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Preface
The text that follows is worked up from material from which I lectured a first-year
course in Philosophical Skills at the University of East Anglia and a second year course
in Logic at the University of Canterbury at Christchurch (New Zealand). Both these
courses are intended for philosophy students. The early chapters are intended for first-
year students, while chapters further on in the book are intended for second and third-
year students. There are various audiences for first-year logic courses: in many places
there is a service course in logic for students doing psychology or economics or law
or possibly other things. At UEA the first-year cohort consisted entirely of philosophy
students, and that made it possible to include logical material with a flavour that is (one
hopes!) useful to philosophy students in their subsequent studies, even if perhaps not
to students in psychology, economics or law.

So what should one cover? I am on record as arguing that possible world semantics
has no useful applications in philosophy, so the reader may fairly ask why I include it
in this text. One answer is that people expect to find it; a better answer is that even tho’
modal logic is of little or no use in philosophy, elementary modal logic is a good source
of syntactic drill. There is good evidence that compelling students to acquire formal
skills sharpens up their wits generally: studies suggest that secondary school pupils
who are subjected to more mathematics than a control group write better essays. Think
of doing modal logic as doing sudoku or crosswords. Sudoku is no more applicable
(and for that matter no less applicable) than modal logic, and shares with it the useful
feature that it keeps the lobes in trim. The chapter on modal logic is placed after the
material (even the advanced material) on first-order logic, so that it can be omitted by
those first-years who want nothing beyond the basics, but much of it is flagged as being
elementary enough to be shown to them. There have been first-year courses in logic
that include possible world semantics for constructive propositional logic . . . at Queen
Mary, for example.

Chapters 1-3 cover the material one would expect to find in a first year logic course
for philosophy majors. Chapters 4-6 cover second year material intended for more
determined and interested students. There is inevitably material that falls between
these two stools: stuff that—altho’ elementary—is not basic enough to be compulsory
for first years (and which would in any case distract and confuse weaker students who
have no natural inclination to the subject) but which nevertheless in some sense belong
with it. Predicate modifiers, natural deduction for predicate calculus...

When i have materials closely related to each other i have tried to keep them adja-
cent in the text. This has resulted in various bits of advanced material being insinuated
into early chapters. The advantage (for enthusiasts) is a linear presentation of material;
the disadvantage (for the rest of us) is that sometimes one has to skip ahead.

Thanks to (among others) Ted Harding, Aldo Antonelli, Ed Mares, Jeremy Selig-
man and of course my students, including Matt Grice . . .

Stuff to fit in
¬¬ distributes over ∧ but not over ∨.
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They stood so still that she quite forgot they were alive, and she was just looking
round to see if the word ‘TWEEDLE’ was written at the back of each collar, when she
was startled by a voice coming from the one marked ‘DUM.’

“If you think we’re wax-works,” he said, “you ought to pay, you know. Wax-works
weren’t made to be looked at for nothing, Nohow!”

“Contrariwise,” added the one marked ‘DEE,’ “if you think we’re alive, you ought
to speak.”

(A ∨ B) ∧ (A→ C) ∧ (B→ D).→ (C ∨ D)

Never trust a man who, when left alone in a room with a tea-cosy, doesn’t try it on.
man(); should-be-trusted(); puts-on, tea-cosy(); is-in( ,); room()
(∀x)(∀t)(∀r)[man(x)∧room(r)∧tea-cosy(t)∧in(m, r)∧(∀o)(man(o)∧in(o, r)→

o = x)→ (should-be-trusted(x)→ puts-on(x, t))]

Man was never intended to understand things he meddled with.
Pratchett ‘Pyramids’ Page 361
Is this the contrapositive of “Man was never meant to meddle with things he didn’t

understand”? [Thanks to Tom Körner] Or it is the converse?
Remember to take your contrapositive every morning!

We talk about contrapositives only in the context of propositional logic. This ex-
ample forces you to think about contrapositives in the context of FOL.

How many arguments does a function have? The refractive index of a material is
the ratio of the angle of incidence to the angle of refraction, and interestingly (Thomas
Hariot) it doesn’t depend on the angle. However it does depend on the material the
other side of the interface, so strictly one shouldn’t talk of the refractive index of glass,
but of the glass-air [or whatever] interface. But actually once one know the refrac-
tive indices of of the interfaces medium-A–to–vacuum and of medium-B–to–vacuum
one can compute the refractive index of the interface medium-A–to–medium-B So the
refractive-index function can be thought of as having only one argument after all.

If you think that logic is the study of inference that is truth-preserving-in-virtue
of syntax then you will certainly be of the view that higher-order logic is not logic—
there’s no syntactic criterion for validity!

Notice that in the formal language for chemistry the occurence of ‘N’ inside ‘Ni’
or ‘Na’ cannot be seen . . . ‘Ni’ is a single symbol, as is ‘Na’.

We must tie all the second-order logic stuff together.

“Have nothing in your houses that you do not know to be useful, or believe to be
beautiful”

There are two desiderata for things you might want to have in your house: known
to be useful and believed to be beautiful. Is Morris saying that in order to be admitted
to your house a thing should tick both boxes? Or is it enough for it to tick merely one?
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“She’s sweeter than all the girls and
i’ve met quite a few.
Nobody in all the world can
do what she can do”

is wrong, but
“She’s sweeter than all the other girls and
i’ve met quite a few.
Nobody else in all the world can
do what she can do”

doesn’t scan!

Noöne [else] can play Schumann like Richter.

Where do we explain the use of the word “classical” as in “classical logic”?

Using function symbols express “Kim and Alex have the same father but different
mothers”.

We can’t capture *all* structure:
France is a monarchy in the form of a republic
Britain is a republic in the form of a monarchy.

Jeremy Seligman says: you need only one formalisation of an argument that makes
it look valid!

In cases like

Girls never share boyfriends

We are all different

Every foot is different

Need binary not unary: Degree is too low.
The point is not that (∀x)(foot(x) → different(x)) isn’t deep enough, the point

is that it’s wrong.
Something to do with plural subjects? Probably not.

“wrong person in the wrong place at the wrong time”.

Like “earlier than” should be ternary not binary. It’s not the person who is wrong,
nor the place, nor the time. It’s the combination, the triple, of person, place and time.

Another case where surface grammar misleads.
“Some accountants are comedians, but comedians are never accountants”

Re: concealment. . . the type-theoretic analysis of the paradoxes is a concealment
analysis: the trouble that you get into is the trouble that lies in wait for people who try
to conceal the types. Clearest with Richard’s paradox.
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U/G logic conceals evaluation. But that’s OK!

Somewhere we need to make the point that all the classical propositional connec-
tives can be defined in terms of NAND. (or, for that matter, in terms of NOR). One can
thereby set up the reader for the observation that the intuitionistic connectives are not
mutually definable.

There is some mathematical material (induction, lambda-calc) assumed in later
chapters that is not explained in earlier chapters. Can’t make it completely self-contained
. . .

A section on synonymy: *theories* not languages. Take a novel in one language.
translate it into another language and back.

If we had some bacon we could have some bacon and eggs . . . if we had the eggs.

Formal languages have only literal meaning

There are other uses of ‘or’ . . .

Experiments have shown that, at the pressure of the lower mantle, iron(II)
oxide is converted into iron metal and iron(III) oxide—which means that
large bodies such as the earth can self-oxidise their mantle, whereas smaller
ones cannot (or do so to a lesser extent)

Redox state of early magmas
Bruno Scaillet and Fabrice Gaillard, nature 1/12/2011 180 pp 48–9.

Tested on animals

The neat way to deal with formulæ not having outside parentheses is to regard a
(binary) connective ?? as (. . .) ?? (. . .)‘connective’ not defined yet

I think this is what lies behind the tendency for people to write (∀x)(A(x) ∧ B(x))’
for “All A are B”

Conditionals often suggest their converses. The person who choses to say ‘If A then
B’ rather than ‘If C then B’ might have chosen that option because A is a more likely
cause of B than C is. This suggests the converse: If B held, then it was because A.

The lasagne example is not of this kind! “If you want to eat there’s lasagne in the
oven”.

Need to have some live examples of sequent proofs

question-begging?

‘refute’

We need a section on Fallacies
In particular fallacy of affirming the consequent.
Fallacy of equivocation. verb: to equivocate.
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Bronze is a metal, all metals are elements, so bronze is an element.

here we equivocate on the word ‘metal’. It appears twice, and the two occurrences
of it bear different meanings—at least if we want both the premisses to be true. But if
both premisses are true then the conclusion must be true—and it isn’t!

Talk about the problem of inferring individual obligation from collective obliga-
tion?
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Chapter 1

Introduction

1.1 What is Logic?
Three logicians walk into a bar.

The bartender asks “Do you all want drinks?”
First logician says “I don’t know.”
Second logician says “I don’t know either.”
Third logician says “Yes!” Allude back to this when talk-

ing about concealment. There
is no way of analysing this
without talking about dated
deduction-tokens.

“If you want to eat, there’s a lasagne in the oven”
If you are of the kind of literal-minded bent that wants to reply: “Well, it seems

that there is lasagne in the oven whether i’m hungry or not!” then you will find logic
easy. You don’t have to be perverse or autistic to be able to do this: you just have to be
self-conscious about your use of language: to not only be able to use language but be
able to observe your use of it.

1.1.1 Exercises for the first week: “Sheet 0”
Don’t look down on puzzles:

A logical theory may be tested by its capacity for dealing with puzzles,
and it is a wholesome plan, in thinking about logic, to stock the mind with
as many puzzles as possible, since these serve much the same purpose as
is served by experiments in physical science.

Bertrand Russell

EXERCISE 1 A box is full of hats. All but three are red, all but three are blue, all but
three are brown, all but three are white. How many hats are there in the box?

EXERCISE 2 The main safe at the bank is secured with three locks, A, B and C. Any
two of the three system managers can cooperate to open it. How many keys must each
manager have?

13
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EXERCISE 3 A storekeeper has nine bags of cement, all but one of which weigh pre-
cisely 50kg, and the odd one out is light. He has a balance which he can use to compare
weights. How can he identify the rogue bag in only three weighings? Can he still do it
if he doesn’t know if the rogue bag is light?

EXERCISE 4 There were five delegates, A, B, C, D and E at a recent summit.
B and C spoke English, but changed (when D joined them) to Spanish, this being

the only language they all had in common;
The only language A, B and E had in common was French;
The only language C and E had in common was Italian;
Three delegates could speak Portugese;
The most common language was Spanish;
One delegate spoke all five languages, one spoke only four, one spoke only three,

one spoke only two and the last one spoke only one.

Which languages did each delegate speak?

EXERCISE 5 People from Bingo always lie and people from Bongo always tell the
truth.

If you meet three people from these two places there is a single question you can
ask all three of them and deduce from the answers who comes from where. What might
it be?

If you meet two people, one from each of the two places (but you don’t know which
is which) there is a single question you can ask either one of them (you are allowed to
ask only one of them!) and the answer will tell you which is which. What is it?

EXERCISE 6

Brothers and sisters have I none;
This man’s father is my father’s son

To whom is the speaker referring?

EXERCISE 7 You are told that every card that you are about to see has a number on
one side and a letter on the other. You are then shown four cards lying flat, and on the
uppermost faces you see

E K 4 7

It is alleged that any card with a vowel on one side has an even number on the
other. Which of these cards do you have to turn over to check this allegation?

EXERCISE 8 A bag contains a certain number of black balls and a certain number
of white balls. (The exact number doesn’t matter). You repeatedly do the following.
Put your hand in the bag and remove two balls at random: if they are both white, you
put one of them back and discard the other; if one is black and the other is white, you
put the black ball back in the bag and discard the white ball; if they are both black,
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you discard them both and put into the bag a random number of white balls from an
inexhaustible supply that just happens to be handy.

What happens in the long run?

EXERCISE 9 Hilary and Jocelyn are married. One evening they invite Alex and Chris
(also married) to dinner, and there is a certain amount of handshaking, tho’ naturally
nobody shakes hands with themselves or their spouse. Later, Jocelyn asks the other
three how many hands they have shaken and gets three different answers.

How many hands has Hilary shaken? How many hands has Jocelyn shaken?
The next day Hilary and Jocelyn invite Chris and Alex again. This time they also

invite Nicki and Kim. Again Jocelyn asks everyone how many hands they have shaken
and again they all give different answers. How many hands has Hilary shaken this
time? How many has Jocelyn shaken?

These two are slightly more open-ended.

EXERCISE 10 You are given a large number of lengths of fuse. The only thing you
know about each length of fuse is that it will burn for precisely one minute. (They’re
all very uneven: in each length some bits burn faster than others, so you don’t know
that half the length will burn in half a minute or anything like that). The challenge is to
use the burnings of these lengths of fuse to measure time intervals. You can obviously
measure one minute, two minutes, three minutes and so on by lighting each fuse from
the end of the one that’s just about to go out. What other lengths can you measure?

EXERCISE 11 A Cretan says “Everything I say is false”. What can you infer?

Those exercises might take you a little while, but they are entirely do-able even
before you have done any logic. Discuss them with your friends. You might want to
devote your first seminar discussion to them. Don’t give up on them: persist until you
crack them!

If you disposed of all those with no sweat try this one:

EXERCISE 12 You and I are going to play a game. There is an infinite line of beads
stretching out in both directions. Each bead has a bead immediately to the left of it and
another immediately to the right. A round of the game is a move of mine followed by
a move of yours. I move first, and my move is always to point at a bead. All the beads
look the same: they are not numbered or anything like that. I may point to any bead I
have not already indicated. You then have to give the bead a label, which is one of the
letters a–z. The only restriction on your moves is that whenever you are called upon
to put a label on the neighbour of a bead that already has a label, the new label must be
the appropriate neighbour of the bead already labelled, respecting alphabetical order:
the predecessor if the new bead is to the left of the old bead, and the successor if the
new bead is to the right. For example, suppose you have labelled a bead with ‘p’; then
if I point at the bead immediately to the right of it you have to label that bead ‘q’; were
I to point to the bead immediately to the left of it you would have to label it ‘o’. If you
have labelled a bead ‘z’ then you would be in terminal trouble were I to point at the
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bead immediately to the right of it; if you have labelled a bead ‘a’ then you would be
in terminal trouble if I then point at the bead immediately to the left of it. We decide in
advance how many rounds we are going to play. I win if you ever violate the condition
on alphabetic ordering of labels. You win if you don’t lose.

Clearly you are going to win the one-round version, and it’s easy for you to win the
two-round version. The game is going to last for five rounds.

How do you plan your play?
How do you feel about playing six rounds?



Chapter 2

Introduction to Logic

If you start doing Philosophy it’s because you want to understand. If you want to
understand then you certainly want to reason properly the better to stay on the Road to
Understanding. This book is going to concentrate on the task of helping you to reason
properly. It is, I suppose, not completely obvious that we don’t really have a free choice
about how you should reason if you want to reason properly: nevertheless there is an
objective basis to it, and in this course we will master a large slab of that objective
basis. “this course”?

There is an important contrast with Rhetoric here. With rhetoric anything goes
that works. With reason too, I suppose anything goes that works, but what do we mean
by ‘works’? What are we trying to do when we reason? The stuff of reasoning is
argument and an argument is something that leads us from premisses to conclusions.
(An argument, as the Blessed Python said, isn’t just contradiction: an argument is a
connected series of statements intended to establish a proposition.1)

Logic is (or at least starts as) the study of argument and it is agent-invariant. An
argument is a good argument or a bad argument irrespective of who is using it: Man
or Woman, Black, White, Gay, Asian, Transgendered. . . . Out in the real world there
are subtle rules about who is and is not allowed to use what argument—particularly
in politics. Those rules are not part of Logic; they are part of Rhetoric: the study of
how to use words to influence people. That’s not to say that they aren’t interesting
or important—they are. Logicians are often very interested in Rhetoric—I certainly
am—but considerations of what kind of argument can be used by whom is no part of
our study here. For example “feminist logic” is a misnomer: whether or not a form
of reasoning is truth-preserving does not depend on how many X-chromosomes are
possessed by the people who use it. People who use the term are probably thinking
that it would be a good thing to have a feminist take on rhetoric (agreed!) or that it
might be a good idea to study how women reason (ditto). Talk here about concealment?

Even if your primary interest is in rhetoric (and it may be, since we all have to
be interested in rhetoric and we don’t all have to study logic) logic is an important
fragment of rhetoric that can be studied in isolation and as part of a preparation for a

1http://www.mindspring.com/˜mfpatton/sketch.htm
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fuller study of rhetoric.
Good reasoning will give us true conclusions from true premisses. That is the

absolutely minimal requirement!
We are trying to extract new truths from old. And we want to do it reliably. In real

life we don’t usually expect 100% reliability because Real Life is lived in an Imperfect
World. However for the moment we will restrict ourselves to trying to understand
reasoning that is 100% reliable. Altho’ this is only a start on the problem, it is at least
a start. The remaining part of the project—trying to classify reasoning that is usually-
pretty-reliable or that gives us plausible conclusions from plausible premisses—turns
out to be not a project-to-understand-reasoning but actually the same old global project-
to-understand-how-the-world-works. . .

George and Daniel are identical twins;
George smokes and Daniel doesn’t.
Therefore George will die before Daniel.

The fact that this is a pretty good inference isn’t a fact about reasoning; it’s a fact about
the way the world works. Contrast this with

“It is monday and it is raining; therefore it is monday”

You don’t need to know anything about how the world works to know that that is a
good inference—a 100% good inference in fact! This illustrates how much easier it is
to grasp 100%-reliable inference than moderately-reliable inference.

The study of reasoning is nowadays generally known as ‘Logic’. Like any study it
has a normative wing and a descriptive wing. Modern logic is put to good descriptivenormative vs descriptive
use in Artificial Intelligence where at least part of the time we are trying to write
computer programs that will emulate human ways of thinking. A study with a title like
‘Feminist Logic’ alluded to below would be part of a descriptive use of Logic. We
might get onto that later—next year perhaps—but on the whole the descriptive uses
of logic are not nowadays considered part of Philosophy and for the moment we are
going to concentrate on the normative rôle of Logic, and it is in its normative rôle that
Logic tells us how to reason securely in a truth-preserving way. Interestingly all of that
was sorted out in a period of about 50 years ending slightly less than a hundred years
ago. ( 1880- 1930). It’s all done and dusted. Logic provides almost the only area of
Philosophy where there are brute facts to be learned and tangible skills to be acquired.
And—although it’s only a part of Logic that is like that—it’s that part of logic that will
take up our time.

2.1 Statements, Commands, Questions, Performatives
Reasoning is the process of inferring statements from other statements. What is a
statement? I can give a sort of contrastive2 explanation of what a statement is by con-
trasting statements with commands or with questions. or performatives. A statementSay something about per-

formatives Well, performatives
have truth-values too, but that’s
not really what they are for

2A contrastive explanation of something is an explanation given by contrasting it with something that it
isn’t, in the hope that the listener will put two and two together and get the right idea!
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is something that has a truth-value, namely true or false. (We often use the word
‘proposition’ in philosophy-speak. This is an unfortunate word, because of the conno-
tations of ‘proposal’ and embarking on a course of action, but we are stuck with it. This
use of the word is something to do with the way in which the tradition has read Euclid’s
geometry. The propositions in Euclid are actually something to do with constructions.)

The idea of evaluation comes in useful when explaining the difference between the
things in this section heading. Evaluation is what you do—in a context—to a statement,
or to a question, or a command. In any context a command evaluates to an action; a
question evaluates to an answer—or perhaps to a search for an answer; a statement
evaluates to a truth-value (i.e., to true or false). That doesn’t really give you a
definition of what any of these expressions ‘context’, ‘evaluate’, ‘statement’, ‘question’
etc actually mean (that would be too much to ask at this stage, tho’ we do later take the
concept of evaluation seriously) but it tells you something about how they fit together,
and that might be helpful. Does this belong in inten-

sion/extension? see p ??We are not going to attempt to capture Conversational Implicature. “A car was
parked near a house; suddenly it moved”. You know it’s the car that moved, not a
house. Also if someone says p′ rather than p where p implies p′ and p′ takes longer to
say, you take it that they mean p′-and-not-p. But that is inferred by non-logical means.
(See section 2.5.5 on semantic optimisation). Logic is not equipped to handle these
subtleties. These are known challenges for Artificial Intelligence people (their keyword
for it is ‘the frame problem’) and for people who do natural language processing. (their
keyword is ‘pragmatics’). We are going to start off by analysing the kind of reasoning
we can do with some simple gadgets for combining statements—such as ‘and’ and ‘or’
and ‘not’.

From ‘It is monday and it is raining’ we can infer ‘It is raining’. This is a good
inference. It’s good purely in virtue of the meaning of the word ‘and’. Any inference
from a compound statement of the form: from ‘A and B’ infer ‘A’ is good—in the sense
that it is truth-preserving. Delimiters for premisses. Do

we want this to illustrate the
identity rule or ∧-elim?

Every argument has premisses and a conclusion (only one conclusion). We write
premisses above the line, and the conclusion below the line, thus

premisses
conclusion

Of course they may be more than one premise, and we can write them on the same
line,

Premise-1 Premise-2
Conclusion

Or on more than one line:

Premise 1
Premise 2
Premise 3

Conclusion

We tend not to mix the styles.
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Here are two arguments, each with two premisses:

It is monday It is raining
It is raining

It is tuesday The sun is shining
The sun is shining

There are other similiarly simple inferences around. From ‘It is raining’ we can
infer ‘It is monday or it is raining’.

It is raining
It is monday or it is raining

Not very useful, one might think, since the conclusion seems to contain less infor-
mation than the premisses did but for what it’s worth it definitely is a truth-preserving
inference: if the stuff above the line is true then sure as eggs is eggs the stuff below the
line is true too! And the inference is truth-preserving in virtue of the meaning of the
word ‘or’.3

‘and’ and ‘or’ are examples of connectives, aften written with special symbols, as
in the table below, which shows a couple more connectives.

DEFINITION 1

∧, & which both mean ‘and’
∨ which means ‘or’
¬ which means ‘not’,
→ which means if . . . then: P→ Q is “if P then Q”.

These things are called connectives because they connect statements (“join state-
ments together” would be better). (Confusingly, ‘¬’ is a connective even though it
doesn’t connect two things: it is a unary connective.)

EXERCISE 13
Let P abbreviate “I bought a lottery ticket” and Q “I won the jackpot”.

To what natural English sentences do the following formulæ correspond?

¬P; P ∨ Q; P ∧ Q; P→ Q; ¬P→ ¬Q; ¬P ∨ (P ∧ Q).

2.1.1 Truth-functional connectives
Now we encounter a very important idea: the idea of a truth-functional connective.
∧, ∨ and ¬ are truth-functional. By saying that ‘∧’ is truth-functional we mean that ifTruth-functional
we want to know the truth-value of A ∧ B it suffices for us to know the truth values of
A and of B; similarly if we want to know the truth-value of A ∨ B it suffices for us to
know the truth values of A and of B. Similarly if we want to know the truth-value of
¬A it suffices for us to know the truth value of A.

3If you doubt this inference read section 2.5.5.
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There are plenty of non-truth-functional connectives to: “implies”, “because”—
both of those binary, but there are unary non-truth-functional connectives too: “obvi-
ously”, “possibly” We will later make the connec-

tion: truth-functional = exten-
sional2.1.2 Truth Tables

Take ∧ for example. If I want to know the truth-value of A ∧ B it suffices for me to
know the truth values of A and of B. Since ∧ has only two inputs and each input must
be true or false and it is only the truth-value of the inputs that matters then in some
sense there are only 4 cases (contexts, situations, whatever you want to call them) to
consider, and we can represent them in what is called a truth table where we write ‘F’ Truth Table
for ‘false’ and ‘T’ for ‘true’ to save space. At some point mention boolean

satisfiability and 3-sat
A ∧ B
F F F
F F T
T F F
T T T

. . . sometimes written . . .

A ∧ B
0 0 0
0 0 1
1 0 0
1 1 1

Both the T/F notation and the 1/0 notation are in common use, and you should
expect to see them both and be able to cope with both. (Nobody writes out ‘false’
and ‘true’ in full—it takes up too much space.) I tend to use 0/1 because ‘T’s and ‘F’s
tend to look the same in the crowd—such as you find in a truth-table.

There are truth-tables for other connectives:

A ∨ B
0 0 0
0 1 1
1 1 0
1 1 1

A NOR B
0 1 0
0 0 1
1 0 0
1 0 1

A XOR B
0 0 0
0 1 1
1 1 0
1 0 1

A NAND B
0 1 0
0 1 1
1 1 0
1 0 1

all of which are binary connectives (connect two statements) and

¬ A
1 0
0 1

¬ is a unary connective.
The connectives NAND, NOR and XOR are sometimes used, but altho’ you will see

them in electronics you will never see them in the philosophical literature. The ternary
(three-place) connective
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if p then q else r

is used in Computer Science but we won’t use it here. In Philosophy we tend to make
do with ∧, ∨ and ¬ and one more, an arrow ‘→’ for “if . . . then” which we have just
seen and which i shall explain soon.

We have just seen the five binary connectives ∧, ∨, XOR, NAND and NOR. There are
four one-place (“unary’) truth-functional connectives. The only one we are interested
in is negation, but there are three others. There is the one-place connective that always
returns the true and one that always returns the false. Then there is the connective
that just gives you back what you gave it: one might call it the identity connective. We
don’t have standard notations for these three connectives, since we never use them. In
the truth-tables that follow I write them here with one, two and three question marks
respectively.

