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Abstract

The two expressions “The cumulative hierarchy” and “The iterative con-

ception of sets” are usually taken to be synonymous. However the second

is more general than the first, in that there are recursive procedures that

generate some illfounded sets in addition to wellfounded sets. The inter-

esting question is whether or not the arguments in favour of the more

restrictive version—the cumulative hierarchy—were all along arguments

for the more general version.

The phrase “The iterative conception of sets” conjures up a picture of a
particular set-theoretic universe—the cumulative hierarchy—and the constant
conjunction of phrase-with-picture is so reliable that people tend to think that
the cumulative hierarchy is all there is to the iterative conception of sets: if
you conceive sets iteratively then the result is the cumulative hierarchy. In this
paper I shall be arguing that this is a mistake: the iterative conception of set
is a good one, for all the usual reasons. However the cumulative hierarchy is
merely one way among many of working out this conception, and arguments in
favour of an iterative conception have been mistaken for arguments in favour
of this one special instance of it. (This may be the point to get out of the
way the observation that although philosophers of mathematics write of the
iterative conception of set, what they really mean—in the terminology of modern
Computer Science at least—is the recursive conception of sets. Nevertheless,
having got that quibble off my chest I shall continue to write of the iterative
conception like everyone else.)

Thanks are due to my Auckland students, to Flash Sheridan, Fred Kroon,
Isaac Malitz and Herb Enderton.

1 The Cumulative Hierarchy

There is a celebrated observation of Quine’s [11]: “No entity without identity”
which throws down a challenge to theory-designers everywhere. If you lack a
satisfactory identity criterion for widgets then you cannot use first-order predi-
cate calculus with equality to theorise about them; that is to say, you are unable
to treat them formally. In particular any story about what sets are had better
include a chapter in which we learn how to tell when two sets are the same set
and when they are different.

The cumulative hierarchy gives an entirely satisfactory response to this chal-
lenge. Two sets are identical if every member of the one is identical to a member
of the other, and vice versa. Since ∈ is wellfounded in the cumulative hierar-
chy, this regress must terminate; then the fact that it terminates gives us an
unequivocal and intelligible criterion for identity between sets.

I argued in [7] that it is precisely this feature of the cumulative hierarchy that
makes it so attractive. I don’t know who was the first person to make this point:
when making it in [7] I assumed I was merely giving routine expression to an un-
controversial common understanding. Certainly one of the—uncontroversial—
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points routinely made in arguing against accepting self-membered sets is that
such an acceptance sabotages the possibility of a recursive algorithm for deciding
identity.

I now think that this is an idea worth taking further, and accordingly I am
taking it as my point of departure here.

The appeal of the cumulative hierarchy lies precisely
in its neat response to Quine’s challenge. (Q)

If (Q) is correct than any concept of set that has a response to Quine’s
challenge that is as good as that of the cumulative hierarchy has an equally
good a claim to the title of the way to think about sets. There are other
iterative ways of generating sets, and the iterative nature of their genesis will
guarantee a similarly satisfactory recursive account of equality between the sets
so generated. Some of these ways generate more than just the wellfounded sets,
so my conclusion will be that the iterative conception of sets will give us a great
deal more than just the wellfounded sets.

Let’s start off with a rehearsal of the cumulative hierarchy conception with
a view to isolating some key features. I shall be exploiting the image (which
Boolos [2] attributes to Kripke) of the lasso. In the cumulative hierarchy story
we lasso collections of sets, and then—before throwing them back into the herd
of sets whence we plucked them—we perform some magic on the lasso-contents
(otherwise we wouldn’t get a new set). The magic is performed with the aid of
a wand.

(There are various points that can be made about how the things one catches
with one’s lasso are not earlier sets, but copies of earlier sets, since a set can get
caught in a lasso with other sets more than once. Perhaps we mean tokens of
earlier sets. A rigorous description of this process in terms of lassos probably
does need to exploit the type-token distinction or something very like it. But we
probably don’t need to worry about such subtleties—at least for the moment.)

The point I want to emphasise here is the indispensibility of the wand. The
point needs making because if the only iteratively-conceived sets one examines
are the sets of the cumulative hierarchy then it is possible for a hurried thinker
to overlook the need for the wand, and this is a mistake that leads to further
error. We need the wand for the following reasons (among others).

1. There is first the apparently banal point that I have just made that unless
one does something to the lasso-contents before throwing them back then
one has not done anything to increase the stock of sets: one has merely
picked some up and put them back. The function performed by the wand
is the turning of a preset into a set. However the point can be made in
another way.

