

define µx with properties (a) and (b). Observe that, if we set µ̃1(y) = y, then

(a) µ̃1(1) = 1, and

(b) µ̃1(y′) = y′ =
(

µ1(y)
)′

for all natural numbers y.

Thus 1 ∈ E

We now suppose y ∈ E and so there exists µx with properties (a) and (b).

Observe that, if we set µ̃x′(y) = µx(y) + x, then

(a′) µ̃x′(1) = µx(1) + 1 = x + 1 = x′ and

(b′) µ̃x′(y
′) = µx(y

′) + x = (µx(y) + x) + x = µ̃x′(y) + x for all natural

numbers y.

Thus x′ ∈ E. The axiom of induction (P3) now tells us that E = N+, which

is what we wished to prove.
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Exercise 6.3.3

Let E be the collection of natural numbers y such that µ1(y) = y. We have

µ1(1) = 1, so 1 ∈ E. If y ∈ E, then, by the definition of µ1,

µ1(y′) = µ1(y) + 1 = y′

so y′ ∈ E. The axiom of induction (P3) now tells us that E = N+ and so

µ1(y) = y for all y.

Let x be a natural number and let Ex be the collection of natural numbers

y such that

µx′(y) = µx(y
′).

We know that

µx′(1) = x′ = µx(1)′ = µx(1) + 1 = µx(1
′)

so 1 ∈ Ex. Further, if y ∈ Ex, then

µx′(y
′) = µx′(y) + x = µx(y

′) + x = µx(y
′′)

so y′ ∈ Ex. Thus, by the axiom of induction (P3), Ex = N
+ and this is

equivalent to the statement we were asked to prove.

Exercise 6.3.6⋆

Exercise 6.3.9

Observe that A corresponds to N+ , α to 1, a to n and S (a) to n + 1.
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Exercise 6.3.10

Observe that, if we write α[x]([y])) = [x] + [y], then

(a) α[x]([1]) = [x] + [1] = [x + 1] = S ([x])

(b) α[x]

(

S ([y])
)

= [x] + ([y] + [1]) = ([x] + [y]) + [1] = S
(

µ[x]([y])
)

for all

[y] ∈ Zq.

By uniqueness, α[x] = φ[x] so φ[x]([y]) = [x] + [y].

Similarly, if we consider multiplication, we can use (Q3) to obtain the

following analogue of Theorem 6.3.1 (i). Let [x] ∈ Zq. There is a unique

function ψ[x] : Zq → Zq satisfying the following conditions.

(a) ψ[x]([1]) = [x]

(b) ψ[x]

(

S ([y])
)

= ψ[x]([y]) + [y] for all [y] ∈ Zq.

We claim that ψ[x]([y]) = [x] × [y].

Observe that, if we write β[x]([y])) = [x] × [y], then

(a) β[x]([1]) = [x]

(b) β[x]

(

S ([y])
)

= β[x]([y]) + [y] for all [y] ∈ Zq.

By uniqueness, β[x] = ψ[x] so ψ[x]([y]) = [x] × [y].
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Exercise 6.4.2

We prove the following results.

(i) If there exist natural numbers m and n with n > m and a surjective

function f : Fm → Fn, then there exists a surjective function g : Fn−1 → Fn.

(ii) If there exists a natural number n and an surjective function f :

Fn+1 → Fn+2, then there exists an surjective function g : Fn → Fn+1.

(iii) If n and m are natural numbers with n > m, then there does not exist

an surjective function f : Fm → Fn.

(iv) If m and n are natural numbers, then there exists a bijective function

f : Fm → Fn if and only if m = n.

Proof. (i) Define g : Fn−1 → Fn by g(r) = f (r) for 1 ≤ r ≤ m, g(r) = 1

otherwise.

(ii) There are two possibilities. Either f (n+1) = n+2 or not. If f (n+1) =

n + 2, we set g(r) = f (r) for 1 ≤ r ≤ n.

If f (n + 1) , n + 2, then f (n + 1) = u for some u with 1 ≤ u ≤ n and

f (v) = n + 2 for some v with 1 ≤ v ≤ n. Set g(r) = f (r), if 1 ≤ r ≤ n and

r , v, and set g(v) = u.

(iii) By part (i), it is sufficient to prove the result for n = m + 1. To this

end, let E be the collection of natural numbers such that there does not exist

an surjective function f : Fm → Fm+1. We observe that if f is a function

from F1 to F2, then

f (1) = 1, or f (1) = 2,

so f is not surjective. Thus 1 ∈ E.

On the other hand, part (ii) tells us that if m ∈ E, then m + 1 ∈ E. The

axiom of induction (P3) now tells us that E = N+, which is what we wished

to prove.

(iv) If m , n, then either n > m or m > n. If m > n, we know that there

is no surjective and so no bijective function f : En → Em. If n > m, then

the same argument shows us that there is no bijective function g : Em → En

and so no bijective function f : En → Em.

If n = m, the identity map f (r) = r gives a bijection between En and

itself. �
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Exercise 6.4.5

(i) There is a bijection f : S n → A and a bijection g : A → B. The map

h : S n → B given by h(r) = g
(

f (r)
)

is a bijection, so B is finite and |A| = |B|.
(ii) If |A| = n there is a bijection f : S n → A and a bijection h : S n → B.

The map g = h f −1 given by g(a) = h( f −1(a)) is a bijection g : A→ B.

Exercise 6.4.7

Theorem The set P of primes is infinite.

Proof If P is finite then there is a bijection f : Fn → P for some natural

number n. Consider

N = ( f (1) f (2) . . . f (n)) + 1.

We observe that if 1 ≤ j ≤ n, then f ( j) does not divide N since it leaves

remainder 1 when divided into N. However, we know that N factorises into

primes, so we have a contradiction.

Exercise 6.4.10

Suppose |A| ≥ |B|. We have A ∩ (B \ A) = ∅ so

|A ∪ B| = |A ∪ (B \ A)| = |A| + |B \ A| ≥ |A|.
The case A ⊇ B (for example, A = Fn, B = Fm with n ≥ m) shows this is

best possible.

Also B ⊇ B \ A so

|A ∪ B| = |A| + |B \ A| ≤ |A| + |B|.
The case A∩ B = ∅ (for example,A = Fn, B = Fn+m \ Fn) shows this is best

possible.

In general, |A| + |B| ≥ |A ∪ B| ≥ max{|A|, |B|}.
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Exercise 6.4.11

Let P(m) be the statement that there is a bijective function from Fnm to

the collection Fn(m) of functions f : Fm → Fn.

Observe that the map θ1 : Fn1 → Fn(1) given by (θ1(r))(1) = r is a

bijection, so P(1) is true.

Now suppose that P(m) is true. Then there is a bijection θm : Fnm →
Fn(m). If we now define θm+1 : Fnm+1 → Fn(m + 1) by

(

θm+1((k − 1)nm
+ r)

)

(u) =















(θm(r))(u) if 1 ≤ u ≤ m

k if u = m + 1

for 1 ≤ r ≤ nm, 1 ≤ k ≤ n, then θm+1 : Fnm+1 → Fn(m + 1) is a bijection so

P(m + 1) is true.

Thus, by induction, P(m) is true for all m and there is a bijective function

from Fnm to the collection Fn(m) of functions f : Fm → Fn.

Now we can find n and m and bijections f : Fn → A, g : Fm → B and

θ : Fnm → Fn(m). The map φ : Fn(m)→ AB given by

φ(h)(a) = g
(

θ( f −1(a))
)

is a bijection, so |AB| = |Fn(m)| = |Fnm | = nm
= |A||B|.
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Exercise 6.4.12

(i) Let P(n) be the statement that, if |A| = |B| = n and f : A → B is

injective, then f is bijective.

P(1) is true because then A = {a} and B = {b} and the only f : A → B is

given by f (a) = b and is bijective.

Suppose P(n) is true and A has n + 1 elements. Choose a ∈ A and take

b = f (a). Take A′ = A \ {a} and B′ = B \ {b}. Then (since f is injective) the

map h : A′ → B′ given by h(x) = f (x) for x ∈ A′ is well defined and A′ and

B′ have n elements. Since f is injective, h is injective so, by the inductive

hypothesis, bijective. It follows that f is bijective. Thus P(n+1) is true and

the induction is complete.

(ii) Let P(n) be the statement that if |A| = |B| = n and g : A → B is

surjective, then g is bijective.

P(1) is true because then A = {a} and B = {b} and the only g : A → B is

given by g(a) = b which is bijective.

Suppose P(n) is true and A has n + 1 elements. Choose distinct b, c ∈ B

and using the fact that g is surjective take some a ∈ A with g(a) = b. Take

A′ = A \ {a} and B′ = B \ {b}. Consider the map the map k : A′ → B′ given

by k(x) = g(x) if g(x) , b and k(x) = c if g(x) = b. Since g is surjective,

k is surjective so, by the inductive hypothesis, bijective. We write u for the

unique element of A′ with k(u) = c and observe that we must have f (u) = c.

Thus there is no x ∈ A′ with f (x) = b. We now claim that f is injective so

bijective.

We prove this by cases. If f (x) = f (y) and f (x) , b, c, then k(x) = k(y),

so x = y. If f (x) = f (y) = c, then k(x) = k(y) = c, so x = y = u. If

f (x) = f (y) = b, then x = y = a.

It follows that f is bijective. Thus P(n + 1) is true and the induction is

complete.

If A = B = N+ and we define f , g : N+ → N+ by f (n) = 2n and

g(2n) = n, g(2n − 1) = 1 for all n, then f is injective, but not surjective and

g is surjective, but not injective.
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Exercise 6.4.13

It suffices to prove that, if ≻ is an order on Fn, then Fn has a least element

for that order. Let P(n) be the statement just made.

P(1) is true, since F1 has only one element. Suppose that P(n) is true. If

≻ is an order on Fn+1, then it remains an order when restricted to Fn so, by

the inductive hypothesis, Fn has a least element u say. If n + 1 ≻ u, then u

is a least element of Fn+1. If not, u ≻ n+ 1 and, by transitivity, r ≻ n+ 1 for

all n ≥ r ≥ 1, so n+ 1 is a least element of Fn+1 under the given order. Thus

P(n + 1) is true.

The required result follows by induction.

Exercise 6.4.15

(i) (Reflexivity) Since the identity map is bijective, A ∼ A.

(Symmetry) If A ∼ B, there is a bijective function f : A → B. The inverse

function f −1 : B→ A is defined and bijective, so B ∼ A.

(Transitivity) If A ∼ B and B ∼ C, then there are bijective functions f :

A → B, g : B→ C. If we set h(a) = g( f (a)), we obtain a bijective function

h : A→ C. Thus A ∼ C.

(ii) Let n = |A|, m = |B|. By definition A ∼ Fn, B ∼ Fm The rules given

in (i), show that if A ∼ B then Fn ∼ Fm so, by Lemma 6.4.1 (iv), n = m. On

the other hand if n = m, then Fn ∼ Fm so, by the rules given in (i), A ∼ B.

(iii) The function f : A × B → B × A given by f ((a, b)) = (b, a) is a

bijection.

(iv) The function : N→ A given by f (n) = n2 is a bijection.

Exercise 6.5.2

(i) If d is the highest common factor of a and b, then d always divides

an + b so, if d is not prime, an + d is never prime and, if d is prime, an + b

is prime if and only if an + b = d.

(ii) The only arithmetic progressions to be considered are 4n+1 and 4n+3

and these have been shown to obey the conclusion of Dirichlet’s theorem in

Exercises 5.5.10 and 5.5.11.
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Exercise 6.5.3

We seek an upper bound, not a best upper bound. Because of the pop-

ulation explosion, ten times the present population of the globe certainly

exceeds the number of people who have lived since the invention of writ-

ing. Today (2017) the population of the globe is less than 10 × 109 so we

have an upper bound of 10 × 1010
= 1011 on the number of people since the

invention of writing. A lifetime (measured in seconds) may be bounded by

120 × 366 × 24 × 60 × 60 ≤ 4 × 109 < 1010.

So we have at most 1021 seconds of writing time available. It takes at least

1/10th of a second to write down a number Thus at most 1022 numbers of

size between 1079 and 1080 − 1 have been written down and, if we choose a

number with 80 digits at random, the chance of it having been written down

before is negligible. My choice is

65 263 415 628 715 381 283 876 699 979 568 924 424

784 517 504 945 692 273 771 682 964 294 422 844 790 817.
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Exercise 6.5.4⋆

Exercise 7.2.2

Suppose that (x)′ and (xiii)′ hold.

(x) If a > b, then, by (xii), a + (−b) > b + (−b) = 0. Thus if a > b, b > c,

then

a + (−c) = (a + 0) + (−c) =
(

a + (b + (−b))
)

+ (−c)

=
(

a + ((−b) + b)
)

+ (−c) =
(

(a + (−b)) + b
)

+ (−c)

= (a + (−b)) + (b + (−c)) > 0 + (b + (−c)) = b + (−c) > 0.

Thus

a = a+0 = a+
(

c+(−c)
)

= a+
(

(−c)+c
)

=
(

a+(−c)
)

+c = c+
(

a+(−c)
)

> c.

(xiii) If a > b and c > 0 then, as before, a + (−b) > 0, so

(a × c) + ((−b) × c) = (a + (−b)) × c > 0.

But (−b) × c = −(b × c) (see Exercise 3.2.14 (iii)) so (a × c) − (b × c) > 0

and

a × c = ((a × c) − (b × c)) + (b × c) > (b × c).

Conversely, suppose that (x) and (xiii) hold. Then (x)′ and (xiii)′ follow

on setting b = 0.

Exercise 7.2.3

We know, from Exercise 5.1.8, that (G,+,×) is a field. The remaining

conditions are checked in much the same way. For example:-

(x) If a, b, c ∈ G, and a > b and b > c, then a, b, c ∈ F, a > b and b > c

so a > c.
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Exercise 7.2.4

We just do this case by case.

(i) If a > 0, then |a| = a > 0. If 0 > a, then |a| = −a > 0. By trichotomy,

it follows that if |a| = 0, then a = 0.

If a = 0, then a ≥ 0, so |a| = 0.

(ii) If a ≥ 0, then 0 = a − a ≥ −a, so | − a| = −(−a) = a = |a|.
If 0 > a, then −a > a + (−a) = 0, so | − a| = −a = |a|.

(iii) If a, b ≥ 0, then ab ≥ 0, so |ab| = ab = |a||b|.
If a ≥ 0 > b then −b > 0 so |ab| = | − (ab)| = |a(−b)| = |a|| − b| = |a|b|.
The case b ≥ 0 > a is similar.

If 0 > a, b then |ab| = |(−a)(−b)| = | − a|| − b| = |a||b|.
(iv) If a, b ≥ 0, then a + b ≥ a ≥ 0 so |a| + |b| = a + b = |a + b|.

If 0 > a, b, then −a,−b > 0 so |a| + |b| = −a − b = −(a + b) = |a + b|.
If a ≥ 0 ≥ b and a > −b, then |a| + |b| = a − b ≥ a + b = |a + b|.
If a ≥ 0 ≥ b and −b ≥ a, then |a| + |b| = b − a ≥ a + b = |a + b|.
The remaining cases are similar.

(v) If a ≥ b, then (a + b) + |a − b| = (a + b) + (a − b) = 2a = 2 max{a, b}.
If b ≥ a, then (a + b) + |a − b| = (a + b) + (b − a) = 2b = 2 max{a, b}.
Thus (a + b) + |a − b| = 2 max{a, b}.

If a ≥ b, then max{a, b} +min{a, b} = a + b. If b > a, then

max{a, b} +min{a, b} = b + a = a + b

Thus max{a, b} +min{a, b} = a + b for all a and b and so

2 min{a, b} = 2(a + b) − 2 max{a, b} = (a + b) − |a − b|.
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Exercise 7.2.5

(i) Observe that 1 = 12 ≥ 0. Since 1 , 0 we have 1 > 0.

(ii) If m > n, we know that m = n + r for some r ∈ N+. Thus it is

sufficient to show that, if m is fixed, the statement P(r) which claims that

f (m + r) > f (m) is true for all r ∈ N+.
Now f (m + 1) = f (m) + 1 > f (m) + 0 = f (m), so P(1) is true.

Suppose P(r) is true. Then

f (m+ (r+1)) = ( f (m+ r)+1) = f (m+ r)+1 > f (m)+1 > f (m)+0 = f (m),

so P(r + 1) is true. The required result follows.

If m , n either n > m or m > n. Without loss of generality suppose

m > n. Then f (m) > f (n) so f (m) , f (n). Thus f is injective.

(iii) (a) Fix m. Let P(n) be the statement that f (m + n) = f (m) + f (n).

Since f (m + 1) = f (m) + 1 = f (m) + f (1), P(1) is true.

Suppose that P(n) is true. Then

f (m + (n + 1)) = f ((m + n) + 1) = f (m + n) + 1

= ( f (m) + f (n)) + 1 = f (m) + ( f (n) + 1) = f (m) + f (n + 1)

and P(n + 1) is true. Our required result follows by induction.

(b) Fix m. Let Q(n) be the statement that f (m × n) = f (m) × f (n).

Since f (m × 1) = f (m) = f (m) × 1 = f (m) × f (1), Q(1) is true.

Suppose that Q(n) is true. Then, using (a),

f (m × (n + 1)) = f ((m × n) + (1 × m)) = f ((m × n) + m)

= ( f (m × n)) + f (m) = ( f (m) × f (n)) + ( f (m) × 1)

= f (m) × ( f (n) + 1) = f (m) × f (n + 1)

and Q(n + 1) is true. Our required result follows by induction.

(iv) u(1) × u(1) = u(1 × 1) = u(1) = 1 × u(1) so, by cancellation, either

u(1) = 0 or u(1) = 1. If u(1) = 0, then u(2) = u(1 + 1) = u(1) + u(1) =

u(1) + 0 = u(1) and u is not injective. Thus u(1) = 1

Let P(n) be the statement that u(n) = f (n).

P(1) is true, since we now know that u(1) = 1 = f (1).

If P(n) is true, then

u(n + 1) = u(n) + u(1) = f (n) + f (1) = f (n + 1)

and P(n + 1) is true. The desired result follows by induction.
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Exercise 7.2.6

Z2 has two elements and N+ has infinitely many, so there cannot be an

injective map f : N+ → Z.

Since Z2 is not an ordered field, the argument of the previous question

does not apply.
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Exercise 7.2.7

(i) Let N+ be the copy of the natural numbers in Q+. By Exercise 7.2.5,

we can find u : N+ → F which preserves >, + and ×.