? A
T T
T F

?? A
F T
F F

??? A
T T
F F

How many binary truth-functional connectives are there?

I want to flag here a hugely important policy decision. The only connectives were
are going to study are those connectives which can be captured by truth-tables,
the truth-functional connectives. We are emphatically not going to study connectives
that try to capture squishy things like meaning and causation. This might sound exces-
sively restrictive, and suitable only for people who are insensitive to the finer and more
delicate things in life, but it is actually a very fruitful restriction, and it is much more
sensible than it might sound at first.

One reason why it is sensible is that out there in the real world the kind of reasoning
you are interested in exploiting is reasoning that preserves truth. Nothing else comes
anywhere near that in ultimate importance. Like any other poor metazoan trying to
make a living, you need to not get trodden on by dinosaurs, and not miss out on de-
sirable food objects—nor on opportunities to reproduce. It is true you might choose
to eschew the odd food object or potential mate from time to time, but you at least
want your choice to be informed. Sometimes your detection of a dinosaur or a food
morsel or a potential mate will depend on inference from lower-level data or on other
information supplied by context. If that thing out there really is a dinosaur that might
tread on you then you need to know it, ditto a food object or a potential mate. You will
want modes of reasoning to be available to you that will deliver any and every truth
that can be squeezed out of the data available to you. If you have a mode of reasoning
available to you that reliably gives true conclusions from correct information then you
cannot afford to turn your nose up at it merely on the grounds that it doesn’t preserve
meaning or that your colour therapist doesn’t like it. Your competitor who is satisfied
merely with truth-preservation will evade the dinosaur and get the forbidden fruit; you
won’t. Truth-preserving inference is what it’s all about!

That’s not to say that we will never want to study modes of inference that do more
than merely preserve truth. We will want to study such modes of inference (in later
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chapters below) but the above considerations do tell us that it is very sensible to start
with truth-preservation!

2.2 The Language of Propositional Logic

Let’s now get straight what the gadgetry is that we are going to use. I shall use lower
case Roman letters for propositional letters (‘atomic’ formulæ) and upper case letters
for compound (‘molecular’) formulæ. There are several different traditions that use
this gadgetry of formal Logic, and they have different habits. Philosophers tend to
use lower case Roman letters (‘p’, ‘q’ etc.); other communities use upper case Roman
letters or even Greek letters. We will stick to Roman letters.

We are going to have two symbols ‘>’ and ‘⊥’ which are propositional letters of a
special kind: ‘⊥’ always takes the value false and ‘>’ always takes the value true.

We have symbols ‘∧’, ‘∨’ and ‘→’ which we can use to build up compound ex-
pressions.

Truth-tables are a convenient way of representing/tabulating all the valuations a for-
mula can have. Each row of a truth-table for a formula encapsulates [the extension of]
a valuation for the propositional letters in that formula. If a formula has n propositional
letters in it, there are precisely 2n ways of evaluating each propositional letter in it to
true or to false. This is why the truth-table for ∧ has four rows, and the truth-table
for A ∨ (B ∧C) has eight.

EXERCISE 14 Can you see why it’s 2n?

Usually we can get by with propositional connectives that have only two arguments
(or, in the case of ¬, only one!) but sometimes people have been known to consider
connectives with three arguments, for example:

if p then q else r
1 1 1 1
... 1 0 1
... 1 1 0
... 1 0 0
...

...
...

...
...

...
...

...

EXERCISE 15 You might like to write out the rest of the truth-table for this connective,
putting the truth-value of the compound formula under the ‘if’ as I have done. “if p
then q else r” requires that q be true when p is (never mind what happens to r)

and that r is true when p is false (never mind about q). (How many other rows will the
truth-table have?)

might want to make a point
about lazy evaluation here. See
section 3.14
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2.2.1 Truth-tables for compound expressions
We haven’t seen any complex
expressions yet. Put in an ex-
ercise here

We need the notion of the principal connective of a formula: And of immediate
subformula.Some illustrations needed here

DEFINITION 2 A formula whose principal connective is a

∧ is a conjunction and its immediate subformulæ are its conjuncts;
∨ is a disjunction and its immediate subformulæ are its disjuncts;
→ is a conditional and its immediate subformulæ are its antecedent

and its consequent;
←→ is a biconditional.

collate with material on p 31.
Thus

A ∧ B is a conjunction, and A and B are its conjuncts;
A ∨ B is a disjunction, and A and B are its disjuncts;
A→ B is a conditional, where A is the antecedent and B is the consequent.

EXERCISE 16 What are the principal connectives and the immediate subformulæ of
the formulæ below?

P ∨ ¬P
¬(A ∨ ¬(A ∧ B))
(A ∨ B) ∧ (¬A ∨ ¬B)
A ∨ (B ∧ (C ∨ D));
¬(P ∨ Q)
P→ (P ∨ Q)
P→ (Q ∨ P)
(P→ Q) ∨ (Q→ P)
(P→ Q)→ ¬(Q→ P)
P→ ⊥
P→ (P ∧ Q)
P→ (Q→ P)
(P←→ Q) ∧ (P ∨ Q)
(P←→ Q)←→ (Q←→ P)
A→ [(A→ C)→ ((B→ C)→ C)]
B→ [(A→ C)→ ((B→ C)→ C)]
(A ∨ B)→ [(A→ C)→ ((B→ C)→ C)].

How to fill in truth-tables for compound expressions: a couple of worked examples

¬(A ∨ B) :

¬ (A ∨ B)
1 1
1 0
0 1
0 0
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We can fill in the column under the ‘∨’ . . .

¬ (A ∨ B)
1 1 1
1 1 0
0 1 1
0 0 0

and then the column under the ‘¬’ . . .

¬ (A ∨ B)
0 1 1 1
0 1 1 0
0 0 1 1
1 0 0 0

A ∨ (B ∧C) :

The truth table for A∧ (B∨C) will have 8 rows because there are 8 possibilities.
The first thing we do is put all possible combinations of 0s and 1s under the A, B
and C thus:

A ∨ (B ∧ C)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Then we can put in a column of 0s and 1s under the B ∧C thus:

A ∨ (B ∧ C)
0 0 0 0
0 0 0 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 0 1
1 1 0 0
1 1 1 1

Then we know what to put under the ‘∨’4:
4If you think “but we knew what to put under the ‘∨’ in the bottom four rows as soon as we knew A was 1

in those four rows”, you are not being an annoying smart-aleck. . . well, you are, but you are onto something.
We will pursue that thought later, in section 3.14, but not here.



26 CHAPTER 2. INTRODUCTION TO LOGIC

A ∨ (B ∧ C)
0 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 1 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 1 0 0
1 1 1 1 1

. . . by combining the numbers under the ‘A’ with the numbers under the ‘B∧C’:
for example, the first row has a ‘0’ under the ‘A’ and also a ‘0’ under the ‘B∧C’
and 0 ∨ 0 is 0.

Need another example here...?
These worked exercises I have just gone through illustrate how the truth-value that

a complex formula takes in a row of a truth-table can be calculated from the truth-value
taken by its subformulæ in that row. This phenomenon has the grand word: composi-
tional. Other communities (mathematicians, computer scientists . . . ) use instead the
word recursive.

The bundle of rows of the truth-table exhaust all the possibilities that a truth-
functional connective can see. Any truth-functional connective can be characterised
by a truth-table.

2.2.2 Logical equivalence
Two complex formulæ with the same truth-table are said to be logically equivalent.

EXERCISE 17 Write out truth-tables for the first five formulæ in exercise 16.

EXERCISE 18 Identify the principal connective of each formula below.
In each pair of formulæ, say whether they are (i) logically equivalent or are (ii) nega-
tions of each other or (iii) neither.

¬A ∧ ¬B; ¬(A ∨ B)
(¬A) ∨ (¬B); ¬(¬A ∨ ¬B)
¬(¬A ∧ ¬B); ¬(A ∧ B)
(¬A) ∨ (¬B); ¬(A ∧ B)

Mix these up a bit. . .

DEFINITION 3

Associativity: We have seen that (A∨ B)∨C is logically equivalent to A∨ (B∨C).
Also we can see that (A ∧ B) ∧ C is logically equivalent to A ∧ (B ∧ C); we say that ∨
and ∧ are associative.

Idempotence. A ∧ A is logically equivalent to A; A ∨ A is equivalent to A: we say
∧ and ∨ are idempotent.
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Commutativity. A∧B is logically equivalent to B∧A; A∨B is equivalent to B∨A:
we say ∧ and ∨ are commutative.

Distributivity. We capture the fact that A ∨ (B ∧ C) and (A ∨ B) ∧ (A ∨ C) are
logically equivalent by saying that ∨ distributes over ∧.

Associativity means you can leave out brackets; idempotence means you can re-
move duplicates and commutativity means it doesn’t matter which way round you write
things. Readers will be familiar with these phenomena (even if not the terminology)
from school arithmetic: + and × are—both of them—associative and commutative:
x + y = y + x, x× (y× z) = (x× y)× z and so on . . . and we are quite used to leaving out
brackets. Also + distributes over ×: x× (y + z) = x× y + x× z. ∧ and ∨ parallel + and
× in various ways—echoing these features of + and × we’ve just seen, but ∧ and ∨ are
both idempotent, whereas + and × are not!

The alert reader will have noticed that i have been silent on the subject of if . . . then
while discussing truth-tables. The time has come to broach the subject.

We write ‘→’ for the connective that we use to formalise inference. It will obey the
rule

“from P and P→ Q infer Q”.

or
P P→ Q

Q

This rule is called modus ponens. Q is the conclusion; P is the minor premiss and
P→ Q is the major premiss. (Thus the conclusion of a token of modus ponens is the We haven’t explained type-

token yetconsequent of its major premiss. The minor premiss is the antecedent of the major
premiss. I writing this out not because this information will one day save your life5

but merely so that you can check that you have correctly grasped how these gadgets fit
together.) I know I haven’t given you a truth-table for ‘→’ yet. All in good time! There
is some other gadgetry we have to get out of the way first.

2.2.3 Non truth functional connectives
Causation and necessity are not truth-functional. Consider

1. Labour lost the 2010 election because unemployment was rising throughout
2009;

2. Necessarily Man is a rational animal.

The truth-value of (1) depends on more than the truth values of “unemployment was
rising throughout 2009” and “Labour lost the 2010 election”; similarly the truth-value
of (2) depends on more than the truth value of “Man is a rational animal”. Necessity and
causation are not truth-functional and accordingly cannot be captured by truth-tables.

5You never know what information might save your life: knowing the wind-speed af an african swallow?
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Counterfactuals

Can we say anything intelligent about the difference?Say something about counter-
factuals

2.3 Intension and Extension
somewhere in this section put the aperçu that one should always legislate the intension
not the extension, or at least that one should legislate the spec not the implementation.
Cycle lights, glorifying terrorism, talking on a mobile while driving. A similar point
about dfn of Life: Most of the literature about exobiology seems to identify life only
extensionally, recognises only one implementation of the ideas: carbon based life in
water.

The intension-extension distinction is a device of mediæval philosophy which was
re-imported into the analytic tradition by Frege starting in the late nineteenth century
and later Church (see [?] p 2) and Carnap [6]) in the middle of the last century, probably
under the influence of Brentano. However, in its passage from the mediævals to the
moderns it has undergone some changes and it might be felt that the modern distinction
shares little more than a name with the mediæval idea.

The standard illustration in the philosophical literature concerns the two proper-
ties of being human and being a featherless biped—a creature with two legs and no
feathers. There is a perfectly good sense in which these concepts are the same (one
can tell that this illustration dates from before the time when the West had encountered
Australia with its kangaroos! It actually goes back to Aristotle), but there is another
perfectly good sense in which they are different. We name these two senses by saying
that ‘human’ and ‘featherless biped’ are the same property in extension but different
properties in intension.

Intensions are generally finer than extensions. Lots of different properties-in-intension
correspond to the property-in-extension that is the class of human. Not just Featherless
Bipeds and Rational Animals but Naked Apes. Possessors of language? Tool makers?

The intension–extension distinction is not a formal technical device, and it does not
need to be conceived or used rigorously, but as a piece of logical slang it is very useful.

This slang turns up nowadays in the connection with the idea of evaluation. In
recent times there has been increasingly the idea that intensions are the sort of things
one evaluates and that the things to which they evaluate are extensions. One reasonperhaps collate this with mate-

rial on p 19. why it is useful is captured by an aperçu of Quine’s ([36] p 23): “No entity without
identity”. What this obiter dictum means is that if you wish to believe in the existence
of a suite of entities—numbers, ghosts, properties-in-intension or whatever it may be—
then you must be able to tell when two numbers (ghosts, properties-in-intension) are
the same number (ghost, etc.) and when they are different numbers (ghosts, etc). If we
are to reason reliably about entities from a particular suite we need identity criteria
for them.

Clouds give us quite a good illustration of this. There are two concepts out there:
cloud as stuff and clouds as things. There’s not much mystery about clouds-as-stuff: it’s
lots of water droplets of a certain size (the right size to scatter visible light) suspended
in air. In contrast the concept of cloud-as-object is not well-defined at all. “This is a
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cloud”; “That patch is two clouds not one”. You will notice that the weather people
never tell us how many clouds there will be in the sky tomorrow, but they might tell us
what percentage of the sky they expect to be covered in cloud. That’s cloud-as-stuff of
course. We don’t have good identity criteria for when two clouds are the same cloud:
we don’t know how to individuate them.

What has this last point got to do with the intension/extension distinction? The
point is that we have a much better grasp of identity criteria for extensions than for
intensions. Propositions are intensions, and the corresponding extensions are truth-
values: there are two of them, the true and the false.

You might think there are more. Wouldn’t it be a sensible precaution to have also a
don’t-know up our sleeve as a third truth-value? 6

The trouble is that although ‘don’t-know’ is a third possibility, it’s not a third truth-
value for the proposition: it’s a third possible state of your relation to that proposition:
a relation of not-knowing. What is it you don’t know? You don’t know which of
the two(!) mutually-exclusive and jointly-exhaustive possibilities for that proposition
(truth vs falsity) holds. This mistake—of thinking that your uncertainty is a property of
the proposition rather than a manifestation of the fact that you are a ignorant worm7—is
a manifestation of the mind-projection fallacy.

‘Professor Cox, is there anyone out there?”

“The answer is, we don’t know”

He’s wrong! He should’ve said “We don’t know the answer”! This merits a slightly more de-
tailed discussion. The point
is that he’s not answering the
question but rather talking met-
alanguage

There are various things that might tempt you into thinking that the third possibility
is a third truth-value. If you don’t know the truth-value of the proposition you are
evaluating it may be merely that you are unsure which proposition it is that you are
evaluating. [we really need some illustrations at this point] To argue for a third
truth-value you have to be sure that none of the likely cases can plausibly be accounted
for in this way. There are tricks you can play with three-valued truth-tables—and we
shall see some of them later—but the extra truth-values generally don’t seem to have
any real meaning—they don’t correspond to anything out in the world. See section 8.1
The difference between the true and the false is uncontroversial but it’s not clear
when two propositions are the same proposition. (Properties, too, are intensions: the
corresponding extensions are sets, and it’s much easier to see when two sets are the
same or different than it is to see when two properties are the same or different. We are
not going to do much set theory here (only a tiny bit in section 10.4) and the only reason
why I am bringing it in at this stage is to illustrate the intension/extension distinction.)

The fact that it is not always clear when two propositions-(in-intension) are the
same proposition sabotages all attempts to codify reasoning with propositions-in-intension.
If it is not clear to me whether or not p implies q this might be because in my situa-
tion there are two very similar salient propositions, p and p′, one of which implies q
and the other doesn’t—and I am equivocating unconsiously between them. If we had “equivocating”?

6And why stop there? On at least one reading of a text (The Heart Sutra) in the Classical Buddhist
literature there are no fewer than five truth-values: true and false as usual of course, but also both,
neither and finally none-of-the-above.

7“We are all worms, but I do believe that I am a glow-worm”—W. S. Churchill.



30 CHAPTER 2. INTRODUCTION TO LOGIC

satisfactory identity criteria for propositions then fallacy of equivocation would be less
of a danger, but we haven’t! So what we want to do in logic—at least to start with—is
study relations between propositions-in-extension. This sounds as if all we are going to
do is study the relationship between the true and the false—which would make for
a rather short project. However if we think of propositions-in-extension as things-that-
have-been-evaluated-to-true-or-to-false then we have a sensible programme. WeOr we could say that we are in-

terested only in their evaluation
behaviour, loose tho’ that for-
mulation is.

can combine propositions with connectives, ∧, ∨, ¬ and so on, and the things that
evaluate them to true and false are valuations: a valuation is a row in a truth-table.

DEFINITION 4 A valuation is a function that sends each propositional letter to a truth-
value.

As remarked earlier, the connectives we want are truth-functional.
There is a long tradition of trying to obtain an understanding of intensions by tun-

neling towards them through the corresponding extensions. Hume’s heroic attempt to
understand causation (a relation between event-types) by means of constant conjunc-
tion between the corresponding event tokens8 is definitely in this spirit. There is a“coercion”?
certain amount of coercion going on in the endeavour to think only in terms of exten-
sional (truth-functional) connectives: we have to make do with extensional mimics of
the intensional connectives that are the first things that come to mind. The best exten-
sional approximation to “p unless q” seems to be p∨q. But even this doesn’t feel quite
right: disjunction is symmetrical: p ∨ q has the same truth-value as q ∨ p, but ‘unless’
doesn’t feel symmetrical. Similarly ‘and’ and ‘but’ are different intensionally but both
are best approximated by ‘∧’. Notice that Strawson’s example: ‘Mary got married and
had a baby’ , ‘Mary had a baby and got married’ doesn’t show that ‘and’ is inten-
sional, but rather that our word ‘and’ is used in two distinct ways: logical conjunction
and temporal succession.

EXERCISE 19 Match them up:

q if p p→ q
p unless q ¬p→ q
q only if p q→ p
p despite q p ∧ q

Statements, too, have intensions and extensions. The intension of a statement is its
meaning. Mediæval writers tended to think that the meaning of a piece of language
was to be found in the intention of the speaker, and so the word ‘intention’ (or rather
its Latin forbears) came to mean content or meaning. ‘Extension’ seems to be a back-
formation from ‘intention’: the extension of a statement is its truth-value, or—better
perhaps—a tabulation of its truth-value in contexts: its evaluation behaviour.

Connectives that are truth-functional are extensional. The others (such as “implies”
“because”) are intensional. Everything we study is going to be truth-functional. This
is a policy decision taken to keep things simple in the short term. We may get round to
studying non-truth-functional (“intensional”) systems of reasoning later, but certainly
not in first year.

8Haven’t yet defined this word
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I talked about intensions and extensions not just because they are generally im-
portant but because the intension-extension distinction is the way to cope with the
difficulties we will have with implies. The connectives and and or and not are truth-
functional, but implies and because and necessarily are not.

2.3.1 If–then
A conditional is a binary connective that is an attempt to formalise a relation of im-
plication. The word ‘conditional’ is also used (in a second sense, as we saw on page
24) to denote a formula whose principal connective is a conditional (in the first sense).
Thus we say both that ‘→’ is a conditional and that ‘A→ B’ is a conditional. The con-
ditional ¬B→ ¬A is the contrapositive of the conditional A→ B, and the converse is
B→ A. (cf., converse of a relation). A formula like A←→ B is a biconditional.

The two components glued together by the connective are the antecedent (from Collate this with p 24.
which one infers something) and the consequent (which is the something that one
infers). In modus ponens one affirms the antecedent and infers the consequent, thus:

A→ B A
B

Modus tollens is the rule:

A→ B ¬B
¬A

Affirming the consequent and inferring the antecedent:

A→ B B
A

is a fallacy (= defective inference). This is an important fallacy, for reasons that will
emerge later. This particular fallacy is the fallacy of affirming the consequent.

Clearly we are going to have to find a way of talking about implication, or some-
thing like it. Given that we are resolved to have a purely truth-functional logic we
will need a truth-functional connective that behaves like implies. (‘Necessarily’ is a
lost cause but we will attempt to salvage if . . . then). Any candidate must at least obey
modus ponens:

A A→ B
B

In fact—because it is only truth-functional logic we are trying to capture—we will
stipulate that P → Q will be equivalent to ‘¬(P ∧ ¬Q)’ or to ‘¬P ∨ Q’. → is the
material conditional. P → Q evaluates to true unless P evaluates to true and Q
evaluates to false.

So we have a conditional that is defined on extensions. So far so good. Reasonable
people might expect that what one has to do next is solve the problem of what the
correct notion of conditional is for intensions. We can make a start by saying that
P implies Q if—for all valuations—what P evaluates to materially implies what Q
evaluates to.
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This does not solve the problem of identifying the intensional conditional (it doesn’t
even try) but it is surprisingly useful, and we can go a long way merely with an exten-
sional conditional. Understanding the intentional conditional is a very hard problem,
since it involves thinking about the internal structure of intensions and nobody really
has a clue about that. (This is connected to the fact that we do not really have robust
criteria of identity for intensions, as mentioned on page 29.) It has spawned a vast and
inconclusive literature, and we will have to get at least some way into it. See chapters
5 and 6.

Once we’ve got it sorted out . . .

A → B
F T F
F T T
T F F
T T T

or, in 0/1 notation:

A → B
0 1 0
0 1 1
1 0 0
1 1 1

It’s sometimes written ⊃ (particularly in the older philosophical literature) and at
other times with a double shaft: ⇒.

Going for the material conditional means we don’t have to worry ourselves sick
about whether or not A → (B → A) captures a correct principle of inference. If we
take the arrow to be a material conditional then it is! (If the arrow is intensional then it
is not at all clear that A→ (B→ A) is a good principle of inference).

Preferably leave out the
‘⊥’s. . . ? At some point we
have to talk about how to fill in
a truth-table for a formula with
a ‘⊥’ in it.

EXERCISE 20 In the following table

(1) A ∧ A A
(2) ¬(A ∧ ¬B) A→ B
(3) A→ A >

(4) A→ B ¬A ∨ B
(5) A→ ⊥ ¬A
(6) > → A A
(7) ⊥ → A >

(8) A→ > >

(9) A→ B ¬B→ ¬A
(10) A→ ¬A ¬A
(11) ¬A→ A A
(12) A ∨ A A
(13) ¬(A ∨ B) (¬A) ∧ (¬B)
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(14) A ∨ B ¬((¬A) ∧ (¬B))
(15) ¬(A ∧ B) (¬A) ∨ (¬B)
(16) A ∧ B ¬((¬A) ∨ (¬B))
(17) A→ ⊥ ¬A
(18) ⊥ → A >

(19) ⊥ ∨ A A
(20) A ∨ (B ∨C) (A ∨ B) ∨C
(21) A ∧ (A ∨ B) A
(22) A ∨ (A ∧ B) A
(23) (A→ B)→ B A ∨ B
(24) A ∨ (B ∨C) (A ∨ B) ∨C
(25) A ∧ (B ∧C) (A ∧ B) ∧C
(26) A ∨ (B ∧C) (A ∨ B) ∧ (A ∨C)
(27) (A ∧ B) ∨ ((¬A) ∧C) (A→ B) ∧ ((¬A)→ C)
(28) A→ (B→ C) B→ (A→ C)
(29) B→ (A→ C) (A ∧ B)→ C

we find that, in each line, the two formulæ in it are logically equivalent. In each case
write out a truth-table to prove it.

Perhaps some of these could be
put in bundles of three. Flag the
de Morgan laws.2.3.2 Logical Form and Valid Argument

Now we need the notion of Logical Form and Valid Argument. An argument is valid
if it is truth-preserving in virtue of its form. For example the following argument (from

page 20) is truth-preserving because of its form.

It is tuesday The sun is shining
The sun is shining

The point is that there is more going on in this case than the mere fact that the
premisses are true and that the conclusion is also true. The point is that the argument
is of a shape that guarantees that the conclusion will be true if the premisses are. The
argument has the form

A B
B

and all arguments of this form with true premisses have a true conclusion.
To express this concept snappily we will need a new bit of terminology.

2.3.3 The Type-Token Distinction
The terminology ‘type-token’ is due to the remarkable nineteenth century American
philosopher Charles Sanders Peirce. (It really is ‘e’ before ‘i’ . . . Yes i know, but then
we’ve always known that Americans can’t spell.)

The expression

((A→ B)→ A)→ A
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is sometimes called Peirce’s Law. Do not worry if you can’t see what it means: it’s quite
opaque. But do by all means try constructing a truth-table for it!

Where were we? Ah! - type-token. . .

The two ideas of token and type are connected by the relation “is an instance of”.
Tokens are instances of types.

It’s the distinction we reach for in situations like the following

• (i) “I wrote a book last year”
(ii) “I bought two books today”

In (ii) the two things I bought were physical objects, but the thing I wrote in (i)
was an abstract entity. What I wrote was a type. The things I bought today with
which I shall curl up tonight are tokens. This important distinction is missable
because we typically use the same word for both the type and the token.

• A best seller is a book large numbers of whose tokens have been sold. There is
a certain amount of puzzlement in copyright law about ownership of tokens of a
work versus ownership of the type. James Hewitt owns the copyright in Diana’s
letters to him but not the letters themselves. (Or is it the other way round?)

