1. Let $f: \Omega \to \mathbb{C}$ be a k-times continuously differentiable function on a domain $\Omega \subset \mathbb{C}$. Show that, for $z_o \in \Omega$, there are complex numbers $(a_{r,s})$ with

$$f(z_o + w) = \sum_{r+s \le k} a_{r,s} w^r \overline{w}^s + o(|w|^k)$$

as $w \to 0$. Find the corresponding formulae for $\partial f/\partial z$ and $\partial f/\partial \overline{z}$. Show that when $\partial f/\partial \overline{z} = 0$ on Ω then $a_{r,s} = 0$ for s > 0 (so "f is a function of w alone").

2. Let $f:\Omega\to\Omega';z\mapsto f(z)=w$ and $g:\Omega'\to\mathbb{C}$ be smooth functions. Prove the chain rule:

$$\frac{\partial (gf)}{\partial z} = \frac{\partial g}{\partial w} \frac{\partial f}{\partial z} + \frac{\partial g}{\partial \overline{w}} \overline{\left(\frac{\partial f}{\partial \overline{z}}\right)}.$$

- 3. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with radius of convergence R > 0. Show that the partial sums converge locally uniformly to f on $\{z \in \mathbb{C} : |z| < R\}$ but need not converge uniformly.
- 4. Let Ω be a domain in \mathbb{C} . For a compact set $K \subset \Omega$ and an open set $U \subset \mathbb{C}$ set

$$M(K, U) = \{ f \in \mathcal{O}(\Omega) : f(K) \subset U \}.$$

These sets form a sub-basis for a topology on $\mathcal{O}(\Omega)$ called the *compact-open* topology. Show that this co-incides with the topology of locally uniform convergence.

5. Every harmonic function $u:A\to\mathbb{R}$ on the annulus $A=\{z\in\mathbb{C}:r<|z|< R\}\quad 0\leqslant r< R\leqslant\infty)$ can be expressed as

$$u(z) = b \log |z| + \operatorname{Re} a(z)$$

for some $b \in \mathbb{R}$ and some analytic function $a : A \to \mathbb{C}$.

- 6. Every harmonic function on a domain Ω is the real part of an analytic function if, and only if, Ω is simply connected.
- 7. Use Cauchy's representation theorem (Cauchy's Integral Formula) to prove that

$$u(0) = \int_0^{2\pi} u(e^{i\theta}) \frac{d\theta}{2\pi}$$

for each function $u \in \mathcal{H}(\mathbb{D})$. Let T be the Möbius transformation $z \mapsto (z + z_o)/(1 + \overline{z_o}z)$. Show that $z \mapsto u(Tz)$ is in $\mathcal{H}(\mathbb{D})$ and hence deduce the Poisson integral formula.

8. Use the residue theorem (or Cauchy's representation formula) to prove that a function f analytic on a domain containing $\overline{\mathbb{D}}$ satisfies

$$f(z) = \frac{1}{2\pi i} \int_{\partial \mathbb{D}} \operatorname{Re} f(w) \frac{w+z}{w(w-z)} dw + i \operatorname{Im} f(0)$$

for $z \in \mathbb{D}$. (This is due to Schwarz, 1870.) Deduce the Poisson integral formula.

9. A continuous function $u: \Omega \to \mathbb{R}$ on a domain $\Omega \subset \mathbb{C}$ has the mean value property if, for each $z \in \Omega$ there exists r(z) > 0 with $\{w: |w-z| < r(z)\} \subset \Omega$ and

$$u(z) = \int_0^{2\pi} u(z + re^{i\theta}) \, \frac{d\theta}{2\pi}$$

for 0 < r < r(z). Prove that if such a function has a local maximum at $z \in \Omega$ then it is constant on a neighbourhood of z. Prove that u has the mean value property if, and only if, u is harmonic.