We observe that if n, m, n′m′ ∈ N+ and n/m = n′/m′ inQ+, then n×m′ =
n′ × m so

u(n) × u(m′) = u(n × m′) = u(n′ × m) = u(n′) × u(m)

so u(n) × u(m)−1
= u(n′) × u(m′)−1. Thus

g(n/m) = u(n) × u(m)−1

gives a well defined map g : Q+ → F. We observe that if g(n/m) = g(n′/m′),
reversing the calculations above gives n/m = n′/m′, so g is injective.

g(n/m) + g(a/b) = (g(n) × g(m)−1) + (g(a) × g(b)−1)

= ((g(n) × g(b)) + (g(m) × g(a))) × (g(m)−1 × g(b)−1)

= ((u(n) × u(b)) + (u(m) × u(a))) × (u(m)−1 × u(b)−1)

= (u((n × b) + (m × a)) × (u(m × b))−1

= g
(

((n × b) + (m × a))/(m × b)
)

= g(n/m + a/b),

so g preserves addition.

g(n/m) × g(a/b) = (g(n) × g(m)−1) × (g(a) × g(b)−1)

= (g(n) × g(a)) × (g(m) × g(b))−1

= (u(n) × u(a)) × (u(m) × u(b))−1

= u(n × a) × (u(m × b))−1

= g
(

(n × b)/(m × b)
)

= g(n/m × a/b),

so g preserves multiplication.

If n/m > a/b, then n × b > m × a, so

g(n) × g(b) = u(n) × u(b) = u(n × b) > u(m × a) = g(m) × g(a)

so since g(m), g(b) > g(0) = 0 whence g(m)−1, g(b)−1 > 0 so g(m)−1g(b)−1 >

0, we have

g(n/m) = g(n) × g(m)−1 > g(a) × g(b)−1
= g(a/b).

(ii) Suppose g, G : Q+ → F preserves =, × and >. If we restrict g and h

to N+ we know, by Exercise 7.2.5, that g(n) = G(n) for all n ∈ N+. Since g

preserves ×
g(n) × g(n)−1

= g(n × n−1) = g(1) = 1

so g(n)−1
= g(n−1) and similarly G(n)−1

= G(n−1). Thus

g(n/m) = g(n) × g(m−1) = g(n) × g(m)−1
= G(n) ×G(m)−1

= G(n/m).

The mapping g is unique.
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(iii) Observe that if x, x′, y, y′ ∈ Q and x− x′ = y− y′, then x+ y′ = x′ + y

so g(x) + g(y′) = g(x′) + g(y) and g(x) − g(x′) = g(y) − g(y′). Since any

element of a ∈ Q can be written as a = x − x′ with x, x′ ∈ Q+ (if a ≥ 0 take

x = a + 1, x′ = 1, if a < 0, take x = 1, x′ = 1 − a), we have well defined

map h : Q→ F given by h(x − x′) = g(x) − g(x′) for x, x′ ∈ Q+.
If h(x − x′) = h(y − y′) for x, x′, y, y′ ∈ Q+ then

g(x) − g(x′) = h(x − x′) = h(y − y′) = g(y) − g(y′)

so

g(x + y′) = g(x) + g(y′) = g(x′) + g(y) = g(x′ + y)

and, since g is injective, x+y′ = x′+y and x− x′ = y−y′. Thus h is injective.

Since

h((x − x′) + (y − y′)) = h((x + y) − (x′ + y′)) = g((x + y) − (x′ + y′))

= (g(x) + g(y)) − (g(x′) + g(y′))

= (g(x) − g(x′)) + (g(y) − g(y′))

= h(x − x′) + h(y − y′)

for x, x′, y, y′ ∈ Q+, it follows that h preserves +.

Since

h((x − x′) × (y − y′)) = h(((x × y) + (x′ × y′)) − ((x′ × y) + (x × y′)))

= g((x × y) + (x′ × y′)) − g((x′ × y) + (x × y′))

= ((g(x) × g(y)) + (g(x′) × g(y′)) − (g(x′) × g(y)) + (g(x) × g(y′))

= (g(x) − g(x′)) × (g(y) − g(y′)) = h(x − x′) × h(y − y′)

for x, x′, y, y′ ∈ Q+, it follows that h preserves ×.

Suppose that x − x′ > y − y′, Then

x + y′ = (x − x′) + (x′ + y′) > (y − y′) + (x′ + y′) = x′ + y

so

h(x) + h(y′) = h(x + y′) = g(x + y′) > g(x′ + y) = h(x′ + y) = h(x′) + h(y)

and

h(x − x′) = h(x) − h(x′) = (h(x) + h(y′)) + ((−h(x′)) + (−h(y′)))

> (h(x′) + h(y)) + (−h(x′) − h(y′)) = h(y) − h(y′) = h(y − y′)

for x, x′, y, y′ ∈ Q+. It follows that h preserves >.

(iv) Suppose h, H : Q→ F preserve +, × and >. If we restrict h and H to

Q+, we know, by (ii), that h(x) = H(x) for all x ∈ Q+. Since h preserves +,

h(x) + h(−x) = h(x + (−x)) = h(0) = 0,

so −h(x) = h(−x) and similarly −H(x) = H(−x). Thus

h(x−x′) = h(x+(−x′)) = h(x)+h(−x′) = h(x)−h(x′) = H(x)−H(x′) = H(x−x′)
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for x, x′ ∈ Q+. Since every y ∈ Q can be written y = x − x′ with x, x′ ∈ Q+,
the mapping h is unique.
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Exercise 7.2.8

We know that every ordered field contains a subfield isomorphic to the

rationals. Thus an ordered field with no strictly smaller subfield must be

isomorphic to the rationals.

Conversely, suppose G is a subfield of Q. We know that G contains a

multiplicative unit u and and a zero v. Now u2
= u, v2

= v, so u = 1 or

u = 0, v = 1 or v = 0. Since u , v and uv = v we have u = 1 and v = 0.

Thus, if a ∈ G, we have a + 1 ∈ G. By induction, G contains N+, so G

contains n/m for all n,m ∈ N+, so G contains −n/m for all n,m ∈ N+ so G

is Q itself.

Exercise 7.2.9

Just follow Exercise 2.3.7. u(1) × u(1) = u(1 × 1) = u(1) = 1 × u(1) so,

by cancellation, u(1) = 1.

Let P(n) be the statement that u(n) = f (n).

P(1) is true, since we now know that u(1) = 1 = f (1).

If P(n) is true, then

u(n + 1) = u(n) + u(1) = f (n) + f (1) = f (n + 1)

and P(n + 1) is true. The desired result follows by induction.

We did not have induction when we first looked at Exercise 2.3.7.

Lemma 3.2.18 can extended by adding: If F and G are injective functions

F, G : N+ → Q such that

F(n+m) = F(n)+F(m), F(n×m) = F(n)×F(m) and n > m implies F(n) > F(m)

and

G(n+m) = G(n)+G(m), G(n×m) = G(n)×G(m) and n > m implies G(n) > G(m),

then F = G.
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Exercise 7.2.10

Part (i) We have

(a1, a2) ⊗
(

a1

a2
1
− 2a2

2

,
a2

a2
1
− 2a2

2

)

=

(

a1 ×
a1

a2
1
− 2a2

2

+ (−2 × a2) × a2

a2
1
− 2a2

2

,

a1

a2
1
− 2a2

2

× a2 + a1 ×
(−a2)

a2
1
− 2a2

2

)

=

(

a2
1
− 2a2

2

a2
1
− 2a2

2

,
(a1 × a2) − (a1 × a2)

a2
1
− 2a2

2

)

= (1, 0)

Part (ii)

(i) Using the commutative law of addition for R,

a ⊕ b = (a1 + b1, a2 + b2) = (b1 + a1, b2 + a2) = b ⊕ a.

(ii) Using the associative law of addition for R,

a ⊕ (b ⊕ c) = (a1, a2) + (b1 + c1, b2 + c2) = (a1 + (b1 + c1), a2 + (b2 + c2))

= ((a1 + b1) + c1, (a2 + b2) + c2) = (a1 + b1, a2 + b2) + (c1, c2)

= (a ⊕ b) ⊕ c.

(iii) 0 ⊕ a = (0, 0) ⊕ (a1, a2) = (0 + a1, 0 + a2) = (a1, a2) = a.

(iv) If we write −a = (−a1,−a2), then

a ⊕ (−a) = (a1 − a1, a2 − a2) = (0, 0) = 0.

(v) Using the commutative laws of multiplication and addition for R

a ⊗ b = ((a1 × b1) + (2 × (a2 × b2)), (a1 × b2) + (a2 × b1))

= ((b1 × a1) + (2 × (b2 × a2)), (b2 × a1) + (b1 × a2))

= ((b1 × a1) + (2 × (b2 × a2)), (b1 × a2) + (b2 × a1)) = b ⊗ a.
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(vi) Making free use of the laws governing Q, we have

a ⊗ (b ⊗ c) = (a1, a2) × (

(b1 × c1) + ((2 × b2) × c2), (b1 × c2) + (b2 × c1)
)

=

(

a1 ×
(

(b1 × c1) + ((2 × b2) × c2) + (2 × a2) × (

(b1 × c2) + (b2 × c1)
)

,

a1 ×
(

(b1 × c2) + (b2 × c1)
)

+ a2 ×
(

(b1 × c1) − (b2 × c2)
)

)

=

(

(

(a1 × b1) + ((2 × (a2 × b2))
) × c1

(

(a2 × b1) + ((2 × a1) × b2)
) × c2),

(

(a1 × b1) + ((2 × a2) × b2)
) × c2 +

(

(a1 × b2) + (a2 × b1)
) × c1

)

= (a ⊗ b) ⊗ c).

(vii) We have

1 ⊗ a = (1, 0) × (a1, a2) = ((1 × a1) + (2 × (0 × a2)), (1 × a2) + (0 × a1))

= (a1 − 0, a2 + 0) = (a1, a2) = a.

(Multiplicative unit.)

(viii) Done in part (i).

(ix) Using the distributive law for Q and making free use of the associa-

tive and commutative laws of addition.

a ⊗ (b ⊕ c) = (a1, a2) × (b1 + c1, b2 + c2)

= (a1 × (b1 + c1) + (2 × a2) × (b2 + c2), a1 × (b2 + c2) + a2 × (b1 + c2))

= (((a1 × b1) + (a1 × c1)) + ((−a2) × b2) + ((2 × a2) × c2),

((a1 × b2) + (a1 × c2)) + ((a2 × b1) + (a2 × c1)))

= (((a1 × b1) + ((2 × a2) × b2)) + ((a1 × c1) + ((2 × a2) × c2)),

((a1 × b2) + (a2 × b1)) + ((a1 × c1) + (a2 × c1)))

= ((a1 × b1) + ((2a2) × b2), (a1 × b2) + (a2 × b1)

+ ((a1 × c1) + ((2 × a2) × c2)),+((a1 × c1) + (a2 × c1)))

= (a ⊗ b) ⊕ (a ⊗ c)

We note that 1 = (1, 0) , (0, 0) = 0.

Part (iii) Immediate. For example

f (a × b) = (a × b, 0) = (a, 0) ⊗ (b, 0) = f (a) ⊗ f (b).

Part (iv) Observe that (0, 1) ⊗ (0, 1) = (1, 0) = f (2).

Part (v) Suppose that (a, b) ⊗ (a, b) = f (3). Then (a2
+ 2b2, 2ab) = (3, 0)

so ab = 0 and either a = 0 and 2b2
= 3 or b = 0 and a2

= 3. Theorem 4.4.12

tells us that neither condition can be satisfied.
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Part (vi) ⋆ (The only direct proof I can think of involves pages of case

by case arguments.)
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Exercise 7.2.11

(i) 12 miles, 4 furlongs, 9 chains, 5 yards, 1 foot and 10 inches.

(ii) 12797.199 metres.

Exercise 7.2.12

(i) We have

3

19
− 4

23
=

3 × 23 − 4 × 19

19 × 23
=

69 − 76

19 × 23
< 0

so 3/19 < 4/23.

(ii) 0.361 > 0.353.

(iii) The average is

1

3

(

3

19
+

4

23
+

4

21

)

=
1

3
× 4793

9177
=

4793

27531
.

(iv) The average is

1

3
× (0.353 + 0.361 + 0.362) =

1

3
× 1.076 = 0.359

to 3 places of decimals.

Exercise 7.2.13

(i) 56 pounds and 12 shillings is 56 × 20 + 12 = 1132 shillings

1132 shillings and 5 pence is 1132 × 12 + 5 = 13589 pence

13589 pence and 2 farthings is 13589 × 4 + 2 = 54358 farthings

After a year we have 1.03 × 54358 = 55988.74 farthings

Rounding up we have 55989 farthings

that is to say 13997 pence and 1 farthing

13997 pence is 1166 shillings and 5 pence

1166 shillings is 58 pounds and 6 shillings

so the debt is now 58 pounds, 6 shillings, 5 pence and 1 farthing (correct to

the nearest farthing).

(ii) The debt is 1.03 × 56.53 = 58.2259, that is to say 58 dollars and 23

cents correct to the closest cent.
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Exercise 7.2.15

Observe that log10 a ÷ b = log10 a − log10 b.

Take a = 8.626, b = 3.679. To the appropriate accuracy log10 8.626 =

0.9358, log10 3.679 = 0.5657 so

log(a ÷ b) = log10 a − log10 b = 0.3701 = log10 2.345

and 8.626 ÷ 3.679 = 2.345.

If we consider 2.345 ÷ 3.679

log10 2.345 ÷ 3.679 = log10 2.345 − log10 3.679 = 0.3701 − 0.5657

= −0.1956 = 0.8044 − log10 10 = log10 6.374 − log10 10 = log10 .6374

so 2.345 ÷ 3.679 = 0.6374.

Exercise 7.2.16

(i) We first prove the result for n ≥ 0. Let P(n) be the statement that

n log10 x = log10 xn. Since

log10 1 = log10 1 × 1 = log10 1 + log10 1

we have log 1 = 0, so P(0) is true.

If P(n) is true then

(n+1) log10 x = n log10 x+log10 x = log10 xn
+log10 x = log10(xn×x) = log10 xn+1

so P(n + 1) is true. The required result follows by induction.

If n < 0, then using the result just proved,

n log10 x = −|n| log10 x = − log10 x|n| = log10(1/x|n|) = log xn.

(ii) We have

log10 10a
= a log10 10 = a = b log10 u/v = log10(u/v)b

so 10a
= (u/v)b and 10avb

= ub. By the uniqueness of factorisation, any

prime factor of v must be a prime factor of ub and so of u. Since u and

v are coprime v = 1. Thus 10a
= ub. By the uniqueness of factorisation,

any prime factor of u must be a prime factor of 10a, so must be 2 or 5. If

u = 2r5s we have

2a5a
= 2br5bs

so br = bs = a, whence r = s = k for some strictly positive integer k. We

now have u = 10k. The converse is immediate.

(iii) If x > 1 this is the result of (ii). If x = 1 then x = 100. If 1 > x > 0,

then, since log10(1/x) = − log10 x, part (ii) shows that 1/x is rational and so

x is rational.
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Exercise 7.2.17⋆

Exercise 7.3.4

(i) Observe that, if ǫ > 0, then

|an − a| = 0 < ǫ

for all n ≥ 1.

(ii) If ǫ > 0, then, by definition, we can find a N such that |a − an| < ǫ for

n ≥ N. Thus

|(−a) − (−an)| = |a − an| ≤ ǫ
for n ≥ N.

(iii) Suppose, if possible, that a � b. Then b > a. Set ǫ = (b − a)/4.

Since ǫ > 0, there exists an N1, N2 such that |an − a| < ǫ for n ≥ N1 and

|bn − b| < ǫ for n ≥ N2. Taking q = max{M, N1, N2} we have

b−a ≤ (b−a)−(aq−bq) = (b−bq)−(a−aq) ≤ |b−bq|+|a−aq| < 2ǫ ≤ (b−a)/2

which is impossible. Thus a ≥ b. The same argument gives b ≥ a, so, by

trichotomy, a = b.

(iv) Just use (i) and (iii).

Exercise 7.3.6

The limit of the sum is the sum of the limits, so, if tn → t,

h(tn) = f (tn) + g(tn)→ f (t) + g(t) = h(t)

as n→ ∞. Thus h is continuous.

The limit of the product is the product of the limits, so, if tn → t,

k(tn) = f (tn) × g(tn)→ f (t) × g(t)

as n→ ∞. Thus k is continuous.
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Exercise 7.4.5

If b ≤ 0 just take n = 1. From now on we suppose b > 0.

Suppose F satisfies the axiom of Archimedes and a, b > 0. Since a/b > 0

we can find an integer n ≥ 1 such that a/b > 1/n and so na > b.

Conversely, suppose that, given a, b ∈ F with a > 0. We can then find an

n ∈ N+ such that na > b. If ǫ > 0 then, taking a = ǫ and b = 1, we can find

an n ∈ N+ such that nǫ > 1 and so ǫ > 1/n.

Exercise 7.4.6

If c = 0 take n = m = 0. If c > 0 take m = 0 and apply Exercise 7.4.5

with c = b, a = 1. If c < 0 consider −c.

Exercise 7.4.7

Suppose that every increasing sequence bounded above tends to a limit.

If an is a decreasing sequence bounded below by A, then −an is an in-

creasing sequence bounded above by −A. Thus −an → b as n → ∞ for

some b. It follows that an → −b and so an tends to a limit.

Suppose that every decreasing sequence bounded below tends to a limit.

If an is an increasing sequence bounded above by A, then −an is an de-

creasing sequence bounded below by −A. Thus −an → b as n → ∞ for

some b. It follows that an → −b and so an tends to a limit.
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Exercise 7.4.9

Suppose that 1 > x ≥ 0. A simple induction shows that that xn+1 ≥ xn ≥ 0

for all integers n ≥ 1. Thus the xn form a decreasing sequence bounded

below by 0 and so must tend to a limit α. Thus, given any ǫ > 0, we can

find an N such that |α − xN | < ǫ and so, automatically, |α − x2n| < ǫ for all

n ≥ N. Thus x2n → α.

However, taking an = bn = xn in Lemma 7.3.3 (iii), we see that

x2n
= xn × xn → α × α = α2,

so the uniqueness of limits (Lemma 7.3.3 (i)) tells us that

α2
= α.

Thus α = 0 or α = 1. Since 1 > x ≥ xn for all n ≥ 1, Exercise 7.3.4 tells us

that 1 > x ≥ α and so α = 0.

