4.4 THE COMPLEX PLANE

4.1 Meromorphic functions.

A *entire* function is an analytic function from the complex plane to itself. Suppose that \(f : \mathbb{C} \rightarrow \mathbb{C}_\infty \) is a meromorphic function. Then it will have a finite or infinite sequence of poles \((z_n)\). These are isolated so, if there are infinitely many, they must converge to \(\infty \). The following theorem shows that any such sequence of poles can occur.

Theorem 4.1.1 Mittag-Leffler expansions

Let \((z_n)\) be a sequence of points in \(\mathbb{C} \) which is either finite or else converges to \(\infty \). For each \(n \) let \(p_n \) be a polynomial. Then there is a meromorphic function \(f : \mathbb{C} \rightarrow \mathbb{C}_\infty \) which has a pole at each \(z_n \) with principal part \(p_n((z-z_n)^{-1}) \) and no other poles. Any two such functions differ by an entire function.

Proof:

For any polynomial \(q_n \) the function \(p_n((z-z_n)^{-1}) - q_n(z) \) has the same principal part at \(z_n \) as \(p_n((z-z_n)^{-1}) \). We will show that we can choose the \(q_n \) so that the series \(\sum p_n((z-z_n)^{-1}) - q_n(z) \) converges locally uniformly. The function it converges to will then have the required properties. If two functions \(f_1 \) and \(f_2 \) have these properties then their difference has no poles and so is entire.

If there are only finitely many poles then we can take each \(q_n \) equal to 0. The finite sum \(\sum p_n((z-z_n)^{-1}) - q_n(z) \) clearly gives a rational function with the desired behaviour at each pole. From now on we will assume that the sequence \((z_n)\) is infinite and converges to \(\infty \). Let \((M_n)\) be a sequence of positive numbers with \(\sum M_n \) finite. For each \(n \) the function \(p_n((z-z_n)^{-1}) \) is analytic on the disc \(\{ z : |z| < |z_n| \} \), so its Taylor series converges uniformly on the disc \(\{ z : |z| \leq \frac{1}{2}|z_n| \} \). Take \(q_n \) to be a partial sum of this Taylor series with
\[
|p_n((z-z_n)^{-1}) - q_n(z)| \leq M_n \quad \text{for} \quad |z| \leq \frac{1}{2}|z_n|.
\]

For each \(R > 0 \) there are only finitely many \(n \) with \(|z_n| < R \). The finite sum \(\sum (p_n((z-z_n)^{-1}) - q_n(z) : |z_n| < R) \) therefore gives a rational function which has the correct principal parts at each \(z_n \) with \(|z_n| < R \) and no other poles. The sum \(\sum (p_n((z-z_n)^{-1}) - q_n(z) : |z_n| \geq R) \) converges uniformly on \(\{ z : |z| \leq \frac{1}{2}R \} \) by comparison with \(\sum M_n \). So it gives an analytic function on \(\{ z : |z| \leq \frac{1}{2}R \} \). Since \(R \) is arbitrary, the full series \(\sum p_n((z-z_n)^{-1}) - q_n(z) \) converges giving a meromorphic function with poles at each \(z_n \) having principal part \(p_n((z-z_n)^{-1}) \) and no other poles. \(\Box \)

Exercises

1. Give an example to show that the series \(\sum p_n((z-z_n)^{-1}) \) in the theorem need not converge.

2. Show that any sequence of points \((z_n)\) in \(\mathbb{D} \) with \(|z_n| \rightarrow 1^- \) as \(n \rightarrow \infty \) is the sequence of poles of a meromorphic function \(f : \mathbb{D} \rightarrow \mathbb{C}_\infty \).
4.2 Entire functions.

Let \(f : \mathbb{C} \to \mathbb{C} \) be an entire function. If \(f \) has no zeros then the monodromy theorem 2.3.2 shows that we may find an entire function \(g \) with \(f = \exp g \). If \(f \) has finitely many zeros \(z_1, z_2, \ldots, z_N \), each repeated according to its multiplicity, then

\[
f(z) = F(z) \prod_{n=1}^{N} (z - z_n)
\]

for an entire function \(F \) with no zeros. We wish to find a similar formula when \(f \) has infinitely many zeros. To do this we will need to consider functions defined by infinite products.