10. For $z \in \mathbb{D}$ find

$$\sup (u(z) : u : \mathbb{D} \to \mathbb{R}^+ \text{ is harmonic, } u(0) = 1).$$

[Try $u \in \mathcal{H}(\mathbb{D})$ first.] Which functions attain the supremum? For $z_1, z_2 \in \mathbb{D}$ find

$$\sup (u(z_2) : u : \mathbb{D} \to \mathbb{R}^+ \text{ is harmonic, } u(z_1) = 1)$$

and

inf
$$(u(z_2) : u : \mathbb{D} \to \mathbb{R}^+ \text{ is harmonic, } u(z_1) = 1)$$
.

- 11. Show that Harnack's theorem fails if we do not demand that the sequence of harmonic functions is increasing. That is, find a sequence of harmonic functions which converge at each point of a domain to a limit function which is not harmonic.
- 12. Let p be a polynomial in one complex variable which has no repeated zeros. Show that

$$\{(w,z): w^2 = p(z)\}$$

is a (connected) Riemann surface. What happens if p does have repeated zeros?

13. Show that

$$R = \{(w, z) \in \mathbb{C}^2 : w^2 = (z - z_1)(z - z_2)(z - z_3)(z - z_4)\}$$

is a Riemann surface provided that the four complex numbers are distinct. Prove that it may be made into a compact Riemann surface by adjoining two points. Prove that this compact surface is homeomorphic to a torus (i.e. $S^1 \times S^1$).

- 14. Prove that $\pi_1(R, z_0)$ is a group. Show that $\pi_1(R, z)$ is isomorphic to $\pi_1(R, z_0)$ for any $z \in R$. (The isomorphism is not natural.) Calculate $\pi_1(R, z_0)$ for the following Riemann surfaces: (a) \mathbb{D} , (b) an annulus, (c) a torus, (d) $\mathbb{C} \setminus \{0, 1\}$.
- 15. Let $\psi: (M, w_o) \to (R, z_o)$ be a regular covering of R and $\pi: (\hat{R}, \hat{z}_o) \to (R, z_o)$ a universal covering. Then there is a covering $f: (\hat{R}, \hat{z}_o) \to (M, w_o)$. Prove that the following two conditions are equivalent.
 - (a) If $T \in \operatorname{Aut} \pi$ then there is an unique $S \in \operatorname{Aut} \psi$ with Sf = fT.
 - (b) Aut $f = \{T \in \operatorname{Aut} \pi : fT = f\}$ is a normal subgroup of Aut π and the quotient Aut π / Aut f is isomorphic to Aut ψ .
- 16. Show that \mathbb{P}, \mathbb{C} and \mathbb{D} are all simply connected and that no two of them are conformally equivalent.
- 17. Exhibit explicitly a universal covering $\pi: \mathbb{D} \to \{z \in \mathbb{C} : r < |z| < 1\}$ for each $0 \le r < 1$. Identify the group Aut π . [Hint: exp.]
- 18. Exhibit explicitly a universal covering $\pi: \mathbb{C} \to \{z \in \mathbb{C}: 0 < |z| < \infty\}$. Identify the group Aut π .
- 19. Prove that the Study metric is indeed a metric.
- 20. Show that for $T \in GL(2,\mathbb{C})$ the map $[\mathbf{z}] \mapsto [T\mathbf{z}]$ is a continuous map from $\mathbb{P}(\mathbb{C}^2)$ to itself. When is it an isometry?
- 21. If \mathbf{u}, \mathbf{v} is an orthogonal basis for \mathbb{C}^2 prove that the map

$$\theta: \mathbb{P}(\mathbb{C}^2) \setminus [\mathbf{u}] \; ; \; [\mathbf{z}] \mapsto \frac{\langle \mathbf{u}, \mathbf{z} \rangle}{\langle \mathbf{v}, \mathbf{z} \rangle}$$

is a chart for the Riemann surface $\mathbb{P}(\mathbb{C}^2)$. What are the transition maps for two such charts?