A simple induction gives |x|n = |xn| so, if |x| < 1, we have |xn| = |x|n → 0.
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Exercise 7.4.13

Suppose a, b > 0.

We have
√

a,
√

b > 0. If
√

b ≥ √a, then

b =
√

b ×
√

b ≥
√

a ×
√

b ≥
√

a ×
√

a = a.

Thus, if a > b > 0, we must have
√

a >
√

b.

Exercise 7.4.14

(i) Since xn → x certainly implies xn → x, we have f1 continuous. If

fn is continuous, it follows that fn+1 is a product of fn and f1, and fn+1 is

continuous. By induction, fn is continuous.

Automatically, f1(y) > f1(x) > 0 for y > x > 0. If y > x > 0 and

fn(y) > fn(x) > 0, then

fn+1(y) = y × fn(y) > x × fn(y) > x × fn(x) = fn+1(x)

and similarly fn+1(x) = x × fn(x) > 0. By induction fn(y) > fn(x) > 0

whenever y > x > 0.

(ii) Since a + 1 > 1, a simple induction shows that (a + 1)n ≥ a + 1 for

n ≥ 1. Since fn is continuous and fn(a + 1) > a > fn(0), the intermediate

value theorem tells us that fn(x) = a has a solution.

(iii) We have x2
= (−x)2 so, by a simple induction, x2n

= (−x)2n, for all

n ≥ 1. Thus, if m is even, xm ≥ 0 for all x and xm
= −a has no solution.

Again, (−x)2n+1
= (−x)× (−x)2n

= −x2n+1 for n ≥ 1. Thus, if m ≥ 1 and m

is odd, then, if ym
= a, we have (−y)m

= −a. Thus xm
= −a has a solution.

Since fn(t) > fn(s) for t > s > 0 fn(x) = a has exactly one root y with

y > 0. Hence xn
= a has a unique solution if and only if n is odd.



103

Exercise 7.6.5

(i) No supremum. If b ∈ F, then |b| + 1 ∈ A and |b| + 1 > b.

(ii) Supremum 1, since 1 ∈ A (so b ≥ a for all a ∈ A yields b ≥ 1) and

1 ≥ a for all a ∈ A. We have observed that a ∈ A.

(iii) Supremum 1, since 1 ≥ a for all a ∈ A, and if b < 1 then (b+1)/2 ∈ A

and b < (b + 1)/2. We have 1 < A.

Exercise 7.6.7

Suppose F is an ordered field with the supremum property and E is a non-

empty subset bounded below, by b say. Then if A consists of the points −e

with e ∈ E, A is non-empty bounded below by −b. Thus A has a supremum

a0 say. We have

(i) a0 ≥ a for all a ∈ A.

(ii) If d ≥ a for all a ∈ A then d ≥ a0.

Set e0 = −a0,

(1) −e0 = a0 ≥ −e for all e ∈ E, so e0 ≤ e for all e ∈ E.

(2) If c ≤ e for all e ∈ E, then −c ≥ a for all a ∈ A, so −c ≥ a0 = −e0 and

e0 ≥ c.

Exercise 7.6.10

Suppose an → a. If ǫ > 0, then ǫ/2 > 0 so we can find an N with

|an − a| < ǫ/2 for all n ≥ N. Now

|an − am| = |(an − a) + (a − an)| ≤ |an − a| + |an − a| < ǫ/2 + ǫ/2 = ǫ
for all n ≥ N. The sequence is Cauchy.
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Exercise 7.6.13

By definition, there exists an N such that |an − am| ≤ 1 for all n, m ≥ N.

Thus

|am| ≤ |am − aN | + |aN | ≤ |aN | + 1

for all m ≥ N. If we set

A = max
1≤n≤N

|an| + 1,

we then have |am| ≤ A for all m ≥ 1.

Exercise 7.6.15

(i) We work in Q. If ǫ > 0, then ǫ = u/v with u, v strictly positive

integers. Thus ǫ ≥ 1/v. We have shown that 1/n→ 0 as n→∞.

(ii) The set E of strictly positive integers r with r2 ≤ 22n+1 is non-empty

since 1 ∈ E and bounded above by 2n+1. Thus E has a greatest member rn

and, by definition,

r2
n ≤ 2n+1 < (rn + 1)2.

(iii) We have

a2
n = r2

n2−2n ≤ 2 < 2−2n(rn + 1)2

= r2
n2−2n

+ 2rn2−2n
+ 2−2n

= a2
n + 2rn2−2n

+ 2−2n

≤ a2
n + 22−n

+ 2−2n.

Thus |a2
n − 2| ≤ 22−n

+ 2−2n → 0 as n → ∞, so a2
n → 2. By the product rule

for limits, it follows that, if an → a as n → ∞, then a2
= 2. Since this is

impossible, the sequence an has no limit.

(iv) Note that (2rn)2 ≤ 22(n+1)+1 so rn+1 ≥ 2rn and an ≤ an+1. Since

r2
n ≤ 22n+1 < 22n+2, rn < 2n+1 and an < 2. (Or we could have used the

fact that a2
n < 2.) Thus we have an increasing sequence an bounded above

which does not converge. Thus Q does not satisfy the fundamental axiom

of analysis.

(v) If b ≥ an for all n then b > 0 and b2 ≥ a2
n. Since a2

n → 0, we must have

b2 ≥ 2. Since the equation x2
= 2 has no solution, we must have b2 > 2. If

c =
1

2

(

b +
2

b

)

we have c > 0 and

b − c =
b

2
− 1

b
=

b2 − 2

b
> 0
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so b > c. However

c2
=

1

4

(

b2
+ 4 +

4

b2

)

= 2 +
1

4

(

b2 − 4 +
4

b2

)

= 2 +
1

4

(

b − 2

b

)2

≥ 2

so c ∈ A. Thus A has no supremum.

(vi) Note that (2rn + 2)2
= 22(rn + 1)2 > 22(n+1)+2 so 2rn + 2 ≥ rn+1

and an + 2−n ≥ an+1. Since we showed earlier that an+1 ≥ an, we have

|an − an+1| ≤ 2−n. By induction or summing a geometrical progression,

|an − am| ≤ 2−n+1(1 − 2−(m−n))

so

|an − am| ≤ 2−n+1(1 − 2−(m−n))

for m ≥ n+1. Thus (using the Archimedian property) the an form a Cauchy

sequence which we have already shown has no limit.
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Exercise 8.1.1

(i) Observe that an − an = 0→ 0. Thus a ∼ a. (Reflexivity.)

(ii) If a ∼ b, then

bn − an = −(an − bn) = (−1) × (an − bn)→ (−1) × 0 = 0

as n→ ∞, so b ∼ a. (Symmetry.)

(iii) If a ∼ b and b ∼ c, then

an − cn = (an − bn) + (bn − cn)→ 0 + 0 = 0

so a ∼ c. (Transitivity)

Exercise 8.1.3

(i) Let ǫ > 0. Since a, b ∈ S, we can find N1 and N2 such that |an − am| <
ǫ/2 for n, m ≥ N1 and |bn − bm| < ǫ/2 for n, m ≥ N2.

Taking N = max{N1,N2}, we have

|(an+bn)−(am+bm)| = |(an−am)+(bn−bm)| ≤ |an−am|+|bn−bm| < ǫ/2+ǫ/2 = ǫ
for all n ≥ N. Thus a + b ∈ S.

(ii) Suppose a, a′, b, b′ ∈ S and a ∼ a′, b ∼ b′. If ǫ > 0, we can find N1

and N2 such that |an − a′n| < ǫ/2 for n ≥ N1 and |bn − b′n| < ǫ/2 for n ≥ N2.

Taking N = max{N1,N2}, we have

|(an+bn)−(a′n+b′n)| = |(an−a′n)+(bn−b′n)| ≤ |an−a′n|+|bn−b′n| < ǫ/2+ǫ/2 = ǫ
for all n ≥ N. Thus a + b ∼ a′ + b′.
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Exercise 8.1.6

(i) an + bn = bn + an, so a + b = b + a and

[a] + [b] = [b] + [a].

(Commutative law of addition.)

(ii) an + (bn + cn) = an + (bn + cn), so a + (b + c) = (a + b) + c and

[a] + ([b] + [c]) = ([a] + [b]) + [c].

(Associative law of addition.)

(iii) 0 + an = an, so 0 + a = a and

[0] + [a] = [a].

(Existence additive zero.)

(v) an × bn = bn × an, so a × b = b × a and

[a] × [b] = [b] × [a]

(Commutative law of multiplication.)

(vi) an × (bn × cn) = an × (bn × cn) so a × (b × c) = (a × b) × c and

[a] × ([b] × [c]) = ([a] × [b]) × [c].

(Associative law of multiplication.)

(vii) 1 × an = an, so 1 × a = a and

[1] × [a] = [a].

(Multiplicative unit.)

(ix) an × (bn + cn) = (an × bn)+ (an × cn), so a× (b+ c) = (a× b)+ (a× c)

and

[a] × ([b] + [c]) = ([a] × [b]) + ([a] × [c])

(Distributive law.)

Since 19 0, [1] , [0].
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Exercise 8.1.12

(x) (Transitivity of order,) If [a] > [b] and [b] > [c], then a ≻ b and

b ≻ c, that is to say, we can find strictly positive integers M1 and N1 such

that

a j ≥ b j +
1

M1

for j ≥ N1 and we can find strictly positive integers M2 and N2 such that

b j ≥ c j +
1

M2

for j ≥ N2.

Taking N = max{N1,N2}, we have

a j ≥ b j +
1

M1

≥ c j +
1

M1

+
1

M2

for j ≥ N. Thus a ≻ c and [a] > [c]

(xii) (Order and addition.) If [a] > [b], then a ≻ b, that is to say, we can

find strictly positive integers M and N such that

a j ≥ b j +
1

M

for j ≥ N. It follows that

a j + c j ≥ (b j + c j) +
1

M

so a + c ≻ b + c and [a] + [c] > [b] + [c].

(xiii) (Order and multiplication.) If [a] > [b] and [c] > [0], then a ≻ b

and a ≻ 0. Thus we can find we can find strictly positive integers M1 and

N1 such that

a j ≥ b j +
1

M1

for j ≥ N1 and we can find strictly positive integers M2 and N2 such that

c j ≥
1

M2

for j ≥ N2.

Taking N = max{N1,N2} we have

(a j − b j)c j ≥
1

M1

× 1

M2

so

a jc j ≥ b jc j +
1

M1M2

for j ≥ N. Thus Thus a × c ≻ b × c and

[a] × [c] > [b] × [c].
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Exercise 8.1.13

(i) If qn = q, then qn → q as n → ∞, so the qn form a Cauchy sequence

and u(q) ∈ S.

(ii) If f (q) = f (q′), then q − q′ → 0 as n → ∞, so q − q′ = 0 and q = q′.
Thus f is injective.

(iii) We have

f (q + q′) = [u(q + q′)] = [u(q) + u(q′)] = [u(q)] + [u(q′)] = f (q) + f (q′)

and

f (q × q′) = [u(q × q′)] = [u(q) × u(q′)] = [u(q)] × [u(q′)] = f (q) × f (q′).

If q > q′, then q − q′ = u/v with u, v strictly positive integers, so q >

q′ + 1/(2v) and so u(q) ≻ u(q′) and f (q) > f (q′).
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Exercise 8.1.18

(i) Let x, y ∈ GWe have

h(h−1(x + y)) = x + y = h(h−1(x)) + h(h−1(y)) = h(h−1(x) + h−1(y))

so, since h is injective,

h−1(x + y) = h−1(x) + h−1(y).

Similarly,

h(h−1(x × y)) = x × y = h(h−1(x)) × h(h−1(y)) = h(h−1(x) × h−1(y))

so, since h is injective,

h−1(x × y) = h−1(x) × h−1(y).

Further, if h−1(x) > h−1(y), then x = h(h−1(x)) > h(h−1(y)) = y, if h−1(y) >

h−1(x), then, as before, y > x and, if h−1(x) = h−1(y), then x = y. Thus, by

trichotomy, x > y implies h−1(x) > h−1(y).

(ii) If a ≥ 0, then h(a) ≥ 0, so a = |a| and |h(a)| = h(a) = h(|a|).
If a < 0, then h(a) < 0 so a = −|a| and |h(a)| = −h(a) = h(−a) = h(|a|).

(iii) Suppose ǫ ∈ G and ǫ > 0. Then h−1(ǫ) > 0. Thus we can find an N

such that

|an − a| < h−1(ǫ)

for all n ≥ N. Using part (ii), we obtain

|h(an) − h(a)| = |h(an − a)| = h(|an − a|) < h(h−1(ǫ)) = ǫ

for all n ≥ N. Thus h(an)→ h(a) as n→ ∞.

(iv) Suppose ǫ ∈ G and ǫ > 0. Then h−1(ǫ) > 0. Thus we can find an N

such that

|xn − xm| < h−1(ǫ)

for all n, m ≥ N. Using part (ii), we obtain

|h(xn) − h(xm)| = |h(xn − xm)| = h(|xn − xm|) < h(h−1(ǫ)) = ǫ

for all n, m ≥ N. Thus the h(xn) form a Cauchy sequence.
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Exercise 8.1.20

We must check that g is an injection.

Suppose that g(a) = g(b) so that

a1 + a2

√
2 = b1 + b2

√
2.

If a2 , b2 we have √
2 =

a1 − b1

b2 − b1

∈ Q
which is impossible. Thus a2 = b2, so a1 = b1 and a = b. Thus g is

injective.

The rest of the proof is immediate. For example,

g(a ⊗ b) = g((a1b1 + 2a2b2, a1b2 + a2b1)

= (a1b1 + 2a2b2) + (a1b2 + a2b1)
√

2 = g(a) × g(b)

and similar but simpler remark covers addition.

The conditions defining = are precisely those which give a = b if and

only if g(a) > g(b).

Since a subfield of an ordered field is an ordered field, G is ordered by >

and so Q[
√

2] is an ordered field.
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Exercise 8.2.2

(i) Let P(n) be the statement that

S n(x) =
1 − xn+1

1 − x
.

Since

S 0(x) = 1 =
1 − x

1 − x
,

P(0) is true.

If P(n) is true,

S n+1(x) = S n(x) + xn+1
=

1 − xn+1

1 − x
+ xn+1

=
(1 − xn+1) + xn+1(1 − x)

1 − x
=

(1 − xn+1) + (xn+1 − xn+2)

1 − x

=
1 − xn+2

1 − x

so P(n + 1) is true.

The required result follows by induction with base case 0.

(ii) Now, if 1 > x ≥ 0, then xn → 0 (see Exercise 7.4.9) and

S n(x) =
1 − xn+1

1 − x
→ 1

1 − x
.

Setting x = 1/2, we get

S n(1/2)→ 2

and, setting x = 1/10, we get

9S n(1/10)→ 1

as n→ ∞.
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Exercise 8.2.3

Set

bn =
a1

10
+

a2

102
+ . . .

an

10n
.

A simple induction shows that

bn ≤
9

10
+

9

102
+ . . .

9

10n
,

so, by summing a geometric series, we see that bn ≤ 1. Since the b j form an

increasing sequence, the fundamental axiom of analysis tells us that b j → x

for some x ∈ R. Since 0 ≤ b j ≤ 1, we have 0 ≤ x ≤ 1.

Exercise 8.2.4

(i) Let P(n) be the statement that 1 > bn ≥ 0 and 9 ≥ an ≥ 0. If P(n) is

true, then 10 > 10bn ≥ 0, so 9 ≥ an+1 ≥ 0 and 1 > bn+1 ≥ 0 by definition.

Thus P(n) implies P(n + 1). Essentially the same argument shows that P(1)

is true, so, by induction, 1 > bn ≥ 0 and 9 ≥ an ≥ 0 for all n ≥ 1.

(ii) Let Q(n) be the statement that 10na = 10nan + bn. The definition of

a1 and b1 tells us that Q(1) is true. If Q(n) is true, then

10n+1a = 10 × (10na) = 10 × (10nxn + bn)

= 10n+1xn + 10bn = 10n+1xn + 10an+1 + bn+1 = 10n+1xn+1 + bn+1.

Thus, by induction, Q(n) is true for all n.

Since 0 ≤ bn < 1, we have

xn ≤ a < xn + 10−n.

Thus |xn − a| < 10−n → 0 as n→ ∞. and so xn → a as n→ ∞.

(iii) xn is the nth place entry in a decimal expansion of x.
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Exercise 8.2.5

(i) Let P(n) be the statement that bn = un/v, where un is a positive integer

with v > un ≥ 0. If P(n) is true, then, since Tan is an integer,

bn+1 = 10bn − Tan = 10
un

v
− Tan

Since Tan is an integer, it follows that bn+1 = un+1/v where un+1 is an integer.

Since 1 > bn+1 ≥ 0, we have v > un+1 ≥ 0. Thus P(n) implies P(n + 1). A

similar argument shows that P(1) is true so, by induction, bn = un/v, where

un is an integer with v > un ≥ 0.

Since there are only v possible values of un, there exist integers p and q

with v + 1 ≥ p > q ≥ 1 such that up = uq. Let Q(m) be the statement that

up+m = uq+m. Certainly Q(0) is true and, if Q(m) is true,

up+m+1

v
= bp+m+1 = S ap+m+1 = 10bp+m − Tbp+m = 10bq+m − Tbq+m =

uq+m

v
.

By induction, up+m = uq+m for all m ≥ 0, so am+(p−q) = am for all m ≥ q + 1.

(ii) If α = 10qa − n (where n is the integer part of 10qa) is rational,

so is α. Thus there is no loss in generality in taking q = 0. If we take

A = a1 + 10−1a2 + . . .+ 10−qaq, then (summing a geometric series and using

the axiom of Archimedes)

a1 + 10−1a2 + . . .+10−qaq + . . . + 10−rqarq = A(1 + 10−q
+ . . . + 10−q(r−1))

= A
1 − 10−qr

1 − 10−q
→ A

1 − 10−q
∈ Q,

so α ∈ Q and we are done.
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Exercise 8.2.6

(i) No. Set

c1 = 1, c2 = c3 = . . . = cN = 6, cN+1 = 9, cr = 0 for r ≥ N + 2,

c′1 = 1, c′2 = c′3 = . . . = c′N = 6, c′N+1 = 0, cr = 0 for r ≥ N + 2,

d1 = 1, d2 = d3 = . . . = dN = 3, dN+1 = 9, dr = 0 for r ≥ N + 2,

d′1 = 1, d′2 = d′3 = . . . = d′N = 3, d′N+1 = 0, dr = 0 for r ≥ N + 2

and define a′j in the appropriate manner.

