GEOMETRY — Example Sheet 2

TKC Lent 2009

1. Prove that two points \(w, z \in \mathbb{C}_\infty \) correspond to antipodal points in \(S^2 \) under stereographic projection if, and only if, \(w = J(z) \) for the transformation \(J(z) = -1/z \).

Show that any M"obius transformation \(T \) other than the identity has either one or two fixed points on \(\mathbb{C} \cup \{\infty\} \). Show that the M"obius transformation corresponding under stereographic projection to a non-trivial rotation has two antipodal fixed points.

Show that a M"obius transformation \(T : z \mapsto (az + b)/(cz + d) \) with \(ad - bc = 1 \) satisfies \(J^{-1}TJ = T \) precisely when \(d = \pi \) and \(c = -\bar{b} \).

2. Prove that M"obius transformations of the extended complex plane \(\mathbb{C}_\infty \) preserve cross-ratios. Let the points \(u, v \in \mathbb{C} \) correspond under stereographic projection to points \(P, Q \in S^2 \). Show that the cross-ratio of the four points \(u, v, -1/\pi, -1/\pi \) (in some order) is equal to \(-\tan^2 \frac{1}{2}d(P, Q) \), where \(d(P, Q) \) is the spherical distance between \(P \) and \(Q \).

3. Let \(J : z \mapsto 1/\bar{z} \) be inversion in the unit circle and recall that M"obius transformations map inverse points to inverse points.

Show that, a M"obius transformation \(T \) maps the unit circle onto itself if and only if \(J^{-1}TJ = T \). Deduce that a M"obius transformation

\[
T : z \mapsto \frac{az + b}{cz + d} \quad \text{with} \quad ad - bc = 1
\]

maps the unit disc \(\mathbb{D} \) onto itself if and only if \(d = \pi \) and \(c = -\bar{b} \). Show that every such transformation is an isometry for the hyperbolic metric.

Show that we can also write these M"obius transformations as

\[
z \mapsto \frac{z - z_0}{1 - z_\zeta \bar{z}}
\]

for some \(z_0 \in \mathbb{D} \) and some \(\zeta \in \mathbb{C} \) of modulus 1.

4. Let \(\Gamma \) be the hyperbolic circle \(\{ z \in \mathbb{D} : \rho(z, z_0) = \rho_0 \} \) in the disc \(\mathbb{D} \). Show that it is also an Euclidean circle and a spherical circle but that the Euclidean or spherical centre and radius can be different from the hyperbolic centre \(z_0 \) and radius \(\rho_0 \).

5. Show that a hyperbolic circle with hyperbolic radius \(r \) has length \(2\pi \sinh r \) and encloses a disc of hyperbolic area \(4\pi \sinh^2 \frac{1}{2}r \). Sketch these as functions of \(r \).

6. Show that two hyperbolic lines have a common orthogonal line if and only if they are ultraparallel.

Prove that, in this case, the common orthogonal line is unique.

7. Fix a point \(P \) on the boundary of the unit disc \(\mathbb{D} \). Describe the curves in \(\mathbb{D} \) that are orthogonal to every hyperbolic line that passes through \(P \).

8. Prove that a hyperbolic \(N \)-gon with interior angles \(\alpha_1, \alpha_2, \ldots, \alpha_N \) has area \((N - 2)\pi - \sum \alpha_j \). Show that, for every \(N \geq 3 \) and every \(\alpha \) with \(0 < \alpha < (1 - \frac{2}{N})\pi \), there is a regular \(N \)-gon with all angles equal to \(\alpha \).

9. Show that in a spherical, Euclidean or hyperbolic triangle, the angle bisectors are lines and they meet at a point.

10. Let \(\ell \) and \(m \) be two fixed hyperbolic lines that cross at an angle \(\alpha \) at a point \(A \). Another line \(n \) crosses \(\ell \) at a (movable) point \(B \) and a fixed angle \(\beta \). If \(n \) also crosses \(m \) at an angle \(\theta \), show that \(\theta \) varies monotonically as the point \(B \) moves along the line \(\ell \).

Deduce that there is a hyperbolic triangle with angles \(\alpha, \beta, \gamma \) provided that \(\alpha + \beta + \gamma < \pi \).

11. State the sine rule for hyperbolic triangles. Show that \(a \leq b \leq c \) if and only if \(a \leq \beta \leq \gamma \).

12. If \(w, z \) are points in the upper half-plane, prove that the hyperbolic distance between them is \(2 \tanh^{-1} |(w - z)/(w - \bar{z})| \).
13. In this question we will show how to deduce the sine rule and second cosine rule for a hyperbolic triangle from the first cosine rule.