2. As (Q) emphasises, one very pleasing aspect of the cumulative hierarchy
picture is the consistent and fitting story it tells about the nature of iden-
tity between sets. We know from the axiom of extensionality that two
sets are identical iff their members are identical. This sounds as if we
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can decide all questions like x = y? in the same way: just check whether
every member of x is a member of y and vice versa. However, if that
were all there was to it then we would be in a situation where any ques-
tion “u = v?” could be answered immediately, and the extra information
provided by the news that all sets belong to the cumulative hierarchy
wouldn’t enable us to do anything we couldn’t do already. Life was never
meant to be that easy. If the assumption that every set is in the cumula-
tive hierarchy is to be any use to us we will have to restrict ourselves to
supposing that we can only (i) tell whether or not a set is empty, and (ii)
recover the members of a set on demand, with all questions about those
members to be answered later. The insight that best underpins (ii) is the
idea that a set is magicked out of lasso-contents and that the magicking
can be reversed and the contents recovered.

Once we are clear in our minds that sets need a wand as well as a lasso
we can make the cumulative hierarchy work for us, as follows. To determine
whether or not x = y we take x and y apart and check, for each member of x,
whether or not there is a member of y to which it is identical. (And vice versa
too of course.) By reducing the question of identity between x and y to identity
between members of x and members of y we obtain a recursive algorithm for
testing equality.

Where does the process of the last paragraph bottom out? With the empty
set: the one time when we can give an immediate answer to the question “Is
x = y?” is when one or other of x and y is empty. If they are both empty
the answer is “yes”; if only one of them is empty it is “no”. Must we always
reach such a stage? Yes, because at each stage in this recursion we are asking
questions about sets of ever-decreasing rank, and the ordinals are wellfounded:
every descending sequence of ordinals is finite.

We can characterise this algorithm in terms of a game Gx=y played between
two players: Equal and Not-equal. If both x1 and y1 are empty then Equal
wins; if one of them is empty and the other nonempty then Not-equal wins.
Otherwise Not-equal picks a member x′ of x or a member y′ of y and Equal
must reply with a member y′ of y (if Not-equal had picked x′ from x) or a
member x′ of x (if Not-equal had picked y′ of y.). Then they play Gx′=y′ .

It’s routine to prove (by wellfounded induction on ∈) that x = y iff player
Equal has a winning strategy in Gx=y.

We will return to this game-theoretic imagery later.
So if we are to exploit properly the fact that our sets all live inside the

cumulative hierarchy then we have to be able to “take sets apart”. This in turn
means that we have to have an anti-wand. I like to think of the anti-wand as a
kind of one-armed bandit. You put x into the slot, pull the handle and, after
a brief clattering sound, the tray at knee-level fills with members. The tray-
contents do not constitute a set, and they fail to constitute a set in exactly the
same way that the lasso-contents fail to constitute a set. The lasso-contents fail
to be a set because they haven’t been turned into one yet, and the tray-contents
fail to be a set because they are the result of taking the set apart. Notice also
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that the lasso-contents and the tray-contents have no internal structure: in that
respect they are already a bit like sets. Notice, too, that the players never pick
elements of sets: they pick elements from presets: lasso-contents/tray-contents.

Of course what is going on here is that we are thinking of sets as a datatype
that is equipped with what the theoretical computer scientists call constructors
and destructors. The one-armed bandit is simply the destructor function, and
the wand is the corresponding constructor—the sole constructor as it happens.
In contrast the datatype of formulæ has lots of constructors: ∧, ∨ and so on,
but the cumulative hierarchy has only one.

But notice that there is nothing in the idea of sets as conceived iteratively
that says there should be only one constructor. Formulæ are conceived itera-
tively and have more than one constructor: the fact that a datatype is conceived
iteratively tells us nothing about how many constructors it has.

If there is nothing in the iterative conception of a datatype that tells us how
many constructors that datatype is to have, perhaps we should consider the
possibilities of other ways of constructing sets—iteratively. The umbrella this
venture can shelter under is Conway’s Principle adumbrated in the appendix to
part zero of [4]: “Objects may be created from earlier objects in any reasonably
constructive fashion.” (p 66).

2 The Two-Constructor case

We can modify the cumulative hierarchy construction to one where—each time
we create a new set by lassoing—we also create a companion to it which is to be
its complement. As before, once you have lassoed a collection you touch it with
a wand and you obtain a set. However, this time you have a second wand, and
as well as touching the lassoed collection with the first wand to get a set you
touch the lassoed collection with the second wand and you get the complement
of the set made by the first wand. You ordain that the complement of x is to
contain all the things so far created that aren’t in x, and additionally to contain
all the sets as yet unborn.

Let us consider the first few stages of this construction, to get clear in our
minds the difference between this construction and the cumulative hierarchy
construction.