Then a1 = 2, a′1 = 1.

(ii) No. Set

c1 = c2 = c3 = . . . = cM = 3, cM+1 = 9, cr = 0 for r ≥ M + 2,

c′1 = c′2 = c′3 = . . . = c′M = 3, c′M+1 = 0, cr = 0 for r ≥ M + 2,

d1 = 3, d2 = d3 = . . . = dM = 0, dM+1 = 9, dr = 0 for r ≥ M + 2

d′1 = 3, d′2 = d′3 = . . . = d′M = 0, d′M+1 = 0, dr = 0 for r ≥ M + 2

and define b′j in the appropriate manner.

Then b1 = 1, b′
1
= 0.

Exercise 8.2.9

Set f (1) = x1. Once f (r) has been defined for 1 ≤ r ≤ m, let f (m+1) = xk

where k is the least integer with the property that xk , f (r) for 1 ≤ r ≤ m.
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Exercise 9.1.4

(i) Using the commutative law of addition for R,

a + b = (a1 + b1, a2 + b2) = (b1 + a1, b2 + a2) = b + a.

(ii) Using the associative law of addition for R,

a + (b + c) = (a1, a2) + (b1 + c1, b2 + c2) = (a1 + (b1 + c1), a2 + (b2 + c2))

= ((a1 + b1) + c1, (a2 + b2) + c2) = (a1 + b1, a2 + b2) + (c1, c2)

= (a + b) + c

(iii) 0 + a = (0, 0) + (a1, a2) = (0 + a1, 0 + a2) = (a1, a2) = a.

(iv) If we write −a = (−a1,−a2), then

a + (−a) = (a1 − a1, a2 − a2) = (0, 0) = 0.

(v) Using the commutative laws of multiplication and addition for R,

a × b = ((a1 × b1) − (a2 × b2), (a1 × b2) + (a2 × b1))

= ((b1 × a1) − (b2 × a2), (b2 × a1) + (b1 × a2))

= ((b1 × a1) − (b2 × a2), (b1 × a2) + (b2 × a1)) = b × a.

(vii) We have

1 × a = (1, 0) × (a1, a2) = ((1 × a1) − (0 × a2), (1 × a2) + (0 × a1))

= (a1 − 0, a2 + 0) = (a1, a2) = a.

(Multiplicative unit.)

(ix) Using the distributive law for R and making free use of the associa-

tive and commutative laws of addition,

a × (b + c) = (a1, a2) × (b1 + c1, b2 + c2)

= ((a1 × (b1 + c1)) + ((−a2 × (b2 + c2)), (a1 × (b2 + c2)) + (a2 × (b1 + c2)))

= (((a1 × b1) + (a1 × c1)) + ((−a2) × b2) + ((−a2) × c2)),

((a1 × b2) + (a1 × c2)) + ((a2 × b1) + (a2 × c1)))

= (((a1 × b1) + ((−a2) × b2)) + ((a1 × c1) + ((−a2) × c2)),

((a1 × b2) + (a2 × b1)) + ((a1 × c1) + (a2 × c1)))

= ((a1 × b1) + ((−a2) × b2), (a1 × b2) + (a2 × b1))

+ ((a1 × c1) + ((−a2) × c2), (a1 × c1) + (a2 × c1))

= (a × b) + (a × c)

We note that 1 = (1, 0) , (0, 0) = 0.

Our rules give

(0, 1) × (0, 1) =
(

(0 × 0) − (1 × 1), (0 × 1) + (1 × 0)
)

= (−1, 0) = −1.
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Exercise 9.1.5

We observe that f (x) = f (y) implies (x, 0) = (y, 0) which, in turn, implies

x = y. Thus f is injective.

We have f (x + y) = (x + y, 0) = (x, 0) + (y, 0) = f (x) + f (y) and

f (x) × f (y) = (x, 0) × (y, 0) = ((x × y) − (0 × 0), (x × 0) + (0 × y))

= ((x × y) − 0, 0 + 0) = (x × y, 0) = f (x) × f (y).

Exercise 9.1.6

Observe that the conditions and so the arguments of Exercise 3.2.16 hold.
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Exercise 9.2.4

Throughout we take z = x + iy, w = u + iv with x, y, u, v real.

(i) (z∗)∗ = (x − iy)∗ = x + iy = z.

|z∗| = |x + i(−y)| =
√

x2 + (−y)2 =
√

x2 + y2 = |z|.
(z+w)∗ = ((x+u)+(y+v)i)∗ = ((x+u)−(y+v)i) = (x−iy)+(u−iv) = z∗+w∗.
Also

(zw)∗ =
(

(xu − yv) + (xv + yu)i
)∗
= (xu − yv) − (xv − yu)i

= (x − iy)(u − iv) = z∗w∗.

(ii) zz∗ = (x + iy)(x − iy) = x2 − (iy)2
= x2

+ y2
= |z|2.

(iii) |zw|2 = (zw)(zw)∗ = (zw)(z∗w∗) = (zz∗)(ww∗) = |z|2|w|2 = (|z||w|)2, so,

taking positive square roots, |zw| = |z||w|.
(iv) z + z∗ = (x + iy) + (x + iy)∗ = (x + iy) + (x − iy) = 2x is real.

Further z + z∗ = 2x ≤ 2|x| ≤ 2
√

x2 + y2 = 2|z|.
(v) We have

|z + w|2 = (z + w)(z + w)∗ = (z + w)(z∗ + w∗)

= zz∗ + zw∗ + z∗w + ww∗ = |z|2 + ((zw∗) + (zw∗)∗) + |w|2

≤ |z|2 + 2|zw∗| + |w|2 = |z|2 + 2|z||w∗| + |w|2

= |z|2 + 2|z||w| + |w|2 = (|z| + |w|)2,

so, taking positive square roots, |z + w| ≤ |z| + |w|.

(vi) If |z| = 0 then
√

x2 + y2 = 0, so x2
+ y2
= 0, so x2

= y2
= 0, x = y = 0

and z = 0. Automatically, |0| = 0.

(a) d(z,w) = |z − w| ≥ 0.

(b) If d(z,w) = 0, then |z − w| = 0 so z − w = 0 and z = w. d(z, z) = 0

automatically.

(c) We have | − z| = | − x − iy| =
√

(−x)2 + (−y)2 =

√

x2 + y2 = |z|. Thus

d(z,w) = d(w, z).

(d) d(z,w)+d(w, a) = |z−w|+ |w−a| ≥ |(z−w)+(w−a)| = |z−a| = d(z, a).

Exercise 9.2.5

(i) |x|C = |x + i0|C =
√

x2 = |x|R.

(ii) |x| =
√

x2 ≤
√

x2 + y2 = |z| and |y| =
√

y2 ≤
√

x2 + y2 = |z|.
Also

|x + iy| ≤ |x| + |iy| = |x| + |y|.
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Exercise 9.2.7

All much the same as in the real case.

(i) If zn → z, zn → w and z , w, then |z − w| > 0. Setting ǫ = |z − w|/3,

we can find N1 and N2 such that |zn − z| < ǫ for n ≥ N1 and |zn − w| < ǫ for

n ≥ N2. If N = max{N1,N2} then

|z − w| ≤ |zn − w| + |zn − z| ≤ 2

3
|z − w|

which is impossible.

(ii) Let ǫ > 0. We can find N1 and N2 such that |zn − z| < ǫ/2 for n ≥ N1

and |wn − w| < ǫ/2 for n ≥ N2. Taking N = max{N1,N2}, we have

|(zn+wn)− (z+w)| = |(zn− z)+ (wn−w)| ≤ |zn− z|+ |wn−w| < ǫ/2+ ǫ/2 = ǫ
for n ≥ N. Thus zn + wn → z + w as n→ ∞.

(iii) Let ǫ > 0. We can find N1, N2 and N3 such that

|zn − z| ≤ 1 for n ≥ N1,

|zn − z| ≤ ǫ

2|w| + 2
for n ≥ N2,

|wn − w| ≤ ǫ

2|z| + 2
for n ≥ N3.

Taking N = max{N1,N2,N3}, we have

|znwn − zw| = |zn(w − wn) + w(z − zn)| ≤ |zn(w − wn)| + |w(z − zn)|
= |zn||w − wn| + |w||z − zn| ≤ (|z| + |z − zn|)||w − wn| + |w||z − zn|

≤ (|z| + 1)
ǫ

2|z| + 2
+ |w| ǫ

2|w| + 2
< ǫ

for n ≥ N. Thus znwn → zw as n→ ∞.

(iv) If ǫ > 0, then |zn − z| = 0 < ǫ for n ≥ 1.

Exercise 9.2.8

(i) If |a| ≥ |b|, then |a− b|+ |b| ≥ |a|, so |a− b| ≥ |b| − |a| =
∣

∣

∣|b| − |a|
∣

∣

∣. Since

|a − b| = |b − a|, we have |a − b| ≥
∣

∣

∣|b| − |a|
∣

∣

∣ for |b| ≥ |a|.
(ii) Let ǫ > 0. We can find N such that |zn − z| < ǫ for n ≥ N. Automati-

cally
∣

∣

∣|zn| − |z|
∣

∣

∣ ≤ |zn − z| < ǫ.
for n ≥ N.

(iii) Use (i) and Exercise 7.3.4 (iii).
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Exercise 9.2.9

If xn → x and yn → y, then, given ǫ > 0, we can find N1 and N2 such that

|xn − x| < ǫ/2 for n ≥ N1 and |yn − y| < ǫ/2 for n ≥ N2. If N = max{N1,N2}
then

|zn − z| = |(xn − x) + i(yn − y)| ≤ |xn − x| + |yn − y| < ǫ
for all n ≥ N. Thus zn → z as n→ ∞.

If zn → z, then, given ǫ > 0, we can find N such that |zn− z| < ǫ for n ≥ N

and so

|xn − x|, |yn − y| ≤ |zn − z| < ǫ
for all n ≥ N. Thus xn → x and yn → y as n→∞.

We now use the results just proved. If zn → z, then xn → x and yn → y,

so xn → x and −yn → −y, whence z∗n → z∗ as n→ ∞.

Exercise 9.2.10

The algebraic part of the first paragraph was done in Exercise 9.1.5. Con-

tinuity follows from the fact that |x− x′| = |(x, 0)−(x′, 0)|, so (xn, 0)→ (x, 0)

whenever xn → x as n→ ∞.

We now look at the second paragraph. Our initial argument follows a

standard pattern. If g(1) = 0 then g(t) = g(t × 1) = g(t) × 0 = 0 for all t.

Thus g(1) , 0. Since g(1) × g(1) = g(1 × 1) = g(1) cancellation now gives

g(1) = 1. Simple induction using the observation that g(n+1) = g(n)+g(1)

now gives g(n) = (n, 0) for all strictly positive integers n. The relation

g(n − m) = g(n) − g(m) gives g(n) = n for all integers n. We now use the

relation g(p/q)g(q) = g(p) to give g(p/q) = p/q for all integers p and q

with q , 0. Thus g(x) = f (x) whenever x is rational.

We now use the continuity of g. By Theorem 7.4.11, every element of

R is the limit of a sequence in Q. If x ∈ R, choose xn ∈ Q with xn → x.

We have g(xn)→ g(x) and g(xn) = (xn, 0)→ (x, 0) so, by the uniqueness of

limits, g(x) = (x, 0) = f (x) as required.
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Exercise 9.2.13

Exactly as in Exercise 7.6.10.

Suppose an → a. If ǫ > 0, then ǫ/2 > 0, so we can find an N with

|an − a| < ǫ/2 for all n ≥ N. Now

|an − am| = |(an − a) + (a − an)| ≤ |an − a| + |an − a| < ǫ/2 + ǫ/2 = ǫ
for all n ≥ N. The sequence is Cauchy.
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Exercise 9.2.15

(i) Given ǫ > 0, we can find an N such that |zn − zm| < ǫ for n, m ≥ N.

Thus

|xn − xm|, |yn − ym| ≤ |zn − zm| < ǫ
for n, m ≥ N. The xn, yn form Cauchy sequences.

(ii) Since R is complete, we can find x, y ∈ R such that xn → x and

yn → y as n→ ∞.

(iii) Setting z = x + iy, we have

|zn − z| ≤ |xn − x| + |yn − y| → 0

as n→ ∞.

Exercise 9.2.16

(ii) We can find an N such that |zn−zm| < 1 for all n, m ≥ N. In particular,

setting

R = 1 + max
1≤ j≤N

|z j|,
we have |zn| ≤ R for all n.

(iii) By Theorem 9.2.11 (Bolzano–Weierstrass for C), we can find z ∈ C
and n( j)→ ∞ such that zn( j) → z as j→∞.

(iv) Given ǫ > 0, we can find an N such that |zn − zm| < ǫ/2 for all

n, m ≥ N. We can now find a J such that n(J) ≥ N and |zn(J) − z| < ǫ/2.

Thus, if m ≥ N,

|z − zm| ≤ |z − zn(J)| + |zn(J) − zm| < ǫ/2 + ǫ/2 = ǫ.
Thus zm → z as m→ ∞.
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Exercise 9.3.2

Exactly as in Exercise 7.3.6.

The limit of the sum is the sum of the limits, so, if zn → z,

h(zn) = f (zn) + g(zn)→ f (z) + g(z) = h(z)

as n→ ∞. Thus h is continuous.

The limit of the product is the product of the limits so if zn → z,

k(zn) = f (zn) × g(zn)→ f (z) × g(z) = k(z)

as n→ ∞. Thus k is continuous.

Exercise 9.3.3

Observe that

|g(zn) − g(z)| =
∣

∣

∣| f (zn)| − | f (z)|
∣

∣

∣ ≤ | f (zn) − f (z)| → 0

as n→ ∞.

Exercise 9.3.7

We follow the proof of Theorem 9.3.5 word for word d replacing |z| ≤ R

by |z| = R. We prove the existence of w. (The proof of the existence of w′

follows by a similar argument or considering −g.)

By Theorem 9.3.6, the set E of g(z) with |z| = R forms a non-empty

subset of R which is bounded above. By the supremum property of R, it

follows that E has a supremum, that is to say, there exists an a ∈ R with the

following properties.

(1) a ≥ g(z) for all |z| = R.

(2) If b ≥ g(z) for all |z| = R, then b ≥ a.

By condition (2), there exist zn with |zn| = R such that g(zn) ≥ a−1/n. Us-

ing (1), we see that a−1/n = g(zn) = a and so, by the axiom of Archimedes

g(zn)→ a. By the Bolzano–Weierstrass theorem for C, we can find a w ∈ C
and a sequence n(1) < n(2) < . . . such that zn( j) → w as j→ ∞. By the con-

tinuity of g, we have g(zn( j)) → g(w). By the uniqueness of limits g(w) = a

By (1), g(a) ≥ g(z) for all |z| = R.

Finally we note that |zn( j)| = R and |zn( j)| → a so |a| = R and we are done.
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Exercise 9.3.8

(i) Let zk = ak + ibk with ak, bk ∈ Q. We have

z1 + z2 = (a1 + a2) + i(b1 + b2) ∈ A,
z1 × z2 = (a1a1 − b1b2) + i(a1b2 + a2b1) ∈ A,
−z1 = (−a1) + i(−b1) ∈ A

and, if z1 , 0,

z−1
1 =

a1

a2
1
+ b2

1

+ i
(−b1)

a2
1
+ b2

1

∈ A.

The field axioms are automatically satisfied. (Note 0, 1 ∈ A.)

(ii) (Lots of ways of doing this.) Suppose z2
= 2 and z ∈ A. Automati-

cally z ∈ C so (working in C) (z −
√

2)(z +
√

2) = 0 so, since C is a field,

z −
√

2 = 0 or z +
√

2 = 0. Thus z =
√

2 or z = −
√

2 and z < A. The result

now follows by reductio ad absurdum.

(iii) If ǫ > 0 then, by Theorem 7.4.11, we can find a ∈ Q such that

|a −
√

2| < min{1/2, ǫ/5}.
Thus, since 1 <

√
2 < 2, we have 1/2 < a < 3, and a +

√
2 ≤ 5, whence

|a2 − 2| = |a −
√

2| × |a +
√

2| ≤ 5|a −
√

2| < ǫ,
it follows that infz∈A |z2 − 2| = 0. Thus 2 ∈ A, but there is no w ∈ A with

|w2 − 2| ≤ |z2 − 2| for all z ∈ A.

Exercise 10.1.2

We have P(0) = 02
+ 0 = 0 + 0 = 0, P(1) = 12

+ 1 = 1 + 1 = 0 and

Q(0) = 0 = R(0), Q(1) = 1 = R(1).
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Exercise 10.1.3

(i) Let α(n), be the statement that a polynomial of degree at most n is

either the zero polynomial or a polynomial of degree r for some r with

0 ≤ r ≤ n.

α(0) is automatically true. Suppose that α(n) is true. If P is a polynomial

of degree at most n + 1, then, by definition, either P is of degree n + 1, or

P = Q where Q is a polynomial of degree of degree at most n and so, by

our inductive hypothesis, P is either the zero polynomial or P has degree r

with n ≥ r ≥ 0. Thus α(n + 1) is true.

The required result follows by induction.

(ii) Suppose that P is a polynomial of degree n with leading coefficient a

and R is a polynomial of degree m with leading coefficient b. If n > m ≥ 0,

then P(t) = atn
+Q(t) with Q a polynomial of degree at most n− 1. Since R

is a polynomial of degree at most n−1, U = Q+R is a polynomial of degree

at most n − 1 and, since P(t) = atn
+ U(t), P is a polynomial of degree n.

If n = m ≥ 1 then P(t) = atn
+ Q(t), R(t) = btn

+ S (t) with R and

S polynomials of degree at most n − 1. It follows that U = Q + S is a

polynomial of degree at most n − 1. We have P(t) + Q(t) = (a + b)tn
+U(t)

so, if a + b , 0, then P + R is a polynomial of degree n with leading

coefficient a + b and, if a + b = 0, then P + R is a polynomial of degree at

most n − 1. If n = m = 0, then, if a + b , 0, P + Q = a + b is polynomial of

degree 0 and, if a + b = 0, P + Q = 0.

(iii) The case when P is the zero polynomial is trivial. Suppose c ∈ F,
c , 0. Let α(n) be the statement that, if n ≥ r ≥ 0 and P is a polynomial

of degree r with leading coefficient a, then the function R = cP (defined by

R(u) = cP(u)) is a polynomial of degree r with leading coefficient ca.