Let \((u_n)\) be a sequence of non-zero complex numbers. We will say that the infinite product \(\prod_{n=1}^{\infty} u_n \) converges to \(L \neq 0 \) if the sequence of partial products \(L_N = \prod_{n=1}^{N} u_n \) converges to \(L \) as \(N \to \infty \). For this to happen we must have \(u_n \to 1 \) so it is convenient to write \(u_n = 1 + a_n \). If \(a_n \to 0 \) then there will be a \(N_o \) with \(|a_n| < 1\) for \(n > N_o \). Let \(\log : \mathbb{C} \setminus (-\infty, 0] \to \mathbb{C} \) be the principal branch of the logarithm. Then

\[
L_N = L_{N_o} \prod_{n=N_o+1}^{N} (1 + a_n) = \exp \sum_{n=N_o+1}^{N} \log(1 + a_n)
\]

for \(N > N_o \). Hence the product \(\prod_{n=1}^{\infty} (1 + a_n) \) converges if, and only if, \(a_n \to 0 \) and the series \(\sum_{n=N_o}^{\infty} \log(1 + a_n) \) converges. This enables us to transfer results about series to products. For any sequence of complex numbers \(u_n \), including 0, we say that the product \(\prod u_n \) converges if there exists \(n_o \) with \(u_n \neq 0 \) for \(n > n_o \) and \(\prod_{n=n_o}^{\infty} u_n \) converges.

Note in particular that \(\log(1 + a) \) is asymptotic to \(a \) as \(a \to 0 \) so the series

\[
\sum_{n=N_o}^{\infty} \log(1 + a_n) \text{ converges absolutely if, and only if, the series } \sum |a_n| \text{ converges.}
\]

Suppose that \((a_n : \Omega \to \mathbb{C})\) is a sequence of analytic functions on the domain \(\Omega \) and that \(\sum M_n \) is a convergent series. If \(|a_n(z)| < M_n \) for \(z \in \Omega \), then the series \(\sum |a_n(z)| \) converges uniformly and \(a_n(z) \) converges uniformly to 0. Consequently the series \(\sum_{n=n_o}^{\infty} \log(1 + a_n(z)) \) will converge uniformly to an analytic function for \(n_o \) large enough. This proves that the product \(\prod (1 + a_n(z)) \) converges on \(\Omega \) to an analytic function which has zeros at the points where \((1 + a_n(z)) = 0\) for some \(n \).

If \((z_n)\) is an infinite sequence of points in \(\mathbb{C} \) which converges to \(\infty \) then the product

\[
\prod_{n=1}^{\infty} \left(1 - \frac{z}{z_n} \right)
\]

need not converge. However, if \(\sum |z_n|^{-1} \) converges, then the product will converge to an entire function with zeros precisely at the points \(z_n \). To deal with sequences \((z_n)\) which have \(\sum |z_n|^{-1} \) divergent we need to introduce exponential factors into the product.

Theorem 4.2.1 Weierstrass products

Let \((z_n)\) be a sequence of points in \(\mathbb{C} \) which is either finite or else tends to \(\infty \). Then there is an entire function \(f \) which has a zero at each point \(\zeta \) in the sequence with order equal to the number of times that it occurs in the sequence, and no other zeros. If \(g \) is another such function then \(f(z) = g(z) \exp h(z) \) for some entire function \(h \).

Proof:

Choose positive numbers \(M_n \) for which \(\sum M_n \) converges. The function \(z \mapsto \log \left(1 - \frac{z}{z_n} \right) \) is analytic on \(\{z : |z| < |z_n|\} \) so its Taylor series

\[
-\frac{z}{z_n} - \frac{1}{2} \left(\frac{z}{z_n} \right)^2 - \frac{1}{3} \left(\frac{z}{z_n} \right)^3 - \ldots
\]
converges uniformly on \(\{ z : |z| \leq \frac{1}{2}|z_n| \} \). Hence we can choose natural numbers \(N(n) \) so that

\[
q_n(z) = \frac{z}{z_n} + \frac{1}{2} \left(\frac{z}{z_n} \right)^2 + \frac{1}{3} \left(\frac{z}{z_n} \right)^3 + \ldots + \frac{1}{N(n)} \left(\frac{z}{z_n} \right)^{N(n)}
\]
satisfies

\[
|\log \left(1 - \frac{z}{z_n} \right) + q_n(z)| \leq M_n \quad \text{for} \quad |z| \leq \frac{1}{2}|z_n|.
\]

Therefore, the series

\[
\sum_{n=1}^{\infty} \left(\log \left(1 - \frac{z}{z_n} \right) + q_n(z) \right)
\]

will converge locally uniformly. Hence,

\[
f(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_n} \right) \exp q_n(z)
\]

converges and gives an entire function \(f \) with the desired properties.