• I read somewhere that “ . . . next to Mary Woollstonecroft was buried Shelley’s
heart, wrapped in one of his poems.” To be a bit more precise, it was wrapped in
a token of one of his poems.

• You have to write an essay of 5000 words. That is 5000 word tokens. On the
other hand, there are 5000 words used in this course material that come from
Latin. Those are word types.

• Grelling’s paradox: a heterological word is one that is not true of itself.9 ‘long’
is heterological: it is not a long word. ‘English’ is not heterological but homo-
logical, for it is an English word. Notice that it is word types not word tokens
that are heterological (or homological!) It doesn’t make any sense to ask whether
or not ‘italicised’ is heterological. Only word tokens can be italicised!

• What is the difference between “unreadable” and “illegible”? A book (type) is
unreadable if it so badly written that one cannot force oneself to read it. A book
(token) is illegible if it is so defaced or damaged that one cannot decypher the
(tokens of) words on its pages.

• Genes try to maximise the number of tokens of themselves in circulation. We
attribute the intention to the gene type because it is not the action of any one
token that invites this mentalistic metaphor, but the action of them collectively.
However it is the number of tokens [of itself] that the type appears to be trying
to maximise.

• First diner:
9Is the word ‘heterological’ heterological?
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“Isn’t it a bit cheeky of them to put “vegetables of the day” when
there is nothing but carrots in the way of vegetables?”

Second diner:

“Well, you did get more than one carrot so perhaps they’re within
their rights!”

The type-token distinction is important throughout Philosophy.

• People who do æsthetics have to be very careful about the difference between
things and their representations—and related distinctions. I can’t enjoy being
unhappy, so how can I enjoy reading Thomas Hardy? There is an important
difference between the fictional disasters that befall Jude the Obscure (to which
we have a certain kind of relation) and the actual disasters that befall the actual
Judes of this world—to which these fictional disasters allude—and to which we
have (correctly) an entirely different reaction. The type/token/representation/etc.
distinction is not just a plaything of logicians: it really matters.

• In Philosophy of Mind there are a variety of theories called Identity Theories:
mental states are just physiological states of some kind, probably mostly states
of the brain. But if one makes this identification one still has to decide whether a
particular mental state type—thinking-about-an-odd-number-of-elephants, say—
is to be identified with a particular type of physiologicial state? Is it is just that
every time I think about an odd number of elephants (so I am exhibiting a to-
ken of the type of that mental state, then there is a token of physiological state
I must be in—but the states might vary (be instances of different physiological
state-types) from time to time? These two theories are Type Identity and Token
Identity.

2.3.4 Copies
“specimen” instead of “token”

Buddhas

It is told that the Buddha could perform miracles. But—like Jesus—he felt they were
vulgar and ostentatious, and they displeased him. But that didn’t stop him from per-
forming them himself when forced into a corner. In [4] J. L. Borges procedes to tell
the following story, of a miracle of courtesy. The Buddha has to cross a desert at noon.
The Gods, from their thirty-three heavans, each send him down a parasol. The Buddha
does not want to slight any of the Gods, so he turns himself into thirty-three Buddhas.
Each God sees a Buddha protected by a parasol he sent.10

Apparently he routinely made copies of himself whenever he was visiting a city
with several gates, at each of which there would be people waiting to greet him. He
would make as many copies of himself as were needed for him to be able to appear at
all the gates simultaneously—and thereby not disappoint anyone.

10As is usual with Borges, one does not know whether he has a source for this story in the literature, or
whether he made it up. And—again, as usual—it doesn’t matter.
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Minis

Q: How many elephants can you fit in a mini?
A: Four: two in the front and two in the back.

Q: How many giraffes can you fit in a mini?
A: None: it’s full of elephants.

Q: How can you tell when there are elephants in the fridge?
A: Footprints in the butter.

Q: How can you tell when there are two elephants in the fridge?
A: You can hear them giggling when the light goes out.

Q: How can you tell when there are three elephants in the fridge?
A: You have difficulty closing the fridge door.

Q: How can you tell when there are four elephants in the fridge?
A: There’s a mini parked outside.

Sets

If A is a set with three members and B is a set with four members, how many ordered
pairs can you make whose first component is in A and whose second component is in
B?ordered pair

W-e-e-ll . . . you pick up a member of A and you pair it with a member of B . . . that
leaves two things in A so you can do it again . . . . The answer must be three!

Wrong! Once you have picked up a member of A and put it into an ordered pair—
it’s still there!

One would tend not to use the word token in this connection. One would be more
likely to use a word like copy. One makes lots of copies of the members of A. Just
as the Buddha made lots of copies of himself rather than lots of tokens of himself. I
suppose you could say that the various tokens of a type are copies of each other.

It is possible to do a lot of rigorous analysis of this distinction, and a lot of re-
finements suggest themselves. However, in the culture into which you are moving the
distinction is a piece of background slang useful for keeping your thoughts on an even
keel, rather than something central you have to get absolutely straight. In particular
we will need it when making sense of ideas like disjoint union which we will meet in
chapter 7.

2.4 Tautology and Validity

2.4.1 Valid Argument
Now that we are armed with the type-token distinction we can give a nice snappy
definition of the important concept of Valid Argument.
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DEFINITION 5 A valid argument (type) is one such that any argument of that form
(any token of it) with true premisses has a true conclusion.

See appendix 11.1.2.
And while we are about it, we’ll give a definition of a related concept as a spin-off.

DEFINITION 6 A sound argument (token) is a token of a valid argument-type all of
whose premisses are true.

The final example on page 38 is an example of a valid argument. It is a matter of
debate whether or not it is sound! Arguments that are valid are valid in virtue of their
structure. That is what makes Logic possible!

The idea that the reliability of an argument depends at least in part on its shape
or form is deeply embedded in everyday rhetoric. Hence the rhetorical device of the
tu quoque and the rhetorical device of argument by analogy. Appeal to argument by Explain this
analogy suggests that we recognise—at some level—that the structure of an argument
is important in discovering whether or not it is a good one. It’s not just the truth of the
conclusion that makes the argument good11.

connect this with FTPM; mate-
rial in philrave.texThis was beautifully parodied in the following example (due, I think, to Dr. Johnson—

the same who kicked the stone) of the young man who desired to have carnal knowl-
edge of his paternal grandmother12 and responded to his father’s entirely reasonable
objections with: “You, sir, did lie with my mother: why should I not therefore lie with
yours?” Need more illustrations before

we ask them to do these exer-
cisesEXERCISE 21 Abbreviate “Jack arrives late for lunch” etc etc., to single letters, and

use these abbreviations to formalise the arguments below. (To keep things simple you
can ignore the tenses!)

Identify each of the first six arguments as modus ponens, modus tollens or as an
instance of the fallacy of affirming the consequent.

1. If Jill arrives late for lunch, she will be cross with Jack.
Jack will arrive late.
Jill will be cross with Jack.

2. If Jill arrives late for lunch, Jack will be cross with her.
Jill will arrive late.
Jill will be cross with Jack.

3. If Jill arrives late for lunch, Jack will be cross with her.
Jack will arrive late.
Jill will be cross with Jack.

4. If Jack arrives late for lunch, Jill will be cross with him.
Jack will arrive late.
Jill will be cross with Jack.

11This is one reason why the material conditional is so puzzling!
12Don’t ask me, I don’t know why either!
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5. If George is guilty he’ll be reluctant to answer questions;
George is reluctant to answer questions.
George is guilty.

6. If George is broke he won’t be able to buy lunch;
George is broke.
George will not be able to buy lunch.

7. If Alfred studies, then he receives good marks.
If he does not study, then he enjoys college.
If he does not receive good marks then he does not enjoy college.
Alfred receives good marks.

8. If Herbert can take the flat only if he divorces his wife then he should think twice.
If Herbert keeps Fido, then he cannot take the flat.
Herbert’s wife insists on keeping Fido.
If Herbert does not keep Fido then he will divorce his wife—at least if she insists
on keeping Fido.
Herbert should think twice.

9. If Herbert grows rich, then he can take the flat.
If he divorces his wife he will not receive his inheritance.
Herbert will grow rich if he receives his inheritance.
Herbert can take the flat only if he divorces his wife.

10. If God exists then He is omnipotent.
If God exists then He is omniscient.
If God exists then He is benevolent.
If God can prevent evil then—if He knows that evil exists—then He is not benev-
olent if He does not prevent it.
If God is omnipotent, then He can prevent evil.
If God is omniscient then He knows that evil exists if it does indeed exist.
Evil does not exist if God prevents it.
Evil exists.
God does not exist.

This last one is a bit of a mouthful! But it’s made of lots of little parts. Do not
panic!

(3) onwards are taken from [24]. Long out of print, but you can sometimes find
second-hand copies. If you find one, buy it. (Alfred is probably Alfred Tarski: https:
//en.wikipedia.org/wiki/Alfred_Tarski; Herbert is probably Herb Enderton:
https://en.wikipedia.org/wiki/Herbert_Enderton, but we will now never
know, because Kalish and Montague are now both dead.)

The concept of a valid argument is not the only thing that matters from the rhetorical
point of view, from the point of view of transacting power relations: there are other
things to worry about, but as far as we are concerned, arguments that are useful in
power-transactions without being valid are not of much concern to us. Logic really has
nothing to say about arguments in terms of the rights of the proponents of various sides

https://en.wikipedia.org/wiki/Alfred_Tarski
https://en.wikipedia.org/wiki/Alfred_Tarski
https://en.wikipedia.org/wiki/Herbert_Enderton


2.4. TAUTOLOGY AND VALIDITY 39

to say what they say: it concerns itself only with what they say, not with their right to
say it.

Imply and infer

In a valid argument the premisses imply the conclusion. We can infer the conclusion
from the premisses. People often confuse these two words, and use ‘infer’ when they
mean ‘imply’. You mustn’t! You are Higher Life Forms.

Then we can replace the propositions in the argument by letters. This throws away
the content of the argument but preserves its structure. You no longer know which
token you are looking at, but you do know the type.

Some expressions have in their truth-tables a row where the whole formula comes
out false. ‘A ∨ B’ is an example; in the row where A and B are both false A ∨ B comes
out false too. Such formulæ are said to be falsifiable.

Some expressions—‘A ∨ ¬A’ is an example—come out true in all rows. Such an
expression is said to be tautology. We’d better have this up in lights:

DEFINITION 7
A tautology is an expression which comes out true under all valuations (= in all rows
of its truth table).
A tautology is also said to be logically true.
The negation of a tautology is said to be logically false.
A formula that is not the negation of a tautology is said to be satisfiable.

I sometimes find myself writing ‘truth-table tautology’ instead of mere ‘tautology’
because of the possibility of other uses of the word. 13

These two ideas, (i) of valid argument, and (ii) tautology are closely related, and
you might get the words confused. But it’s easy:

DEFINITION 8 An argument
P1, P2, . . . Pn

C

is valid if and only if the conditional

(P1 ∧ P2 ∧ . . . Pn)→ C

(whose antecedent is the conjunction of its premisses and whose consequent is its
conclusion) is a tautology.

In order to be happy with the idea of a valid argument you really have to have the
idea of there being slots or blanks in the argument which you can fill in. The two
miniature arguments:

13We use the word ‘tautology’ in popular parlance too—it’s been borrowed from Logic and misused
(surprise surprise). Once my ex (an EFL teacher) threatened to buy me a new pair of trousers. When I said
that I would rather have the money instead she accused me of tautology (thinking of the repetition in ‘rather’
and ‘instead’). She’s wrong: it’s not a tautology, the repetition makes it a pleonasm.
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It is monday and it is raining therefore it is monday,

and

The cat sat on the mat and the dog in front of the fire therefore the cat sat
on the mat

are two tokens of the one argument-type.

We will be going into immense detail later about what form the slots take, what
they can look like and so on. You’re not expected to get the whole picture yet, but i
would like you to feel happy about the idea that these two arguments are tokens of the
same argument-type.

EXERCISE 22 Which of the arguments in exercises 21 and 8 are valid?
When do we talk about fallacy
of equivocation?

2.4.2
∧

and
∨

versus ∧ and ∨

The connectives ∧ and ∨ are associative (it doesn’t matter how you bracket A∨ B∨C;
we saw this on page 26) so we can omit brackets . . . . This looks like a simplification
but it brings a complication. If we ask what the principal connective is of ‘A ∨ B ∨ C’
we don’t know which of the two ‘∨’s to point to. We could write∨

{A, B,C}

to make sure that there is only one ‘∨’ to point to. The curly brackets ‘{’ and ‘}’ you
may remember from school. They are not mere punctuation, but two components of a
piece of notation: {A, B,C} is the set that contains the three things A, B and C. So

∨
is

an operation that takes a set of propositions and ors them together
This motivates more complex notations like∨

i∈I

Ai (2.1)

. . . since there it is obvious that the ‘
∨

’ is the principal connective. However this no-
tation looks rather mathematical and could alarm some people so we would otherwise
prefer to avoid it!14 We won’t use it.

However we can’t really avoid it entirely: we do need the notion of the disjunction
of a set of formulæ (and the notion of the conjunction of a set of formulæ). We will
return to those two ideas later. For the moment just tell yourself that ‘A ∨ B ∨ C’ is a
disjunction, that its principal connective is ‘∨’ and that its immediate subformulæ are
‘A’, ‘B’ and ‘C’.

14If I = {1, 2, 3, 4} then
∨
i∈I

Ai is (A1 ∨ A2 ∨ A3 ∨ A4).
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The empty conjunction and the empty disjunction

Since a conjunction or disjunction can have more than two disjuncts, it’s worth asking
if it can have fewer. . .

As we have just seen, ‘∨’ and ‘∧’ have uppercase versions ‘
∨

’ and ‘
∧

’ that can be
applied to sets of formulæ:

∨
{A, B} is obviously the same as A ∨ B for example, and∧

{A, B} is A ∧ B on the same principle.
Slightly less obviously

∧
{A} and

∨
{A} are both A. But what is

∨
∅? (the disjunc-

tion of the empty set of formulæ). Does it even make sense? Yes it does, and if we are
brave we can even calculate what it is.

If X and Y are sets of formulæ then
∨

(X∪Y)15 had better be the same as
∨

X∨
∨

Y .
Now what if Y is ∅, the empty set? Then∨

X

=
∨

(X ∪ ∅)

(because X = X ∪ ∅)
= (
∨

X) ∨ (
∨
∅)

so
(
∨

X) ∨ (
∨
∅) = (

∨
X) (2.2)

and this has got to be true for all sets X of formulæ. This compels ‘
∨
∅’ to always eval-

uate to false. If it were to evaluate to true then equation (2.2) would compel ‘
∨

X’
to evaluate to true whatever X was! In fact we could think of ‘⊥’ as an abbreviation
for ‘
∨
∅’.

Similarly ‘
∧
∅’ must always evaluate to true. In fact we could think of ‘>’ as an

abbreviation for ‘
∧
∅’.

2.4.3 Conjunctive and Disjunctive Normal Form
Each row of a truth-table for a formula records the truth-value of that formula under
a particular valuation: each row corresponds to a valuation and vice versa. The Dis-
junctive Normal Form of a formula A is simply the disjunction of the rows in which
A comes out true, and each row is thought of as the conjunction of the atomics and
negatomics that come out true in that row. Let us start with a simple example:

A ←→ B
1 1 1
1 0 0
0 0 1
0 1 0

is the truth-table for ‘←→’. It tells us that A ←→ B is true if A and B are both true, or
if they are both false (and not otherwise. That is to say, A←→ B is logically equivalent
to (A ∧ B) ∨ (¬A ∧ ¬B). A slightly more complicated example:

15Here we use the symbol ‘∪’ for the first time
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(A ←→ B) ←→ C
1 1 1 1 1
1 0 0 0 1
0 0 1 0 1
0 1 0 1 1
1 1 1 0 0
1 0 0 1 0
0 0 1 1 0
0 1 0 0 0

This says that (A ←→ B) ←→ C comes out true in the row where A, B and C are all
true, and in the row where . . . in fact in those rows where an even number of A, B and
C are false. (Check it!)

So (A←→ B)←→ C is logically equivalent to

(A ∧ B ∧C) ∨ (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ ¬B ∧C) ∨ (¬A ∧ B ∧ ¬C)

(Notice how much easier this formula is to read once we have left out the internal
brackets!)Say something about how one

is tempted to put ‘∧’ between
them . . . DEFINITION 9

A formula is in Disjunctive Normal Form if the only connectives in it are ‘∧’, ‘∨’somewhere in connection with
DNF mention P=NP. . . ? and ‘¬’ and there are no connectives within the scope of any negation sign and no ‘∨’

within the scope of a ‘∧’;Define ‘scope’
A formula is in Conjunctive Normal Form if the only connectives in it are ‘∧’,

‘∨’ and ‘¬’ and there are no connectives within the scope of any negation sign and no
‘∧’ within the scope of a ‘∨’.

Using these definitions it is not blindingly obvious that a single propositional letter by
itself (or a disjunction of two propositional letters, or a conjunction of two propositional
letters) is a formula in both CNF and DNF, though this is in fact the case.16

We cannot describe CNF in terms of rows of truth-tables in the cute way we can
describe DNF.

EXERCISE 23 Recall the formula “if p then q else r” from exercise 15. Put it into
CNF and also into DNF.

EXERCISE 24 For each of the following formulæ say whether it is in CNF, in DNF, in
both or in neither.

(i) ¬(p ∧ q)
(ii) p ∧ (q ∨ r)
(iii) p ∨ (q ∧ ¬r)
(iv) p ∨ (q ∧ (r ∨ s))
(v) p

16It doesn’t much matter since the question hardly ever arises. I think Wikipædia gives a different defini-
tion.
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(vi) (p ∨ q)
(vii) (p ∧ q)

THEOREM 10 Every formula is logically equivalent both to something in CNF and to
something in DNF.

Proof:
We force everything into a form using only ∧, ∨ and ¬, using equivalences like

A→ B←→ ¬A ∨ B.
Then we “import” ¬, so that the ‘¬’ sign appears only attached to propositional

letters. How? We saw earlier (exercise 20) that

¬(A ∧ B) and ¬A ∨ ¬B are logically equivalent;

and

¬(A ∨ B) and ¬A ∧ ¬B are logically equivalent;

So ¬(A∧B) can be rewritten as ¬A∨¬B and ¬(A∨B) can be rewritten as ¬A∧¬B.

There is also:

¬(A→ B) is logically equivalent to A ∧ ¬B

so ¬(A→ B) can be rewritten as A ∧ ¬B;
The effect of these rewritings is to “push the negations inwards” or—as we say—

import them.
Then we can use use the two distributive laws to turn formulæ into CNF or DNF

A ∨ (B ∧C)←→ (A ∨ B) ∧ (A ∨C) (2.3)

means that A ∨ (B ∧C) and (A ∨ B) ∧ (A ∨C) are logically equivalent, so
A ∨ (B∧C) can be rewritten as (A ∨ B) ∧ (A ∨C). We use this to “push ∨
inside ∧” if we want to put the formula into CNF

or
A ∧ (B ∨C)←→ (A ∧ B) ∨ (A ∧C) (2.4)

which means that A∧ (B∨C) and (A∧B)∨ (A∧C) are logically equivalent
so A ∧ (B ∨C) can be rewritten as (A ∧ B) ∨ (A ∧C).

We use this to “push ∧ inside ∨” if we want the formula in DNF

Two further simplifications are allowed:

1. We can replace B ∧ (A ∨ ¬A) by B;

2. We can replace B ∨ (A ∧ ¬A) by B.

(because B ∧ (A ∨ ¬A) is logically equivalent to B, and B ∨ (A ∧ ¬A) is logically
equivalent to B).

Here are some examples:
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1.
(p ∨ q)→ r

convert the ‘→’:
¬(p ∨ q) ∨ r

import ‘¬’
(¬p ∧ ¬q) ∨ r

and it is now in DNF. Then distribute ‘∨’ over ‘∧’ to obtain

(¬p ∨ r) ∧ (¬q ∨ r)

which is in CNF.

2.
p→ (q ∧ r)

convert the ‘→’:
¬p ∨ (q ∧ r)

and it is now in DNF. Then distribute ‘∨’ over ‘∧’ to obtain

(¬p ∨ q) ∧ (¬p ∨ r)

which is now in CNF.

3.
p ∧ (q→ r)

convert the ‘→’:
p ∧ (¬q ∨ r)

which is now in CNF. Then distribute ‘∧’ over ‘∨’ to obtain

(p ∧ ¬q) ∨ (p ∧ r)

which is in DNF.

4.
(p ∧ q)→ r

convert the ‘→’:
¬(p ∧ q) ∨ r

de Morgan
(¬p ∨ ¬q) ∨ r

Drop the brackets because ‘∨’ is associative . . .

¬p ∨ ¬q ∨ r

which is in both CNF and DNF.



2.4. TAUTOLOGY AND VALIDITY 45

5.
p→ (q ∨ r)

convert the ‘→’
¬p ∨ (q ∨ r)

Drop the brackets because ‘∨’ is associative . . .

¬p ∨ q ∨ r

which is in both CNF and DNF.

6.
(p ∨ q) ∧ (¬p ∨ r)

is in CNF. To get it into DNF we have to distribute the ‘∧’ over the ‘∨’. (Match
‘A’ to ‘p ∨ q’, match ‘B’ to ‘¬p’ and ‘C’ to ‘r’ in ‘A ∧ (B ∨ C) ←→ ((A ∧ B) ∨
(A ∧C))’.)

((p ∨ q) ∧ ¬p) ∨ ((p ∨ q) ∧ r)

and then distribute again in each disjunct:

((p ∧ ¬p) ∨ (q ∧ ¬p)) ∨ ((p ∧ r) ∨ (q ∧ r))

Now p ∧ ¬p is just ⊥. . .

((⊥ ∨ (q ∧ ¬p)) ∨ ((p ∧ r) ∨ (q ∧ r))

and ⊥ ∨ (q ∧ ¬p) is just q ∧ ¬p:

((q ∧ ¬p) ∨ ((p ∧ r) ∨ (q ∧ r))

finally dropping backets because ‘∨’ is associative . . .

(q ∧ ¬p) ∨ (p ∧ r) ∨ (q ∧ r)

Note that in CNF (DNF) there is no requirement that every conjunct (disjunct) has
to contain every letter.

In DNF inconsistencies vanish: the empty disjunction is the false; in CNF tau-
tologies vanish: the empty conjunction is the true. (Recall what we were saying on
page 41 about the empty conjunction and the empty disjunction.)

Finally, by using CNF and DNF we can show that any truth-functional connective
whatever can be expressed in terms of ∧, ∨ and ¬. Any formula is equivalent to the
disjunction of the rows (of the truth-table) in which it comes out true. We illustrated
this earlier 2.4.3 with the expression A←→ (B←→ C).
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Alleles and Normal Forms

CNF and DNF have ramifications outside logic. Plenty of human features have a ge-
netic component, in the sense that—for example—for a given feature (perfect pitch,
blue eyes, left-handedness) a particular combination of particular alleles at particular
loci might give you a ≥50% chance of having the feature. Let us for the moment over-
simplify by supposing that each locus has precisely two alleles. This simplification
enables us to associate with each locus a single propositional letter. Then having-a-
≥50% chance of having that feature turns out to be captured by a propositional formula
over the alphabet consisting of these propositional letters. This propositional formula
naturally has a CNF and a DNF. The DNF is the disjunction of all the sufficient condi-
tions for having-a-≥50% chance of having that feature; the CNF is the conjunction of
all the sufficient conditions for having-a-≥50% chance of having that feature.

Realistically each locus cannot be relied upon to have two alleles, so we don’t
have a single propositional letter for each locus, but rather a propositional letter for
each allele at any given locus. Then we have to add axioms to express the obvious
background assumption that each locus is occupied by precisely one allele . . . which is
as much as to say that the propositional letters are not independent. It provides us wiht
a natural example of a propositional theory.

2.5 Further Useful Logical Gadgetry
We’ve already encountered the intension/extension distinction and the type-token dis-
tinction. There are a few more.

2.5.1 The Analytic-Synthetic Distinction
More detail needed here

This is one of a trio of distinctions collectively sometimes known as Hume’s wall.
They are the analytic/synthetic distinction, the a priori/a posteriori distinction and the
necessary/contingent distinction. It is sometimes alleged that they are all the same
distinction—specifically

Analytic = necessary = a priori

and

Synthetic = contingent = a posteriori.

Hume’s wall indeed. Not everybody is convinced: Kant thought there were assertions
that were synthetic but a priori; Kripke claims there are necessary truths that are a
posteriori, and Quine famously claimed that the analytic-synthetic distinction at least
(if not the others) is spurious.

Of these three distinctions (if there really are three, not one!) the one that most con-
cerns us here is the analytic-synthetic distinction. The cast of philosophical pantomime
includes the analytic truth “All bachelors are unmarried”.17 The idea is that you can
see that this allegation is true merely by analysing it—hence analytic.

17“Oh no they aren’t!!”
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The analytic/synthetic distinction seems to be connected with the intension/extension
distinction—see Carnap, [6]:

Facts about intensions are analytic and
Facts about extensions are synthetic;

specifically

Equations between intensions are analytic and
Equations between extensions are synthetic.

