
If (zn) is an infinite sequence of points in C which converges to ∞ then the product

∞∏
n=1

(
1− z

zn

)

need not converge. However, if
∑
|zn|−1 converges, then the product will converge to an entire function

with zeros precisely at the points zn. To deal with sequences (zn) which have
∑
|zn|−1 divergent we

need to introduce exponential factors into the product.

Theorem Weierstrass products

Let (zn) be a sequence of points in C which is either finite or else tends to ∞. Then there is an entire
function f which has a zero at each point ζ in the sequence with order equal to the number of times that
it occurs in the sequence, and no other zeros. If g is another such function then f(z) = g(z) exph(z)
for some entire function h.

Proof:

Choose positive numbers Mn for which
∑
Mn converges. The function

z 7→ Log
(

1− z
zn

)
is analytic on {z : |z| < |zn|} so its Taylor series

− z

zn
− 1

2

(
z

zn

)2

− 1
3

(
z

zn

)3

− . . .

converges uniformly on {z : |z| 6 1
2 |zn|}. Hence we can choose natural numbers N(n) so that

qn(z) =
z

zn
+

1
2

(
z

zn

)2

+
1
3

(
z

zn

)3

+ . . .+
1

N(n)

(
z

zn

)N(n)

satisfies ∣∣∣∣Log
(

1− z

zn

)
+ qn(z)

∣∣∣∣ 6Mn for |z| 6 1
2 |zn|.

Therefore, the series
∞∑
n=1

(
Log

(
1− z

zn

)
+ qn(z)

)
will converge locally uniformly. Hence,

f(z) =
∞∏
n=1

(
1− z

zn

)
exp qn(z)

converges and gives an entire function f with the desired properties.

If g were another such function then g/f would be an entire function with no zeros and therefore
equal to exph for some entire function h. �

Corollary

Every meromorphic function f : C→ C∞ is the quotient a/b of two entire functions a and b.
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Proof:

The theorem enables us to construct an entire function b whose zeros are poles of f . Then a = b.f
is also entire. �

As an example, let us try to construct a entire function with zeros at the integer points. The series∑
n−2 converges so the proof of Weierstrass theorem shows that

f(z) = z
∏
n 6=0

(
1− z

n

)
ez/n

converges to the desired entire function. We can rewrite this series as

f(z) = z

∞∏
n=1

(
1− z2

n2

)
.

Because of the locally uniform convergence we can differentiate the product to obtain

f ′(z) = f(z)

1
z

+
∑
n 6=0

(
1

z − n
+

1
n

)
= f(z)

{
1
z

+
∞∑
n=1

(
2z

z2 − n2

)}

Hence f ′(z) = f(z)ε1(z) = f(z)π cotπz. We also have f ′(0) = 1 so we can solve this differential equation
to obtain

z

∞∏
n=1

(
1− z2

n2

)
= f(z) =

sinπz
π

.

Exercises

Show that the product

g(z) =
∞∏
n=1

(
1− z

n

)
ez/n

converges and satisfies

g′(z) = g(z)
∞∑
n=1

(
1

z − n
+

1
n

)
.

Deduce that g(z + 1) = −zg(z)eγ for some constant γ and prove that

γ = lim
N→∞

N∑
n=1

1
n
− logN.

(This is Euler’s constant.)
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