Stage 0

At the outset the world is empty, so when I throw out my lasso I catch nothing.
Thus the two wands give me ∅ and its complement V .

Stage 1

The world now contains two things: ∅ and V . So when I throw out my lasso I
might catch

(i) nothing, as before, or
(ii) ∅, in which case the two wands give me {∅} and V \ {∅}; or
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(iii) V , in which case the two wands give me {V } and V \ {V }; or
(iv) both ∅ and V , in which case my two wands give me {∅, V } and V \{∅, V }.

Stage 2

So now the world contains eight things: ∅, V , {∅}, V \{∅}, {V }, V \{V }, {∅, V }
and V \ {∅, V }.

Stage 3 . . .

And now we have to have to say “and so on . . . ” because (as the reader can
calculate) at the next stage we will have 512 things! Of course we iterate this
through all the ordinals just as one iterates the cumulative hierarchy.

Sets created by the first wand are low sets, and sets created by the second
wand are complements of low sets, or co-low sets for short. Not hard to see that
no low set can be self membered, and every co-low set must be self-membered.
There are a couple of important (because missable) trivialities to emphasise at
this stage.

1. Our sets—of the new flavour as well as the old—will have birthdays or
ranks, just as under the old dispensation.

2. Low is not the same as wellfounded: every wellfounded set is low, but there
are plenty of low sets that are not wellfounded: {V } for one. However it is
true that no set created by the first wand can ever be a member of itself.
Indeed we can easily even establish that ∈ restricted to first-wand sets is
wellfounded. (Consider the function that sends each set to the stage at
which it is created.)

I shall discuss in section 5 the question of what axioms for set theory are sug-
gested by this construction. However it may be worth noting at this stage that
one can give for this construction the same kind of argument that it generates no
paradoxical objects as one can give for the cumulative hierarchy construction.
For example, consider the possible existence of the Russell class. If it ever got
created it would have to be either a low set or a co-low set. It can’t be a low
set, since we keep on creating new sets that aren’t members of themselves: no
low set is a member of itself after all. And the complement of the Russell class
cannot be low, since we keep on creating sets that are members of themselves:
every co-low set is a member of itself. So the Russell class is neither low nor
co-low, so it never gets created.

2.1 Set Equality in the Two-Constructor Case

Recall the game Gx=y played by Equal and Not-equal in the cumulative hier-
archy setting, and consider how it works in the new two-wands setting.

In the cumulative hierarchy setting we never had to worry about infinite
plays. The point is not that one player or the other always had a strategy to
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force a win after a finite play; the point is the stronger one that no infinite plays
were possible at all. The situation here is very different.

Suppose we leave the termination conditions the same as in the cumulative
hierarchy, as on page 4.

Consider the game GV =V in which the two players test whether or not
V = V . The answer is “yes”, so Not-equal should lose the game. However he
can keep on postponing defeat by repeatedly playing V , a move to which Equal
is forced to reply V every time.

(Obviously the same holds not just for V but for any self-membered set.)
This is an infinite play that will happen even if both players know what they
are doing, and it shows that at least some infinite plays have to be classed as
wins for player Equal.

So do we want all infinite plays to be wins for player Equal? This might
not be such a bad idea: it’s simple to check that the relation “Equal has a
strategy in the game Gx=y that enables her to avoid defeat in finitely many
moves” is a congruence relation for ∈.1 This—it could be argued ([7])—is the
only absolutely indispensible condition for a candidate for the rôle of equality-
between-sets. So it isn’t an obviously absurd idea to rule that all infinite plays
are wins for player Equal. If we rule that all infinite plays are wins for player
Equal we are adopting what is known in the trade as the Axiom of Strong
Extensionality. This axiom is the formalisation of the view that two sets
should be identical unless there is a good finite reason for them not to be.

However, this policy results in immediate disaster.2 Consider the two sets V \
{V } and V —both of them authentic products of the two-wands construction—
and the game played to distinguish them. For his first move player Not-equal
clearly picks V from V —after all, it’s his only hope—but then Equal picks
V \ {V } from V \ {V }, and the two players are back in exactly the situation
they started in! Clearly Equal can postpone defeat for ever. Annoyingly we
want this infinite play to be a win for player Not-equal!

Malitz’s example appears to be telling us that if we have strong extensionality
then not both V and V \ {V } can be sets: as we have just seen, Equal wins the
game GV =V \{V } by postponing defeat indefinitely.

For years I thought this was something to do with the nonexistence of com-
plements of singletons in the set theory GPC (a set theory called “Generalised
positive comprehension”, which I am not proposing to discuss here (but see [5]
and [6] and references therein) but now I think this is mere coincidence.