To illustrate

1. The equation

bachelor = unmarried man

expressing the identity of the two properties-in-intension bachelor and unmarried
man is an analytic truth;

2. The inequation

human , featherless biped

expressing the distinctness of the two properties-in-intension human and feath-
erless biped is also an analytic truth;

3. The equation

human = featherless biped

expressing the identity of the two properties-in-extension human and featherless
biped is a synthetic truth;

4. It’s analytic that man is a rational animal. . .

5. . . . but purely synthetic that the set of humans is coextensive with the set of feath-
erless bipeds. (Sets are unary [one-place] properties-in-extension) monadic?

explain the equivocation on
‘featherless biped’

2.5.2 Necessary and Sufficient Conditions

If A → B is true then we often say that A is a sufficient condition for B. And indeed,
that is all there is to it. If A is a sufficient condition for B then A → B: the two forms
of words are synonymous.

A is a necessary condition for B is a related idea. That means that if B holds, it must
be because A holds. B can only be true of A is. That is to say, if B then A. Say something about unfortu-

nate overloading of ‘neccesary’
Say something about “over-
loading”

Thus: A is a necessary condition for B if and only if B is a sufficient condition
for A.
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2.5.3 The Use-Mention Distinction
We must distinguish words from the things they name: the word ‘butterfly’ is not
a butterfly. The distinction between the word and the insect is known as the “use-
mention” distinction. The word ‘butterfly’ has nine letters and no wings; a butterfly
has two wings and no letters. The last sentence uses the word ‘butterfly’ and the one
before that mentions it. Hence the expression ‘use-mention distinction’.

People complain that they don’t want their food to be full of E-numbers. What they
mean is that they don’t want it to be full of the things denoted by the E-numbers.18

[Alphabet soup!]

“Put cream on the banana cake.”

“There isn’t any cream!”

“Then put ‘cream’ on the shopping list!”

Haddocks’ Eyes

As so often the standard example is from [8].

[. . . ] The name of the song is called ‘Haddock’s eyes’.”

“Oh, that’s the name of the song is it”, said Alice, trying to feel interested.

“No, you don’t understand,” the Knight said, looking a little vexed. “That’s
what the name is called. The name really is ‘The agèd, agèd man’.”

“Then I ought to have said, ‘That’s what the song is called’?” Alice cor-
rected herself.

“No you oughtn’t: that’s quite another thing! The song is called ‘Ways
and means’, but that’s only what it is called, you know!”

“Well, what is the song, then?” said Alice, who was by this time com-
pletely bewildered.

“I was coming to that,” the Knight said. “The song really is ‘A-sitting on
a Gate’ and the tune’s my own invention”.

The situation is somewhat complicated by the dual use of single quotation marks.
They are used both as a variant of ordinary double quotation marks for speech-within-
speech (to improve legibility)—as in “Then I ought to have said, ‘That’s what the song
is called’?”—and also to make names of words or strings of words—‘The agèd, agèd
man’.. Even so, it does seem clear that the White Knight has got it wrong. At the very
least if the name of the song really is is “The agèd agèd man” (as he says) then clearly
Alice was right to say that was what the song was called. Granted, it might have more
names than just that one—‘Ways and means’ for example—but that was no reason for
him to tell her she had got it wrong. And again, if his last utterance is to be true he

18Mind you E-300 is Vitamin C and there’s nothing wrong with that!
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should leave the single quotation marks off the title, or—failing that (as Martin Gardner
points out in [18])—burst into song. These infelicities must be deliberate (Carroll does
not make elementary mistakes like that), and one wonders whether or not the White
Knight realises he is getting it wrong . . . is he an old fool and nothing more? Or is he
a paid-up party to a conspiracy to make the reader’s reading experience a nightmare?
The Alice books are one long nightmare, and perhaps not just for Alice.

Some good advice

Q: Why should you never fall in love with a tennis player?
A: Because ‘love’ means ‘nothing’ to them.

‘Think’

“If I were asked to put my advice to a young man in one word, Prestwick,
do you know what that word would be?”

“No” said Sir Prestwick.

“ ‘Think’, Prestwick, ‘Think’ ”.

“I don’t know, R.V. ‘Detail’?”

“No, Prestwick, ‘Think’.”

“Er, ‘Courage’?”

“No! ‘Think’!”

“I give up, R.V., ‘Boldness’?”

“For heavan’s sake, Prestwick, what is the matter with you? ‘Think’!”

“ ‘Integrity’? ‘Loyalty’? ‘Leadership’?”

“ ‘Think’, Prestwick! ‘Think’, ‘Think’, ‘Think’ ‘Think’!”

Michael Frayn: The Tin Men. Frayn has a degree in Philosophy.

Ramsey for Breakfast

In the following example Ramsey19 uses the use-mention distinction to generate some-
thing very close to paradox: the child’s last utterance is an example of what used to be
called a “self-refuting” utterance: whenever this utterance is made, it is not expressing
a truth.

PARENT: Say ‘breakfast’.
CHILD: Can’t.
PARENT: What can’t you say?
CHILD: Can’t say ‘breakfast’.

19You will be hearing more of this chap.
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The Deaf Judge

JUDGE (to
PRISONER): Do you have anything to say before I pass sentence?

PRISONER: Nothing

JUDGE (to
COUNSEL : Did your Client say anything?

COUNSEL: ‘Nothing’ my Lord.

JUDGE: Funny, I could have sworn I saw his lips move. . .

Fun on a train

The use-mention distinction is a rich source of jokes. One of my favourites is the joke
about the compartment in the commuter train, where the passengers have travelled
together so often that they have long since all told all the jokes they know, and have
been reduced to the extremity of numbering the jokes and reciting the numbers instead.
In most versions of this story, an outsider arrives and attempts to join in the fun by
announcing “Fifty-six!” which is met with a leaden silence, and he is tactfully told
“It’s not the joke, it’s the way you tell it”. In another version he then tries “Forty-two!”
and the train is convulsed with laughter. Apparently that was one they hadn’t heard
before.

We make a fuss of this distinction because we should always be clear about the
difference between a thing and its representation. Thus, for example, we distinguish
between numerals and the numbers that they represent.

If we write numbers in various bases (Hex, binary, octal . . . ) the numbers stay the
same, but we change the numerals we associate with each number. Thus the numerals
‘XI’, ‘B’, ‘11’, ‘13’ ‘1011’ all represent the same number.

EXERCISE 25 What is that number, and under which systems do those numerals rep-
resent it?

Notice that bus “numbers” are typically numerals not numbers. Not long ago, need-
ing a number 7 bus to go home, I hopped on a bus that had the string ‘007’ on the front.
It turned out to be an entirely different route! Maybe this confusion in people’s minds
is one reason why this service is now to be discontinued.20

A good text to read on the use-mention distinction is the first six paragraphs (that
is, up to about p. 37) of Quine’s [33]. However it does introduce subtleties we will not
be respecting.

Related to the use-mention distinction is the error of attributing powers of an object
to representations of that object. I tend to think that this is a use-mention confusion.

20But it’s obvious anyway that bus numbers are not numbers but rather strings. Otherwise how could we
have a bus with a “number” like ‘7A’?
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But perhaps it’s a deliberate device, and not a confusion at all. So do we want to
stop people attributing to representations powers that strictly belong to the things being
represented? Wouldn’t that spoil a lot of fun? Perhaps, but on the other hand it might
help us understand the fun better. There was once a famous English stand-up comic by
the name of Les Dawson who (did mother-in-law jokes but also) had a routine which
involved playing the piano very badly. I think Les Dawson must in fact have been quite
a good pianist: if you want a sharp act that involves playing the piano as badly as he
seemed to be playing it you really have to know what you are doing 21. The moral is
that perhaps you only experience the full frisson to be had from use-mention confusion
once you understand the use-mention distinction properly.

2.5.4 Language-metalanguage distinction

We distinguish between a world and the language used to describe it. In the full rich
complexity of real life the language we use to describe the world is of course part
of the world, but there are plenty of restricted settings in which a clear distinction
can be drawn. The language we use when we do chemistry is not part of the subject
matter of chemistry: in chemistry we study chemical elements and their compounds,
not language.

However there are also settings in which the object of study is itself a language,
and in those circumstances there are two languages in play. Naturally we need termi-
nology for this situation. The language that is the object of study22 is called the object
language. The language that we use for describing the object language is the metalan-
guage. Thus, when the subject we are investigating is a language, the object language
corresponds to the chemical elements and their compounds while the metalanguage
corresponds to the language we use to describe those elements and compounds.

The language-metalanguage distinction is related to the use-mention distinction in
the following way. If I am going to discuss someone else’s discourse, I need a lexicon
(a vocabulary) that has words to denote items in (the words in) their discourse. One
standard way to obtain a name for a word is to put single quotation marks round a token
of that word. So if you are discussing the activities of bird-watchers you will need
words to describe the words they use. They talk about—for example—chaffinches and
so they will have a word for this bird. That word is ‘chaffinch’. (Note single quote)
The people who discuss the linguistic behaviour of twitchers will have a name for that
word, and that name will be ‘ ‘chaffinch’ ’. (Observe: two single quotes!)

The language-metalanguage distinction is important for rhetoric. Any debate will
be be conducted in some language or other: there will be a specified or agreed vocab-
ulary and so on. (It will be part of what the literary theorists call a discourse). Let
us suppose the debate is about widgets. The people commenting on, or observing the
debate will have a different language (discourse) at their disposal. This language will
provide the commentators with means for discussing and analysing the motives and
strategies of the participants in the debate, and all sorts of other things beyond widgets.
All sorts of things, in fact, which the chairman of the debate would rule to be irrelevant

21Wikipædia confirms this: apparently he was an accomplished pianist.
22Not the subject of study? Confusing, I know!
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to a debate about widgets.Say something about this
(This is connected to ideas in literary theory and elsewhere about the difference be-

tween an observer and a participant). Participants in a debate will attempt to represent
themselves as expert witnesses who are above the fray whereas they are in fact inter-
ested parties. If you speak metalanguage you have the last word—and that of course is
what every debater wants.)

There are some intellectual cultures that make great use of the device of always
putting tokens of their opponents’ lexicon inside quotation marks. This serves to ex-
press distaste for the people they are discussing, to make it look ridiculous, and to make
it clear that the offending words are not part of their own language. This is not quite
the same move, since the quotes here are “scare-quotes” rather than naming quotes, but
the device is related.

(The language-metalanguage distinction will be useful later in connection with se-
quent calculus.)

2.5.5 Semantic Optimisation and the Principle of Charity
When a politician says “We have found evidence of weapons-of-mass-destruction programme-
related activities”, you immediately infer that that have not found weapons of mass
destruction (whatever they are). Why do you draw this inference?

Well, it’s so much easier to say “We have found weapons of mass destruction”
than it is to say “We have found evidence of weapons-of-mass-destruction-related
programme-related activities” that the only conceivable reason for the politician to say
the second is that he won’t be able to get away with asserting the first. After all, why
say something longer and less informative when you can say something shorter and
more informative? One can see this as a principle about maximising the amount of
information you convey while minimising the amount of energy you expend in con-
veying it. If you were a first-year economics student you would probably be learning
some elementary optimisation theory at this stage, and you might like to learn some
on the fly: economists have had some enlightening things to say about philosophy of
language. It’s not difficult to learn enough optimisation theory to be able to see where
it could usefully lead. (It’s not a bad idea to think of ourselves as generally trying to
minimise the effort involved in conveying whatever information it is that we want to
convey.)

Quine used the phrase “The Principle of Charity” for the assumption one makes
that the people one is listening to are trying to minimise effort in this way. It’s a useful
principle, in that by charitably assuming that they are not being unneccessarily verbose
it enables one to squeeze a lot more information out of one’s interlocutors’ utterances
than one otherwise might, but it’s dangerous. Let’s look at this more closely.

Weapons of Mass Destruction

Suppose I hear you say

We have found evidence of weapons-of-mass-destruction programme-related
activities. (1)



2.5. FURTHER USEFUL LOGICAL GADGETRY 53

Now you could have said

We have found weapons of mass destruction. (2)

. . . which is shorter. So why did you not say it? The principle of charity tells me to
infer that you were not in a position to say (2), which means that you have not found
weapons of mass destruction. However, you should notice that (1) emphatically does
not imply that

We have not found weapons of mass destruction. (3)

After all, had you been lucky enough to have found weapons of mass destruc-
tion then you have most assuredly found evidence of weapons-of-mass-destruction
programme-related activities: the best possible evidence indeed. So what is going
on?

What’s going on is that (1) does not imply (3), but that (4) does!

We had no option but to say “We have found evidence of weapons-of-
mass-destruction programme-related activities” rather than “We have found
weapons of mass destruction ”. (4)

Of course (1) and (4) are not the same!
The principle of charity is what enables us to infer (4); and to infer it not from (3)

but from the fact that they said (3) instead of (2).
Perhaps a better example—more enduring and more topical—is

Wrong Kind of Snow

80% of our trains arrive within 5 minutes of their scheduled time. (A)

Note that (A) does not imply:

20% of our trains are more than 5 minutes late. (B)

The claim (A) is certainly not going to be falsified if the train company improves its
punctuality, whereas (B) will.

So what is going on when people infer (B) from (A)?
What is going on is that although (A) doesn’t imply (B), (C) certainly does imply

(B).

The train company has chosen to say “80% of our trains arrive
within 5 minutes of their scheduled time”, and the train
companies wish to put themselves in the best possible light. (C)

. . . and the second conjunct of (C) is a safe bet.

Now the detailed ways in which this optimisation principle is applied in ordinary
speech do not concern us here—beyond one very simple consideration. I want you to
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understand this optimisation palaver well enough to know when you are tempted to
apply it, and to lay off. The languages of formal logic are languages of the sort where
this kind of subtle reverse-engineering of interlocutors’ intentions is a hindrance not a
help. Everything has to be taken literally.

See also the beautiful discussion of the Rabbinical tradition in [46] starting on p.
247.

2.5.6 Inferring A-or-B from A
You might be unhappy about inferring A-or-B from A because you feel that anyone
who says A-or-B is claiming knowledge that at least one of them is true but (since they
are not saying A and not saying B) are—and you get this by the principle of charity—
denying knowledge of A and denying knowledge of B. And of course the person who
says A is claiming knowledge of A!

This is probably correct—the principle of charity usually is! but if A really does
hold then A-or-B really does hold too, and that is what concerns us here. The subtleties
of why someone might assert A-or-B do not concern us here.

2.5.7 Fault-tolerant pattern-matching
Explain what it is!

Fault-tolerant pattern matching is very useful in everyday life but absolutely no use at
all in the lower reaches of logic. Too easily fault-tolerant pattern matching can turn into
overenthusiastic pattern matching—otherwise known as syncretism: the error of mak-
ing spurious connections between ideas. A rather alarming finding in the early days of
experiments on sensory deprivation was that people who are put in sensory deprivation
tanks start hallucinating: their receptors expect to be getting stimuli, and when they
don’t get them they wind up their sensitivity until they start getting positives. Since
they are in a sensory deprivation chamber, those positives are one and all spurious.

The conjunction fallacy

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy.
As a student, she was deeply concerned with issues of discrimination and social justice,
and also participated in anti-nuclear demonstrations. Which is more probable?

(1) Linda is a bank teller;
(2) Linda is a bank teller and is active in the feminist movement.

Thinking that (2) is more probable than (1) is the conjunction fallacy—the mistake
of attaching a higher probability to P ∧ Q than to P. See [45] (from which this comes)
and also the Wikipædia article.

2.5.8 Overinterpretation
My brother-in-law once heard someone on the bus say “My mood swings keep chang-
ing.” He—like you or I on hearing the story—knew at once that what the speaker was
trying to say was that they suffer from mood swings!
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Reinterpreting silly utterances like this so that they make sense is something that we
are incredibly good at. And by ‘incredibly good’ I mean that this is one of the things
we can do vastly better that computers do (in contrast to the things like multiplying
100-digit numbers, which computers can do very much better than we can). In fact
we are so good at it that nobody has yet quite worked out how we do it, though there
is a vast literature on it, falling under the heading of what people in linguistics call
“pragmatics”. Interesting though that literature is I am mentioning it here only to draw
your attention to the fact that learning to do this sort of thing better is precisely what
we are not going to do. I want you to recognise this skill, and know when you are using
it, in order not to use it at all!

Why on earth might we not want to use it?? Well, one of the differences between the
use of symbols in formal languages (like in logic) and the use of symbols in everyday
language is that in formal settings we have to use symbols rigidly and we suffer for it
if we don’t. If you give your computer an instruction with a grammatical error in it
the operating system will reject it: “Go away and try again.” One of the reasons why
we design mathematical language (and programming languages) in this po-faced fault-
intolerant way is that that is the easiest way to do it. Difficult though it is to switch
off the error-correcting pattern-matching software that we have in our heads, it is much
more difficult still to discover how it works and thereby emulate it on a machine—
which is what we would have to do if we were to have a mathematical or programming
language that is fault-tolerant and yet completely unambiguous. In fact this enterprise
is generally regarded as so difficult as to be not worth even attempting. There may
even be some deep philosophical reason why it is impossible even in principle: I don’t
know.

Switching off our fault-tolerant pattern-matching is difficult for a variety of reasons.
Since it comes naturally to us, and we expend no effort in doing it, it requires a fair
amount of self-awareness even to realise that we are doing it. Another reason is that
one feels that to refrain from sympathetically reinterpreting what we find being said
to us or displayed to us is unwelcoming, insensitive, autistic and somehow not fully
human. Be that as it may, you have to switch all this stuff off all the same. Tough!

So we all need some help in realising that we do it. I’ve collected in the appendix
to this chapter a few examples that have come my way. I’m hoping that you might find
them instructive.

2.5.9 Affirming the consequent
Years ago I was teaching elementary Logic to a class of first-year law students, and I
showed them this syllogism:

“If George is guilty he’ll be reluctant to answer questions; George is re-
luctant to answer questions. Therefore George is guilty.”

23 Then I asked them: Is this argument valid? A lot of them said ‘yes’.
We all know that an obvious reason—the first reason that comes to mind—why

someone might be reluctant to answer questions is that they might have something
23What is this doing here? It should be in a section on fallacies. Perhaps that section should be here, OK,

but either way some material needs to be moved around.
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to hide. And that something might be their guilt. So if they are reluctant to answer
questions you become suspicious at once. Things are definitely not looking good for
George. Is he guilty? Yeah—string him up!

But what has this got to do with the question my first-years were actually being
asked? Nothing whatever. They were given a premiss of the form P→ Q, and another
premiss Q. Can one deduce P from this? Clearly not. Thinking that you can is the
fallacy of affirming the consequent (which we first saw on page 31).

There are various subtle reasons for us to commit this fallacy, and we haven’t got
space to discuss them here. The question before the students in this case was not:
do the premisses (in conjunction with background information) give evidence for the
conclusion? The question was whether or not the inference from the premisses to the
conclusion is logically valid. And that it clearly isn’t. The mistake my students were
making was in misreading the question, and specifically in misreading it as a question
to which their usual fault-tolerant pattern-matching software would give them a swift
answer.



Chapter 3

Proof Systems for Propositional
Logic

3.1 Arguments by LEGO
The arguments I’ve used as illustrations so far are very simple. Only two premisses
and one conclusion. Altho’ it’s true that all the arguments we are concerned with will
have only one conclusion, many of them will have more than two premisses. So we
have to think about how we obtain the conclusion of an argument from its premisses.
This we do by manipulating the premisses according to certain rules, which enable us
to take the premisses apart and reassemble them into the conclusions we want. These
rules have the form of little atomic arguments, which can be assembled into molecular
arguments which are the things we are actually interested in.

We know what a valid expression of propositional logic is. We know how to use
truth tables to detect them; In this chapter we explore a method for generating them.

3.2 The Rules of Natural Deduction
In the following table we see that for each connective we have two rules: one to intro-
duce the connective and one to eliminate it. These two rules are called the introduction
rule and the elimination rule for that connective.

Richard Bornat calls the elimination rules “use” rules because the elimination rule
for a connective C tells us how to use the information wrapped up in a formula whose
principal connective is C.

(The idea that everything there is to know about a connective can be captured by
an elimination rule plus an introduction rule has the same rather operationalist flavour
possessed by the various meaning is use doctrines one encounters in philosophy of
language. In this particular form it goes back to Prawitz, and possibly to Gentzen.) references?

The rules tell us how to exploit the information contained in a formula.
(Some of these rules come in two parts.)

57
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Introduction Rules Elimination Rules

∨-int: A
A ∨ B ; B

A ∨ B ; ∨-elim ???

∧-int: A B
A ∧ B ; ∧-elim: A ∧ B

A ; A ∧ B
B

→-int ??? →-elim: A A→ B
B

‘elim’ is an abbreviation for ‘elimination’; it does not allude to any religion.
You will notice the division into two columns. You will also notice the two lacunæ:

for the moment there is no ∨-use rule and no→-int rule.
Some of these rules look a bit daunting so let’s start by cutting our teeth on some

easy ones.

EXERCISE 26

1. Using just the two rules for ∧, the rule for ∨-introduction and→-elimination see
what you can do with each of the following sets of formulæ:1

A, A→ B;
A, A→ (B→ C);
A, A→ (B→ C), B;
A, B, (A ∧ B)→ C;
A, (A ∨ B)→ C;
A ∧ B, A→ C;
A ∧ B, A→ C, B→ D;
A→ (B→ C), A→ B, B→ C;
A, A→ (B→ C), A→ B;
A, ¬A.

2. Deduce C from (A ∨ B)→ C and A;
Deduce B from (A→ B)→ A and A→ B;
Deduce R from P, P→ (Q→ R) and P→ Q;

You will probably notice in doing these questions that you use one of your assump-
tions more than once, and indeed that you have to write it down more than once (=
write down more than one token!) This is particularly likely to happen with A ∧ B. If
you need to infer both of A and B then you will have to write out ‘A ∧ B’ twice—once
for each application of ∧-elimination. (And of course you are allowed to use an as-
sumption as often as you like. If it is a sunny tuesday you might use ∧-elimination to
infer that it is sunny so you can go for a walk in the botanics, but that doesn’t relieve
you of the obligation of inferring that it is tuesday and that you need to go to your 11
o’clock lecture.)

1Warning: in some cases the answer might be “nothing!”.
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If you try writing down only one token you will find that you want your sheet of
paper to be made of lots of plaited ribbons. Ugh. How so? Well, if you want to infer
both A and B from A∧B and you want to write ‘A∧B’ only once, you will find yourself
writing ‘ A ∧ B

A B ’ and then building proofs downward from the token of the ‘A’ on the
lower line and also from the ‘B’ on the lower line. They might rejoin later on. Hence
the plaiting.

Now we can introduce a new rule, the ex falso sequitur quodlibet. better explain at some point
why it is truth-preservingEx falso sequitur quodlibet; ⊥A

Double negation ¬¬A
A

Is this the right place for dou-
ble neg? aka classical contra-
diction.

The Latin expression ex falso . . . means: “From the false follows whatever you
like”.

The two rules of ex falso and double negation are the only rules that specifically
mention negation. Recall that ¬B is logically equivalent to B→ ⊥, so the inference

A ¬A
⊥

(3.1)

—which looks like a new rule—is merely an instance of→-elimination.

The rule of→-introduction

The time has now come to make friends with the rule of →-introduction. Recalling
what introduction rules do, you can se that the→-introduction rule will be a rule that
tells you how to prove things of the form A → B. Well how, in real life, do you prove
“if A then B”? Well, you assume A and deduce B from it. What could be simpler!?
Let’s have an illustration. We already know how to deduce A ∨ C from A (we use
∨-introduction) so we should be able to prove A→ (A ∨C).

A
∨-intA ∨C (3.2)

So we just put ‘A→ (A ∨C)’ on the end . . . ?

A
∨-intA ∨C (3.3)

A→ (A ∨C)

That’s pretty obviously the right thing to do, but for one thing. The last proof has
A→ (A ∨C) as its last line (which is good) but it has A as a live premiss. We assumed
A in order to deduce A ∨ C, but although the truth of A ∨ C relied on the truth of A,
the truth of A → (A ∨ C) does not rely on the truth of A. (It’s a tautology, after all.)
We need to record this fact somehow. The point is that, in going from a deduction-of-
A ∨ C-from-A to a proof-of-A → (A ∨ C), we have somehow used up the assumption
A. We record the fact that it has been used up by putting square brackets round it, and
putting a pointer from where the assumption A was made to the line where it was used
up.
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[A]1

∨-intA ∨C
→-int (1)

A→ (A ∨C)
(3.4)

N.B.: in→-introduction you don’t have to cancel all occurrences of the premiss: it
is perfectly all right to cancel only some of them .

The rule of ∨-elimination

“they will either contradict the Koran, in which case they are heresy, or they will agree
with it, so they are superfluous.”

Do the sudoku on page ??.
There is a ‘5’ in the top right-hand box—somewhere. But in which row? The ‘5’ in

the top left-hand box must be in the first column, and in one of the top two rows. The
‘5’ in the fourth column must be in one of the two top cells. (It cannot be in the fifth
row because there is already a ‘5’ there, and it cannot be in the last three rows because
that box already has a ‘5’ in it.) So the ‘5’ in the middle box on the top must be in
the first column, and in one of the top two rows. These two ‘5’s must of course be in
different rows. So where is the ‘5’ in the rightmost of the three top boxes? Either the
‘5’ in the left box is on the first row and the ‘5’ in the middle box is on the second row
or the 5 in the middle box is in the first row and the ‘5’ in the left box is in the second
row. We don’t know which of the possibilities is the true one, but it doesn’t matter:
either way the ‘5’ in the rightmost box must be in the bottom (third) row.Need detailed explanation of

∨-elim here

3.2.1 Worries about reductio and hypothetical reasoning
Many people are unhappy about hypothetical reasoning of the kind used in the rule of
→-introduction. I am not entirely sure why, so I am not 100% certain what to say to
make the clouds roll away. However here are some thoughts.