Use the cosine rule to show that
\[\cos \alpha = \frac{\cosh b \cosh c - \cosh a}{\sqrt{\cosh^2 b - 1} \sqrt{\cosh^2 c - 1}} \quad \text{and} \quad \sin^2 \alpha = \frac{D^2}{(\cosh^2 b - 1)(\cosh^2 c - 1)} \]
where \(D^2 = 1 - \cosh^2 a - \cosh^2 b - \cosh^2 c + 2 \cosh a \cosh b \cosh c \). Deduce that
\[\sin^2 \alpha = \frac{D^2}{\sinh^2 a} \]
Show that, since the right hand side is symmetric in \(a, b, c \), this implies the hyperbolic sine rule.

In a similar way, show that
\[\cos \beta \cos \gamma + \cos \alpha = \frac{D^2 \cosh a}{(\cosh^2 a - 1) \sqrt{\cosh^2 b - 1} \sqrt{\cosh^2 c - 1}} \]
and deduce the second cosine rule:
\[\cos \alpha = -\cos \beta \cos \gamma + \sin \beta \sin \gamma \cosh a \cdot \cosh b \cosh c \].

Deduce that two hyperbolic triangles are congruent if and only if they have the same angles.

14. Let \(\Delta \) be a triangle on a sphere of radius \(R \), with angles \(\alpha, \beta, \gamma \) and sides of length \(a, b, c \). Prove a version of the cosine and sine rules for this triangle.

Show that, if we formally set \(R \) equal to the complex number \(i \), then we obtain the hyperbolic cosine and sine rules. (Thus hyperbolic geometry is the geometry of a sphere with radius \(i \) and curvature \(R^2 = -1 \).)

15. The quaternions \(\mathbb{Q} \) consist of all \(2 \times 2 \) complex matrices
\[q = \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \]
with addition and multiplication as for the matrices. Every such quaternion \(q \) can be written as \(q_0 \mathbf{1} + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k} \) where
\[\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad ; \quad \mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \quad ; \quad \mathbf{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad ; \quad \mathbf{k} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \]

Show that these four elements, together with their additive inverses \(-\mathbf{1}, -\mathbf{i}, -\mathbf{j}, -\mathbf{k}\) form a non-commutative group: the Quaternion 8-group. We can identify the subspace of \(\mathbb{Q} \) spanned by \(\mathbf{i}, \mathbf{j}, \mathbf{k} \) with \(\mathbb{R}^3 \) by making \(\mathbf{i}, \mathbf{j}, \mathbf{k} \) correspond to the standard basis vectors of \(\mathbb{R}^3 \). We can then write any quaternion \(q \) as \(q_0 + \mathbf{v} \) for a scalar \(q_0 \) and a vector \(\mathbf{v} \in \mathbb{R}^3 \). Prove that we then have
\[(p_0 \mathbf{1} + \mathbf{u})(q_0 \mathbf{1} + \mathbf{v}) = (p_0 q_0 + \mathbf{u} \cdot \mathbf{v}) \mathbf{1} + (p_0 v + q_0 u) + (\mathbf{u} \times \mathbf{v}) \]
In particular, for two vectors \(\mathbf{u}, \mathbf{v} \in \mathbb{R}^3 \) we have \(\mathbf{u} \mathbf{v} + \mathbf{v} \mathbf{u} = -2(\mathbf{u} \cdot \mathbf{v}) \mathbf{1} \).

The conjugate of a quaternion \(q = q_0 \mathbf{1} + \mathbf{v} \) is \(\overline{q} = q_0 \mathbf{1} - \mathbf{v} \). Show that \(q \overline{q} = ||q||^2 \mathbf{1} = \mathbf{q} \overline{q} \) where \(||q||^2 = q_0^2 + ||\mathbf{v}||^2 \). Prove that, for any unit vector \(\mathbf{u} \in \mathbb{R}^3 \), we have
\[\mathbf{u} \mathbf{v} \mathbf{u} = \mathbf{x} - 2(\mathbf{u} \cdot \mathbf{v}) \mathbf{u} \]
So the map \(T_u : \mathbb{R}^3 \rightarrow \mathbb{R}^3 ; \ x \mapsto \mathbf{u} \mathbf{v} \mathbf{u} \) is reflection in the plane perpendicular to \(\mathbf{u} \). By writing any isometry of \(S^2 \) as a composite of reflection, or otherwise, show that for each quaternion \(q \) with \(||q|| = 1 \) the map
\[T_q : \mathbb{R}^3 \rightarrow \mathbb{R}^3 ; \ x \mapsto q \overline{q} \]
is an orientation preserving isometry of \(S^2 \). Hence show that
\[T : S(\mathbb{Q}) \rightarrow SO(3) ; \ q \mapsto T_q \]
is a group homomorphism from the unit sphere \(S(\mathbb{Q}) \) (which is a 3-dimensional sphere \(S^3 \)) onto \(SO(3) \) with kernel \(\{-1, 1\} \).

Please send any comment or corrections to t.k.carne@dpmms.cam.ac.uk.

Supervisors can obtain an annotated version of this example sheet from DPMMS.