I suggest instead that the significance of these two difficulties—V and Malitz’s
example—is that we have not made the necessary changes to Gx=y in moving
from the cumulative hierarchy case to the two-wands case. To accommodate
the two-wand picture and still give a recursive account of set equality we have
to modify the rules of Gx=y to take account of the fact that sets can now be
constructed in more than one way. The rules for the two-constructor case should
have been as follows.

1Strictly it’s a congruence relation for the (infinitary) operation performed by the lasso.
2I am endebted to Isaac Malitz for drawing my attention to this example.
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If one of x and y is low and the other co-low, then Not-equal wins
at once. If they are both low, Not-equal picks a member (x′ or y′)
of one of them and Equal replies with a member (y′ or x′) of the
other. If they are both co-low, Not-equal picks a member (x′ or y′)
of one of V \ x and V \ y; then Equal replies with a member (y′ or
x′) or the other. They then play Gx′=y′ .

The rationale for this is: since we now have two ways of constructing sets
not one, then in order to tell when two sets are the same or distinct we have
to know what constructors the two sets arise from at top level, and deconstruct
them using the right destructor. We actually—all along—had to deconstruct a
set for the ∈-game, but since (in the cumulative hierarchy picture) there was
only ever one constructor we didn’t have to ask which one was being used. This
time there are two, and we do have to ask. Readers should satisfy themselves
that this process (the game) is terminating in exactly the same way and for the
same reasons that the original game, Gx=y was terminating in the cumulative
hierarchy case: at each recursive call we are considering objects with earlier
birthdays. The situation is exactly like that with the construction of formulæ.
Two formulæ are the same if they have the same list of immediate subformulæ
and have the same principal connective. We need to know the top level con-
nective of a formula when trying to parse it. Just as the truth-conditions of a
formula depend on how it is constructed so the identity conditions of sets de-
pend on how they are constructed: a set is constructed from lasso-contents plus
an operation. This development can be easily generalised to encompass as many
constructors as we like. Two sets are the same set iff they are constructed using
the same constructor on the same lasso-contents. As long as no set can be made
in more than one way3 we can continue to claim that identity between sets can
be given the same recursive narrative as that given by the cumulative hierarchy
and—who knows—even if it turns out that some sets are manufacturable in
more than one way we might yet find a way of coping.

So let us summarise. The claim is that one can painlessly generalise the
construction of the cumulative hierarchy by postulating other constructors, and
thereby building other sets, whose membership relation can be illfounded.

However—despite their illfoundedness—all these new sets nevertheless have
wellfounded structure of some kind and it is in virtue of this recursive structure
that we can continue to give a recursive account of set identity—enabling us to
remain on-side with the Quinean police4 in exactly the way we were when we
only had the cumulative hierarchy.

The key to making sense of this startling claim is to be found in teasing apart
the two rôles played by the membership relation, ∈. In the cumulative hierarchy
picture it is both (i) the membership relation between the sets we have created

3If we had a powerset constructor as well as a finite-set constructor then any power sets of
finite set would be constructed in more than one way: (i) by the power set constructor and
(ii)—since it is also finite—by the finite-set constructor

4who have “No entity without identity” tattooed on their knuckles, so that it’s the last
thing you see before they . . .
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and (ii) the relation of ontological priority between those sets. (Strictly it is the
ancestral or transitive closure of ∈ that is the relation of ontological priority,
rather than ∈ itself.) In [9] I call the ontological priority relation between
objects in a recursive datatype the engendering relation of that datatype. It
is not hard to show that the engendering relation of a recursive datatype is
always wellfounded, and—being wellfounded—is available to be exploited for
transfinite algorithms for testing equality (and other relations).

We are now in a position to see that—although our sets have to form a
recursive datatype so we can have a recursive characterisation of set equality
as in the two cases we have seen—the engendering relation of our recursive
datatype of sets does not have to be ∈ (or rather, its transitive closure). In the
case of the cumulative hierarchy the engendering relation happens to be ∈ but
in the two wands case it doesn’t: it’s the (rather cumbersome) relation which is
the ancestral (transitive closure) of

“(low(y) ∧ x ∈ y) ∨ (¬low(y) ∧ x 6∈ y)”

. . . which is actually equivalent to

x ∈ y ←→ low(y) (3)

The rôle played by ∈ in the cumulative hierarchy case is now played by the
engendering relation of the new rectype: the relation (3) displayed above.

3 More Wands

The two-wands case discussed above is of course only the simplest of a range
of possible ways of complicating the construction that gave us the cumula-
tive hierarchy—while remaining within the iterative conception of sets broadly
understood. It is possible to spice up the construction so that—for example—
every set not only has a complement but also generates a principal ultrafilter:
{y : x ∈ y}. Also, if ∼ is an equivalence relation definable by quantifying only
over low sets, one can add ∼-equivalence classes for all low sets. (See Church
[3]). However I will not be pursuing these possibilities since they do not serve
to make any metaphysical points not already made by the two-wand case.