Part of it may arise from the failure to distinguish between “If A then B” and “A,
therefore B”. The person who says “A, therefore B” is not only asserting B but is
also asserting A. The person who says “If A then B” is not asserting A! Despite this,
the relationship-between-A-and-B to which our attention is being drawn is the same in
the two cases: that’s not where the difference lies. If you do not distinguish between
these you won’t be inclined to see any difference between the act-of-assuming-A-and-
deducing-B (in which you assert A) and the act-of-deducing-A → B (in which you do
not assert A).

Another unease about argument by reductio ad absurdum seems to be that if I at-
tempt to demonstrate the falsity of p by assuming p and then deducing a contradiction
from it then—if I succeed—I have somehow not so much proved that p was false but
instead contrived to explode the machinery of deduction altogether: if p was false how
could I have sensibly deduced anything from it in the first place?! I have somehow sawn
off the branch I was sitting on. I thought I was deducing something, but I couldn’t have
been. This unease then infects the idea of hypothetical reasoning: reasoning where the
premisses are—if not actually known to be false—at least not known to be true. No
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idea is so crazy that no distinguished philosopher can ever be found to defend it (as
Descartes said, and he should know!) and one can indeed find a literature in which this
idea is defended.

Evert Beth said that Aristotle’s most important discovery was that the same pro- see below, on dialetheism
cesses of reasoning used to infer new truths from propositions previously known to be
true are also used to deduce consequences from premises not known to be true and even
from premises known to be false.2

But it’s not hard to see that life would be impossible without hypothetical reasoning.
Science would be impossible: one would never be able to test hypotheses, since one
would never be able to infer testable predictions from them! Similarly, a lawyer cross-
examining a hostile witness will draw inferences from the witness’s testimony in the
hope of deducing an absurdity. Indeed if one were unwilling to imagine oneself in
the situation of another person (which involves subscribing to their different beliefs,
some of which we might feell are mistaken) then one would be liable to be labelled as
autistic.

Finally one might mention the Paradox of the Unexpected Hanging in this con-
nection. There are many things it seems to be about, and one of them is hypothetical
reasoning. (“If he is to be hanged on the friday then he would know this by thursday
so it can’t be friday . . . ” Some people seem to think that altho’ this is a reasonable
inference the prisoner can only use it once he has survived to thursday: he cannot use
it hypothetically. . . )3

The reader might feel that I have made absurdly heavy weather of this business of
hypothetical reasoning. Not so: an inability to cope with hypothetical reasoning can be
found even among people with lots of letters after their name. Se appendix 11.2.1.

The Identity Rule

Finally we need the identity rule:

A B C . . .

A
(3.5)

(where the list of extra premisses may be empty) which records the fact that we can
deduce A from A. Not very informative, one might think, but it turns out to be useful.
After all, how else would one obtain a proof of the undoubted tautology A→ (B→ A),
otherwise known as ‘K’? (You established that it was a truth-table tautology in exercise
17.) One could do something like

2See [12]. Spinoza believed hypothetical reasoning to be incoherent, but that’s because he believed all
truths to be necessary, and even people who are happy about counterfactual reasoning are nervous about
attempting to reason from premisses known to be neccesarily false! This may be why there is no very good
notion of explanation in Mathematics or Theology. They both deal with necessary truth, and counterfactuals
concerning necessary truths are problematic. Therefore explanation in these areas is obstructed to the extent
that explanation involves counterfactuals.

3However, this is almost certainly not what is at stake in the Paradox of the Unexpected Hanging. A
widespread modern view—with which I concur—is that the core of the puzzle is retained in the simplified
version where the judge says “you will be hanged tomorrow and you do not believe me”.
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[A]2 [B]1

∧-intA ∧ B
∧-elimA
→-int (1)

B→ A
→-int (2)

A→ (B→ A)

(3.6)

but that is grotesque: it uses a couple of rules for a connective that doesn’t even
appear in the formula being proved! The obvious thing to do is

[A]2 [B]1
identity rule

A
→-int (1)

B→ A
→-int (2)

A→ (B→ A)

(3.7)

If we take seriously the observation above concerning the rule of→-introduction—
namely that you are not required to cancel every occurrence of an assumption—then
you conclude that you are at liberty to cancel none of them, and that suggests that
you can cancel assumptions that aren’t there—then we will not need this rule. This
means we can write proofs like 3.8 below. To my taste, it seems less bizarre to discard
assumptions than it is to cancel assumptions that aren’t there, so I prefer 3.7 to 3.8. It’s
a matter of taste.

[A]1

→-intB→ A
→-int (1)

A→ (B→ A)
(3.8)

It is customary to connect the several occurrences of a single formula at introduc-
tions (it may be introduced several times) with its occurrences at elimination by means
of superscripts. Square brackets are placed around eliminated formulæ, as in the for-
mula displayed above.

There are funny logics where you are not allowed to use an assumption more than
once: in these resource logics assumptions are like sums of money. (You will find
them in section 9.2 if you last that long). This also gives us another illustration of the
difference between an argument (as in logic) and a debate (as in rhetoric). In rhetoric
it may happen that a point—even a good point—can be usefully made only once . . . in
an ambush perhaps.define ‘counterfactual’

3.2.2 What do the rules mean??
One way in towards an understanding of what the rules do is to dwell on the point made
by my friend Richard Bornat that elimination rules are use rules:

The rule of→-elimination

The rule of→-elimination tells you how to use the information wrapped up in ‘A→ B’.
‘A → B’ informs us that if A, then B. So the way to use the information is to find
yourself in a situation where A holds. You might not be in such a situation, and if you
aren’t you might have to assume A with a view to using it up later—somehow. We will
say more about this.
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The rule of ∨-elimination

The rule of ∨-elimination tells you how to use the information in ‘A ∨ B’. If you are
given A∨ B, how are you to make use of this information without knowing which of A
and B is true? Well, if you know you can deduce C from A, and you ALSO know that
you can deduce C from B, then as soon as you are told A ∨ B you can deduce C. One
could think of the rule of ∨-elimination as a function that takes (1) A ∨ B, (2) a proof
of C from A and (3) a proof of C from B, and returns a proof of C from A ∨ B. This
will come in useful on page 71.

There is a more general form of ∨-elimination:

[A1]1 [A2]1

...
...

C C

. . . [An]1

...
C A1 ∨ A2 ∨ . . . An

∨-elim (1)
C

(3.9)

where we can cancel more than one assumption. That is to say we have a list
A1 . . . An of assumptions, and the rule accepts as input a list of proofs of C: a proof of
C from A1, a proof of C from A2, and so on up to An. It also accepts the disjunction
A1 ∨ . . . An of the assumptions A1 . . . An and it outputs a proof of C.

The rule of ∨-elimination is a hard one to grasp so do not panic if you don’t get it
immediately. However, you should persist until you do. Some of the challenges in the
exercise which follows require it.

EXERCISE 27
Deduce P→ R from P→ (Q→ R) and P→ Q;
Deduce (A→ B)→ B from A;
Deduce C from A and ((A→ B)→ B)→ C;
Deduce ¬P from ¬(Q→ P);
Deduce A from B ∨C, B→ A and C → A;
Deduce ¬A from ¬(A ∨ B);
Deduce Q from P and ¬P ∨ Q;
Deduce Q from ¬(Q→ P).

3.2.3 Goals and Assumptions
When you set out to find a proof of a formula, that formula is your goal. As we have just
mentioned, the obvious way to attack a goal is to see if you can obtain it as the output of
(a token of) the introduction rule for its principal connective. If that introduction rule
is →-introduction then this will generate an assumption. Once you have generated
an assumption you will need—sooner or later—to extract the information it contains
and you will do this by means of the elimination rule for the principal connective of
that assumption. I have noticed that beginners often treat assumptions as if they were
goals. Perhaps this is because they encounter goals first and they are perseverating. It’s
actually idiotically simple:
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(1) Attack a goal with the introduction rule for its principal connective;
(2) Attack an assumption with the elimination rule for its principal

connective.

Let’s try an example. Suppose we have the goal ((A → B) → A)→ ((A → B) →
B). The principal connective of this formula is the arrow in the middle that I have
underlined. (1) in the box tells us to assume the antecedent (which is (A → B) → A),
at which point the consequent (which is (A → B) → B) becomes our new goal. So
we have traded the old goal ((A → B) → A) → ((A → B) → B) for the new goal
(A → B) → B and generated the new assumption (A → B) → A. How are you going
to use this assumption? Do not attempt to prove it; you must use it! And the way to
use it is to whack it with the elimination rule for its principal connective—which is→.
The only way you can do this is if you have somehow got hold of A→ B. Now A→ B
might be an assumption. If it isn’t, it becomes a new goal. As it happens, A → B is an
assumption, because we had the goal (A→ B)→ B and this—by rule-of-thumb-1) (in
the box)—generates the assumption A→ B and the goal B.Do some very simple illustra-

tions of compound proofs here Your first step—when challenged to find a natural deduction proof of a formula—
should be to identify the principal connective. (That was the point of exercise 16.) For
example, when challenged to find a proof of (A ∧ B) → A, the obvious gamble is to
expect that the last step in the proof was a→-introduction rule applied to a proof of A
with the assumption A ∧ B.

3.2.4 The Small Print
This section contains some warnings that might save you from tripping yourself up . . .

Look behind you!

You can cancel an assumption only if it appears in the branch above you! You might
care to study the following defective proof.

[A]2 [A→ (B ∨C)]3

→-elimB ∨C

[B]1
→-int (2)

A→ B
∨-int(A→ B) ∨ (A→ C)

[C]1
→-int (2)

A→ C
∨-int(A→ B) ∨ (A→ C)
∨-elim (1)

(A→ B) ∨ (A→ C)
→-int (3)

A→ (B ∨C).→ .(A→ B) ∨ (A→ C)
(3.10)

An attempt is made to cancel—in the two branches in the middle and on the right—
the ‘A’ in the leftmost of the three branches. (Look for the ‘→-int (2)’ at the top of the
two branches.) This is not possible! Interestingly no proof of this formula can be given
that does not use the rule of classical contradiction. You will see this formula again into be continued . . .
exercise 6.4.2

Ellipsis

There is a temptation to ellipsis with ∨-elimination:
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One of my students wrote

A→ C B→ C A ∨ B
∨-elimC (3.11)

I can see what she meant! It was

[A]1 A→ C
→-elimC

[B]1 B→ C
→-elimC A ∨ B

∨-elim (1)
C

(3.12)

The two rules of thumb don’t always work

The two rules of thumb are the bits of attack-advice in the box on page 64.
It isn’t invariably true that you should attack an assumption (or goal) with the elim-

ination (introduction) rule for its main connective. It might be that the goal or assump-
tion you are looking at is a propositional letter and therefore does not have a principal
connective! In those circumstances you have to try something else. Your assumption
might be P and if you have in your knapsack the formula (P ∨ Q) → R it might be a
good idea to whack the ‘P’ with a ∨-introduction to get P ∨ Q so you can then do a
→-elimination and get R. And of course you might wish to refrain from attacking your
assumption with the elimination rule for its principal connective. If your assumption is
P∨Q and you already have in your knapsack the formula (P∨Q)→ R you’d be crazy
not to use →-elimination to get R. And in so doing you are not using the elimination
rule for the principal connective of P ∨ Q.

And, even when a goal or assumption does have a principal connective, attacking
it with the appropriate rule for that principal connective is not absolutely guaranteed to
work. Consider the task of finding a proof of A ∨ ¬A. (A here is a propositional letter,
not a complex formula). If you attack the principal connective you will of course use
∨-int and generate the attempt

A
∨-intA ∨ ¬A (3.13)

or the attempt

¬A
∨-intA ∨ ¬A (3.14)

and clearly neither of these is going to turn into a proof of A ∨ ¬A, since we are
not going to get a proof of A (nor a proof of ¬A). It turns out you have to use the rule
of double negation: assume ¬(A ∨ ¬A) and get a contradiction. There is a pattern to at
least some of these cases where attacking-the-principal-connective is not the best way
forward, and we will say more about it later.

The moral of this is that finding proofs is not a simple join-up-the-dots exercise: you
need a bit of ingenuity at times. Is this because we have set up the system wrongly?
Could we perhaps devise a system of rules which was completely straightforward,
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and where short tautologies had short proofs4 which can be found by blindly follow-
ing rules like always-use-the-introduction-rule-for-the-principal-connective-of-a-goal?Where do we explain classical

contradiction? You might expect that, the world being the kind of place it is, the answer is a resound-
ing ‘NO!’ but curiously the answer to this question is not known. I don’t think anyone
expects to find such a system, and i know of no-one who is trying to find one, but the
possibility has not been excluded.

In any case the way to get the hang of it is to do lots of practice!! So here are some
exercises. They might take you a while.

3.2.5 Some Exercises
P=NP?

EXERCISE 28 Find natural deduction proofs of the following tautologies:

1. (P→ Q)→ ((Q→ R)→ (P→ R));

2. (A→ C)→ ((A ∧ B)→ C);

3. ((A ∨ B)→ C)→ (A→ C);

4. P→ (¬P→ Q);

5. A→ (A→ A) (you will need the identity rule);

6. (((P→ Q)→ Q)→ Q)→ (P→ Q);

7. A→ ((((A→ B)→ B)→ C)→ C);

8. (P ∨ Q)→ (((P→ R) ∧ (Q→ S ))→ (R ∨ S ));

9. (P ∧ Q)→ (((P→ R) ∨ (Q→ S ))→ (R ∨ S ));

10. ¬(A ∨ B)→ (¬A ∧ ¬B);

11. A ∨ ¬A; (*)

12. ¬(A ∧ B)→ (¬A ∨ ¬B); (hard!) (*)

13. (A ∧ (B ∨C))→ ((A ∧ B) ∨ (A ∧C));

14. (((A ∧ B) ∨ (A ∧C))→ (A ∧ (B ∨C));

15. (A ∨ (B ∧C))→ ((A ∨ B) ∧ (A ∨C));

16. ((A ∨ B) ∧ (A ∨C))→ (A ∨ (B ∧C)); hard!

17. A → [(A → C) → ((B → C) → C)]; (for this and the next you will need the
identity rule);

18. B→ [(A→ C)→ ((B→ C)→ C)]; then put these last two together to obtain a
proof of

4‘short’ here can be given a precise meaning.
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19. (A ∨ B)→ [(A→ C)→ ((B→ C)→ C)];

20. ((B ∨ (B→ A))→ A)→ A;

21. (A∧ B) ∨ (A∧¬B) ∨ (¬A∧ B) ∨ (¬A∧¬B). (Hard! For enthusiasts only) (*)

You should be able to do the first seven without breaking sweat. If you can do the
first dozen without breaking sweat you may feel satisfied. The starred items will need
the rule of double negation. For the others you should be able to find proofs that do not
use double negation. The æsthetic into which you are being inducted is one that says Make sure they are roughly in

increasing order of difficultythat proofs that do not use double negation are always to be preferred to proofs that do.
Perhaps it is a bit belittling to call it an æsthetic: there is a principled philosophical
position that denies the rule of double negation, and one day you might want to engage
with it. We discuss it below, chapter 5.

Enthusiasts can also attempt the first two parts of exercise 61 on p. 152: they are
like the exercises here but harder.

If you want to get straight in your mind the small print around the→-introduction
rule you might like to try the next exercise. In one direction you will need to cancel two
occurences of an assumption, and in the other you will need the identity rule, which is
to say you will need to cancel zero occurences of the assumption.

EXERCISE 29

1. Provide a natural deduction proof of A→ (A→ B) from A→ B;

2. Provide a natural deduction proof of A→ B from A→ (A→ B).

To make quite sure you might like to try this one too

EXERCISE 30

1. Provide a natural deduction proof of A→ (A→ (A→ B)) from A→ B;

2. Provide a natural deduction proof of A→ B from A→ (A→ (A→ B)).

EXERCISE 31 Annotate the following proofs, indicating which rules are used where
and which premisses are being cancelled when.

P P→ Q
Q

(P→ Q)→ Q
P→ ((P→ Q)→ Q)

(3.15)

P ∧ Q
Q

P ∨ Q
(P ∧ Q)→ (P ∨ Q)

(3.16)
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P ¬P
⊥

Q
P→ Q

(3.17)

P ∨ Q
P P→ R

R
Q Q→ R

R
R

(P ∨ Q)→ R

(3.18)

A B
A ∧ B

B→ (A ∧ B)
A→ (B→ (A ∧ B))

(3.19)

(A→ B)→ B A→ B
B

((A→ B)→ B)→ B
(A→ B)→ (((A→ B)→ B)→ B)

(3.20)

A First Look at Three-valued Logic

Life is complicated on Planet Zarg. The Zarglings believe there are three truth-values:
true, intermediate and false. Here we write them as 1, 2 and 3 respectively. Here
is the truth-table for the connective→ on planet Zarg:

→ 1 2 3
1 1 2 3
2 1 1 3
3 1 1 1

(Notice that the two truth-tables you get if (i) strip out 3 or (ii) strip out 2 both look
like the two-valued truth-table for→. They have to, if you think of it. The only room
for manœuvre comes with relations between 2 and 3.)

On Zarg the truth-value of P ∨ Q is simply the smaller of the truth-values of P and
Q; the truth-value of P ∧ Q is the larger of the truth-values of P and Q.

EXERCISE 32 Write out Zarg-style truth-tables for

1. P ∨ Q;

2. P ∧ Q;

3. ((P→ Q)→ P)→ P;

4. P→ (Q→ P);
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5. (P→ Q)→ Q);

[Brief reality check: What is a tautology on Planet Earth?]

What might be a good definition of tautology on Planet Zarg?

According to your definition of a tautology-on-planet-Zarg, is it the case that if P
and Q are formulæ such that P and P→ Q are both tautologies, then Q is a tautology?

There are two possible negations on Zarg:

P ¬1P ¬2P
1 3 3
2 2 1
3 1 1

Given that the Zarglings believe ¬(P ∧ ¬P) to be a tautology, which negation do
they use?

Using that negation, do they believe the following formulæ to be tautologies?
(i) P ∨ ¬P?
(ii) (¬¬P) ∨ ¬P?
(iii) ¬¬(P ∨ ¬P)?
(iv) (¬P ∨ Q)→ (P→ Q)?

3.3 Soundness of the Natural Deduction Rules
This section can be skipped by first year students.

The rules of natural deduction are sound: every formula we can prove using natural
deduction is a tautology. The rules preserve truth: if you reason using these rules from
true premisses your conclusions will be true as well. Whatever our logical machinery
(and it might be deliberately over-simplified, as it is when we start off with proposi-
tional logic) we want to be sure that the rules that we decide on for reasoning with that
machinery are sound in this sense.

Completeness is a feature complementary to soundness. Not only are the rules
sound, but they exhaust the possible modes of truth-preserving reasoning (in this lan-
guage) in the sense that any truth-preserving inference can be captured by reasoning
according to these formulations. We say the rules are complete. We prove this in
section 3.8. It is impossible to overstate the significance of this fact. There is a finite
system of rules of inference which captures all truth-preserving reasoning expressible
in this syntax. The power of this simplification is incalculable and has impressed gen-
erations of logicians. There is a tradition in modern logic that holds that a body of
principles of reasoning that cannot be finitely codified is simply not part of Logic at all.
Not everybody believes this, but it is a widely held view. Double negation or classical

negation?In the case of propositional logic we have truth-tables, which enable us to de-
cide quite quickly when a formula is valid (or when a principle of reasoning is truth-
preserving otherwise-known-as sound). This is so convenient that one tends to for-
get that there is actually a method of generating all the valid principles (and all the
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tautologies—otherwise known as valid formulæ) over and above a method of recognis-
ing them when they pop up. In fact there are several ways of doing this, and we will
see some of them, and we will prove that they do this: that is, that they are complete.

The rules are sound in that they preserve truth: in any token of the rule if the
premisses are true then the conclusions are true too. For the rules like ∧-introduction,
∨-introduction, ∧-elimination, →-elimination . . . it’s obvious what is meant: for any
valuation v if the stuff above the line is true according to v then so is the stuff below the
line.

What I am planning to convince you is that any complex proof made up by com-
posing lots of tokens of ∧-int, →-elim and so on has the property that any valuation
making all the premisses true also makes the conclusion true. That is to say, we claim
that all complex proofs are truth-preserving. Notice that this has as a special case the
fact that any complex proof with no premisses has a conclusion that is logically valid.
Every valuation making all the premisses true will make the conclusion true. Now
since there are no premisses, every valuation makes all the premisses true, so every
valuation makes the conclusion true. So the conclusion is valid!see also p 126

However this way of thinking about matters doesn’t enable us to make sense of
→-introduction and ∨-elimination. To give a proper description of what is going on we
need to think of the individual (atomic) introduction and elimination rules as gadgets
for making new complex proofs out of old (slightly less complex) proofs.

That is to say you think of the rule of ∧-introduction as a way of taking a complex
proof D1 of A and a complex proof D2 of B and giving a complex proof D3 of A ∧ B.
We are trying to show that all complex deductions are truth-preserving.

The fact that ∧-introduction is truth-preserving in the sense of the previous para-
graph now assures us that it has the new property that:

If

• D1 is a truth-preserving deduction of A (that is to say, any
valuation making the premisses ofD1 true makes A true); and

• D2 is a truth-preserving deduction of B (that is to say, any valuation
making the premisses ofD2 true makes B true);

Then the deductionD3:

D1

...
A

D2

...
B
∧-intA ∧ B

(3.21)

too, is truth-preserving in the sense that any valuation making the premisses
of D3 true—and they are just (the premisses of D1) ∪ (premisses of D2)—
makes A ∧ B true too.

This sounds like a much more complicated way of thinking of ∧-introduction as
truth-preserving than the way we started out with, but we need this way of seeing
things when we come to consider the rules that involve cancelling assumptions, namely
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→-introduction and ∨-elimination. Let us now consider these two.

→-introduction

Suppose we have a deductionD of B from A, C1 . . .Cn, and thatD is truth-preserving.
That is to say, any valuation making all of A, C1 . . .Cn true will also make B true. Now
consider the deductionD′ (of A→ B from C1 . . .Cn) that is given us by an application
of→-introduction. We want this to be truth-preserving as well, that is to say, we want
any valuation making C1 . . .Cn true to make A→ B true too. Rephrase this

Let’s check this. Let v be a valuation making C1 . . .Cn true. Then either

(i) it makes A true in which case—because D was truth-preserving—it
makes B true as well and thereby makes A→ B true.

Or

(ii) it makes A false. Any valuation making A false makes A→ B true.

Remember: you don’t have to cancel all occurrences of the premiss. (see page 60.)

∨-elimination

We can tell a similar story about ∨-elimination. Suppose we have (i) a truth-preserving
deduction D1 of C from A (strictly: from A and a bag of extra assumptions like the
C1 . . .Cn of the previous paragraph) and (ii) a truth-preserving deductionD2 of C from
B (and extra assumptions). That is to say that any valuation making A (and the extra
assumptions) true makes C true, and any valuation making B (and the extra assump-
tions) true makes C true. Now, any valuation making A∨B (and the extra assumptions)
true will make one of A and B true. So the new proof

[A]1

...
D1

...
C

[B]1

...
D2

...
C A ∨ B

∨-elim (1)
C

(3.22)

—that we make from D1 and D2 by applying ∨-elim to them—is truth-preserving
as well. picture here

In excruciating detail: let v be a valuation that makes A ∨ B (and the extra assump-
tions) true. Since v makes A ∨ B true, it must either (i) make A true, in which case
we conclude that C must be true because of D1; or (ii) make B true, in which case we
conclude that C must be true because ofD2. Either way it makes C true.
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3.4 Harmony and Conservativeness

3.4.1 Conservativeness
Recall the discussion on page 62 about the need for the identity rule, and the horrendous
proof of K that we would otherwise have, that uses the rules for ∧.

Notice that the only proof of Peirce’s Law that we can find uses rules for a connec-
tive (¬, or ⊥ if you prefer) that does not appear in the formula being proved. (Miniex-
ercise: find a proof of Peirce’s law). This rule is the rule of double negation of course.
No-one is suggesting that this is illicit: it’s a perfectly legal proof; however it does
violate an æsthetic. (As does the proof of K on page 62 that uses the rules for ∧ instead
of the identity rule). The æsthetic is conservativeness: every formula should have a
proof that uses only rules for connectives that appear in the formula. Quite what the
metaphysical force of this æsthetic is is a surprisingly deep question. It is certainly felt
that one of the points in favour of the logic without the rule of double negation (which
we will see more of below) is that it respects this æsthetic.