22. [This assumes a little knowledge of algebraic geometry.] Let $\mathbf{z} \in \mathbb{C}^N$ be a row vector. Then $\mathbf{z}^*\mathbf{z} = \overline{\mathbf{z}}^t\mathbf{z}$ is in the <u>real</u> vector space $\operatorname{Her}(N)$ of Hermitian matrices. What is the dimension of the real projective space $\mathbb{P}(\operatorname{Her}(N))$? Show that

$$J: \mathbb{P}(\mathbb{C}^N) \to \mathbb{P}(\operatorname{Her}(N)) \; ; \; [\mathbf{z}] \mapsto [\mathbf{z}^* \mathbf{z}]$$

is a well defined, injective map and that its image is a projective variety (i.e. the set where a collection of homogeneous polynomials vanish). When N=2, the image is a conic in $\mathbb{P}(\mathbb{R}^4)$ isomorphic to the sphere. [Thus J generalizes the identification of $\mathbb{P}(\mathbb{C}^2)$ with S^2 .]

23. A divisor on a compact Riemann surface is a function $d: R \to \mathbb{Z}$ which is zero except at a finite set of points. These form a commutative group \mathcal{D} . The map

$$\delta: \mathcal{D} \to \mathbb{Z}$$
 ; $d \mapsto \sum (d(z): z \in R)$

is a homomorphism. Let \mathcal{D}_0 be its kernel.

(a) Let f be a meromorphic function on R which is not identically zero, so $f \in \mathcal{M}(R)^{\times}$. Then f has finitely many zeros and poles. Let (f) be the divisor which is $\deg f(z)$ at any zero z, $-\deg f(z)$ at any pole z, and zero elsewhere. Show that this gives a homomorphism of commutative groups

$$\mathcal{M}(R)^{\times} \to \mathcal{D}_0$$
 ; $f \mapsto (f)$.

Find the kernel of this homomorphism. The quotient $\mathcal{D}_0/\{(f): f \in \mathcal{M}(R)^{\times}\}$ is called the divisor class group of R.

(b) Show that the divisor class group of \mathbb{P} is trivial.

Let $T: z \mapsto (az+b)/(cz+d)$ be a Möbius transformation.

24. Consider the chordal metric on \mathbb{P} and show that T multiplies the length of an infinitesimally short curve at z by the factor

$$\frac{|T'(z)|(1+|z|^2)}{1+|T(z)|^2} = \frac{|ad-bc|(1+|z|^2)}{|az+b|^2+|cz+d|^2}.$$

Show that the maximum and minimum values of this quantity are

$$s + \sqrt{s^2 - 1} \qquad \text{and} \qquad s - \sqrt{s^2 - 1}$$

where

$$s = \frac{|a|^2 + |b|^2 + |c|^2 + |d|^2}{2|ad - bc|}.$$

[Hint: Think about \mathbb{P} as $\mathbf{P}(\mathbb{C}^2)$.]

- 25. Let $Z(T) = \{S \in \text{M\"ob} : ST = TS\}$.
 - (a) Show that Z(T) is a subgroup of Möb.
 - (b) Find which groups (up to isomorphism) can arise as $\mathbb{Z}(T)$ for some Möbius transformation T .
- 26. Let A be a 2×2 complex matrix with trace equal to 0. Show that the series

$$\exp A = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$$

converges and prove the following properties.

- (a) If AB = BA then $\exp(A + B) = \exp A \exp B$.
- (b) $\{\exp tA : t \in \mathbb{R}\}\$ is a commutative group under multiplication of matrices.
- (c) The function $f(t)=\det\exp tA$ satisfies $f'(t)=f(t)\operatorname{tr} A=0$. Hence $\exp tA\in SL(2,\mathbb{C})$.

Let $\exp tA$ now denote the Möbius transformation determined by the matrix $\exp tA$. Show that every Möbius transformation is equal to $\exp A$ for some matrix A. Is the choice of A unique? For $z \in \mathbb{P}$ the images of z under the Möbius transformations $\exp tA$ for $t \in \mathbb{R}$ trace out a curve. Which curves can arise in this way? Sketch examples. (The groups $\{\exp tA: t \in \mathbb{R}\}$ for some A are the 1-parameter subgroups of the Lie group Möb.)