There are four attractive features of the cumulative hierarchy which the
two-wand construction also has. They are the second-order categoricity of the
corresponding set theory, the recursive decidability of equality, the availability
of a natural notion of restricted quantifier, and the possibility of independence
proofs by forcing.

3.1 Second-order categoricity

The two-wand picture has the same second-order categoricity as the one-wand
picture. This, again, is just a result of the recursive nature of the definition.
In second-order logic one can prove that any recursive datatype whatever—
even of infinite character—is unique and its second-order theory is categorical.
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The categoricity of second-order ZF is merely a special case of this—and the
categoricity of the second-order version of the theory corersponding to the two-
wand construction (“CUS” which we will see below) is another special case.

3.2 Equality

The equality relation between sets must be a congruence relation for ∈ and
strong extensionality is the idea that it should be the maximal congruence re-
lation for ∈. It could be argued that prima facie the only thing we know about
equality between sets is that it is a congruence relation for ∈. If there are lots of
such congruence relations then we have to decide which of them is equality. By
assuming strong extensionality we cut down the number of candidates to one,
and thereby simplify the decision mightily. Hence the attraction of an axiom of
strong extensionality.

Strong extensionality is straightforwardly true in the cumulative hierarchy:
given any two congruence relations for ∈ we prove by induction on ∈ that they
agree. This is probably what make strong extensionality attractive to us. But
an analogous result holds in any iterative construction. It’s just that in the
more general case the induction is not on ∈ but on the engendering relation.
In the two-constructor case the axiom of strong extensionality is precisely the
claim that equality is defined by the game Gx=y.

3.3 Restricted quantifiers

Any recursive datatype gives us a notion of restricted quantifier. In the arith-
metic of IN it is (∀x < y) and its dual. In the cumulative hierarchy it is (∀x ∈ y)
and its dual. These restricted quantifiers are well-behaved because the rela-
tion that restricts the quantifier—∈ or <—is the relation of ontological priority.
There is always a welldefined notion of ontological priority with a recursive
datatype: it’s just the engendering relation. (There is no good notion of re-
stricted quantifier in the reals or the rationals for example.) When we put it
like this it becomes clear what the appropriate notion of ontological priority is
for the two-wand case: our restricted quantifiers will be (∀x R y) and (∃x R y)
(where R is the relation (3) above).

One feature one expects restricted quantifiers to have is that one should be
able to “pull out” unrestricted quantifiers from within their scope, and thereby
prove a normal form theorem to the effect that every formula is equivalent
to one which has no unrestricted quantifiers within the scope of a restricted
quantifier. In the cumulative hierarchy picture this is secured by means of the
axiom scheme of collection. It is simple to check that the same normal form
theorem holds for the new version of restricted quantifier that we have in the
two-wands case. Suppose (∀xRy)(∃z)(φ). There are two cases to consider, y
low and y co-low. If y is low we use collection for low sets to obtain a low Z
such that (∃Z)(∀xRy)(∃zRZ)(φ). If y is co-low we use low collection, this time
on the complement of y.
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This is all right as long as we have low collection. Does low collection follow
from low replacement? Yes, because the usual argument using witnesses of
minimal rank works.

It is not hard to see how one would extend the proof to more complex
iterative constructions.

3.4 Forcing

Forcing is possible in the two-wands construction. The recursions on ∈ that
feature in the truth lemma and the definition of forcing for atomic formulæ are
replaced by recursions on the relation (3). Also ǎ =: {〈b̌, 1〉 : b ∈ a} if a is low.
If a is co-low then we must have ǎ =: V \ {〈b̌, 1〉 : b 6∈ a}.

ǎ =:
{
{〈b̌, 1〉 : b ∈ a} if a is low
V \ {〈b̌, 1〉 : b 6∈ a} if a is co-low;

Similarly

aF =:
{
{bF : (∃p ∈ F )(〈b, p〉 ∈ a)} if a is low
V \ (V \ a)F if a is co-low.

Notice that there can be no co-low poset (the graph of a partial order on a
co-low set would not be co-low) so all sets of conditions are low sets as before.

4 Objections

It is quite unrealistic to expect this novel picture to be welcomed with open
arms; the cumulative hierarchy picture is far too well-entrenched. In [2] Boolos
quotes Russell as saying that the other conceptions of set are not “such as
even the cleverest logician would have thought of if he had not known of the
contradictions”.5

Boolos has the grace to admit “There does not seem to be any argument
that is guaranteed to persuade someone who really does not see the peculiarity
of a set’s belonging to itself, or to one of its members etc., that these states of
affairs are peculiar”. Despite this, objections will surely be raised. Let us try
to anticipate some of them.