The point of exercise 32 part 3 was to establish that there can be no proof of Peirce’s
law using just the rules for ‘→’.Put the curly Ds as markers to

vertical brackets Look at section 3.7

3.4.2 Harmony
A further side to this æsthetic is the thought that, for each connective, the introduction
and elimination rules should complement each other nicely. What might this mean,
exactly? Well, the introduction rule for a connective £ tells us how to parcel up infor-
mation in a way represented by the formula A £ B, and the corresponding elimination
(“use”!) rule tells us how to exploit the information wrapped up in A£B. We certainly
don’t want to set up our rules in such a way that we can somehow extract more infor-
mation from A£B than was put into it in the first place. This would probably violate
more than a mere æsthetic, in that it could result in inconsistency. But we also want
to ensure that all the information that was put into it (by the introduction rules) can be
extracted from it later (by the use rules). If our rules complement each other neatly in
this way then something nice will happen. If we bundle information into A£B and then
immediately extract it, we might as well have done nothing at all. Consider

D1

...
A

D2

...
B
∧-intA ∧ B
∧-elimB

(3.23)

where we wrap up information and put it inside A∧ B and then immediately unwrap it.
We can clearly simplify this to:

D2

...
B

(3.24)
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This works because the conclusion A∧ B that we infer from the premisses A and B
is the strongest possible conclusion we can infer from A and B and the premiss A ∧ B
from which we infer A and B is the weakest possible premiss which will give us both
those conclusions. If we are given the ∧-elimination rule, what must the introduction
rule be? From A ∧ B we can get both A and B, so we must have had to put them in in
the first place when we were trying to prove A∧ B by ∧-introduction. Similarly we can
infer what the ∧-elimination rule must be once we know the introduction rule.

The same goes for ∨ and →. Given that the way to prove A → B is to assume A
and deduce B from it, the way to use A→ B must be to use it in conjunction with A to
deduce B; given that the way to use A→ B is to use it in conjunction with A to infer B
it must be that the way to prove A → B is to assume A and deduce B from it. That is
why it’s all right to simplify

[A]
...
B

→-intA→ B A
→-elimB

(3.25)

to

A
...
B

(3.26)

And, given that the way to prove A ∨ B is to prove one of A and B, the way to use
A∨B must be to find something that follows from A and that also—separately—follows
from B; given that the way to use A ∨ B is to find something that follows from A and
that also—separately and independently—follows from B, it must be that the way to
prove A ∨ B is prove one of A and B. That is why we can simplify

[A1]1

...
C

[A2]1

...
C

A1
∨-intA1 ∨ A2
∨-elim (1)

C

(3.27)

to

A1

...
C

(3.28)

DEFINITION 11
We say a pair of introduction-plus-elimination rules for a connective £ is harmonious
if



74 CHAPTER 3. PROOF SYSTEMS FOR PROPOSITIONAL LOGIC

(i) A£B is the strongest thing we can infer from the premisses for £-introduction,
and

(ii) A£B is the weakest thing that (with the other premisses to the £-elimination
rule, if any5) implies the conclusion of the £-elimination rule.

What we have shown above is that the rules for→, ∧ and ∨ are harmonious.Plonk and tonk

3.4.3 Maximal Formulæ
. . . [for enthusiasts only!]

The first occurrence of ‘A → B’ in proof 3.25 page 73 above is a bit odd. It’s
the output of a →-introduction and at the same time the (major) premiss of an →-
elimination. (We say such a formula is maximal.). That feature invites the simplifi-
cation that we showed there. Presumably this can always be done? Something very
similar happens with the occurrence of ‘A1 ∨ A2’ in proof 3.27 p. 73. One might think
so, but the situation is complex and not entirely satisfactory. One way into this is to try
the following exercise:

EXERCISE 33
Deduce a contradiction from the two assumptions p→ ¬p and ¬p→ p.

(These assumptions are of course really p→ (p→ ⊥) and (p→ ⊥)→ p).
Try to avoid having a maximal formula in your proof. see [42].

3.5 Sequent Calculus
Imagine you are given the task of finding a natural deduction proof of the tautology

(A→ (B→ C))→ ((A→ B)→ (A→ C)).

Obviously the first thing you do is to attack the principal connective, and claim that
(A→ B)→ (A→ C) is obtained by an→-introduction as follows:

A→ (B→ C)
...

→-int(A→ B)→ (A→ C)

(3.29)

in the hope that we can fill the dots in later. Notice that we don’t know at this
stage how many lines or how much space to leave . . . try doing this on paper or on a
board and you’ll see what i mean. At the second stage the obvious thing to do is try
→-introduction again, since ‘→’ is the principal connective of ‘(p → q) → (p → r)’.
This time my proof sketch has a conclusion which looks like

...
→-intA→ C

→-int(A→ B)→ (A→ C)

(3.30)

5Do not forget that the elimination rule for £ might have premisses in addition to A£B: →-elimination
and ∨-elimination do, for example.
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and we also know that floating up above this—somewhere—are the two premisses
A→ (B→ C) and A→ B. But we don’t know where on the page to put them!

This motivates a new notation. Record the endeavour to prove

(A→ (B→ C))→ ((A→ B)→ (A→ C))

by writing

` (A→ (B→ C))→ ((A→ B)→ (A→ C)).

using the new symbol ‘`’.6 Then stage two (which was formula 3.29) can be described
by the formula

A→ (B→ C) ` ((A→ B)→ (A→ C)).

which says that (A→ B)→ (A→ C) can be deduced from A→ (B→ C).

Then the third stage [which I couldn’t write down and which was formula 3.30,
which said that A→ C can be deduced from A→ B and A→ (B→ C)] comes out as

A→ (B→ C), A→ B ` A→ C

This motivates the following gadgetry.

Capital Greek letters denote sets of formulæ and lower-case Greek letters denote
formulæ. A sequent is an expression Γ ` ψ where Γ is a set of formulæ and ψ is a
formula. Γ ` ψ says that there is a deduction of ψ from Γ. In sequent calculus one
reasons not about formulæ—as one did with natural deduction—but instead about se-
quents, which are assertions about deductions between formulæ. Programme: sequent
calculus is natural deduction with control structures! A sequent proof is a program that
computes a natural deduction proof. plonk and tonk are clearly not

harmonious!We accept any sequent that has a formula appearing on both sides. Such sequents
are called initial sequents. Clearly the allegation made by an initial sequent is correct!

There are some obvious rules for reasoning about these sequents. Our endeavour
to find a nice way of thinking about finding a natural deduction proof of

(A→ (B→ C))→ ((A→ B)→ (A→ C))

gives us something that looks in part like

A→ (B→ C), (A→ B), A ` C

A→ (B→ C), (A→ B) ` (A→ C)

A→ (B→ C) ` (A→ B)→ (A→ C)

` (A→ (B→ C))→ ((A→ B)→ (A→ C))

6For some reason this symbol is called ‘turnstile’.
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and this means we are using a rule

Γ, A ` B
→ R

Γ ` A→ B
(3.31)

Of course there are lots of other rules, and here is a summary of them:

∨L : Γ, ψ ` ∆ Γ′, φ ` ∆′

Γ ∪ Γ′, ψ ∨ φ ` ∆ ∪ ∆′
∨ R: Γ ` ∆, φ

Γ ` ∆, ψ ∨ φ

∨ R: Γ ` ∆, ψ
Γ ` ∆, ψ ∨ φ

∧L : Γ, ψ, φ ` ∆
Γ, ψ ∧ φ ` ∆

∧R : Γ ` ∆, ψ Γ′ ` ∆′, φ
Γ ∪ Γ′ ` ∆ ∪ ∆′, ψ ∧ φ

¬L : Γ ` ∆, ψ
Γ,¬ψ ` ∆

¬R : Γ, ψ ` ∆
Γ ` ∆,¬ψ

→ L : Γ ` ∆, φ Γ′, ψ ` ∆′

Γ ∪ Γ′, φ→ ψ ` ∆ ∪ ∆′
→ R : Γ, ψ ` ∆, φ

Γ ` ∆, ψ→ φ

Contraction-L:Γ, ψ, ψ ` ∆
Γ, ψ ` ∆

; Contraction-R: Γ ` ∆, ψ, ψ
Γ ` ∆, ψ

;

Weakening-L: Γ ` ∆
Γ, A ` ∆

; Weakening-R: Γ ` ∆
Γ ` ∆, B ;

Cut:
Γ ` ∆, ψ Γ′, ψ ` ∆′

Γ ∪ Γ′ ` ∆ ∪ ∆′

This may be a bit compsci-ish
for our audience

In this box I have followed the universal custom of writing ‘Γ, ψ’ for ‘Γ∪{ψ}; I have
not so far followed the similarly universal custom of writing ‘Γ,∆’ instead of ‘Γ ∪ ∆’
but from now on I will. This might sound odd, but it starts to look natural quite early,
and you will get used to it easily.

You might find useful the terminology of eigenformula. The eigenformula of an
application of a rule is the formula being attacked by that application. In each rule in
the box above I have underlined the eigenformula.

There is no rule for the biconditional: we think of a biconditional A ←→ B as a
conjunction of two conditionals A→ B and B→ A.

Now that we have rules for ¬ we no longer have to think of ¬p as p → ⊥. (see
appendix 11.2.3, page 217)

The two rules of ∨-R give rise to a derived rule which makes good sense when we
are allowed more than one formula on the right. it is
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Γ ` ∆, A, B
Γ ` ∆, A ∨ B

I shall explain soon (section 3.5.3) why this is legitimate.
A word is in order on the two rules of contraction. Whether one needs the contrac-

tion rules or not depends on whether one thinks of the left and right halves of sequents
as sets or as multisets. Both courses of action can be argued for. If one thinks of them Here we are already allowing

multiple formulæ on the right.
Naughty!

as multisets then one can keep track of the multiple times one exploits an assumption.
If one thinks of them as as sets then one doesn’t need the contraction rules. It’s an
interesting exercise in philosophy of mathematics to compare the benefits of the two
ways of doing it, and to consider the sense in which they are equivalent. Since we
are not hell-bent on rigour we will equivocate between the two approaches: in all the
proofs we consider it will be fairly clear how to move from one approach to the other
and back.

A bit of terminology you might find helpful. Since premisses and conclusion are the
left and right parts of a sequent, what are we going to call the things above and below
the line in a sequent rule? The terminology precedent and succedent is sometimes
used. I’m not going to expect you to know it: I’m offering it to you here now because
it might help to remind you that it’s a different distinction from the premiss/conclusion
distinction. I think it is more usual to talk about the upper sequent and the lower
sequent.

You will notice that I have cheated: some of these rules allow there to be more than
one formula on the right! There are various good reasons for this, but they are quite
subtle and we may not get round to them. If we are to allow more than one formula
on the right, then we have to think of Γ ` ∆ as saying that every valuation that makes
everything Γ true also makes something in ∆ true. We can’t correctly think of Γ ` ∆ as
saying that there is a proof of something in ∆ using premisses in Γ because:

A ` A

is an initial sequent. so we can use ¬−R to infer

` A,¬A.

So ` A,¬A is an OK sequent. Now it just isn’t true that there is always a proof of A
or a proof of ¬A, so this example shows that it similarly just isn’t true that a sequent can
be taken to assert that there is a proof of something on the right using only premisses
found on the left—unless we restrict matters so that there is only one formula on the
right. This fact illustrates how allowing two formulæ on the right can be useful: the
next step is to infer the sequent

` A ∨ ¬A

and we can’t do that unless we allow two formulæ on the right.
So we can’t really think of a sequent as saying that there is a proof-of-something-

on-the-right that uses premisses on the left, however nice that sounds, but by keeping
that thought in mind one keeps up the good habit of thinking of sequents as metaformulæ,
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as things-that-formalise-facts-about-formulæ rather than facts-of-the-kind-formalised-
by-the-formulæ.

One thing you will need to bear in mind, but which we have no space to prove
here, is that sequent proofs with more than formula on the right correspond to natural
deduction proofs using the rule of double negation.multisets

Display this properly
A summary of what we have done so far with Natural Deduction and Sequent Cal-

culus.

• A sequent calculus proof is a log of attempts to build a natural
deduction proof.

• So a sequent is telling you that there is a proof of the formula
on the right using as premisses the formulæ on the left.

• But we muck things up by allowing more than one formula on
the right so we have to think of a sequent as saying if everything
on the left is true then something on the right is true.

• Commas on the left are and, commas on the right are or.

EXERCISE 34 Find sequent proofs for the formulæ in exercise 28 (page 66). For the
starred formulæ you should expect to have to have two formulæ on the right at some
point.

Be sure to annotate your proofs by recording at each step which rule you are using.
That makes it easier for you to check that you are constructing the proofs properly.

When (if ever) do we talk about
confluence of these rules?

3.5.1 Soundness of the Sequent Rules
If we think of a sequent Γ ` ∆ as an allegation that there is a natural deduction proof of
something in ∆ using assumptions in Γ, then we naturally want to check that all basic
sequents are true and that all the sequent rules are truth-preserving. That is to say, in
each rule, if the sequent(s) above the line make true allegations about the existence of
deductions, then so does the sequent below the line

To illustrate, think about the rule ∧-L:

A, B ` C
∧ LA ∧ B ` C

(3.32)

It tells us we can infer “A ∧ B ` C” from “A, B ` C”. Now “A, B ` C” says that
there is a deduction of C from A and B. But if there is a deduction of C from A and B,
then there is certainly a deduction of C from A ∧ B, because one can get A and B from
A ∧ B by two uses of ∧-elim.

The→-L rule can benefit from some explanation as well.

Γ ` ∆, A Γ, B ` ∆
→ L

Γ, A→ B ` ∆
(3.33)
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Assume the two sequents above the line. We want to use them to show that there is
a derivation of something in ∆ from φ→ ψ and all the premisses in Γ. The first sequent
above the line tells us that there is either a deduction of something in ∆ using premisses
in Γ (in which case we are done) or there is a deduction of φ. But we have φ → ψ, so
we now have ψ. But then the second sequent above the line tells us that we can infer
something in ∆.

In fact it is easy to check that not only are they truth-preserving they are effective. Need exercises here
Consider ∧-L, for example. Assume Γ, A, B ` ∆. This tells us that there is a deduction
D of some D in ∆ assuming only assumptions in Γ plus possibly A or B or both. We
have several cases to consider. Explain “effective”

(i) IfD does not use A or B then it is a witness to the truth of Γ, A ∧ B ` ∆;

(ii) If it uses either A or B (or both) then we can append7 one (or two) applications
of ∧-elimination to it to obtain a new proof that is a witness to the truth of Γ, A∧ B ` ∆ ‘witness’

The one exception is ¬-R. (¬-L is OK because of ex falso.) If we think of the rule
of ¬-R as telling us something about the existence finish this off, with a picture

This illustrates how

• sequent rules on the right correspond to natural-deduction in-
troduction rules; and

• sequent rules on the left correspond to natural-deduction elimi-
nation rules.

The sequent rules are all sound. Given that the sequent Γ ` φ arose as a way of saying
that there was a proof of φ using only assumptions in Γ it would be nice if we could
show that the sequent rules we have are sound in the sense that we cannot use them to
deduce any false allegations about the existence of proofs from true allegations about
the existence of proofs. However, as we have seen, this is sabotaged by our allowing
multiple formulæ on the right.

However, there is a perfectly good sense in which they are sound even if we do
allow multiple formulæ on the right. If we think of the sequent Γ ` ∆ as saying that
every valuation making everything in Γ true makes something in ∆ true then all the
sequent rules are truth-preserving.

All this sounds fine. There is however a huge problem:

3.5.2 The rule of cut
It’s not hard to check that—in the formula ‘cut’ below—if the two upper sequents in an
application of the rule of cut make true allegations about valuations, then the allegation
made by the lower sequent will be true too,

Γ ` ∆, A A,Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
Cut

7The correct word is probably ‘prepend’!
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[hint: consider the two cases: (i) A true, and (ii) A false.] Since it is truth-preserving
(“sound”) and we want our set of inference rules to be exhaustive (“complete”) we will
have to either adopt it as a rule or show that it is derivable from the other rules.

There is a very powerful argument for not adopting it as a rule if we can possibly
avoid it: it wrecks the subformula property. If—without using cut—we build a se-
quent proof whose last line is ` Φ then any formula appearing anywhere in the proof is
a subformula of Φ. If we are allowed to use the rule of cut then, well . . .

Imagine yourself in the following predicament. You are trying to prove a sequent
φ ` ψ. Now if cut is not available you have to do one of two things: you can use the
rule-on-the-right for the chief connective of ψ, or you can use the rule-on-the-left for
the chief connective of φ. There are only those two possibilities. (Of course realistically
there may be more than one formula on the left and there may be more than one formula
on the right, so you have finitely many possibilities rather than merely two, but that’s
the point: at all events the number of possibilities is finite.) If you are allowed cut then
the task of proving φ ` ψ can spawn the two tasks of proving the two sequents

φ ` ψ, θ and θ, φ ` ψ

and θ could be anything at all! This means that the task of finding a proof of φ ` ψ
launches us on an infinite search. Had there been only finitely many things to check
then we could have been confident that whenever there is a proof then we can be sure
of eventually finding it by searching systematically. If the search is infinite it’s much
less obvious that there is a systematic way of exploring all possibilities.

If we want to avoid infinite searches and eschew the rule of cut then if we are to
be sure we are not missing out on some of the fun we will have to show that the rule
of cut is unnecessary, in the sense that every sequent that can be proved with cut can
be proved without it. If we have a theory T in the sequent calculus and we can show
that every sequent that can be proved with cut can be proved without it then we say we
have proved cut-elimination for T . Typically this is quite hard to do, and here is why.
If we do not use cut then our proofs have the subformula property. (That was the point
after all!). Now consider the empty sequent:

`

The empty sequent8 claims we can derive the empty conjunction (the thing on the right
is the empty conjunction) from the empty disjunction (the thing on the left is the empty
disjunction). So it claims we can derive ⊥ from >. This we certainly cannot do, so
we had better not have a proof of the empty sequent! Now any cut-free proof of the
empty sequent will satisfy the subformula property, and clearly there can be no proof
of the empty sequent satisfying the subformula property. Therefore, if we manage to
show that every sequent provable in the sequent version of T has a cut-free proof then

8I’ve put it into a box, so that what you see—in the box—is not just a turnstile with nothing either side
of it but the empty sequent, which is not the same thing at all . . . being (of course) a turnstile with nothing
either side of it. No but seriously. . . the empty sequent is not a naked turnstile but a turnstile flanked by two
copies of the empty list of formulæ.
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we have shown that there is no proof of the empty sequent in T . But then this says that
there is no proof of a contradiction from T : in other words, T is consistent.

So: proving that we can eliminate cuts from proofs in T is as hard as showing that
T is free from contradiction. As it happens there is no contradiction to be derived from
the axioms we have for predicate calculus but proving this is quite hard work. We can
prove that all cuts can be eliminated from sequent proofs in predicate calculus but I am
not going to attempt to do it here.

3.5.3 Two tips
3.5.3.1 Keep a copy!!

One thing to bear in mind is that one can always keep a copy of the eigenformula. What
do I mean by this? Well, suppose you are challenged to find a proof of the sequent

Γ ` φ→ ψ ((1))

You could attack a formula in Γ but one thing you can do is attack the formula on
the right, thereby giving yourself the subordinate goal of proving the sequent

Γ, φ ` ψ (2)

However, you could also generate the goal of proving the sequent

Γ, φ ` ψ, φ→ ψ (3)

The point is that if you do a→-R to sequent (3) you get sequent (1). Thus you get
the same result as if you had done a→-R to sequent (2). Sometimes keeping a copy of
the eigenformula in this way is the only way of finding a proof. Insert discussion of ¬-R rule

hereFor example, there is a proof of the sequent

(A→ B)→ B ` (B→ A)→ A

but you have to keep copies of eigenformulæ to find it. That’s a hard one! In both these numbering not working prop-
erlyillustrations the extra copy you are keeping is a copy on the right. I should try to find

an illustration where you need to keep a copy on the left too.

EXERCISE 35 Find a proof of the sequent:

(A→ B)→ B ` (B→ A)→ A

Another reason why keeping copies can be useful. You might be wondering why
the ∨-R rule is not of the form

Γ ` A, B
Γ ` A ∨ B
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The answer is we can justify that as a derived rule by the following inference:

Γ ` A, B
∨ R

Γ ` A ∨ B, B
∨ R

Γ ` A ∨ B, A ∨ B
contraction-R

Γ ` A ∨ B

(3.34)

. . . keeping an extra copy of ‘A ∨ B’

3.5.3.2 Keep checking your subgoals for validity

It sounds obvious, but when you are trying to find a sequent proof by working upwards
from your goal sequent, you should check at each stage that the goal-sequents you
generate in this way really are valid in the sense of making true claims about valuations.
After all, if the subgoal you generate doesn’t follow from the assumptions in play at
that point then you haven’t a snowflake in hell’s chance of proving it, have you? It’s
usually easy to check by hand that if everything on the left is true then something on
the right must be true.

As I say, it sounds obvious but lots of people overlook it!
And don’t start wondering: “if it’s that easy to check the validity of a sequent, why

do we need sequent proofs?”. The point is that one can use the sequent gadgetry for
logics other than classical logic, for which simple tautology-checking of this kind isWrong! You don’t need to keep

a copy! Wrong illustration not available. See section 3.11, p. 96.

3.5.4 Exercises
You can now attempt to find sequent proofs for all the formulæ in exercise 28 page 66.
At this stage you can also attempt exercise 38 on page 84.“classical”?

EXERCISE 36 Find proofs of the following sequents
A ∨ B ` ¬A→ B
¬A→ B ` A ∨ B (defines ∨ in terms of ¬ and→)

A ∧ B ` ¬(A→ ¬B)
¬(A→ ¬B) ` A ∧ B (defines ∧ in terms of ¬ and→)

A→ B ` ¬(A ∧ ¬B)
¬(A ∧ ¬B) ` A→ B (defines→ in terms of ¬ and ∧)

We usually treat seq calculus
as arising from ND but in fact
the proofs that sequent cal-
culus reasons about could be
any proofs at all—even Hilbert-
style proofs as below.
Insert Chapter break here . . . ?

EXERCISE 37 Find proofs of the following sequents
A ∨ B ` ¬A→ B
¬A→ B ` A ∨ B (defines ∨ in terms of ¬ and→)

A ∧ B ` ¬(A→ ¬B)
¬(A→ ¬B) ` A ∧ B (defines ∧ in terms of ¬ and→)

A→ B ` ¬(A ∧ ¬B)
¬(A ∧ ¬B) ` A→ B (defines→ in terms of ¬ and ∧)



3.6. HILBERT-STYLE PROOFS 83

If you are a first-year who is not interested in pursuing Logic any further you can
skip the rest of this chapter and go straight to chapter 4. However, even students who
do plan to refuse this particular jump should attempt exercise ??. Is this the right place for these

exercises?

3.6 Hilbert-style Proofs
In this style of proof we have only three axioms

K: A→ (B→ A)

S : (A→ (B→ C))→ ((A→ B)→ (A→ C))

T : (¬A→ B)→ ((¬A→ ¬B)→ A)

and the rules of modus ponens and substitution. ‘K’ and ‘S ’ are standard names for the
first two axioms. There is a good reason for this, which we will see in chapter 7. The
third axiom does not have a similarly standard name.

Notice that only two connectives appear here: → and ¬. How are we supposed
to prove things about ∧ and ∨ and so on? The answer is that we define the other
connectives in terms of → and ¬, somewhat as we did on page 43—except that there
we defined our connectives in terms of a different set of primitives.

Here is an example of a proof in this system:

1. A→ ((A→ A)→ A) Instance of K

2. (A→ ((A→ A)→ A))→
((A→ (A→ A))→ (A→ A)) Instance of S

3. (A→ (A→ A))→ (A→ A) Modus Ponens (1) and (2)

4. A→ (A→ A) Instance of K:

5. A→ A Modus Ponens (3) and (4)

I thought I would give you an illustration of a proof before giving you a formal
definition. Here is the definition:

DEFINITION 12 A Hilbert-style proof is a list of formulæ wherein every formula is
either an axiom or is obtained from earlier formulæ in the list by modus ponens or
substitution.

Some comments. . .

1. We can do without the rule of substitution, simply by propagating the substi-
tutions we need back to the axioms in the proof and ruling that a substitution
instance of an axiom is an axiom.

2. We can generalise this notion to allow assumptions as well as axioms. That way
we have—as well as the concept of an outright (Hilbert)-proof—the concept of
a Hilbert-proof of a formula from a list of assumptions.

3. An initial segment of a Hilbert-style proof is another Hilbert-style proof—of the
last formula in the list.
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4. Hilbert-style proofs suffer from not having the subformula property, as the boxed
proof aboveshows.

EXERCISE 38 You have probably already found natural deduction proofs for K and S .
If you have not done so, do it now. Find also a natural deduction proof of T , the third
axiom. (You will need the rule of double negation).

EXERCISE 39 Go back to Zarg (exercise 32 p. 68) and—using the truth-table for ¬
that you decided that the Zarglings use—check that the Zarglings do not believe axiom
T to be a tautology.

I will spare you the chore of testing whether or not the Zarglings believe S to
be a tautology. One reason is that it would involve writing out a truth-table with a
dispiritingly large number of rows. How many rows exactly?

EXERCISE 40 [For enthusiasts only]
Find Hilbert-style proofs of the following tautologies

(a) B→ ¬¬B.
(b) ¬A→ (A→ B).
(c) A→ (¬B→ ¬(A→ B)).
(d) (A→ B)→ ((¬A→ B)→ B).

Notice how easy it is to prove that the Hilbert-style proof system is sound! After
all, every substitution-instance of a tautology is a tautology, and if A → B and A are
tautologies, so is B.reconstruct this exercise

3.6.1 The Deduction Theorem

In this Hilbert-style proof system the only rules of inference are modus ponens and
substitution. Establishing that A → A is a theorem—as we did above—is quite hard
work in this system. If we had a derived rule that said that if we have a Hilbert-style
proof of A using a premiss B then we have a Hilbert-style proof of A → B then as a
special case we would know that there was a Hilbert-proof of A→ A.