α(0) is automatically true. Suppose that α(n) is true. If P is a polynomial

of degree r with n+1 ≥ r ≥ 0 and leading coefficient a, then P(t) = atr
+Q(t)

with Q a polynomial of degree at most r − 1 (so at most n). If Q is not the

zero polynomial, then, by the inductive hypothesis, cQ is a polynomial of

degree at most r − 1 (so at most n). If Q = 0, then cQ = 0. In either case,

cP(t) = catn+1
+ cQ(t)

defines a polynomial of degree n + 1 with leading coefficient ca. Thus

α(n + 1) is true.

The required result follows by induction.

(iv) Let α(n) be the statement that, if n ≥ r ≥ 0 and P is a polynomial of

degree r with leading coefficient a, then the function R defined by R(u) =

uP(u) is a polynomial of degree r + 1 with leading coefficient a.
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If P(u) = a then uP(u) = au so P(0) is true. Suppose α(n) is true and

P is a polynomial of degree n + 1 with leading coefficient a. Then P(u) =

aun+1
+Q(u) where Q is a polynomial of degree at most n. We have uP(u) =

aun+2
+uQ(u) and, by the inductive hypothesis, we know that the polynomial

S given by S (u) = uQ(u) has degree at most n + 1. Thus the function

R defined by R(u) = uP(u) is a polynomial of degree n + 2 with leading

coefficient a.

The required result follows by induction.

(v) Suppose b ∈ F. Let α(n) be the statement that the formula Pn(u) =

(u − b)n defines a polynomial of degree n.

α(1) is true by inspection. Suppose that α(n) is true. Since

Pn+1(u) = uPn(u) + (−b)Pn(u),

earlier parts of the lemma tell us that α(n + 1) is true.

The required result follows by induction.

(vi) Let α(n) be the statement that, if n ≥ r ≥ 0 and P is a polynomial of

degree r, then the function R defined by R(u) = P(u − b) is a polynomial of

degree r.

α(0) is true by inspection. Suppose α(n) is true. If P is a polynomial

of degree n + 1, we have P(u) = aun+1
+ Q(u) where Q is a polynomial of

degree at most n. It follows that

P(u − b) = a(u − b)n+1
+ Q(u − b)

so, using the inductive hypothesis and earlier parts of the lemma, the func-

tion R defined by R(u) = P(u − b) is a polynomial of degree n + 1.

(vii) If P is a polynomial of degree n with leading coefficient a and Q is

a polynomial of degree m with leading coefficient b, then

P(u) = aun
+ R(u), Q(u) = bum

+ S (u)

with R of degrees at most n − 1 and U of degree at most m − 1. We have

P(u)Q(u) = abun+m
+ T (u)

where T (u) = aunS (u) + bumR(u) + R(u)S (u). By earlier parts aunS (u) cor-

responds to a polynomial of degree at most n+m− 1, bumR(u) corresponds

to a polynomial of degree at most n+m−1, and R(u)S (u) to a polynomial of

degree at most n+m−2. Thus T is a polynomial of degree at most n+m−1

and P × Q is a polynomial of degree n + m with leading coefficient ab.
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Exercise 10.1.6

(i) By Theorem 10.1.5, we can find a polynomial Q of degree n − 1 such

that

P(u) = (u − a)Q(u) + P(a) = (u − a)Q(u).

(ii) Let R(u) = P(u) − P(a). Then R is a polynomial of degree n with

R(a) = 0. By part (i), we can find a polynomial Q of degree n − 1 such that

P(u) − P(a) = R(u) = (u − a)Q(u).

Exercise 10.1.8

Consider R given by R(u) = P(u)−Q(u). We know that R is a polynomial

of degree at most n. Since R vanishes at the n+ 1 points a j, Theorem 10.1.7

tells us that R = 0 and this is the stated result.

Exercise 10.1.9

We use induction.

The result is immediate if n = 1. Suppose that it is true for n = N and

P is a polynomial of degree at most N + 1. Since P(a) = 0, we know

(for example, by Exercise 10.1.6) that P(u) = (u − a)R(u), where R is a

polynomial of degree at most N. Either R(a) , 0, and we are done, or

R(a) = 0, so, by the inductive hypothesis,

R(u) = (u − a)mQ(u)

and

P(u) = (u − a)m+1Q(u)

where N ≥ m ≥ 1 and Q is a polynomial of degree at most n − m such that

Q(a) , 0. We have proved the result for n = N + 1.

The full result follows by induction.
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Exercise 10.1.10

Theorem 10.1.7 tells us that if P is a polynomial of degree at most n and

we can find distinct a1, a2, . . . , an+1 ∈ F such that P(a j) = 0 for 1 ≤ j ≤
n + 1, then P = 0. Thus, if P has degree n ≥ 0, P(u) , 0 for some u ∈ F.

Exercise 10.1.11

(i) Since zn → z certainly implies zn → z, we have f1 continuous. Since

the product of continuous functions is continuous and fn+1(z) = f1(z)× fn(z),

it follows that, if fn is continuous, so is fn+1. Thus, by induction, fn is

continuous for all n ≥ 1.

(ii) The constant polynomials are automatically continuous. If all poly-

nomials of degree n or less are continuous, then, since any polynomial P of

degree n + 1 or less can be written as

P(z) = a fn+1(z) + Q(z)

where a ∈ F and Q is a polynomial of degree n or less and since sums and

products of continuous functions are continuous, it follows that all polyno-

mials of degree n + 1 or less are continuous. The required result follows by

induction.

Exercise 10.1.13

Let n be a positive odd integer. We know that P(u) = Bun
+ Q(u) with

B , 0 and Q a polynomial of degree at most n − 1. By considering B−1P,

we may suppose that B = 1. By Lemma 10.1.12, we can find an A > 0

and R ≥ 1 such that |Q(u)| ≤ A|u|m−1 ≤ Aun−1. Taking b = max{R, 2A} and

a = −b, we have

P(b) ≥ bn − Abn−1
= bn−1(b − A) > 0

and, similarly, P(a) ≤ −bn
+ Abn−1

= bn−1(A − b) < 0.

Since P is continuous, the intermediate value theorem tells us that there

exists a c with a < c < b such that P(c) = 0.
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Exercise 10.1.14

Let P(n) be the statement that we can find an An > 0 such that

|(1 + u)n − 1 − nu| ≤ An|u|2

for all u ∈ F with |u| ≤ 1/2.

If we take A1 = 1, we obtain, trivially,

|(1 + u)1 − 1 − (1 × u)| = 0 ≤ A1|u|2

for |u| ≤ 1/2. Thus P(1) is true.

Now suppose that P(n) is true. If |u| ≤ 1/2, we then have

|(1 + u)n+1 − 1 − (n + 1)u| = |(1 + u)((1 + u)n − 1 − nu) + nu2|
≤ |(1 + u)((1 + u)n − 1 − nu)| + n|u|2

= |1 + u||(1 + u)n − 1 − nu| + n|u|2

≤ 2|(1 + u)n − 1 − nu| + nu2

≤ 2An|u|2 + n|u|2 = An+1|u|2

where An+1 = 2An + n.

(Of course, there are better ways to approach this result.)

Exercise 10.2.6

If A , 0, then Az + B = A(z − B/A), so P1 is the collection of all polyno-

mials of degree 1.

Suppose Pn is the collection of all polynomials of degree n. If Q is a

polynomial of degree n + 1, then, by the fundamental theorem of algebra,

Q has a root a and, by the remainder theorem for polynomials, Q(z) =

(z − a)R(z) with R a polynomial of degree n, and so Q ∈ Pn+1.

The required result follows by induction.
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Exercise 10.2.7

(i) (z−α)(z−α∗) = z2
+ (α+α∗)z+αα∗ = z2

+ (2ℜα)z+ |α|2 = z2
+az+b

with a = 2ℜα and b = |α|2 real.

(ii) If P(z) = a with a real, we say that P is a polynomial with real

coefficients Inductively, we say that, if P(z) = azn+1
+ Q(z) with a real and

non-zero and Q is a polynomial of degree at most n with real coefficients,

then P is a polynomial of degree n + 1 with real coefficients,

(iii) Since a = ℜa + iℑa, any polynomial of degree at most 0 can be

written as P(z) = P1(z) + iP2(z) where P1 and P2 are polynomials of degree

at most 0 with real coefficients.

Suppose that any polynomial P of degree at most n can be written as

P(z) = P1(z)+ iP2(z) where P1 and P2 are polynomials with real coefficients

of degree at most n. If P has degree n + 1 then

P(z) = azn+1
+ Q(z)

where a , 0 and Q is a polynomial of degree at most n. By hypothesis

Q(z) = Q1(z) + iQ2(z) where Q1 and Q2 are polynomials with real coeffi-

cients of degree at most n. Setting

P1(z) = (ℜa)zn+1
+ Q1(z), P2(z) = (ℑa)zn+1

+ Q2(z),

we see that P(z) = P1(z)+ iP2(z) where P1 and P2 are polynomials with real

coefficients of degree at most n + 1.

By induction, any polynomial P can be written as P(z) = P1(z) + iP2(z)

where P1 and P2 are polynomials with real coefficients.

If P is a polynomial of degree at most zero with real coefficients, then

P(z) is real for all z and so, in particular, for z real. If every polynomial Q

of degree at most n with real coefficients has the property that Q(x) is real

when x is real, then, if

P(z) = azn+1
+ Q(z)

with a real and Q of degree at most n with real coefficients, we have P(x) =

axn+1
+Q(x) real. Thus, by induction, if a polynomial P has real coefficients

then P(x) is real for all x real.

Now suppose P any polynomial. We can write P(z) = P1(z) + iP2(z)

where P1 and P2 are polynomials with real coefficients. Since P1(x) and

P2(x) are real

0 = ℑP(x) = ℑP1(x) +ℜP2(x) = P2(x)

for all x ∈ R and, since a non-zero polynomial only has finitely many zeros,

P2 is the zero polynomial and P = P1 has real coefficients.

(iv) A simple induction shows that (azn)∗ = a∗(z∗)n so, if P(z) = azn+1
+

Q(z) with a real and Q(z)∗ = Q(z∗), we have P(z)∗ = P(z∗). By induction on
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degree, any polynomial P with real coefficients satisfies P(z)∗ = P(z∗). In

particular, if P(α) = 0, then P(α∗) = 0.

(v) By the fundamental theorem of algebra, P has a root α. If α is real,

the remainder theorem gives us P(z) = (z − α)Q(z) with Q of degree n − 1.

If x is real and x , α then Q(x) must be real, so by continuity, Q(x), is real

for all real x. Thus Q is a polynomial of degree n − 1 with real coefficients.

If α is not real, then α , α∗. The remainder theorem gives us P(z) =

(z − α)Q(z) with Q of degree n − 1. Part (iv) now tells us that

0 = 0∗ = P(α)∗ = P(α∗) = (α∗ − α)Q(α∗).

Since α∗ −α , 0, we have Q(α∗) = 0, so n ≥ 2 and Q(z) = (z−α∗)R(z) with

R of degree n − 2. Now

P(z) = (z − α)(z − α∗)R(z)

so since (x − α) × (x − α∗) is real and non-zero for all real x, R(x) is real

whenever x is real and so R is a polynomial of degree n − 2 with real coef-

ficients.

(vi) Induction on degree now shows that any polynomial of degree n ≥ 1

with real coefficients can be written as the product of linear and quadratic

polynomials with real coefficients.
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Exercise 10.3.3

(i) Let α(n) be the statement that, if P is a polynomial of degree n with

rational coefficients, we can find an integer N ≥ 1 such that U(x) = NP(x)

defines a polynomial with integer coefficients.

If P has degree at most 0, we have P(x) = a with a = u/N, u an integer

and N a strictly positive integer. If U = NP then U has integer coefficients.

Suppose α(r) is true for r ≤ n. If P is a polynomial of degree n + 1 with

rational coefficients, we can find a polynomial Q with rational coefficients

of degree at most n and a a ∈ Q such that P(z) = axn+1
+ Q(x). Thus

we can find N1, N2 strictly positive integers such that N1Q is a polynomial

with integer coefficients and N2a ∈ Z. Simple induction shows that sums of

polynomials with integer coefficients and integer multiples of such polyno-

mials are themselves polynomials with integer coefficients, so (N1N2)P is a

polynomial with integer coefficients.

The required result follows by induction.

(ii) If α is the root of a polynomial P with rational coefficients, then we

can choose N so that U = NP has integer coefficients so α is the root of of

a polynomial U with integer coefficients.

Thus we may replace the words ‘integer coefficients’ by ‘rational coeffi-

cients’ in Liouville’s theorem.



133

Exercise 10.3.5

(i) The result is trivially true for polynomials with integer coefficients of

degree at most 0.

Suppose it is true for polynomials with integer coefficients of degree N

or less. If P is a polynomial with integer coefficients of degree N + 1 then

P(t) = atN+1
+ Q(t),

where a is an integer and Q is a polynomial with integer coefficients of

degree N or less. Thus

qN+1P(p/q) = apN+1
+ q × (

qNQ(p/q)
) ∈ Z.

The required result now follows by induction.

(ii) The result is trivially true for polynomials of degree at most 0.

Suppose it is true for polynomials of degree N or less. If P is a polyno-

mial of degree N + 1 then

P(t) = atN+1
+ Q(t),

where a ∈ R and Q coefficients of degree N or less. By hypothesis, we

can find a K1 > 0 such that |Q(x)| ≤ K1 whenever |x| ≤ R. Setting K =

K1 + |a|Rn+1 we have

|P(t)| = |a||t|n+1
+ |Q(t)| ≤ K

for all |t| ≤ R.

The required result now follows by induction.

Alternatively (But using more advanced ideas.) We have shown earlier

that polynomials are continuous and that continuous functions are bounded

on sets of points t with |t| ≤ R.

Exercise 10.3.7

We have

10−1
+ 10−2

+ 10−6
+ 10−24 ≤ x ≤ 10−1

+ 10−2
+ 10−6

+ 10−24
+ 2 × 10−120

so

α = .110 001 000 000 000 000 000 001 000 000 . . .

correct to 30 places of decimals.
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Exercise 10.3.8

Observe that, if k > n, then 10−k! ≤ 10−(n+1)!×10−k+1 and so (by induction

or summing a geometric series)

an ≤ am ≤ an + 2
10

9
(1 − 10n−m)10−(n+1)! ≤ an + 4 × 10−(n+1)!

for all m ≥ n. Thus the an form an increasing sequence bounded above and

so an → α for some α ∈ R. Further we have

an ≤ α ≤ 4 × 10−(n+1)!.

A simple induction shows that 10n!an is an integer. Thus, if we write

qn = 10n! and pn = 10n!an, we have pn and qn integers with qn ≥ 1 and
∣

∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

∣

= |α − an| ≤
4

10(n+1)!
=

4

qn+1
n

.

Thus, if m is a fixed integer with m ≥ 1 and A is a fixed real number with

A > 0, we have
∣

∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

∣

<
A

qm
n

for n sufficiently large. By Theorem 10.3.4, it follows that α cannot be the

root of a polynomial with integral coefficients.

Exercise 10.4.2

Suppose 0+P = P and 0̃+P = P for all P. Then, using the commutative

law of addition,

0̃ = 0 + 0̃ = 0̃ + 0 = 0.

Suppose 1×P = P and 1̃×P = P for all P. Then, using the commutative

law of multiplication,

1̃ = 1 × 1̃ = 1̃ × 1 = 1.

If P + Q = 0 and P + R = 0 then, using the commutative and associative

laws of addition freely,

Q = 0 + Q = (P + R) + Q = (R + P) + Q = R + (P + Q) = R + 0 = R.
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Exercise 10.4.3

We use the commutative associative and distributive laws freely. Since

(0 × R) + (0 × R) = (0 + 0) × R = 0 × R

we have

0 = (0 × R) + (−(0 × R)) = ((0 × R) + (0 × R)) + (−(0 × R))

= (0 × R) + (0 × R + (−(0 × R))) = (0 × R) + 0 = 0 × R

If P × R = Q × R then, since

(Q × R) + ((−Q) × R) = (Q + (−Q)) × R = 0 × R = 0

(P + (−Q)) × R = (P × R) + ((−Q) × R) = 0.

Since R , 0 we have P + (−Q) = 0, so

Q = 0 + Q = (P + (−Q)) + Q = P + (Q + (−Q)) = P + 0 = P.

Exercise 10.4.4

Observe that (P × Q)(0) = P(0) × Q(0) = P(0) × 0 = 0 , 1.

Exercise 10.4.6

(ii) By the associative law of addition for fields, P(u) + (Q(u) + R(u)) =

(P(u) + Q(u)) + R(u) for all u so P + (Q + R) = (P + Q) + R.

(iii) Let R0 be the zero polynomial. We have R0(u) + P(u) = 0 + P(u) =

P(u) for all u so R0 + P = P for all P.

(iv) We know from Exercise 10.1.3 that P = (−1) × P is a polynomial.

Since P(u) + (−P(u)) = 0 = R0(u), we have P + (−P) = R0.

(v) By the commutative law of multiplication for fields, P(u) × Q(u) =

Q(u) × P(u) for all u so P × Q = Q × P.

(vi) By the associative law of multiplication for fields. P(u) × (Q(u) ×
R(u)) = (P(u) × Q(u)) × R(u) for all u so P × (Q × R) = (P × Q) × R.

(vii) Let R1 be the polynomial given by R1(u) = 1. We have R1(u)×P(u) =

1 × P(u) = P(u) for all u, so R1 × P = P for all P.

(ix) By the distributive law for fields P(u) × (Q(u) + R(u)) = (P(u) ×
Q(u)) + (P(u) × R(u)) for all u so so P × (Q + R) = (P × Q) + (P × R).

Since R0(0) = 0 , 1 = R1(0), we have R0 , R1.
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Exercise 10.4.9

If P(x) = x − 1, then P ≻ 0, but P(0) = −1 < 0.

Exercise 10.4.11

(i) P × Q = P × Q, so (P,Q) ∼ (P,Q). (Reflexive)

(ii) If (P,Q) ∼ (R, S ), then P × S = R × Q, so R × Q = P × S and

(R, S ) ∼ (P,Q) (Symmetric)

(iii) If (P,Q) ∼ (R, S ) and (R, S ) ∼ (U,V), then P × S = R × Q, R × V =

U × S . Using the associative and commutative laws,

(P × V) × R = P × (V × R) = P × (R × V)

= P × (U × S ) = P × (S × U)

= (P × S ) × U = (R × Q) × U

= R × (Q × U) = R × (U × Q)

= (U × Q) × R.