5One could equally wonder whether the iterative conception of set is the kind of thing even
the cleverest logician would have thought of if he had not known of the contradictions. Since
the discovery of the paradoxes predates not only NF and ZF but even all the articles giving
expression to the cumulative hierarchy we shall never know; but surely it is a safe bet that
without the contradictions even the cleverest logicians would have gleefully forged ahead with
näıve set theory. One is reminded of Quine’s remark on p. 242 of Set theory and its logic that
“[impredicative definition] is hardly a procedure to look askance at, except as one is pressed
by the paradoxes to look askance at something”.

11



4.1 Sets Constituted by their Members

Those of us with students have probably been telling them for years that what
distinguishes sets from all other mathematical structures that have elements
(lists, multisets etc) is that

Sets are uniquely characterised by their members. (2)

But now we find that the only sets that are defined by their members are sets
created with the first wand. This seems to be telling us that the objects created
by other wands—legitimate kosher extensional objects though they are—are
not sets since they are not constituted by their members. But is this really the
moral? I think not. Observation (2) is not so much a definition of set as a
very useful contrastive explanation: a device for explaining sets to Computer
Science students who have encountered other datatypes like lists and multisets.
It captures the contrast between first-wand sets and other first-wand objects
such as lists and multisets. It is the feature that one tries to point out once the
first-wand nature of the entity has been agreed on in advance. The purpose of
“Sets are constituted by their members” is not to make a contrast with “Some
sets are constituted by their non-members” but with “Lists are constituted
by their members plus what you do to them”. (2) is really no more than an
attention-getting way of saying that ∈ is extensional. And extensionality of ∈
doesn’t rule out co-low sets.

4.2 The End of Time

It will be objected that we don’t know what the members of the complement
objects are until the end of time. It’s admitted that we know in some sense
what the members will be, but this knowledge is of the set’s intension not its
extension—and sets are supposed to be extensions!

The obvious riposte to this would appear to be the observation that we know
what sets are members of what once the construction is halted, at the end of
time. We discover what extensions correspond to the intensions once we reach
the end of time. How good a reply is this?

Not very. After all we never do reach the end of time. The process of creating
new sets is everlasting and not only will we be engaged on it as long as we have
breath in our bodies, but when we die someone else will take over. We never
reach a stage at which we down tools and start doing something else, (such as
some mathematics—which is partly what this was supposed to be for, let us not
forget) because the recursion tells us at any stage to throw out the lasso and
make more sets. Every stage is a stage at which you make more sets.

But notice that this argument can be used to equal effect against the cu-
mulative hierarchy picture of sets too. The Vα’s never stop either, and for the
same reason. What is to be done about this? What is the ZF-istes’ reply?

They have at least two. One is “Our sets are all right from the moment they
are born; a second-wand set isn’t all right until the end of the construction.”
This seems to be an important difference.
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Another reply is: since you cannot wait until the end of time (because there
is no end of time) what you do is call a halt at some bounded stage.

But if you halt the two-wands construction analogously at some bounded
stage you do know what the members of all your sets are.

Perhaps that wasn’t really what the ZF-iste meant: perhaps, rather than
calling a halt to the process, simply interleave it with the execution of some
mathematics. This seems to have some bite: it makes the co-low sets look more
intensional, in that one can be acquainted with them without knowing exactly
what they contain: more might get put in as soon as you turn aside from doing
the mathematics to constructing some more sets. But then plenty of things like
IR and P(IN) are intensional in parallel ways. The ZFistes don’t object to that,
so presumably it isn’t a problem.

4.2.1 What is it an argument against?

The end-of-time argument swims so naturally and swiftly to the front of the
minds of those used to the cumulative hierarchy that there is a tendency for
them to overlook its other possible applications. Is this an argument against
thinking of these object as sets? That’s certainly the use to which it is put.
But surely—if it has any force at all—it has more force than that. It’s not
just an argument against the idea that these things are sets; it’s an argument
against the idea that they are legitimate mathematical objects at all. However,
they surely are legitimate mathematical objects, in virtue of Conway’s principle
(Conway [4]). Careless or nervous readers might be spooked by the appearance
of the complementation operator in the two wands construction into thinking
that it is not a monotone construction, but this is merely a trick of the light:
the construction is perfectly monotone

There may be room for debate about whether they are entities of the kind
legitimated by Conway’s principle.