To justify a derived rule that says that if we have a Hilbert-proof of A from B then
there is a Hilbert-proof of A → B we will have to show how to transform a proof of B
with an assumption A in it into a proof of A→ B. Let the Hilbert-proof of B be the list
whose ith member is Bi. The first thing we do is replace every Bi by A → Bi to obtain
a new list of formulæ. This list isn’t a proof, but it is the beginnings of one.

Suppose Bk had been obtained from Bi and B j by modus ponens with Bi as major
premiss, so Bi was B j → Bk. This process of whacking ‘A →’ on the front of every
formula in the list turns these into A → (B j → Bk) and A → B j. Now altho’ we could
obtain Bk from B j and B j → Bk by modus ponens we clearly can’t obtain A→ Bk from
A → B j and A → (B j → Bk) quite so straightforwardly. However we can construct
a little Hilbert-style proof of A → Bk from A → B j and A → (B j → Bk) using S .
When revising you might like to try covering up the next few formulæ and working it
out yourself.
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1. (A→ (B j → Bk))→ ((A→ B j)→ (A→ Bk)) S

2. A→ (B j → Bk)

3. (A→ B j)→ (A→ Bk) modus ponens (1), (2)

4. A→ B j

5. A→ Bk modus ponens (3), (4)

Lines (2) and (4) I haven’t labelled. Where did they come from? Well, what we
have just seen is an explanation of how to get A → Bk from A → (B j → Bk) and
A → B j given that we can get Bk from B j and B j → Bk. What the box shows us is
how to rewrite any one application of modus ponens. What we have to do to prove the
deduction theorem is to do this trick to every occurrence of modus ponens. This needs massive expansion

If we apply this process to:

A→ ((A→ B)→ B)
A ` ((A→ B)→ B)
A, A→ B ` B

we obtain

1. (A→ B)→
(((A→ B)→ (A→ B))→ (A→ B)) Instance of K

2. ((A→ B)→ (((A→ B)→ (A→ B))→ (A→ B)))→
(((A→ B)→ ((A→ B)→ (A→ B)))→ ((A→ B)→ (A→ B))) Instance of S

3. ((A→ B)→ ((A→ B)→ (A→ B)))→ ((A→ B)→ (A→ B))
Modus Ponens (1) and (2)

4. (A→ B)→ ((A→ B)→ (A→ B)) Instance of K:

5. (A→ B)→ (A→ B) Modus Ponens (3) and (4)

6. ((A→ B)→ (A→ B))→
(((A→ B)→ A)→ ((A→ B)→ B) Instance of S

7. ((A→ B)→ A)→ ((A→ B)→ B) Modus ponens (6), (5)

8. A Assumption

9. A→ ((A→ B)→ A) Instance of K.

10. (A→ B)→ A Modus ponens (9), (8).

11. (A→ B)→ B modus ponens (10), (7).

(Of course the annotations at the beginning and end of the lines are not part of the
proof but are part of a commentary on it. That’s the language-metalanguage distinction
again.) Revise this: it isn’t correct

THEOREM 13 If Γ, A ` B then Γ ` A→ B
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3.7 Interpolation
By now the reader will have had some experience of constructing natural deduction
proofs. If they examine their own practice they will notice that if they are trying to
prove a formula that has, say, the letters ‘p’, ‘q’ and ‘r’ in it, they will never try to
construct a proof that involves letters other than those three. There is a very strong
intuition of irrelevance at work here. It’s strong, but it’s so natural that you probably
didn’t notice that you had it. The time has now come to discuss it. But we need a bit
more gadgetry first.

The following puzzle comes from Lewis Carroll.More to do here

Dix, Lang, Cole, Barry and Mill are five friends who dine together regu-
larly. They agree on the following rules about which of the two condiments—
salt and mustard—they are to have with their beef. Each of them has pre-
cisely one condiment with their beef. Carroll tells us:

1. If Barry takes salt, then either Cole or Lang takes only one of the two
condiments, salt and mustard. If he takes mustard then either Dix
takes neither condiment or Mill takes both.

2. If Cole takes salt, then either Barry takes only one condiment, or Mill
takes neither. If he takes mustard then either Dix or Lang takes both.

3. If Dix takes salt, then either Barry takes neither condiment or Cole
takes both. If he takes mustard then either Lang or Mill takes neither.

4. If Lang takes salt, then either Barry or Dix takes only one condiment.
If he takes mustard then either Cole or Mill takes neither.

5. If Mill takes salt, then either Barry or Lang takes both condiments.
If he takes mustard then either Cole or Dix takes only one.

As I say, this puzzle comes from Lewis Carroll. The task he sets is to ascertain
whether or not these conditions can in fact be met. I do not know the answer, and it
would involve a lot of hand-calculation—which of course was the point! However I
am using it here to illustrate a different point.

Let’s consider the first item:

“If Barry takes salt, then either Cole or Lang takes only one of the two
condiments, salt and mustard. If he takes mustard then either Dix takes
neither condiment or Mill takes both.”

If Barry takes salt then either Cole or Lang takes only one of the two condiments,
salt and mustard;

if Barry does not take salt then either Dix takes neither condiment or Mill takes
both.

Now we do know that either Barry takes salt or he doesn’t, so we are either in the
situation where Barry takes salt (in which case either Cole or Lang takes only one of
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the two condiments, salt and mustard) or we are in the situation where Barry does not
take salt (in which case either Dix takes neither condiment or Mill takes both).

This illustrates a kind of splitting principle. If we have some complex combina-
tion of information, wrapped up in a formula A, say, and p is some atomic piece of
information (a propositional letter) in A, then we can split on p as it were, by saying to
ourselves:

“Either p holds—in which case we can simplify A to A′ (which ‘p’ doesn’t
appear in) Or p does not hold—in which case A simplifies to something
different, call it A′, in which—again—‘p’ does not appear.

So A is equivalent to (p ∧ A′) ∨ (¬p ∧ A′′), where ‘p’ does not appear in
A′ or in A′′”

Cite the text
How do we obtain A′ and A′′ from A? A′ is what happens when p is true, so just

replace all occurrences of ‘p’ in A by ‘>’. By the same token, replace all occurences
of ‘p’ in A by ‘⊥’ to get A′′. That’s sort-of all right, but it would be nice to get rid of
the ‘⊥’s and the ‘>’s as well to make things simpler. We saw in exercise 20 that

p ∨ > is logically equivalent to >
p ∨ ⊥ is logically equivalent to p
p ∧ > is logically equivalent to p
p ∧ ⊥ is logically equivalent to ⊥

and in exercise 20 that

p→ > is logically equivalent to >
> → p is logically equivalent to p
⊥ → p is logically equivalent to >
p→ ⊥ is logically equivalent to ¬p

We can use these equivalences to simplify complex expressions and get rid of all
the ‘>’s and ‘⊥’s.

Let’s have some illustrations:

• p→ (A ∨ B) There are two cases to consider.

1. The case where p is true. Then we infer A ∨ B. So in this case we get
p ∧ (A ∨ B).

2. The case where p is false. In this case the p→ (A∨ B) that we started with
tells us nothing, so all we get is ¬p.

• (p ∨ A)→ (B ∧C)
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1. In the case where p is true this becomes

(> ∨ A)→ (B ∧C)

and > ∨ A is just > so

(p ∨ A)→ (B ∧C)

becomes

> → (B ∧C)

which is just

B ∧C.

So we get

p ∧ (B ∧C).

2. In the case where p is false this becomes

(⊥ ∨ A)→ (B ∧C)

and ⊥ ∨ A is just A so we get

A→ (B ∧C)

and

¬p ∧ (A→ (B ∧C))

So (p ∨ A)→ (B ∧C) is equivalent to

(p ∧ (B ∧C)) ∨ (¬p ∧ (A→ (B ∧C)))

[[p]] = > [[p]] = ⊥

f  
B ∨C p ∧ (B ∨C) ⊥

B (p ∧ B) ∨ (¬p ∧C) C
B ∧C p←→ (B ∧C) ¬B ∨ ¬C
A ∨ B p→ (A ∨ B) >

B ∧C (p ∨ A)→ (B ∧C) A→ (B ∧C)

This illustrates what one might call
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THEOREM 14 The Splitting Principle
Suppose A is a propositional formula and ‘p’ is a letter appearing in A. There are
formulæ A1 and A2 not containing ‘p’ such that A is logically equivalent to (A1 ∧ p) ∨
(A2 ∧ ¬p).

Evidently

A←→ (A ∧ (p ∨ ¬p))

which we can distribute to

A←→ (A ∧ p) ∨ (A ∨ ¬p)

but we can simplify A∧ p to A′ ∧ p where A′ is the result of substituting > for p in
A; A′′ similarly, obtaining

A←→ (A′ ∧ p) ∨ (A′′ ∨ ¬p)

DEFINITION 15 LetL(P) be the set of propositional formulæ that can be built up from
the propositional letters in the alphabet P.

Let us overload this notation by letting L(A) be the set of propositional formulæ
that can be built up from the propositional letters in the formula A.

Suppose A → B is a tautology, but A and B have no letters in common. What can
we say? Well, since A → B is a tautology there is no valuation making A true and B
false. But, since valuations of A and B can be done independently, it means that either
there is no valuation making A true, or there is no valuation making B false. With a
view to prompt generalisation, we can tell ourselves that, despite A and B having no
letters in common, L(A) and L(B) are not disjoint because > is the conjunction of the
empty set of formulæ and ⊥ is the disjunction of the empty set of formulæ (see section
2.4.2 and therefore both ‘>’ and ‘⊥’ belong to the language over the empty alphabet— supply here the result of split-

ting Carroll’s examplewhich is to say to L(A) ∩ L(B). We established that either A → ⊥ is a tautology (in
“over”which case A is the negation of a tautology) or > → B is a tautology (in which case

B is a tautology). But, since both A → > and ⊥ → B are always tautologies (as we
saw in exercise 20) we can tell ourselves that what we have established is that there
is some formula C in the common vocabulary such that both A → C and C → B are
tautologies. C must be either ‘>’ or ‘⊥’.

L(A)
L(B)

A C B
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If we now think about how to do this “with parameters” we get a rather more
substantial result.Here we use the symbol ‘∩’ for

the first time. . . do we need to
explain it? THEOREM 16 (The interpolation lemma)

Let A and B be two expressions such that we can deduce B from A. (Every valuation
making A true makes B true). Then we can find an expression C containing only those
propositional letters common to A and B such that we can deduce C from A, and we
can deduce B from C.

Proof: We have seen how to do this in the case where A and B have no letters in
common. Now suppose we can do it when A and B have n letters in common, and
deduce that we can do it when they have n + 1 letters in common. Suppose ‘p’ is a
letter they have in common. The we can split A and B at p to get

(p ∧ A′) ∨ (¬p ∧ A′′) which is equivalent to A

and

(p ∧ B′) ∨ (¬p ∧ B′′) which is equivalent to B

So any valuation making (p∧ A′)∨ (¬p∧ A′′) true must make (p∧ B′)∨ (¬p∧ B′′)
true. So that means that any valuation making (p∧A′) true must make (p∧B′) true and
any valuation making (¬p ∧ A′′) true must make (¬p ∧ B′′) true. Indeed any valuation
making A′ true must make B′ true, and any valuation making A′′ true must make B′′

true: if v is a valuation making A′ true then it needn’t mention ‘p’ at all, so we can
extend it to a valuation v′ =: v ∪ {〈p, true〉} that makes ‘p’ true. So v′ is a valuation
making (p ∧ A′) true, so it must make (p ∧ B′) true. So v must have made A′ true. (A′′

and B′′ mutatis mutandis.)
Next observe that A′ and B′ have only n propositional letters in common so we can

find C′ containing only those letters they have in common, such that every valuation
making A′ true makes C′ true and every valuation making C′ true makes B′ true, and
similarly A′′ and B′′ have only n propositional letters in common so we can find C′′

containing only those letters they have in common, such that every valuation making
A′′ true makes C′′ true and evey valuation making C′′ true makes B′′ true. So the
interpolant we want is

(p ∧C′) ∨ (¬p ∧C′′)

EXERCISE 41 Find an interpolant Q for

(A ∧ B) ∨ (¬A ∧C) ` (B→ C)→ (D→ C)

and supply proofs (in whatever style you prefer) of

(A ∧ B) ∨ (¬A ∧C) → Q
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and

Q → ((B→ C)→ (D→ C))
“with parameters”?

3.8 Completeness of Propositional Logic
This section is not recommended for first-years. Say something about inter-

polation equiv to completeness
but much more appealing: hu-
mans have strong intuitions of
irrelevance from having to de-
fend ourselves from conmen
over many generations.

[this section uses notions from comp th that we haven’t introduced]
How about the proof i used for the CS MPhil?
We have to use one or the other

3.8.1 Completeness
Completeness is harder than soundness. When we say that the system of rules of natural
deduction is complete we mean that it provides proofs of every tautology.

A row is a conjunction of atomics and negatomics in which every propositional
letter appears precisely once. There is an obvious correlation between rows and valua-
tions.

For A a propositional formula let A∗ be the disjunction of all the rows that make A
come out true.

We write ‘` φ’ for “there is a natural deduction proof of φ”.

LEMMA 17 For all propositional formulæ A, there is a natural deduction proof of
A←→ A∗.

Proof:
By structural induction on formulæ. The base case concerns individual proposi-

tional letters and ⊥, the false. If A is a propositional letter or ⊥ then A∗ is just A.
Clearly ` A←→ A∗. This section needs to be cut

drasticallyThere is an induction step for each of ∧, ∨ and→.

∧ (A ∧ B)∗ is the disjunction of those rows common to A∗ and B∗, and is there-
fore interdeducible with A∗ ∧ B∗. By induction hypothesis A is interdeducible
with A∗ and B is interdeducible with B∗ so A∗ ∧ B∗ (which we have just seen is
interdeducible with (A ∧ B)∗) is interdeducible with A ∧ B.

∨ (A ∨ B)∗ is the disjunction of those rows appearing in the truth-table for A ∨
B, and is therefore interdeducible with A∗ ∨ B∗. By induction hypothesis A is
interdeducible with A∗ and B is interdeducible with B∗ so A∗ ∨ B∗ (which we
have just seen is interdeducible with (A ∨ B)∗) is interdeducible with A ∨ B.

→ (A→ B)∗ is of course the disjunction of all rows that make A false or B true. We
prove the two directions separately.

` (A→ B)∗ → (A→ B)
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Let r be one of the rows of (A→ B)∗.
(i) If r is a row that makes B true, then it is a disjunct of B∗ so `
r → B∗ whence ` r → B by induction hypothesis. So definitely
` r → (A→ B).
(ii) If r is a row that makes A false, then it is inconsistent with every
row that makes A true, so it is inconsistent with their disjunction—
which is A∗. A and A∗ are interdeducible by induction hypothesis, so
` r → (A→ ⊥). But ` (A→ ⊥)→ (A→ B), so ` r → (A→ B).
Either way, if r is a row of (A → B), ` r → (A → B). (A → B)∗

is the disjunction of all the rows of A → B so, by ∨-elimination,
` (A→ B)∗ → (A→ B).

` (A→ B)→ (A→ B)∗.

Assume A → B and ¬(A → B)∗. We will deduce the false. ¬(A →
B)∗ denies every row in B∗, so refutes B∗ and therefore refutes B (by
induction hypothesis). ¬B gives ¬A by modus tollens. Now by in-
duction bypothesis on A we can refute every disjunct in A∗ (every
row that makes A true). But our denial of (A → B)∗ refuted every
row that made A false. So we have refuted all rows! Recall that we
can prove the disjunction of all the rows. (A ∨ ¬A)∗ is provable. This
gives us the contradiction we seek. Then we use the rule of classical
negation to deduce (A → B)∗. We now use→-introduction to obtain
a proof of (A→ B)→ (A→ B)∗.

We can now prove

THEOREM 18 Every truth-table tautology has a natural deduction proof

Proof: Suppose that A is a truth-table tautology. Observe that, if a1 . . . an are the propo-
sitional letters that appear in A, then we can prove the disjunction of the 2n rows to be
had from a1 . . . an. We do this by induction on n. Since A is a truth-table tautology this
disjunction is in fact A∗. Lemma 17 tells us that there is a natural deduction proof of
A←→ A∗ so we conclude that there is a natural deduction proof of A.

If you are still less than 100% happy about this, attempt the following exercise:

EXERCISE 42

1. Find a natural deduction proof of A ∨ ¬A (case n = 1);

2. Find a natural deduction proof of (A ∧ B) ∨ (¬A ∧ B) ∨ (A ∧ ¬B) ∨ (¬A ∧ ¬B)
(case n = 2);

3. Explain the induction step.

Admittedly this seems excessively laborious but the result is important even if the
proof isn’t. Important too, is the experience of discovering that soundness proofs are
easy and completeness proofs are hard(er)!
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3.8.2 Completeness using Sequents
We can show easily that if φ is a truth-table tautology then the sequent ` φ has a proof
using our sequent rules.

This is probably the correct place to discuss confluence.

3.9 What is a Completeness Theorem?
The completeness+soundness result we have just seen for the rules of natural deduction
and the concept of a propositional tautology connects two sets. One set is defined
by a semantical property (being satisfied by all valuations) and the other is defined
by a syntactic property (being generated by a set of rules). Indeed the property of
being generated by a set of rules is equivalent to being what is called in the literature
a recursively enumerable (“r.e.”) set or (more illuminatingly) a semidecidable set. We
say a set X is semidecidable if there is a procedure P that will authenticate its members
(so whenever a candidate for membership is in fact a member this will be confirmed
in finite time). Notice that this does not require that the method P will reject any
unsuitable candidate in finite time. If there is a method that will additionally reject any
unsuitable candidate in finite time then the complement of X, too, is semidecidable and
we say X is decidable (“recursive” is the old terminology).

So typically a completeness theorem is an assertion about two sets X and Y where
X is a set defined semantically (as it might be, the set of tautologies) and Y is a semide-
cidable set defined by a syntactic criterion (as it might be the set of strings that have
natural deduction proofs) and says that X = Y .

You may have felt tempted to say that the completeness theorem for propositional
logic was no big deal. So we have this set of tautologies . . . well, cook up some rules
that generate them all. What’s the problem? The problem is that there might be no
such set of rules. We will see later that there are Logics which cannot be captured by a
set of rules in this way: every set of rules either generates things it shouldn’t or fails to
generate some things it should. (Trakhtenbrot’s theorem; second-order logic) “structural induction”?!

There is a completeness theorem for predicate logic, as we shall see. There is also a
completeness theorem for constructive logic, but that is beyond the scope of this book. Do we actually see these

things?
THEOREM 19 The completeness theorem for propositional logic.

The following are equivalent:
(1) φ is provable by natural deduction.
(2) φ is provable from the three axioms K, S and T .
(3) φ is truth-table valid.

Proof: We will prove that (3)→ (2)→ (1)→ (3).

(2)→ (1).
First we show that all our axioms follow by natural deduction–by inspection. Then

we use induction: if there are natural deduction proofs of A and A → B, there is a
natural deduction proof of B!

(1)→ (3).
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To show that everything proved by natural deduction is truth-table valid we need
only note that, for each rule, if the hypotheses are true (under a given valuation), then
the conclusion is too. By induction on composition of rules this is true for molecular
proofs as well. If we have a molecular proof with no hypotheses, then vacuously they
are all true (under a given valuation), so the conclusion likewise is true (under a given
valuation). But the given valuation was arbitrary, so the conclusion is true under all
valuations.“constructive” doesn’t appear

until p 145. (3)→ (2).
(This proof is due to Mendelson [30] and Kalmár [25].) Now to show that all

tautologies follow from our three axioms.
At this point we must invoke exercise 40, since we need the answers to complete

the proof of this theorem. It enjoins us to prove the following:

(a) B→ ¬¬B.
(b) ¬A→ (A→ B).
(c) A→ (¬B→ ¬(A→ B)).
(d) (A→ B)→ ((¬A→ B)→ B).

If we think of a propositional formula in connection with a truth-table for it, it
is natural to say things like: p ←→ q is true as long as p and q are both true or both
false, and false otherwise. Thus truth-tables for formulæ should suggest to us deduction
relations like

A, B ` A←→ B,

¬A,¬B ` A←→ B,

and similarly
A,¬B ` ¬(A←→ B).

To be precise, we can show:
Let A be a molecular wff containing propositional letters p1 . . . pn, and let f be a

map from {k ∈ IN : 1 ≤ k ≤ n} to {true, false}. If A is satisfied in the row of the
truth-table where pi is assigned truth-value f (i), then

P1 . . . Pn ` A,

where Pi is pi if f (i) = true and ¬pi if f (i) = false. If A is not satisfied in that row,
then

P1 . . . Pn ` ¬A,

and we prove this by a straightforward induction on the rectype of formulæ.First use of ‘arbitrary’ in this
sense We have only two primitive connectives, ¬ and→, so two cases.

¬
Let A be ¬B. If B takes the value true in the row P1 . . . Pn, then, by
the induction hypothesis, P1 . . . Pn ` B. Then, since ` p → ¬¬p (this is
exercise 40 p. 84), we have P1 . . . Pn ` ¬¬B, which is to say P1 . . . Pn `

¬A, as desired. If B takes the value false in the row P1 . . . Pn, then, by
the induction hypothesis, P1 . . . Pn ` ¬B. But ¬B is A, so P1 . . . Pn ` A.
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→

Let A be B→ C.

Case (1): B takes the value false in row P1 . . . Pn. If B takes the value
false in row P1 . . . Pn, then A takes value true and we want P1 . . . Pn `

A. By the induction hypothesis we have P1 . . . Pn ` ¬B. Since ` ¬p →
(p → q) (this is exercise 40(b)), we have P1 . . . Pn ` B → C, which is
P1 . . . Pn ` A.

Case (2): C takes the value true in row P1 . . . Pn. Since C takes the value
T in row P1 . . . Pn, A takes value true, and we want P1 . . . Pn ` A. By the
induction hypothesis we have P1 . . . Pn ` C, and so, by K, P1 . . . Pn ` B→
C, which is to say P1 . . . Pn ` A.

Case (3): B takes value true and C takes value false in row P1 . . . Pn. A
therefore takes value false in this row, and we want P1 . . . Pn ` ¬A. By
the induction hypothesis we have P1 . . . Pn ` B and P1 . . . Pn ` ¬C. But
p → (¬q → ¬(p → q)) is a theorem (this is exercise 40(c)) so we have
P1 . . . Pn ` ¬(B→ C), which is P1 . . . Pn ` ¬A.

Suppose now that A is a formula that is truth-table valid and that it has propositional
letters p1 . . . pn. Then, for example, both P1 . . . Pn−1, pn ` A and P1 . . . Pn−1, ¬pn ` A,
where the capital letters indicate an arbitrary choice of ¬ or null prefix as before. So,
by the deduction theorem, both pn and ¬pn ` (P1 ∧ P2 . . . ∧ Pn−1) → A and we can
certainly show that (p → q) → (¬p → q) → q is a theorem (this is exercise 40(d)), so
we have P1 . . . Pn−1 ` A, and we have peeled off one hypothesis. Clearly this process
can be repeated as often as desired to obtain ` A.

There is another assertion—equivalent to theorem 19—which, too, is known as the
completeness theorem. Sometimes it is a more useful formulation.

‘rectype’ not explained
COROLLARY 20 φ is consistent (not refutable from the axioms) iff there is a valuation
satisfying it. first occ of ‘iff’

Proof: 0 ¬φ (i.e., φ is consistent) iff ¬φ is not tautologous. This is turn is the same as φ
being satisfiable.

3.10 Compactness
We close this chapter with an observation which—altho’ apparently banal—actually
has considerable repercussions. Suppose there is a deduction of a formula φ from a set
Γ of formulæ. In principle Γ could of course be an infinite set (there are infinitely many
formulæ after all) but any deduction of φ from Γ is a finite object and can make use of
only finitely many of the formulæ in Γ. This tells us that

THEOREM 21 If θ follows from Γ then it follows from a finite subset of Γ
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This is actually pretty obvious. So obvious in fact that one might not think it was
worth pointing out. However, it depends sensitively on some features one might take
for granted and therefore not notice. If we spice up our language into something more
expressive in a manner that does not preserve those nice features we might find that it
isn’t true any more. For example it won’t work if our formulæ can be infinitely long or
if our proofs are allowed to be infinitely long.

Here is a realistic illustration. Since the infinite sequence 0, 1, 2, 3, . . . exhausts the
natural numbers, it seems entirely reasonable to adopt a rule of inference:

F(0), F(1), F(2), . . .

(∀n)(F(n))

. . . where there are of course infinitely many things on the top line. This is called the
ω-rule9. There are infinitely many premisses. However it is clear that the conclusion
does not follow from any finite subset of the premisses, so we would not normally be
licenced to infer the conclusion. Thus the ω-rule is strong: it enables us to prove things
we would not otherwise be able to prove.