Since R , 0, the cancellation law for multiplication yields P × V = U × Q

so (P,Q) ∼ (U,V).

Exercise 10.4.12

2 × 3 ≡ 0 ≡ 2 × 3 mod 6, 3 × 4 ≡ 0 ≡ 3 × 2 mod 6 so

([2], [2]) ∼ ([3], [3]), ([3], [3]) ∼ ([4], [2]).

However, 2 × 2 ≡ 4 . 2 ≡ 2 × 4 mod 6, so

([2], [2]) / ([4], [2]).

The proof of transitivity in Exercise 10.4.11 made use of the cancellation

law for multiplication which fails for (Z6,+,×).
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Exercise 10.4.13

Throughout we make free use of the associative and commutative laws.

(i) We know that P1 × Q2 = P2 × Q1, so

(P1 × R1) × (Q2 × U1) = (P1 × Q2) × (R1 × U1) = (P2 × Q1) × (R1 × U1)

= (P2 × U1) × (Q1 × R1)

Thus (P1 × U1,Q1 × R1) ∼ (P2 × U1,Q2 × R1).

(ii) Similarly, (P2 ×U1,Q2 ×R1) ∼ (P2 ×U2,Q2 ×R2), so, by transitivity,

(P1 × U1,Q1 × R1) ∼ (P2 × U2,Q2 × R2).

We have shown that if [P1] = [P2], [Q1] = [Q2], [R1] = [R2] and [U1] =

[U2], then

[(P1 × R1,Q1 × U1)] = [(P2 × R2,Q2 × U2)].

Thus we can define multiplication on B/∼ by

[(P,Q)] × [(R,U)] = [(P × R,Q × U)].

(iii) We use the distributive law at the beginning and and end of the cal-

culation.
(

(P1 × R1) + (Q1 × U1)
) × (Q2 × R2)

= ((P1 × R1) × (Q2 × R2)) + ((Q1 × U1) × (Q2 × R2))

= ((P1 × Q2) × (R1 × R2)) + ((U1 × R2) × (Q1 × Q2))

= ((P2 × Q1) × (R1 × R2)) + ((U2 × R1) × (Q1 × Q2)

= ((P2 × R2) × (Q1 × R1)) + ((Q2 × U2) × (Q1 × R1))

=
(

(P2 × R2) + (Q2 × U2)
) × (Q1 × R1)

We have shown that if [P1] = [P2], [Q1] = [Q2], [R1] = [R2] and [U1] =

[U2], then

[(P1 × R1) + (Q1 × U1),Q1 × R1)] = [(P2 × R2) + (Q2 × U2),Q2 × R2)]

Thus we can define addition on B/∼ by

[(P,Q)] + [(U,R)] = [((P × R) + (Q × U),Q × R].
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Exercise 10.4.15

We write [P,Q] = [(P,Q)].

(i) We have

[P,Q] + [U,R] = [(P × R) + (Q × U),Q × R]

= [(R × P) + (U × Q),R × Q]

= [(U × Q) + (R × P),R × Q] = [U,R] + [P,Q]

(Commutative law of addition.)

(ii) We have

((U × Q) × R)) + ((V × P) × R) = (R × (U × Q)) + (R × (V × P))

= R × ((U × Q) + (V × P))

= ((U × Q) + (V × P)) × R

so

[U,V] + ([P,Q] + [U,R]) = [U,V] + [(P × R) + (Q × U),Q × R]

= [(U × (Q × R)) + (V × ((P × R) + (Q × U) × R),V × (Q × R)]

= [(U × (Q × R)) + ((V × (P × R)) + (Q × (U × R))),V × (Q × R)]

= [(U × (Q × R)) + (V × (P × R)) + (Q × (U × R)), (V × Q) × R)]

= [((U × Q) + (V × P)) × R)) + (Q × U) × R)), (V × Q) × R)]

= ([U,V] + [P,Q]) + [U,R]

(Associative law of addition.)

(iii) [0, 1] + [P,Q] = [(0 × Q) + (1 × P), 1 × Q] = [0 + P,Q] = [P,Q]

(Additive zero.)

(iv) We have

[P,Q] + [−P,Q] = [(P × Q) + (−P × Q),Q × Q]

= [(P + (−P)) × Q,Q × Q] = [0 × Q,Q × Q]

= [0,Q × Q] = [0, 1]

(Additive inverse.)

(v) [P,Q] × [U,R] = [P × U,Q × R] = [U × P,R × Q] = [U,R] × [P,Q]

(Commutative law of multiplication.)

(vi) We have

[P,Q] × ([U,R] × [S , T ]) = [P,Q] × [U × S ,R × T ]

= [P × (U × S ),Q × (R × T )]

= [(P × U) × S , (Q × R) × T ]

= [P × U,Q × R] × [S , T ]

= ([P,Q] × [U,R]) × [S , T ]
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(Associative law of multiplication.)

(vii) [1, 1] × [P,Q] = [1 × P, 1 × Q] = [P,Q]

(Multiplicative unit.)

(viii) If [P,Q] , [0, 1], then P × 1 , Q × 0 so P , 0. We have [P,Q] ×
[Q, P] = [QP,QP] = [1, 1]. (Multiplicative inverse.)

(ix) We have

[P,Q] × ([U,R] + [S , T ]) = [P,Q] × [(U × T ) + (R × S ),R × T ]

= [P × ((U × T ) + (R × S )),Q × (R × T )]

= [(P × (U × T )) + (P × (R × S )),Q × (R × T )]

= [P × (U × T ),Q × (R × T )] + [P × (R × S ),Q × (R × T )]

= [(P × U) × T, (Q × R) × T ] + [(P × S ) × R)), (Q × T ) × R]

= (P × U,Q × R] + [P × S ,Q × T ]

= ([P,Q] × [U,R]) + ([P,Q] × [S , T ])

(Distributive law.)

We note that [1, 1] , [0, 1].
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Exercise 10.4.16

(i) If P > 0, then 0 = P + (−P) > 0 + (−P) = −P. If 0 > P, then

−P = −P + 0 > −P + P = P + (−P) = 0.

(ii) We know that −P = (−1) × P since

0 = 0 × P = (1 + (−1)) × P = (1 × P) + ((−1) × P) = P + ((−1) × P).

If P,Q > 0, then, from the rules for an ordered integral domain, P×Q > 0.

If 0 > P,Q then (−P), (−Q) > 0 so, since (−1)2
= −(−1) = 1,

P × Q = (−1)2 × (P × Q) = ((−1) × P)((−1) × Q) > 0.

If P > 0 > Q, then −Q > 0, so

−(P × Q) = (−1) × (P × Q) = P × ((−1) × Q) = P × (−Q) > 0,

and thus 0 > P × Q.

(iii) If (P,Q) ∼ (0, 1), then

P = (1 × P) = (0 × Q) = 0.

Conversely, if P = 0, then P × 1 = 0 = 0 × Q, so (P,Q) ∼ (0, 1).

(iv) If P×Q > 0, then either P > 0 or 0 > P. Since (−P,−Q) ∼ (P,Q), we

may suppose P > 0 so, by (ii), Q > 0. Similarly, we may suppose U > 0.

Since P×U = Q×R it follows that Q×R = P×U > 0 and so R > 0 whence

R × U > 0.

(v) Follows at once.



141

Exercise 10.4.18

We write P = [P1, P2] = [(P1, P2)] and so on.

(x) If P > Q and Q > R, then writing U = P − Q, V = Q − R, we have

U, V > [0, 1], so U1×U2 > 0, V1×V2 > 0. As noted in the previous question

we may take U1, V1 > 0 and so U2, V2 > 0. Thus (U1 ×V2)+ (U1 ×V2) > 0

and U2 × V2 > 0 so

(U1 × V2) + (U1 × V2)) × (U2 × V2) > 0

Thus P − R = U + V > [0, 1] and P > R.

(Transitivity of order.)

(xi) Consider U = [U1,U2]. Observe that exactly one of the statements

U1 × U2 > 0, U1 × U2 = 0, or U1 × U2 < 0 holds. In the first case U > 0,

in the second U = [0, 1], in the third U > 0. Setting U = P −Q, we see that

exactly one of the conditions holds: P > Q, P = Q or Q > P.

(Trichotomy.)

(xii) If P > Q then

(P + R) − (Q + R) = P −Q > [0, 1]

so P + R > Q + R.

(Order and addition.)

(xiii) If P > Q and R > [0, 1], then, writing U = P − Q, we have

U > [0, 1]. As earlier, we may suppose R1, U1 > 0 and so R2, U2 > 0. Thus

(R1 × U1) × (R2 × U2) > 0

and we have shown R × U > [0, 1].

It follows that

(R × P) − (R ×Q) = (R × P) + (R × (−Q))

= R × (P + (−Q))

= R × U > [0, 1]

and P × R > Q × R.

(Order and multiplication.)
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Exercise 10.4.20

(i) Let α(n) be the statement that, if P has degree at most n, then P can

be written as

P(t) = Q(t) × (t2 − v) + (at + b)

where a, b ∈ F.
Observe that α(1) is automatically true. Suppose α(n) is true for some

n ≥ 1. If P is a polynomial of degree n + 1 then

P(t) = Atn+1
+ U(t)

where U is a polynomial of degree at most n and so V(t) = U(t)+ (A×v)tn−1

is a polynomial of degree at most n. By our inductive hypothesis

V(t) = R(t) × (t2 − v) + (at + b)

where a, b ∈ F. We now have

P(t) = Atn−1(t2 − v) + V(t) = Atn−1(t2 − v) + (R(t) × (t2 − v) + (at + b))

= (Atn−1
+ R(t)) × (t2 − v) + (at + b) = Q(t) × (t2 − v) + (at + b)

where Q(t) = Atn−1
+ R(t). Thus α(n + 1) is true.

The required result follows by induction.

(ii) Suppose that

Q1(t) × (t2 − v) + (a1t + b1) = Q2(t) × (t2 − v) + (a2t + b2).

Setting Q(t) = Q2(t) − Q1(t), a = a2 − a1, b = b2 − b1, we have

Q(t) × (t2 − v) + (at + b) = 0.

If Q is not the zero polynomial, then the polynomial R given by R(t) =

Q(t) × (t2 − v) has degree at least 2, so the polynomial U given by U(t) =

Q(t) × (t2 − v) + (at + b) has degree at least 2 and so (by Exercise 10.1.10)

cannot be the zero polynomial. Thus Q = 0 and

at + b = 0,

whence, by Exercise 10.1.10 or a direct argument, a = b = 0. Thus a1 = a2

and b1 = b2.

(iii) P(t) − P(t) = 0 × (t2 − v) so P ∼v P.

If P1 ∼v P2, then P1(t) − P2(t) = Q(t) × (t2 − v) for some Q ∈ P, so

P2(t) − P1(t) = (−Q(t)) × (t2 − v) and P2 ∼v P1

If P1 ∼v P2 and P2 ∼v P3 then

P1(t) − P2(t) = Q1(t) × (t2 − v), P2(t) − P3(t) = Q2(t) × (t2 − v)

and, writing Q(t) = Q1(t) + Q2(t), we have

P1(t) − P3(t) = (P1(t) − P2(t)) + (P2(t) − P3(t)) = Q(t) × (t2 − v)

so P1 ∼v P3.
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(iv) If P1 ∼v P2, R1 ∼v R2, then

P1(t) − P2(t) = Q1(t) × (t2 − v), R1(t) − R2(t) = Q2(t) × (t2 − v)

for some polynomials Q1, Q2 so

(P1(t) + R1(t)) − (P2(t) + R2(t)) = Q(t) × (t2 − v),

with Q(t) = Q1(t) + Q2(t), and

(P1(t) × R1(t)) − (P2(t) × R2(t))

= (P1(t) × (R1(t) − R2(t))) + ((P1(t) − P2(t))R2(t))

= (P1(t) × (Q2(t) × (t2) − v))) + ((Q1(t) × (t2 − v)) × R2(t))

= U(t) × (t2 − v)

where U(t) =
(

P1(t) × Q2(t)
)

+
(

Q1(t) × R2(t)
)

.

Thus P1 + R1 ∼v P2 + R2 and P1 × R1 ∼v P2 × R2, so we may make the

unambiguous definitions

[P] + [R] = [P + R] and [P] × [Q] = [P × Q].

(v) All the verifications follow the pattern:- Since F is a field we have

(P + Q)(u) = P(u) + Q(u) = Q(u) + P(u) = (P + Q)(u)

for all u ∈ R and so P + Q = Q + P for all polynomials. Thus

[P] + [Q] = [P + Q] = [Q + P] = [Q] + [P].

(vi) If F = R and v = 1, P(u) = u − 1, Q(u) = u + 1 then P(u) × Q(u) =

u2 − 1. Now P, Q /v 0 (using (ii)), but P × Q ∼v 0 so [P], [Q] , [0], but

[P] × [Q] = [0] and P/∼v is not an integral domain.

If F = R and v ≥ 0, we observe that if P(u) = u − √v, Q(u) = u +
√

v

then P(u) × Q(u) = u2 − v. Now P, Q /v 0 (using (ii)) but P × Q ∼v 0 so

[P], [Q] , [0], but [P] × [Q] = [0] and P/∼v is not an integral domain.

If F = C and v = −1, we observe that if P(u) = u − i, Q(u) = u + i then

P(u) × Q(u) = u2
+ 1 = u2 − v. Now P, Q /v 0 (using (ii)) but P × Q ∼v 0

so [P], [Q] , [0], but [P] × [Q] = [0] and P/∼v is not an integral domain.

(vii) We work over R with v = −1. Suppose R is a polynomial. Then,

by (i), R ∼ U where U(t) = at + b. If [R] , [0], then a and b can not both

be zero. Setting

Q(u) =
−a

a2 + b2
u +

b

a2 + b2
,

we have

[P] × [Q] = [U] × [Q] = [U × Q]

Now

U(t) × Q(t) =
b2 − a2u2

b2 + a2
= 1 − a2

a2 + b2
(t2
+ 1)
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so U × Q ∼v 1 and [P] × [Q] = [1]. Thus every non-zero element has a

multiplicative inverse and, by (v), P/∼v is a field.

We work over Q with v = 2. Suppose R is a polynomial. Then, by (i),

R ∼ U where U(t) = at + b. If [R] , [0], then a and b can not both be zero.

Setting

Q(u) =
−a

−2a2 + b2
u +

b

−2a2 + b2
,

we have

[P] × [Q] = [U] × [Q] = [U × Q]

Now

U(t) × Q(t) =
b2 − a2u2

b2 − 2a2
= 1 − a2

2a2 − b2
(t2 − 2)

so U × Q ∼v 1 and [P] × [Q] = [1]. Thus every non-zero element has a

multiplicative inverse and, by (v), P/∼v is a field.

(vi) Observe that, if f (b + ai) = f (c + di) (with a, b, c, d ∈ R), then

(b − c) + (a − d)u = (b + au) − (c + du) = Q(u)(u2 − 1)

for some polynomial Q so, by (ii), b − c = a − d = 0 and ai + b = ci + d.

Thus f is injective. Part (i) shows that f is surjective.

Write z j = ia j + b j, P j(t) = a ju + b j. Since

P1(u) + P2(u) = (a1 + a2)u + (b1 + b2),

we have

f (z1 + z2) = [P1 + P2] = [P1] + [P2] = f (z1) + f (z2).

Since

P1(u) × P2(u) = a1a2u2
+ (a1b2 + a2b1)u + b1b2 = S (u) × (u2

+ 1) + R(u)

with S (u) = a1a2, R(u) = (a1b2 + a2b1)u + (b1b2 − a1a2) we have

f (z1) × f (z2) = [R] = [P1 × P2] = [P1] × [P2] = f (z1) × f (z2).

Thus f : C→ R/∼1 is a field isomorphism.
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Exercise 11.1.1

(i) Informally (since we have not really specified the rules we are using),

x ⊗ y = (x0 + x1i + x2 j + x3k) × (y0 + y1i + y2 j + y3k)

= (x0y0 + x1y1i2
+ x2y2 j2

+ x3y3k2) + (x0y1i + x1y0i + x2y3 jk + x3y2k j)

+ (x0y2 j + x2y0 j + x3y1ki + x1y3ik) + (x0y3k + x3y0k + x1y2i j + x2y1 ji)

= (x0y0 − x1y1 − x2y2 − x3y3) + (x0y1 + x1y0 + x2y3 − x3y2)i

+ (x0y2 + x2y0 + x3y1 − x1y3) j + (x0y3 + x3y0 + x1y2 − x2y1)k.

(ii) Again informally. Suppose that

i2
= j2
= k2

= i jk = −1.

We observe that

1 = −i2
= i(−1)i = i(i jk)i = i2( jki) = − jki

so jki = −1 and similarly ki j = −1.

Now i j = −i j(k2) = −(i jk)k = k and similarly, using the results of the

first paragraph, jk = i and ki = j.

We now observe that ji = (ki)i = ki2
= −k and similarly k j = −i, ik = − j.

Conversely if

i2
= j2
= k2

= −1, i j = k, ji = −k, jk = i, k j = −i, ki = j, ik = − j,

then i jk = (i j)k = k2
= −1.
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Exercise 11.1.2

We write x = (x0, x1, x2, x3) and so on. Let g : H2 → H1 be defined by

g(x0 + ix1, x2 + ix3) = (x0, x1, x2, x3)

We have g( f (z1, z2)) = (z1, z2) and f (g(x)) = x so f and g are inverses and

f is bijective

We check that

f (x + y) = f (x0 + y0, x1 + y1, x2 + y2, x3 + y3)

=
(

(x0 + y0) + i(x1 + y1), (x2 + y2) + i(x3 + y3)
)

=
(

(x0 + ix1) + (y0 + iy1), (x2 + ix3) + (y2 + iy3)
)

= (x0 + ix1, x2 + ix3) + (y0 + iy1, y2 + iy3)

= f (x) + f (y)

whilst

f (x) ⊗ f (y) = (x0 + ix1, x2 + ix3) ⊗ (y0 + iy1, y2 + iy3)

=
(

(x0 + ix1) × (y0 + iy1) − (x2 + ix3) × (y2 − iy3),

(x0 + ix1) × (y2 + iy3) + (x2 + ix3) × (y0 − iy1)
)

=
(

(x0y0 − x1y1 − x2y2 − x3y3) + i(x1y0 + x0y1 + x2y3 − x3y2),

(x0y2 + x2y0 + x3y1 − x1y3) + i(x0y3 + x3y0 + x1y2 − x2y1)
)

= f (x ⊗ y)

and

f (x∗) = f (x0,−x1,−x2,−x3) = (x0 − x1i,−x2 − x3i)

= ((x0 + ix1)∗,−(x2 + ix3)) = f (x)∗
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Exercise 11.1.4

Let (A,+,×) be a skew field with additive zero 0, additive inverse of

a given by −a, multiplicative unit 1 and multiplicative inverse of a (with

a , 0) given by a−1.