If \(g \) were another such function then \(g/f \) would be an entire function with no zeros and therefore equal to \(\exp h \) for some entire function \(h \). \(\square \)

Corollary 4.2.2

Every meromorphic function \(f : \mathbb{C} \to \mathbb{C}_\infty \) is the quotient \(a/b \) of two entire functions \(a \) and \(b \).

Proof:

The theorem enables us to construct an entire function \(b \) whose zeros are poles of \(f \). Then \(a = b f \) is also entire. \(\square \)

As an example, let us try to construct a entire function with zeros at the integer points. The series \(\sum n^{-2} \) converges so the proof of Weierstrass theorem shows that

\[
f(z) = z \prod_{n \neq 0} \left(1 - \frac{z}{n} \right) e^{z/n}
\]

converges to the desired entire function. We can rewrite this series as

\[
f(z) = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right).
\]

Because of the locally uniform convergence we can differentiate the product to obtain

\[
f'(z) = f(z) \left\{ \frac{1}{z} + \sum_{n \neq 0} \left(\frac{1}{z - n} + \frac{1}{n} \right) \right\}
\]

\[
= f(z) \left\{ \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{2z}{z^2 - n^2} \right) \right\}
\]

Hence \(f'(z) = f(z) \epsilon_1(z) = f(z) \pi \cot \pi z \). We also have \(f'(0) = 1 \) so we can solve this differential equation to obtain

\[
z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right) = f(z) = \frac{\sin \pi z}{\pi}.
\]
Exercises

3. Show that the product

\[g(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z}{n}\right) e^{z/n} \]

converges and satisfies

\[g'(z) = g(z) \sum_{n=1}^{\infty} \left(\frac{1}{z-n} + \frac{1}{n}\right). \]

Deduce that \(g(z + 1) = -z g(z) e^\gamma \) for some constant \(\gamma \) and prove that

\[\gamma = \lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{n} - \log N. \]

(This is Euler’s constant.)
4.3 Quotients of the complex plane.

Theorem 4.3.1

The group $\text{Aut } \mathbb{C}$ consists of the maps $z \mapsto az + b$ for $a \in \mathbb{C} \setminus \{0\}$ and $b \in \mathbb{C}$.

Proof:

Suppose that $T : \mathbb{C} \rightarrow \mathbb{C}$ is conformal. Then we can consider it acting on \mathbb{C}_∞ with an isolated singularity at ∞ and show that it has a removable singularity there. The set $U = T^{-1}(\mathbb{D})$ is open in \mathbb{C} and T maps every point of $\mathbb{C} \setminus U$ into $\{z \in \mathbb{C} : |z| \geq 1\}$. Hence the map $S : z \mapsto 1/T(z^{-1})$ is bounded on a neighbourhood of 0 and so must have a removable singularity there. Consequently T extends to an analytic map $T : \mathbb{C}_\infty \rightarrow \mathbb{C}_\infty$. We know from Theorem 3.2.1 that T must be a rational function and the only ones which restrict to give a conformal map $\mathbb{C} \rightarrow \mathbb{C}$ are those of the form $z \mapsto az + b$ with $a \in \mathbb{C} \setminus \{0\}$, $b \in \mathbb{C}$. \[\square\]

Suppose that G is a subgroup of $\text{Aut } \mathbb{C}$ for which the quotient \mathbb{C}/G is a Riemann surface. Then Theorem 2.3.6 shows that every element of $G \setminus \{I\}$ has no fixed points. The only maps $z \mapsto az + b$ which have this property are those with $a = 1$: the translations. Thus G is a subgroup of the group of translations: $\{z \mapsto z + b : b \in \mathbb{C}\}$. The set $\Lambda = \{T(0) : T \in G\}$ is then an additive subgroup of \mathbb{C} isomorphic to G. For \mathbb{C}/G to be a Riemann surface we certainly need $0 \in \mathbb{C}$ to be isolated in $\Lambda = G(0)$ so there is a $\delta > 0$ with $|\lambda| > 2\delta$ for each $\lambda \in \Lambda \setminus \{0\}$. Conversely, if this is true, then the neighbourhood $U = \{z \in \mathbb{C} : |z - w| < \delta\}$ of any point $w \in \mathbb{C}$ has all the sets $T(U)$ for $T \in G$ disjoint, so \mathbb{C}/G is a Riemann surface by Theorem 2.3.6.

We will often identify G with Λ and write \mathbb{C}/Λ for \mathbb{C}/G. We have shown that this quotient is a Riemann surface if $\inf(|\lambda| : \lambda \in \Lambda \setminus \{0\}) > 0$. Any additive subgroup of \mathbb{C} with this property is called a lattice in \mathbb{C}.