4.3 How Many Wands?

If we are to admit that the cumulative hierarchy does not exhaust the collection
of sets iteratively conceived, then how many constructors do we have to ac-
knowledge? Once we’ve dropped our guard to the extent of allowing two wands,
might there be no end to it and we would become bogged down in discussions
of whether one constructor or another is legitimate. Mightn’t it just be simpler
never to let these people through the door in the first place?

My reply: it’s an interesting question, but it’s hardly a problem. It’s the
problem—if problem it be—confronting the man who tunnels into the cellars of
a Château in Bordeaux, and can’t work out which bottle to open first. I’d like
to have problems like that.

More seriously though, the thought that admitting other recursive construc-
tions might give rise to difficulties later—and that a line will have to be drawn—
is not by itself an argument for drawing the line so close to home that the two-
constructor case is excluded. It may be a motivation to look for a significant
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difference between the one-constructor and the two constructor case, but it does
not itself constitute such a difference, and in any case that search is—or soon
will be—well under way anyway.

Here is one difference that it does not make: even if the two-wands story is
not as metaphysically satisfying as the one-wand story, it’s just as good from the
point of view of arguing for consistency. The cumulative hierarchy motivates
the adoption of a suite of axioms (ZF) for which it constitutes an obvious model.
The two-wands construction provides a similarly convincing consistency proof
for the set of axioms that it motivates. As we shall see later, one can give a
consistency proof of this theory relative to ZF, but there is no need to, since the
theory can be justified in the same way that ZF can. Accordingly objectors who
wish to view the sets produced by the two-wands construction as spurious must
think that there is more to the existence of mathematical objects than freedom
from inconsistency.

5 Church-Oswald models

The two-wands construction (and its more complicated congenors) naturally
gives rise to a body of axioms for set theory, and in very much the same way
that the cumulative hierarchy gave rise to the axioms of ZF, and in this section
we will see what axioms are suggested by the two-wand construction.

Interestingly these theories also admit direct fairly direct consistency proofs
relative to ZF, by a method due independently and simultaneously to Church
and Oswald. A thorough technical treatment of these methods is to be found in
[8] but we will sketch one example—the two-wands construction—briefly here.

Working with a model M = 〈V,∈〉 of ZF(C), fix once for all a definable
bijection k between V and V × 〈0, 1〉, which must satisfy the property that
the ranks of k(〈x, 0〉) and k(〈x, 1〉) must both be greater than the rank of x.
Now define a new model with the same domain and a new membership relation
defined by

x ∈new y ←→
{

k(y) = 〈y′, 0〉 and x ∈ y′, or
k(y) = 〈y′, 1〉 and x 6∈ y′.

It is now a laborious but relatively straightforward technical exercise to check
that the new structure we have just characterised is the same up to isomorphism
as the result of the two-wand construction described earlier. Even those with
little appetite for this kind of detail will find it easy to check that if the second
component of k(x) is 0 then x is low, and if it is 1 then x is co-low.

Now just what have we created a model of by these two processes?
The wellfounded sets created by the two-wands construction at stage α are

clearly the same as the wellfounded sets we created in the cumulative hierarchy
by stage α, so according to this construction the wellfounded sets are a model
of ZF (if that’s what it was we concluded the cumulative hierarchy is a model
of).
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Clearly we have separation for low sets, just as we had for all sets in the
cumulative hierarchy case.

Whatever reason caused us to believe that the axiom scheme of replacement
holds in the cumulative hierarchy will cause us to believe in this context that
a surjective image of a low set is a low set. This tells us—for example—that
the axiom of pairing holds: whatever x and y are, {x, y} is going to be a low
set whose birthday is the first day after the birthdays of x and of y. Every low
class will be a set. This of course also gives us an axiom scheme of replacement
for low sets: a surjective image of a low set in a function class is clearly a set—
indeed it’s a low set—for precisely the reason that the cumulative hierarchy is
a model of replacement: the argument is the same.

Binary unions—x∪ y—will always exist. If x and y are both low, then x∪ y
is low too. If x and y are both co-low, being the complements of the low sets x′

and y′ respectively, then x ∪ y is the complement of the low set x′ ∩ y′. If one
is low and the other not (as in the case where x is the complement of the low
set x′) and y is low then x∪ y is the complement of x′ \ y which is a low set by
separation.

The power set of a low set will be a low set. The power set of a co-low set
will be neither low nor co-low and so the axiom of power set hold only for low
sets in the models obtained by this method. Sumset is different. Notice that
every co-low set must contain a co-low member: every set containing only low
sets must be of bounded rank. Any superset of a co-low set is co-low, so every
sumset of a co-low set is co-low. A sumset of a low set is low unless it has a
co-low member.