(i) If 0̃ + a = a for all a ∈ A, then 0̃ = 0.

Proof 0̃ = 0 + 0̃ = 0̃ + 0 = 0.

(ii) If a + a• = 0, then a• = −a.

Proof We have

−a = −a + 0 = −a + (a + a•) = (−a + a) + a•

= (a + (−a)) + a• = 0 + a• = a•.

(iii) If 1̃ × a = a for all a ∈ A, then 1̃ = 1.

Proof 1̃ = 1̃ × 1 = 1.

(iii)′ If a × 1̃ = a for all a ∈ A, then 1̃ = 1.

Proof 1̃ = 1 × 1̃ = 1.

(iv) If a , 0 and a × aN = 1, then aN = a−1.

Proof a−1
= a−1 × 1 = a−1 × (a × aN) = (a−1 × a) × aN = 1 × aN = aN.

(iv)′ If a , 0 and aN × a = 1, then aN = a−1.

Proof a−1
= 1 × a−1

= (aN × a) × a−1
= aN × (a × a−1) = aN × 1 = aN.

Exercise 11.1.6

We consider the quaternions in the form H2 of Exercise 11.1.2 We write

a = (a1, a2) with a j ∈ C and so on.

(i) (Commutative law of addition.) We have

a + b = (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2)

= (b1 + a1, b2 + a2) = (b1, b2) + (a1, a2) = a + b.

(ii) (Associative law of addition.) We have

a + (b + c) = (a1 + (b1 + c1), a2 + (b2 + c2))

= ((a1 + b1) + c1, (a2 + b2) + c2) = (a + b) + c.

(iii) (Additive zero.) Set 0 = (0, 0). Then

0 + a = (0 + a1, 0 + a2) = (a1, a2) = a.
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(iv) (Additive inverse.) If we set −a = (−a,−a), then

a + (−a) = (a, a) + (−a,−a) = (a − a, a − a) = (0, 0) = 0.

(v) (Associative law of multiplication.) We have

a ⊗ (b ⊗ c) = a ⊗ (b1c1 − b2c∗2, b1c2 + b2c∗1)

=
(

a1(b1c1 − b2c∗2) − a2(b1c2 + b2c∗1)∗, a1(b1c2 + b2c∗1) + a2(b1c1 − b2c∗2)∗
)

=
(

a1(b1c1 − b2c∗2) − a2(b∗1c∗2 + b∗2c1), a1(b1c2 + b2c∗1) + a2(b∗1c∗1 − b∗2c2)
)

=
(

a1b1c1 − a1b2c∗2 − a2b∗1c∗2 − a2b∗2c1, a1b1c2 + a1b2c∗1 + a2b∗1c∗1 − a2b∗2c2

)

=
(

(a1b1 − a2b∗2)c1 − (a1b2 − a2b∗1)c∗2, (a1b1 − a2b∗2)c2 + (a1b2 − a2b∗1)c∗1
)

= (a ⊗ b) ⊗ c

(vi) (Multiplicative unit) Set 1 = (1, 0). Then

1 ⊗ a = ((1 × a1) − (0 × a∗2), (1 × a2) + (0 × a∗1)) = (a1, a2) = a

and (since 0∗ = 0 and 1∗ = 1)

a ⊗ 1 = (a1 × 1 − a2 × 0, a1 × 0 + a2 × 1∗) = (a1, a2 × 1) = a.

so that 1 ⊗ a = a ⊗ 1 = a. (Multiplicative unit.)

(viii) (Distributive law.) We have

a ⊗ (b + c) = (a1, a2) ⊗ (b1 + c1, b2 + c2)

= (a1(b1 + c1) − a2(b2 + c2)∗, a1(b2 + c2) + a2(b1 + c1)∗)

= (a1b1 + a1c1 − a2b∗2 − a2c∗2, a1b2 + a1c2 + a2b∗1 + a2c∗1)

= (a1b1 − a2b∗2, a1b2 + a2b∗1) + (a1c1 − a2c∗2, a1c2 + a2c∗1)

= (a ⊗ b) + (a ⊗ c)

whilst

(b + c) ⊗ a = (b1 + c1, b2 + c2) × (a1, a2)

= ((b1 + c1)a1 − (b2 + c2)a∗2, (b1 + c1)a2 + (b2 + c2)a∗1)

= ((b1a1 + c1a1 − b2a∗2 − c2a∗2, b1a2 + c1a2 + b2a∗1 + c2a∗1)

= (b1a1 − b2a∗2, b1a2 + b2a∗1) + (c1a1 − c2a∗2, c1a2 + c2a∗1)

= (b ⊗ a) + (c ⊗ a).

We also have 1 = (1, 0) , (0, 0) = 0.
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Exercise 11.1.8

The proofs (apart from the commutative law of multiplication) are ex-

actly as for the quaternions suppressing the ∗ wherever it appears. The com-

mutative law of multiplication is immediate from the commutative laws of

multiplication and addition for C.

z ⊠ w = (z1w1 − z2w2, z1w2 + z2w1) = (w1z1 − w2z2,w2z1 + w1z2)

= (w1z1 − w2z2,w1z2 + w2z1) = w ⊠ z.

However

(1, i) ⊠ (i, 1) = (i − i, i − i) = (0, 0).

We now say that ‘we have zero multipliers’ or give the associated argument

as follows:–

The associative law of multiplication shows that, if (i, 1)⊠a = (1, 0), then

(0, 0) = (0, 0)⊠a = ((1, i)⊠(i, 1))⊠a = (1, i)⊠((i, 1)⊠a) = (1, i)⊠(1, 0) = (1, i)

which is false. Thus (vii) fails.
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Exercise 11.1.7

All these calculations can be done in many different ways, some faster

than the ones given here.

(i) We have

(i ⊗ j)⋆ = (0, 0, 0, 1)⋆ = (0, 0, 0,−1)

and

i⋆ ⊗ j⋆ = (0,−1, 0, 0) ⊗ (0, 0,−1, 0) = (0, 0, 0, 1)

so

(i ⊗ j)⋆ , i⋆ ⊗ j⋆.

(ii) We have

(x ⊗ y)⋆ = (x0y0 − x1y1 − x2y2 − x3y3, x0y1 + x1y0 + x2y3 − x3y2,

x0y2 + x2y0 + x3y1 − x1y3, x0y3 + x3y0 + x1y2 − x2y1)∗

= (x0y0 − x1y1 − x2y2 − x3y3,−x0y1 − x1y0 − x2y3 + x3y2,

− x0y2 − x2y0 − x3y1 + x1y3,−x0y3 − x3y0 − x1y2 + x2y1)

= (y0,−y1,−y2,−y3) ⊗ (x0,−x1,−x2,−x3)

= y⋆ ⊗ x⋆.

(iii) We have

y ⊗ y∗ = (y0, y1, y2, y3) ⊗ (y0,−y1,−y2,−y3)

= (y0y0 + y1y1 + y2y2 + y3y3,−y0y1 + y1y0 − y2y3 + y3y2,

− y0y2 + y2y0 − y3y1 + y1y3,−y0y3 + y3y0 − y1y2 + y2y1)

= (‖y‖2, 0, 0, 0).

Similarly

y⋆ ⊗ y = (y0,−y1,−y2,−y3) ⊗ (y0, y1, y2, y3) = (‖y‖2, 0, 0, 0).

(iv) If

y =

(

x0

‖x‖ ,
x1

‖x‖ ,
x2

‖x‖ ,
x3

‖x‖

)

,

then, from (iii), y ⊗ y∗ = y∗ ⊗ y = (1, 0, 0, 0).

(v) Direct calculation or use the uniqueness of inverses and the standard

observation that

(x ⊗ y) ⊗ (y−1 ⊗ x−1) = x ⊗ (y ⊗ y−1) ⊗ x−1
= x ⊗ (1, 0, 0, 0) ⊗ x−1

= x ⊗ x−1
= (1, 0, 0, 0).
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(vi) We have

(i ⊗ j)−1
= (0, 0, 0,−1) , (0, 0, 0, 1)

= (0,−1, 0, 0) × (0, 0,−1, 0) = i−1 ⊗ j−1

(vii) We have

(x + y)⋆ = (x0 + y0, x1 + y1, x2 + y2, x3 + y3)⋆

= (x0 + y0,−(x1 + y1),−(x2 + y2),−(x3 + y3))

= (x0,−x1,−x2,−x3) + (y0,−y1,−y2,−y3) = x⋆ + y⋆

and

(x⋆)⋆ = (x0,−x1,−x2,−x3)⋆ = (x0, x1, x2, x3) = x.
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Exercise 11.1.9

(i) We have

(‖x ⊗ y‖2, 0, 0, 0) = (‖x ⊗ y‖, 0, 0, 0) ⊗ (‖x ⊗ y‖, 0, 0, 0)⋆

= (x ⊗ y) ⊗ (x ⊗ y)⋆

= (x ⊗ y) ⊗ (y⋆ ⊗ x⋆)

= x ⊗ (y ⊗ y⋆) ⊗ x⋆

= x ⊗ (‖y‖2, 0, 0, 0) ⊗ x⋆

= (x ⊗ x⋆) ⊗ (‖y‖2, 0, 0, 0)

= (‖x‖2, 0, 0, 0) ⊗ (‖y‖2, 0, 0, 0) = (‖x‖2‖y‖2, 0, 0, 0)

so ‖x ⊗ y‖2 = ‖x‖2‖y‖2 and ‖x ⊗ y‖ = ‖x‖‖y‖.
(ii) Consider the quaternions

m = (m0,m1,m2,m3), n = (n0, n1, n2, n3).

The rules for quaternionic multiplication show that q = n ⊗ m has integer

entries q = (q0, q1, q2, q3). Applying part (i) with x = n and m = y gives the

result.
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Exercise 11.1.10

(i) We have

x2
= (x0, x1, x2, x3) ⊗ (x0, x1, x2, x3)

= (x2
0 − x2

1 − x2
2 − x2

3, 2x0x1, 2x0x2, 2x0x3).

(ii) Thus x2
= (1, 0, 0, 0) yields the 4 equations

x2
0 − x2

1 − x2
2 − x2

3 = 1,

2x0x1 = 0,

2x0x2 = 0,

2x0x3 = 0.

Since −x2
1
− x2

2
− x2

3
≤ 0, we must have x0 , 0, so x1 = x2 = x3 = 0

and x2
0 = 1, whence x0 = ±1. Thus (1, 0, 0, 0) and (−1, 0, 0, 0) are the only

possible solutions. We check that these are solutions.

(iii) x2
= (−1, 0, 0, 0) yields the 4 equations

x2
0 − x2

1 − x2
2 − x2

3 = −1,

2x0x1 = 0,

2x0x2 = 0,

2x0x3 = 0.

Since x2
0
≥ 0, at least one of x1, x2, x3 must be non-zero, so x0 = 0. We see

that

x2
= (−1, 0, 0, 0)

if and only if x = (0, x1, x2, x3) with x2
1
+ x2

2
+ x2

3
= 1. This gives an infinity

of solutions.

Exercise 11.1.11

Thus if a, b, c, d are real,

f ((a + ib) + (c + id)) = f ((a + c) + (b + d)i) = (a + c) + (b + d)u

= (a + bu) + (c + du) = f (a + ib) + f (c + id))

and

f ((a + ib) × (c + id)) = f ((ab − cd) + (bc + ad)i) = (ab − cd) + (bc + ad)u

= ab + (bc + ad)u + acu2

= (a + bu) ⊗ (c + du) = f (a + ib) ⊗ f (c + id))
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Now recall from the previous question that (using the representation of

H as ordered quadruples) u = (0, u1, u2, u3) with u2
1
+ u2

2
+ u2

3
= 1, so, in

particular, u∗ = −u.

Thus, if a, b are real,

f ((a + bi)∗) = f (a − bi) = a − bu = f (a + bi)∗.

Finally, using the results we have proved earlier in the question, if z, w ∈
C

f (z) = f (w)⇒ f (z − w) = 0

⇒ f (|z − w|2) = f ((z − w)(z − w)∗) = f (z − w) ⊗ f ((z − w)∗)) = 0

⇒ |z − w|2 = f (|z − w|2) = 0⇒ z = w.

(But, of course, just easy to prove directly,)
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Exercise 11.2.1

Lots of ways of setting this out. (But all trivial verifications.)

(x0, x) ⊗ (y0, y) = (x0, x1, x2, x3) ⊗ (y0, y1, y2, y3)

= (x0y0 − x1y1 − x2y2 − x3y3, x0y1 + x3y0 + x2y3 − x3y2,

x0y2 + x2y0 + x3y1 − x1y3, x0y3 + x3y0 + x1y2 − x2y1)

= (x0y0 − x1y1 − x2y2 − x3y3, 0) + (0, x2y3 − x3y2, x3y1 − x1y3)

+ (0, x0y1, x0y2, x0y3) + (0, x3y0, x2y0, x3y0)

= (x0y0 − x · y, 0, 0, 0) + (0, x ∧ y) + (0, x0y) + (0, y0x)

= (x0y0 − x · y, x0y + y0x + x ∧ y).
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Exercise A.3

Take n = 4, x1 = y4 = a, x2 = y3 = b, x3 = y2 = c, x4 = y1 = d.

Exercise A.5

Definition If we have a sequence x j ∈ F, then we define
∑n

j=1 x j inductively

by the rule
∑1

j=1 x j = x1 and

n+1
∑

j=1

x j =

















n
∑

j=1

x j

















+ xn+1.

Theorem If y1, y2, . . . yn form a rearrangement of x1, x2, . . . xn, then
n

∑

j=1

x j =

n
∑

j=1

y j.

Lemma If a j ∈ F, we have
















m
∑

j=1

a j

















+















n
∑

k=1

am+k















=

m+n
∑

j=1

a j.
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Exercise A.6

(i) Let α(n) be the statement that, if ζ j ∈ {0, 1}, then

n
∑

j=0

ζ j2
j ≤ 2n+1 − 1.

α(0) is the statement that if ζ0 ∈ {0, 1}, then ζ0 ≤ 1 = 2 − 1 which is

certainly true.

If α(n) is true and ζ j ∈ {0, 1}, then

n+1
∑

j=0

ζ j2
j
= ζn+12n+1

+

















n
∑

j=0

ζ j2
j

















≤ ζn+12n+1
+ (2n+1 − 1) = (2n+1 − 1) + ζn+12n+1

≤ (2n+1 − 1) + 2n+1
= (2n+1

+ 2n+1) − 1 = 2n+2 − 1.

Thus α(n + 1) is true.

The required result follows by induction.

(ii) If n > m ≥ 0, ζ j ∈ {0, 1} for 0 ≤ j ≤ n, ηk ∈ {0, 1} for 0 ≤ k ≤ m,

ζn = 1, we have

n
∑

j=0

ζ j2
j
= 2n

+

















n−1
∑

j=0

ζ j2
j

















≥ 2n > 2m+1 − 1 ≥
m

∑

k=0

ηk2
k

Similarly, if m = n but ηn = 0,

n
∑

j=0

ζ j2
j ≥ 2n > 2n − 1 ≥

m
∑

k=0

ηk2
k

Thus, by trichotomy, the conditions ζn = 1 and

n
∑

j=0

ζ j2
j
=

m
∑

k=0

ηk2
k

imply m = n and ηn = 1.

(iii) Let α(n) be the statement that, if ζ j, η j ∈ {0, 1} for 0 ≤ j ≤ n, and

n
∑

j=0

ζ j2
j
=

n
∑

j=0

η j2
j,

then ζ j = η j for 0 ≤ j ≤ n.
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α(0) is immediate. Suppose α(n) is true. If ζ j, η j ∈ {0, 1} for 0 ≤ j ≤ n,

and
n+1
∑

j=0

ζ j2
j
=

n+1
∑

j=0

η j2
j,

then part (iii) tells us that ζn+1 = ηn+1. It follows that
















n
∑

j=0

ζ j2
j

















+ ηn+12n+1
=

n+1
∑

j=0

ζ j2
j
=

n+1
∑

j=0

η j2
j
=

















n
∑

j=0

η j2
j

















+ ηn+12n+1

and so, by additive cancellation,

n
∑

j=0

ζ j2
j
=

n
∑

j=0

η j2
j.

The inductive hypothesis now tells us that ζ j = η j for 0 ≤ j ≤ n, so, using

our previous result ζ j = η j for 0 ≤ j ≤ n + 1. We have shown that α(n + 1)

is true.

The required result follows by induction.

(iv) Let α(n) be the statement that if n ≥ m ≥ 0 and 2m+1 − 1 ≥ r ≥ 2m,

then we can find ζ j ∈ {0, 1} with ζm = 1 such that

r =

m
∑

j=0

ζ j2
j.

Since 1 = 1× 20, α(0) is true. Suppose αn is true and 2n+2 − 1 ≥ r ≥ 2n+1.

Then we set ζn+1 = 1 and consider s = r − 2n. If s = 0, we set ζ j = 0 for

n ≥ j ≥ 0 and observe that r =
∑n+1

j=0 ζ j2
k. If s > 0, we can find an m with

n ≥ m ≥ 0 such that 2m+1 − 1 ≥ r ≥ 2m and so we can find ζ j ∈ {0, 1} with

ζm = 1 [0 ≤ j ≤ m] such that

s =

m
∑

j=0

ζ j2
j.

If n > m, we set ζ j = 0 for n ≥ j > m. Once again

r =

n+1
∑

j=0

ζ j2
k

We have shown that α(n + 1) is true.

The required result follows by induction.

(v) Every integer r ≥ 1 satisfies 2n+1 ≥ r > 2n for some n and so satisfies

an equation of the form

r =

n
∑

j=0

ζ j2
k
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with ζ j ∈ {0, 1} for 0 ≤ j ≤ n − 1 and ζn = 1. Part (iii) tells us that the

representation is unique.