Theorem 4.3.2

A subset Λ of \mathbb{C} is a lattice if, and only if, it is of one of the three forms:

(a) $\{0\}$.
(b) $\mathbb{Z}\omega_1 = \{n\omega_1 : n \in \mathbb{Z}\}$ for some $\omega_1 \in \mathbb{C} \setminus \{0\}$.
(c) $\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 = \{n\omega_1 + m\omega_2 : n, m \in \mathbb{Z}\}$ for some $\omega_1, \omega_2 \in \mathbb{C}$ which are linearly independent over \mathbb{R}.

In these three cases we have:

(a) $\mathbb{C}/\{0\} = \mathbb{C}$.
(b) $\mathbb{C}/\mathbb{Z}\omega_1$ is conformally equivalent to the infinite cylinder $\mathbb{C} \setminus \{0\}$.
(c) $\mathbb{C}/(\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2)$ is a compact Riemann surface homeomorphic to a torus.

In case (c) we call $\mathbb{C}/(\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2)$ an analytic torus. There are many conformally different analytic tori.

Proof:

If $\Lambda = \{0\}$ then (a) holds and $\mathbb{C}/\{0\}$ is clearly \mathbb{C}. Otherwise we can choose $\omega \in \Lambda \setminus \{0\}$ with $|\omega|$ smallest. Let this be ω_1. If $\Lambda = \mathbb{Z}\omega_1$ then (b) holds and the mapping $\mathbb{C}/\mathbb{Z}\omega_1 \rightarrow \mathbb{C} \setminus \{0\} : [z] \mapsto \exp(2\pi iz/\omega_1)$
is conformal. Otherwise we can choose \(\omega \in \Lambda \setminus \mathbb{Z} \omega_1 \) with \(|\omega| \) smallest. Let this be \(\omega_2 \).

Suppose that \(\omega_1, \omega_2 \) were not linearly independent over \(\mathbb{R} \). Then \(\omega_2 = x \omega_1 \) for some \(x \in \mathbb{R} \). We can write \(x = n + q \) with \(n \in \mathbb{Z} \) and \(0 \leq q < 1 \). Then \(\omega_2 - n \omega_1 = q \omega_1 \in \Lambda \). The definition of \(\omega_1 \) implies that \(q \) must be zero and then this contradicts \(\omega_2 \notin \mathbb{Z} \omega_1 \). Hence \(\omega_1, \omega_2 \) are linearly independent.

If \(\Lambda = \mathbb{Z} \omega_1 + \mathbb{Z} \omega_2 \) then (c) holds. The space \(C/(\mathbb{Z} \omega_1 + \mathbb{Z} \omega_2) \) is easily seen to be homeomorphic to the space obtained by identifying the opposite sides of the fundamental parallelogram \(P = \{ x \omega_1 + y \omega_2 : 0 \leq x, y \leq 1 \} \). This is clearly a torus.

It remains to show that we cannot have any elements \(\omega \in \Lambda \setminus (\mathbb{Z} \omega_1 + \mathbb{Z} \omega_2) \). Suppose that we did, then \(\omega = x \omega_1 + y \omega_2 \) for some \(x, y \in \mathbb{R} \). We can choose \(n, m \in \mathbb{Z} \) with \(|x - n|, |y - m| \leq \frac{1}{2} \). Then

\[
|\omega - (n \omega_1 + m \omega_2)| = |(x - n) \omega_1 + (y - m) \omega_2|.
\]

The triangle inequality shows that this is less than

\[
\frac{1}{2} |\omega_1| + \frac{1}{2} |\omega_2| \leq |\omega_1|,
\]

and the inequality must be strict because \(\omega_1, \omega_2 \) are linearly independent over \(\mathbb{R} \). This contradicts the definition of \(\omega_1 \). \(\square \)

Exercises

4. A function \(f : \mathbb{C} \rightarrow \mathbb{C} \) is *periodic with period* \(p \) if \(f(z + p) = f(z) \) for every \(z \in \mathbb{C} \). Show that the set of periods of an analytic function \(f \) is either a lattice in \(\mathbb{C} \) or else all of \(\mathbb{C} \).

5. Show that every analytic function \(f : \mathbb{C} \rightarrow \mathbb{C} \) which is periodic with a period \(p \neq 0 \) has a Fourier expansion \(f(z) = \sum_{n=-\infty}^{\infty} a_n \exp(2\pi i n z / p) \) convergent everywhere.

6. Show that for any subset \(E \) of \(\mathbb{C} \setminus \{0\} \) which has no accumulation points except possibly 0 or \(\infty \) there is a meromorphic function on \(\mathbb{C} \setminus \{0\} \) with poles precisely at the points of \(E \).