The result is that this construction gives us a model of a theory whose ax-
ioms are
1 Extensionality;
2 Existence of x ∪ y;
3 Existence of {x, y};
4 Existence of V \ x;
5 The (externally) wellfounded sets form a model of ZF;
6 Sumset;
7 Replacement for low sets.

The fifth and seventh axioms are of course schemes. The first four axioms are
a system called NF2. The fifth axiom is a reflection of the fact that (modulo some
small print) the wellfounded sets of the two-wands construction are precisely the
sets in the cumulative hierarchy. This is roughly the theory CUS of [3].

So there are two ways of obtaining models for theories like those discussed
in [8] and [3]. One can (i) elaborate them directly, by iterative constructions
that parallel the construction of the cumulative hierarchy. And (ii) one can
obtain them by coding up novel membership relations within a model of ZF.
As far as we can tell (ii) preceded (i) but there appears to be no significance
to this fact. Did (ii) really precede (i)? Admittedly it would be very odd for
Church to have thought as hard as he did about CUS without discovering the
two wands construction. But would it not have been odder still for him to have
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discovered the two-wand construction and then say nothing about it, instead
proceding directly to the Church-Oswald model construction? Perhaps not: it
may be that Church’s formalist leanings predisposed him to see this material
entirely through syntax, and that he did not know the two-wands construction.
Of course it may also be that he knew it, but—again, because of his formalist
leanings—felt that wands were not the right instruments for presenting this
idea.6

5.1 The Significance of the Church-Oswald Interpretation

So the two-wand iterative constructions can all be coded up inside the cumula-
tive hierarchy, by the techniques of Church and Oswald. It is a good question
what the metaphysical significance of this coding might be. Does the existence
of the coding confirm our belief that

These more general iterative constructions are authentic
constructions of genuine mathematical objects Horn 1

Or does it on the other hand rather explain why

These more general iterative constructions are merely
pointless epiphenomena? Horn 2

The dilemma sporting these two horns is of course Moore’s paradox of anal-
ysis.

Those who want to take the second horn have to have a reason for believing
in the legitimacy of the cumulative hierarchy construction that goes beyond the
legitimacy that the cumulative hierarchy acquires from being a sensible recursive
datatype declaration. So far—as we have seen—the iterative conception and the
cumulative hierarchy have always been conflated, so arguments for the first have
been mistaken for arguments for the second. Hitherto this has always had the
result that arguments of the kind now required by the second-horn votaries have
never been specifically identified. Now at least, votaries of the second horn do
at any rate know what it is they have to establish.

5.2 Forti-Honsell Antifoundation

It is natural in this discussion to wonder whether or not there is a connection
with Forti-Honsell-style antifoundation axioms (see [10])g. It is possible to think
of Forti-Honsell universes as recursively constructed: at stage α add all subsets
of what you have so far, and then—before proceeding to stage α+1—add all sets
whose set pictures you have just thereby added. This observation is behind the
proof that in universes of this kind every set is the same size as a wellfounded
set. We would have to have a constructor that created sets from set-pictures.
On the face of it, no such constructor would be injective and we would have the
problem mentioned earlier of sets-being-created-in-more than-one way. There

6Thanks to the referee and Isaac Malitz and Flash Sheridan for discussions on this point
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will surely be ways round this problem (in this case) but we have no space to
cover them here.

6 Envoi: Why considering the two-wand con-
struction might be helpful

Naturally I prefer the first horn of the dilemma on page 16. The reason why
we should extend a warm welcome to theories like CUS is that they strive very
hard to do something ZF doesn’t even consider attempting. They represent an
endeavour to reason seriously and logically about the genuinely infinite, The
Unbounded. Attempts to grasp the nettle and take The Unbounded seriously
(one thinks of Cantor and Dedekind) have in the past been attended with success
and have engendered some useful new mathematics. It might be the same again.

But do they in fact represent such an endeavour? Against this can be made
the point that since the two-wand construction can always be coded inside
the cumulative hierarchy it can have no new mathematics to tell us. It’s not
clear how strong a point this is: not everybody is of the view that the in-
terpretability of Forti-Honsell antifoundation into ZF+ foundation means that
AFA contains no new mathematics. In any case even if one does conclude that
the interpretability of the two-wand construction inside the cumulative hierar-
chy means that the the two wand construction contains no new mathematics
(on the grounds that everything it has to say can be encoded as facts about
wellfounded sets) that does at least mean that some of the results about well-
founded sets are encoded assertions about big sets, and should therefore be seen
in that light: insights into large sets were buried inside the cumulative hierarchy
all along. The fact that every hereditarily finite set is wellfounded is a way of
encoding the fact that every set of cofinite sets is included in one of its members.
One is reminded of the tale of the two dreamers from the One Thousand and
One Nights (night 351).7
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