(vi) Let α(n) be the statement that if a is a strictly positive integer and

r =

n
∑

j=0

ζ j2
k

with ζ j ∈ {0, 1} for 0 ≤ j ≤ n, then

ar
=

∏

ζ j=1

a2 j

.

α(0) is true by inspection. Suppose α(n) is true and

r =

n+1
∑

j=0

ζ j2
j.

Then

ar
= a

∑n+1
j=0 ζ j2

j

= a
(

∑n
j=0 ζ j2

j
)

+ζn+12n+1

= a
(

∑n
j=0 ζ j2

j
)

× aζn+12n+1

=



















∏

ζ j=1, j≤n

a2 j



















× aζn+12n+1

=

∏

ζ j=1

a2 j

.

Thus α(n + 1) is true.

The required result follows by induction.
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Exercise B.3

Suppose that y < 0. Observing that all the terms in the final inequality

are real, we now have

g(zη) ≥ g(w) − myη − 2|a|Cη2.

Choosing η > 0 with η > (2|a|C)/(my) gives g(zη) > g(w) contrary to our

definition of w.

Exercise C.2

Choose coordinate axes so that q = (1, 0, 0), n = (0, 1, 0).

(i) We have

q · q = 12
+ 02
+ 02

= 1,

q ∧ n = (0, 0, 1) = −(0, 0,−1) = −n ∧ q,

q ∧ q = (0 × 0 − 0 × 0, 0 × 1 − 0 × 0, 0 × 0 − 1 × 0) = (0, 0, 0) = 0.

(ii) q ∧ n = (0, 0, 1), so q, n and q ∧ n are mutually orthogonal.

For example

(q ∧ n) · q = (0, 0, 1) · (1, 0, 0) = 0 × 1 + 0 × 0 + 1 × 0 = 0.

(iii) We have

(q ∧ n) ∧ q = (0, 0, 1) ∧ (1, 0, 0) = (0, 1, 0) = n.

(iv) Set α = β = θ/2 in the formulae

sin(α + β) = sinα cos β + sin β cosα,

cos(α + β) = cosα cos β − sinα sin β.
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Exercise C.3

We write

p = (p0, p) = (p0, p1, p2, p3).

Let ‖p‖ be the quaternion norm of p, that is to say,

‖p‖ =
√

p2
0
+ p2

1
+ p2

2
+ p2

3
.

If we write q = ‖p‖−1p, then q is a unit quaternion, p = ‖p‖q and p−1
=

‖p‖−1q−1. Thus

p ⊗ (0, x) ⊗ p−1
= (‖p‖q) ⊗ (0, x) ⊗ (‖p‖−1q−1)

= q ⊗ (0, x) ⊗ q−1

By Theorem C.1, we have a rotation about p through θ, where

cos θ/2 = p0/‖p‖, 0 ≤ θ ≤ 2π.

Exercise C.4

Write

q j ⊗ (0, x) ⊗ q−1
j = (0,R j(x)).

Then

(q2 ⊗ q1) ⊗ (0, x) ⊗ (q2 ⊗ q1)−1
= (q2 ⊗ q1) ⊗ (0, x) ⊗ (q−1

1 ⊗ q−1
2 )

= q2 ⊗ (q1 ⊗ (0, x ⊗ q−1
1 )) ⊗ q−1

2 )

= q2 ⊗ (0,R1(x)) ⊗ q−1
2

= (0,R2(R1(x))).

Thus q2 ⊗ q1 corresponds to the rotation R1 followed by the rotation R2.
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Exercise C.5

(i) If A and B are 3 × 3 matrices and we obtain their product C from the

expressions

ci j = (ai1 × b1 j) + (ai2 × b2 j) + (ai3 × b3 j),

then each entry ci j requires 3 multiplications and 2 additions. There are

9 = 3 × 3 entries, so we need 27 = 3 × 9 multiplications and 18 = 2 × 9

additions.

If we do the quaternion multiplication r = p× q then r has 4 entries each

of which requires 4 multiplications and 3 additions so 16 multiplications

and 12 additions in all.

(ii) The author does not know how ‘renormalisation’ is carried out in

practice for matrices, but one could use Gramm-Schmidt on the columns.
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Exercise C.6

Observe that if we write

fp(u) = p ⊗ u ⊗ p−1

then

fp−1

(

fp(u)
)

= u = fp

(

fp−1(u)
)

so fp : H→ H is bijective with inverse f −1
p = fp−1 .

From now on we keep p fixed and write f = fp. We have

f (u) + f (v) = p ⊗ u ⊗ p−1
+ p ⊗ v ⊗ p−1

= p ⊗ (u ⊗ p−1
+ v ⊗ p−1)

= p ⊗ (u + v) ⊗ p−1
= f (u + v)

and

f (u) ⊗ f (v) = (p ⊗ u ⊗ p−1) ⊗ (p ⊗ v ⊗ p−1)

= (p ⊗ u) ⊗ (p−1 ⊗ p) ⊗ (v ⊗ p−1)

= (p ⊗ u) ⊗ (v ⊗ p−1)

= p ⊗ (u ⊗ v) ⊗ p−1
= f (u ⊗ v).

Thus f is a skew-field isomorphism.

Since p−1
= p∗‖p‖−2, we have

(p−1)∗ = p‖p‖−2.

Thus

f (u)∗ = (p ⊗ u ⊗ p−1)∗

= (p−1)∗ ⊗ u ⊗ p∗

= ‖p‖−2(p ⊗ u) ⊗ p∗

= (p ⊗ u) ⊗ p−1
= f (u∗).

Finally, î2
= f (i)2

= f (i2) = f (−1) = −1 and, similarly, ĵ2
= k̂2

= −1

whilst

î ⊗ ĵ ⊗ k̂ = f (i) ⊗ f ( j) ⊗ f (k) = f (i jk) = f (−1) = −1.



164

Exercise D.3

g(((x + iy) + (a + bi)) = g((x + a) + (y + b)i) = (x + a)e
˜
+ (y + b)i

˜

= (xe
˜
+ yi

˜
) + (ae

˜
+ bi

˜
) = g(x + iy) + g(a + bi)

and

g(((x + iy) × (a + bi)) = g((xa − yb) + (xb + ya)i) = (xa − yb)e
˜
+ (xb + ya)i

˜

= (xe
˜
+ yi

˜
) ⊗ (ae

˜
+ bi

˜
) = g(x + iy) ⊗ g(a + bi)

for a, b, x, y ∈ R.

Exercise D.5

Using the associative rule of multiplication, we have

(λv
˜
) ⊗ w

˜
=

(

(λe
˜
) ⊗ v

˜

) ⊗ w
˜
= (λe

˜
) ⊗ (v

˜
⊗ w

˜
) = λ(v

˜
⊗ w

˜
).

Using the associative law of multiplication again,

v
˜
⊗ (λw

˜
) = v

˜
⊗ (

(λe
˜
) ⊗ w

˜

)

=
(

v
˜
⊗ (λe

˜
)
) ⊗ w

˜
= (λv

˜
) ⊗ w

˜

so, using the first and second result,

v
˜
⊗ (λw

˜
) = λ(v

˜
⊗ w

˜
).
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Exercise D.7

(i) Suppose f
˜
, f

˜

′ ∈ F and y, y′ ∈ R. Setting z
˜
= f

˜
+ yv

˜
and z

˜

′
= f

˜

′
+ y′v

˜
we have

z
˜
⊗ z

˜

′
= f

˜
⊗ f

˜

′
+ yv

˜
⊗ f

˜

′
+ y′ f

˜
⊗ v

˜
+ yy′v

˜
⊗ v

˜

= f
˜

′ ⊗ f
˜
+ y f

˜

′ ⊗ v
˜
+ y′v

˜
⊗ f

˜
+ y′yv

˜
⊗ v

˜

= z
˜

′ ⊗ z
˜
.

(ii) If x
˜
, y

˜
∈ F, then

(x
˜
⊗ y

˜
) ⊗ f

˜
= x

˜
⊗ (y

˜
⊗ f

˜
) = x

˜
⊗ ( f

˜
⊗ y

˜
)

= (x
˜
⊗ f

˜
) ⊗ y

˜
= ( f

˜
⊗ x

˜
) ⊗ y

˜

= f
˜
⊗ (x

˜
⊗ y

˜
)

so x
˜
⊗ y

˜
∈ F.
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Exercise D.8

(i) (x + yi) ⊗ j = xj + yi ⊗ j = xj + yk so E consists of the quaternions

λj+µk with λ, µ ∈ R. E+ is a vector space with basis 1 and i, E− is a vector

space with basis j and k.-

(ii) Write a = a0 + a1i + a2j + a3k. Then

a ⊗ i = a0i − a1 − a2k + a3j

i ⊗ a = a0i − a1 + a2k − a3j

Thus a ⊗ i = i ⊗ a if and only if a2 = a3 = 0, that is to say if and only if

a ∈ E+. On the other hand, a ⊗ i = −i ⊗ a if and only if a0 = a1 = 0, that is

to say, if and only if a ∈ E−.

(iii) If a ∈ E+, b ∈ E−, then a = a0 + a1i and b = b2j+ b3k. If a = b, then

a0 + a1i − b2j − b3k = 0,

so a0 = a1 = b2 = b3 = 0 and a = 0. Thus E+ ∩ E− = {0}.
Since

x0 + x1i + x2j + x3k = (x0 + x1i) + (x2j + x3k),

and x0 + x1i ∈ E+, x2j + x3k ∈ E−, H is the direct sum of E+ and E−.

(iv) Direct calculation.

(x2j + x3k)2
= −x2

2 − x2
3

is real and strictly negative if x2j + x3k is non-zero.

Exercise D.9

(i) We have

u
˜
⊗ a

˜
= −ce

˜
+ du

˜
⊗ a

˜

a
˜
⊗ u

˜
= −ce

˜
− du

˜
⊗ a

˜

so, adding,

ce
˜
= −1

2
(a
˜
⊗ u

˜
+ u

˜
⊗ a

˜
).

Thus

cu
˜
= ce

˜
⊗ u

˜
=

1

2
(a
˜
− u

˜
⊗ a

˜
⊗ u

˜
).

It follows that

dv
˜
= a

˜
− cu

˜
=

1

2
(a
˜
+ u

˜
⊗ a

˜
⊗ u

˜
).

(ii) Take a
˜
= 0

˜
in (i). Or prove directly.
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Exercise D.10

(i) 0 ∈ D+. If a
˜
, b

˜
∈ D+, λ, µ ∈ R, then

(λa
˜
+ µb

˜
) ⊗ i

˜
= λa

˜
⊗ i

˜
+ µb

˜
⊗ i

˜
= λi

˜
⊗ a

˜
+ µi

˜
⊗ b

˜
= i

˜
⊗ (λa

˜
+ µb

˜
)

so λa
˜
+ µb

˜
∈ D+ and D+ is a subspace.

0 ∈ D−. If a
˜
, b

˜
∈ D−, λ, µ ∈ R, then

(λa
˜
+ µb

˜
) ⊗ i

˜
= λa

˜
⊗ i

˜
+ µb

˜
⊗ i

˜
= −λi

˜
⊗ a

˜
− µi

˜
⊗ b

˜
= −i

˜
⊗ (λa

˜
+ µb

˜
)

so λa
˜
+ µb

˜
∈ D− and D− is a subspace.

(ii) The right distributive law gives

T (a
˜
+ b

˜
) = (a

˜
+ b

˜
) ⊗ p

˜
= (a

˜
⊗ p

˜
) + (b

˜
⊗ p

˜
) = T (a

˜
) + T (b

˜
)

and the associative law of multiplication gives

T (λa
˜
) = T (λe

˜
⊗ a

˜
) = ((λe

˜
) ⊗ a

˜
) ⊗ p

˜
= (λe

˜
) ⊗ (a

˜
⊗ p

˜
) = (λe

˜
) ⊗ T (a

˜
) = λTa

˜

for all λ ∈ C.

(iii) If p
˜
∈ D−, then

p
˜

−1 ⊗ i
˜
= (p

˜

−1 ⊗ i
˜
) ⊗ e

˜
= (p

˜

−1 ⊗ i
˜
) ⊗ (p

˜
⊗ p

˜

−1)

= (p
˜

−1 ⊗ (i
˜
⊗ p

˜
)) ⊗ p

˜

−1
= −(p

˜

−1 ⊗ (p
˜
⊗ i

˜
)) ⊗ p

˜

−1

= −((p
˜

−1 ⊗ p
˜
) ⊗ i

˜
)) ⊗ p

˜

−1
= −(e

˜
⊗ i

˜
) ⊗ p

˜

−1
= −i

˜
⊗ p

˜

−1,

so p
˜

−1 ∈ D−

(iv) If b
˜
∈ D−, then

S (b
˜
) ⊗ i

˜
= (b

˜
⊗ p

˜

−1) ⊗ i
˜
= b

˜
⊗ (p

˜

−1 ⊗ i
˜
)

= −b
˜
⊗ (i

˜
⊗ p

˜

−1) = −(b
˜
⊗ i

˜
) ⊗ p

˜

−1

= (i
˜
⊗ b

˜
) ⊗ p

˜

−1
= i

˜
⊗ (b

˜
⊗ p

˜

−1)

= i
˜
⊗ S (b

˜
),

so S (b
˜
) ∈ D+.
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(v) We have

k
˜
⊗ j

˜
= (i

˜
⊗ j

˜
) ⊗ j

˜
= i

˜
⊗ j

˜

2
= −i

˜

k
˜
⊗ i

˜
= (i

˜
⊗ j

˜
) ⊗ i

˜
= (−( j

˜
⊗ i

˜
)) ⊗ i

˜
= − j

˜
⊗ i

˜

2
= j

˜

i
˜
⊗ k

˜
= i

˜
⊗ (i

˜
⊗ j

˜
) = i

˜

2 ⊗ j
˜
= − j

˜
.

(vi) (I not think this much detail is necessary.) Since U has basis e
˜
, j

˜
when

considered as a vector space over C, any u
˜
∈ U can be written uniquely as

u
˜
= (a + bi

˜
) ⊗ e

˜
+ (u + vi

˜
) ⊗ j

˜
= ae

˜
+ bi

˜
+ u j

˜
+ vk

˜

with a, b, u, v ∈ R,

Thus any x
˜
∈ U can be written uniquely as

x
˜
= x0 + x1i

˜
+ x2 j

˜
+ x3k

˜

with xr ∈ R and the map f : H→ U given by

f (x0 + x1i + x2 j + x3k) = x0e
˜
+ x1i

˜
+ x2 j

˜
+ x3k

˜

for xr ∈ R is a bijection.

Automatically (and evidently)

f ((x0 + x1i + x2 j + x3k) + (y0 + y1i + y2 j + y3k))

= f ((x0 + y0) + (x1 + y1)i + (x2 + y2) j + (x3 + y3)k)

= (x0 + y0)e
˜
+ (x1 + y1)i

˜
+ (x2 + y2) j

˜
+ (x3 + y3)k

˜

= (x0e
˜
+ x1i

˜
+ x2 j

˜
+ x3k

˜
) + (y0e

˜
+ y1i

˜
+ y2 j

˜
+ y3k

˜
))

= f (x0 + x1i + x2 j + x3k) + f (y0 + y1i + y2 j + y3k)

f ((x0 + x1i + x2 j + x3k) ⊗ (y0 + y1i + y2 j + y3k))

= f
(

(x0y0 − x1y1 − x2y2 − x3y3) + (x0y1 + x1y0 + x2y3 − x3y2)iy

+ (x0y2 + x2y0 + x3y1 − x1y3) j + (x0y3 + x3y0 + x1y2 − x2y1)k
)

= (x0y0 − x1y1 − x2y2 − x3y3)e
˜
+ (x0y1 + x1y0 + x2y3 − x3y2)i

˜

+ (x0y2 + x2y0 + x3y1 − x1y3) j
˜
+ (x0y3 + x3y0 + x1y2 − x2y1)k

˜
)

= (x0e
˜
+ x1i

˜
+ x2 j

˜
+ x3k

˜
) ⊗ (y0e

˜
+ y1i

˜
+ y2 j

˜
+ y3k

˜
)

= f (x0 + x1i + x2 j + x3k) ⊗ f (y0 + y1i + y2 j + y3k).

Thus f preserves the operations + and ⊗ and must be a skew-field isomor-

phism.
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Le hareng saur

Charles Cros

Il était un grand mur blanc – nu, nu, nu,

Contre le mur une échelle – haute, haute, haute,

Et, par terre, un hareng saur – sec, sec, sec.

Il vient, tenant dans ses mains – sales, sales, sales,

Un marteau lourd, un grand clou – pointu, pointu, pointu,

Un peloton de ficelle – gros, gros, gros.

Alors il monte l’échelle – haute, haute, haute,

Et plante le clou pointu – toc, toc, toc,

Tout en haut du grand mur blanc – nu, nu, nu.

Il laisse aller le marteau – qui tombe, qui tombe, qui tombe,

Attache au clou la ficelle – longue, longue, longue,

Et, au bout, le hareng saur – sec, sec, sec.

Il redescend de l’échelle – haute, haute, haute,

L’emporte avec le marteau – lourd, lourd, lourd,

Et puis, il s’en va ailleurs – loin, loin, loin.

Et, depuis, le hareng saur – sec, sec, sec,

Au bout de cette ficelle – longue, longue, longue,

Très lentement se balance – toujours, toujours, toujours.

J’ai composé cette histoire – simple, simple, simple,

Pour mettre en fureur les gens – graves, graves, graves,

Et amuser les enfants - petits, petits, petits.
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The Smoked Herring

Translated by Kenneth Rexroth

Once upon a time there was a big white wall – bare, bare,

bare,

Against the wall there stood a ladder – high, high, high,

And on the ground a smoked herring – dry, dry, dry,

He comes, holding in his hands – dirty, dirty, dirty,

A heavy hammer and a big nail – sharp, sharp, sharp,

A ball of string – big, big, big,

Then he climbs the ladder – high, high, high,

And drives the sharp nail – tock, tock, tock,

Way up on the big white wall – bare, bare, bare,

He drops the hammer – down, down, down,

To the nail he fastens a string – long, long, long,

And, at the end, the smoked herring – dry, dry, dry,

He comes down the ladder – high, high, high,

He picks up the hammer – heavy, heavy, heavy,

And goes off somewhere – far, far, far,

And ever afterwards the smoked herring – dry, dry, dry,

At the end of that string – long, long, long,

Very slowly sways – forever and ever and ever.

I made up this story – silly, silly, silly,

To infuriate the squares – solemn, solemn, solemn,

And to amuse the children – little, little, little.