3.10.1 Why “compactness”?
The word ‘compactness’ comes from nineteenth century topologists’ attempts to cap-
ture the difference between plane figures of finite extent (for example, the circle of
radius 1 centred at the origin) and plane figures of infinite extent (for example the left
half-plane)—and to do this without talking about any numerical quantity such as area.
The clever idea is to imagine an attempt to cover your chosen shape with circular disks.
A set of disks that covers the figure in question is a covering of the figure. It’s clearly
going to take infinitely many disks to cover the half-plane. A plane figure F that is
finite (perhaps ‘bounded’ is a better word) in the sense we are trying to capture has the
feature that whenever we have a set O of disks that cover F then there is a finite subset
O′ ⊆ O of disks that also covers F. Such a figure is said to be compact.

The connection between these two ideas (compactness in topology, and the finite
nature of logic) was made by Tarski.‘iff’ not defined yet

3.11 Why do we need proof systems for propositional
Logic. . . ??

. . . given that we can check the validity of any inference by means of truth-tables?? You
may well be asking this question.

There are several reasons, but the general theme common to them is that there are
more complex kinds of Logic where there is no handy and simple analogue of the truth-
table gadgetry. This being the case we need more complicated gadgets, and the process
of mastering those gadgets is greatly helped by practising on propositional calculus in
the first instance—using the toy versions of the gadgets in question.

9‘ω’ (pronounced ‘omega’) is the last letter of the Greek alphabet. The capital form is ‘Ω’.
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In particular we will be studying in later chapters both predicate calculus and con-
structive logic (where we reason without using the laws of excluded middle and double
negation). In neither of these cases are truth-tables sensitive enough for us to be able
to use them on their own for checking the validity of inferences.

3.12 Some advanced exercises for enthusiasts

Life on Planet Zarg taught us that Peirce’s law does not follow from K and S alone: we
seem to need the rule of double negation. In fact Peirce’s law, in conjunction with K
and S , implies all the formulæ built up only from→ that we can prove using the rule
of double negation.

EXERCISE 43 We saw in exercise 20 page 32 part (8) that (P→ Q)→ Q has the same
truth-table as P ∨ Q.

Construct a natural deduction proof of R from the premisses (P→ Q)→ Q, P→ R
and Q→ R. You may additionally use as many instances of Peirce’s law as you wish.10

3.13 Formal Semantics for Propositional Logic

This section not recommended for first years

The key to not getting lost in this enterprise is to bear in mind that the expressions
of propositional logic are built up from atomic formulæ (letters) whose meaning is
not reserved: they can be anything: Herbert takes the flat or Herbert’s wife insists
on keeping Fido, but the symbols in the logical vocabulary—‘∧’, ‘∨’ and so on—
emphatically are reserved.

A valuation [for propositional language] is a function that assigns truth-values (not
meanings!) to the primitive letters of that language. We will use the letter ‘v’ to range
over valuations. Now we define a satisfaction relation sat between valuations and
complex expressions.

DEFINITION 22

A complex expression φ might be a propositional letter and—if it is—then sat(v, φ)
is just v(φ), the result of applying v to φ;

If φ is the conjunction of ψ1 and ψ2 then sat(v, φ) is sat(v, ψ1) ∧ sat(v, ψ2);
If φ is the disjunction of ψ1 and ψ2 then sat(v, φ) is sat(v, ψ1) ∨ sat(v, ψ2);
If φ is the conditional whose antecedent is ψ1 and whose consequent is ψ2 then

sat(v, φ) is sat(v, ψ1)→ sat(v, ψ2);
If φ is the negation of ψ1 then sat(v, φ) is ¬sat(v, ψ1) ;
If φ is the biconditional whose two immediate subformulæ are ψ1 and ψ2 then

sat(v, φ) is sat(v, ψ1)←→ sat(v, ψ2).

10I am endebted to Tim Smiley for this amusing fact.
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Notice that here i am using the letters ‘φ’ and ‘ψ1’ and ‘ψ2’ as variables that range
over formulæ, as in the form of words “If φ is the conjunction of ψ1 and ψ2 then . . . ”.
They are not abbreviations of formulæ. There is a temptation to write things like

“If φ is ψ1 ∧ ψ2 then sat(v, φ) is sat(v, ψ1) ∧ sat(v, ψ2)”

or perhaps

sat(v, ψ1 ∧ ψ2) is sat(v, ψ1) ∧ sat(v, ψ2) (3.35)

Now although our fault-tolerant pattern matching enables us to see immediately
what is intended, the pattern matching does, indeed, need to be fault-tolerant. (In fact
it corrects the fault so quickly that we tend not to notice the processing that is going
on.)

In an expression like ‘sat(v, φ)’ the ‘φ’ has to be a name of a formula, as we noted
above, not an abbreviation for a formula. But then how are we to make sense of

sat(v, ψ1 ∧ ψ2) (3.36)

The string ‘ψ1∧ψ2’ has to be the name of a formula. Now you don’t have to be The
Brain of Britain to work out that it has got to be the name of whatever formula it is that
we get by putting a ‘∧’ between the two formulæ named by ‘ψ1’ and ‘ψ2’—and this is
what your fault-tolerant pattern-matching wetware (supplied by Brain-Of-Britain) will
tell you. But we started off by making a fuss about the fact that names have no internal
structure, and now we suddenly find ourselves wanting names to have internal structure
after all!

In fact there is a way of making sense of this, and that is to use the cunning device
of corner quotes to create an environment wherein compounds of names of formulæ
(composed with connectives) name composites (composed by means of those same
connectives) of the formulæ named..

So 3.35 would be OK if we write it as

sat(v, pψ1 ∧ ψ2q) is sat(v, ψ1) ∧ sat(v, ψ2) (3.37)

Corner quotes were first developed in [33]. See pp 33-37. An alternative way of
proceding that does not make use of corner quotes is instead to use an entirely new suite
of symbols—as it might be ‘and’ and ‘or’ and so on, and setting up links between them
and the connectives ‘∧’ and so on in the object language so that—for example

ψ1 and ψ2 (A)

is the conjunction of ψ1 and ψ2. In other words, we want ‘ψ1 and ψ2’ to name the
conjunction of ψ1 with ψ2. The only drawback to this is the need to conjure up an
entire suite of symbols, all related suggestively to the connectives they are supposed to
name. . . in the way that ‘and’ names the symbol ‘∧’. Here one runs up against the fact
that any symbols that are suitably suggestive will also be laden with associations from
their other uses, and these associations may not be helpful. Suppose we were to use an
ampersand instead of ‘and’; then the fact that it is elsewhere used instead of ‘∧’ might
cause the reader to assume it is a synonym for ‘∧’ rather than a name of it. There is no
easy way through.
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3.14 Eager and Lazy Evaluation

Recall “recursive” from p. 26

The recursive definition of sat in the previous section gives us a way of deter-
mining what truth-value a formula receives under a valuation. Start with what the
valuation does to the propositional letters (the leaves of the parse tree) and work up the
tree. Traditionally the formal logic that grew up in the 20th century took no interest
in how things like sat(φ, v) were actually calculated. The recursive definition tells us
uniquely what the answer must be, but it doesn’t tell us uniquely how to calculate it.

The way of calculating sat(φ, v) that we have just seen (start with what the valu-
ation does to the propositional letters—the leaves of the parse tree—and work up the
tree) is called Eager evaluation also known as Strict evaluation. But there are other
ways of calculating that will give the same answer. One of them is the beguilingly
named Lazy evaluation which we will now describe. A nice example of formalisa-

tion
Consider the project of filling out a truth-table for the formula A ∧ (B ∨ (C ∧ D)).

One can observe immediately that any valuation (row of the truth-table) that makes ‘A’
false will make the whole formula false:

A ∧ (B ∨ (C ∧ D))
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

A ∧ (B ∨ (C ∧ D))
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Now, in the remaining cases we can observe that any valuation that makes ‘B’ true will
make the whole formula true.:
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A ∧ (B ∨ (C ∧ D))
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

A ∧ (B ∨ (C ∧ D))
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 1 1 0 0
1 1 1 1 0 1
1 1 1 1 1 0
1 1 1 1 1 1

In the remaining cases any valuation that makes ‘C’ false will make the whole
formula false.

A ∧ (B ∨ (C ∧ D))
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0
1 0 1 1
1 1 1 1 0 0
1 1 1 1 0 1
1 1 1 1 1 0
1 1 1 1 1 1

A ∧ (B ∨ (C ∧ D))
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 0 0 0 0
1 0 0 0 0 0 1
1 0 0 0 1 0 0∗

1 1 0 1 1 1 1∗

1 1 1 1 0 0
1 1 1 1 0 1
1 1 1 1 1 0
1 1 1 1 1 1

The starred ‘0∗’ and ‘1∗’ are the only cases where we actually have to look at the
truth-value of D.

These illustrations concern evaluation in languages whose expressions evaluate to
truth-values. The idea originally arose in connection with languages whose expressions
evaluate to numbers or other data objects.

if x ≥ 0 then f (x) else g(x).

This expression evaluates to [the value of] f (x) or to [the value of] g(x), depending
on what x evaluates to. There is no point in calculating both f (x) and g(x) when you
are clearly going to need only one of them! So you evaluate lazily: first you evaluate x
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to see whether it is above or below 0 and then you evaluate whichever of f (x) and g(x)
that it turns out that you need.

Notice also in this connection that i might not even have to evaluate x completely in order to
know which way to jump. If x is presented to me as a double-precision decimal number i have
12 decimal places to evaluate, but i will know already after evaluating the first of them whether
x is positive or negative.

We noted above that you will get the one and the same truth-value for any given
proposition under any given evaluation whether you evaluate eagerly or lazily. This
makes it possible to think of [this part of] logic statically: it’s safe to ignore or hide the
process of evaluation. We are not interested in the process since we always reach the
same result. we seem to have covered it al-

ready in section 3.14This is the point behind the joke about the three logicians who go into a bar.

“Do you all want drinks?” asks the barman. “I don’t know” says the first
logician; “I don’t know” says the second logician; “Yes!” says the third
logician.

The point is that if the first logician didn’t want a drink (s)he could evaluate “Logi-
cian 1 wants a drink ∧ logician 2 wants a drink ∧ logician 3 wants a drink” lazily and
answer ‘No’. (S)he doesn’t, and therefore answers ‘I don’t know’. . . from which the
other two logicians (who know (s)he is evaluating lazily) can infer that (s)he does want
a drink.
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Chapter 4

Predicate (first-order) Logic

4.1 Towards First-Order Logic
We saw earlier (in section 3.7) the following puzzle from Lewis Carroll.

Dix, Lang, Cole, Barry and Mill are five friends who dine together regu-
larly. They agree on the following rules about which of the two condiments—
salt and mustard—they are to have with their beef. (For some reason they
always have beef?!)

1. If Barry takes salt, then either Cole or Lang takes only one of the two
condiments, salt and mustard (and vice versa). If he takes mustard
then either Dix takes neither condiment or Mill takes both (and vice
versa).

2. If Cole takes salt, then either Barry takes only one condiment, or Mill
takes neither (and vice versa). If he takes mustard then either Dix or
Lang takes both (and vice versa).

3. If Dix takes salt, then either Barry takes neither condiment or Cole
takes both (and vice versa). If he takes mustard then either Lang or
Mill takes neither (and vice versa).

4. If Lang takes salt, then either Barry or Dix takes only one condiment
(and vice versa). If he takes mustard then either Cole or Mill takes
neither (and vice versa).

5. If Mill takes salt, then either Barry or Lang takes both condiments
(and vice versa). If he takes mustard then either Cole or Dix takes
only one (and vice versa).

The task Carroll sets us is to ascertain whether or not these conditions can in fact be
met. I do not know the answer, and finding it would involve a lot of hand-calculation—
which of course is the point! I don’t suppose for a moment that you want to crunch
it out (I haven’t done it, nor have I any intention of doing it—I do have a life, after
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all) but it’s a good idea to at least think (a bit) about some of the preparatory work that
would be involved.

The way to do this would be to create a number of propositional letters, one each
to abbreviate each of the assorted assertions “Barry takes salt”, “Mill takes mustard”
and so on. How many propositional letters will there be? Obviously 10, co’s you can
count them: each propositional letter corresponds to a choice of one of {Dix, Lang,
Cole, Barry, Mill} and one choice of {salt, mustard}, and 2 × 5 = 10. We could use
propositional letters ‘p’, ‘q’, ‘r’, ‘s’, ‘t’, ‘u’, ‘v’, ‘w’, ‘x’ and ‘y’. But notice that using
ten different letters—mere letters—in this way fails to capture certain relations that
hold between them. Suppose they were arranged like:

‘p’: Barry takes salt ‘u’: Barry takes mustard
‘q’: Mill takes salt ‘v’: Mill takes mustard
‘r’: Cole takes salt ‘w’: Cole takes mustard
‘s’: Lang takes salt ‘x’: Lang takes mustard
‘t’: Dix takes salt ‘y’: Dix takes mustard

Then we see that two things in the same row are related to each other in a way that
they aren’t related to things in other rows; ditto things in the same column. This subtle
information cannot be read off just from the letters ‘p’, ‘q’, ‘r’, ‘s’, ‘t’, ‘u’, ‘v’, ‘w’, ‘x’
and ‘y’ themselves. That is to say, there is internal structure to the propositions “Mill
takes salt” etc, that is not captured by reducing each one to a single letter.

The time has come to do something about this.

A first step would be to replace all of ‘p’, ‘q’, ‘r’, ‘s’, ‘t’, ‘u’, ‘v’, ‘w’, ‘x’ and ‘y’ by
things like ‘ds’ and ‘bm’ which will mean ‘Dix takes salt’ and ‘Barry takes mustard’.
(Observe that ‘ds’ is a single character.) Then we can build truth-tables and do other
kinds of hand-calculation as before, this time with the aid of a few mnemonics. If
we do this, the new things like ‘bm’ are really just propositional letters as before, but
slightly bigger ones. The internal structure is visible to us—we know that ‘ds’ is really
short for ‘Dix takes salt’—but this internal structure is not visible to the logic. The
logic regards ‘ds’ as a single propositional letter, so we do not yet have a logic that can
see the structure we want: this first step is not enough, and we have to do a bit more if
we are to make the internal structure explicit.

What we need is Predicate Logic. It’s also called First-Order Logic and some-
times Predicate Calculus. In this new pastime we don’t just use suggestive mnemonic
symbols for propositional letters but we open up the old propositional letters that we
had, and find that they have internal structure. “Romeo loves Juliet” will be repre-
sented not by a single letter ‘p’ but by something with suggestive internal structure like
‘L(r, j)’. We use capital Roman letters as predicate symbols (also known as relation
symbols). In this case the letter ‘L’ is a binary relation symbol, co’s it relates two
things. The ‘r’ and the ‘ j’ are arguments to the relation symbol. They are constants
that denote the things that are related to each other by the (meaning of the) relation
symbol.

We can apply this to Lewis Carroll’s problem on page 86 by having, for each condi-
ment, a one-place predicate (of diners) of being a consumer of that condiment, and
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constant symbols ‘d’, ‘l’, ‘m’, ‘b’ and ‘c’ for Dix, Lang, Mill, Barry and Cole, respec-
tively. I am going to write them in lower case because we keep upper case letters for
predicates—relation symbols.

‘S (b)’: Barry takes salt ‘U(b)’: Barry takes mustard
‘S (m)’: Mill takes salt ‘U(m)’: Mill takes mustard
‘S (c)’: Cole takes salt ‘U(c)’: Cole takes mustard
‘S (l)’: Lang takes salt ‘U(l)’: Lang takes mustard
‘S (d)’: Dix takes salt ‘U(d)’: Dix takes mustard

or the other way round—having, for each diner, a one-place predicate of being
consumed by that diner, and a constant symbol ‘s’ for salt, and another ‘u’ for mustard.
(We’ve already used ‘m’ for Mill.)

‘B(s)’: Barry takes salt ‘B(u)’: Barry takes mustard
‘M(s)’: Mill takes salt ‘M(u)’: Mill takes mustard
‘C(s)’: Cole takes salt ‘C(u)’: Cole takes mustard
‘L(s)’: Lang takes salt ‘L(u)’: Lang takes mustard
‘D(s)’: Dix takes salt ‘D(u)’: Dix takes mustard

But perhaps the most natural is to have a two-place predicate letter ‘T ’, and symbols
‘d’, ‘l’, ‘m’, ‘b’ and ‘c’ for Dix, Lang, Mill, Barry and Cole, respectively, and ‘s’ for
salt and ‘u’ for mustard. So, instead of ‘p’ and ‘q’ or even ‘ds’ etc we have:

‘T (b, s)’: Barry takes salt ‘T (b, u)’: Barry takes mustard
‘T (m, s)’: Mill takes salt ‘T (m, u)’: Mill takes mustard
‘T (c, s)’: Cole takes salt ‘T (c, u)’: Cole takes mustard
‘T (l, s)’: Lang takes salt ‘T (l, u)’: Lang takes mustard
‘T (d, s)’: Dix takes salt ‘T (d, u)’: Dix takes mustard

And now—in all three approaches—the symbolism we are using makes it clear
what it is that two things in the same row have in common, and what it is that two
things in the same column have in common.

I have used here a convention that you always write the relation symbol first, and
then put its arguments after it, enclosed within parentheses: we don’t write ‘m T s’.
However identity is a special case and we do write “Hesperus = Phosphorous” (the two
ancient names for the evening star and the morning star) and when we write the relation
symbol between its two arguments we say we are using infix notation. (Infix notation
only makes sense if you have two arguments not three: If you had three aguments
where would you put the relation symbol if not at the front?)

What you should do now is look at the question on page 38, the one concerning
Herbert’s love life, pets and accommodation arrangements.
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If Herbert can take the flat only if he divorces his wife then he should think
twice. If Herbert keeps Fido, then he cannot take the flat. Herbert’s wife
insists on keeping Fido. If Herbert does not keep Fido then he will divorce
his wife—at least if she insists on keeping Fido.

You will need constant names ‘h’ for Herbert, ‘ f ’ for Fido, and ‘w’ for the wife.
You will also need a few binary relation symbols: K for keeps, as in “Herbert keeps
Fido”. Some things might leave you undecided. Do you want to have a binary rela-
tion symbol ‘T ’ for takes, as in T (h, f ) meaning “Herbert takes the flat”? If you do
you will need a constant symbol ‘ f ’ to denote the flat. Or would you rather go for a
unary relation symbol ‘T F’, for takes-the-flat, to be applied to Herbert? No-one else is
conjectured to take the flat after all, so you’d have no other use for that predicate letter
. . . so perhaps not. If you are undecided between these, all it means is that you have
discovered the wonderful flexibility of predicate calculus.

Rule of thumb: We use Capital Letters for properties and relations; on the whole
we use small letters for things. (We do tend to use small letters for functions too). The
capital letters are called relational symbols or predicate letters and the lower case
letters are called constants.

EXERCISE 44 Formalise the following, using a lexicon of your choice
Romeo loves Juliet; Juliet loves Romeo.

Balbus loves Julia. Julia does not love Balbus. What a pity.1

Fido sits on the sofa; Herbert sits on the chair.
Fido sits on Herbert.
If Fido sits on Herbert and Herbert is sitting on the chair then Fido is sitting on the

chair.
The sofa sits on Herbert. [just because something is absurd doesn’t mean it can’t

be said!]
Alfred drinks more whisky than Herbert; Herbert drinks more whisky than Mary.
John scratches Mary’s back. Mary scratches her own back.
[A binary relation can hold between a thing and itself. It doesn’t have to relate two

distinct things.]

4.1.1 The Syntax of First-order Logic
All the apparatus for constructing formulæ in propositional logic works too in this new
context: If A and B are formulæ so are A ∨ B, A ∧ B, ¬A and so on. However we nowThere is really an abuse of

notation here: we should use
quasi-quotes . . .

have new ways of creating formulæ, new gadgets which we had better spell out:

Constants and variables

Constants tend to be lower-case letters at the start of the Roman alphabet (‘a’, ‘b’ . . . )
and variables tend to be lower-case letters at the end of the alphabet (‘x’, ‘y’, ‘z’ . . . ).
Since we tend to run out of letters we often enrich them with subscripts to obtain a
larger supply: ‘x1’ etc.

1I found this in a Latin primer: Balbus amat Juliam; Julia non amat Balbum . . . .
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Predicate letters

These are upper-case letters from the Roman alphabet, usually from the early part:
‘F’ ‘G’ . . . . They are called predicate letters because they arise from a programme
of formalising reasoning about predicates and predication. ‘F(x, y)’ could have arisen
from ‘x is fighting y’. Each predicate letter has a particular number of terms that it
expects; this is the arity of the letter. Unary predicates have one argument, binary
predicates have two; n-ary have n. ‘loves’ has arity 2 (it is binary) ‘sits-on’ is binary
too. If we feed it the correct number of terms—so we have an expression like F(x, y)—
we call the result an atomic formula.

The equality symbol ‘=’ is a very special predicate letter: you are not allowed
to reinterpret it the way you can reinterpret other predicate letters. The Information
Technology fraternity say of strings that cannot be assigned meanings by the user that
they are reserved; elsewhere such strings are said to be part of the logical vocabulary.
The equality symbol ‘=’ is the only relation symbol that is reserved. In this respect it
behaves like ‘∧’ and ‘∀’ and the connectives, all of which are reserved in this sense.

Similarly arity of functions. [say a bit more about this]
Atomic formulæ can be treated the way we treated literals in propositional logic:

we can combine them together by using ‘∧’ ‘∨’ and the other connectives. lots of illustrations here please

Quantifiers

Finally we can bind variables with quantifiers. There are two: ∃ and ∀. We can write
things like

(∀x)F(x): Everything is a frog;
(∀x)(∃y)L(x, y) Everybody loves someone

To save space we might write this second as

(∀xy)L(x, y)

The syntax for quantifiers is variable-preceded-by quantifier enclosed in brackets,
followed by stuff inside brackets:

(∃x)(. . .) and (∀y)(. . .)

We sometimes omit the pair of brackets to the right of the quantifier when no ambiguity
is caused thereby.

The difference between variables and constants is that you can bind variables with
quantifiers, but you can’t bind constants. The meaning of a constant is fixed. Beware!
This does not mean that constants are reserved words! The constant ‘a’ can denote
anything the user wants it to denote, it doesn’t wander around like the denotation of a
variable such as ‘x’. Confusingly that’s not to say that there are no reserved constants;
there are plenty in formalised mathematics, the numerals 0, 1 . . . for starters. should probably Say something

about this. . . free
complete this explanation;
quantifiers are connectives too
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For example, in a formula like

(∀x)(F(x)→ G(x))

the letter ‘x’ is a variable: you can tell because it is bound by the universal quantifier.
The letter ‘F’ is not a variable, but a predicate letter. It is not bound by a quantifier,
and cannot be: the syntax forbids it. In a first-order language you are not allowed
to treat predicate letters as variables: you may not bind them with quantifiers. Bind-
ing predicate letters with quantifiers (treating them as variables) is the tell-tale sign of
second-order Logic.

We also have

Function letters

These are lower-case Roman letters, typically ‘ f ’, ‘g’, ‘h’ . . . . We apply them to vari-
ables and constants, and this gives us terms: f (x), g(a, y) and suchlike. In fact we can
even apply them to terms: f (g(a, y)), g( f (g(a, y), x)) and so on. So a term is either a
variable or a constant or something built up from variables-and-constants by means of
function letters.

What is a function? That is, what sort of thing are we trying to capture with function
letters? We have seen an example: father-of is a function: you have precisely one
father; son-of is not a function. Some people have more than one, or even none at all.

Say something about father as a one-place predicate is really defined in terms of
a two-place predicate father-of and since it satisfies a uniqueness condition there is
naturally a function father-of.

4.1.2 Warning: Scope ambiguities
Perhaps this could be moved
into a section called something
like ‘subtleties of evaluation’

“All that glisters is not gold”

is not

(∀x)(glisters(x)→ ¬gold(x))

and

“All is not lost”

is not

(∀x)(¬lost(x))

The difference is called a matter of scope. ‘Scope’? The point is that in “(∀x)(¬ . . .)”
the “scope” of the ‘∀x’ is the whole formula, whereas in the ‘¬(∀x)(. . .) it isn’t.

It is a curious fact that humans using ordinary language can be very casual about
getting the bits of the sentence they are constructing in the right order so that each bit
has the right scope. We often say things that we don’t literally mean. (“Everybody
isn’t the son of . . . ” when we mean “Not everybody is . . . ”) On the receiving end,
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when trying to read things like (∀x)(∃y)(x loves y) and (∃y)(∀x)(x loves y), people
often get into tangles because they try to resolve their uncertainty about the scope of
the quantifiers by looking at the overall meaning of the sentence rather than by just
checking to see which order they are in!

4.1.3 First-person and third-person

Natural languages have these wonderful gadgets like ‘I’ and ‘you’. These connect
the denotation of the expressions in the language to the users of the language. This
has the effect that if A is a formula that contains one of these pronouns then different
tokens of A will have different meanings! This is completely unheard-of in the lan-
guages of formal logic: it’s formula types that the semantics gives meanings to, not
formula-tokens. Another difference between formal languages and natural languages
is that the users of formal languages (us!) do not belong to the world described by the
expressions in those languages. (Or at least if we do then the semantics has no way of
expressing this fact.) Formal languages do have variables, and variables function gram-
matically like pronouns, but the pronouns they resemble are third person pronouns not
first- or second-person pronouns. This is connected with their use in science: no first-
or second-person perspective in science. This is because science is agent/observer-
invariant. Connected to objectivity. The languages that people use/discuss in Formal
Logic do not deal in any way with speech acts/formula tokens: only with the types of
which they are tokens.

Along the same lines one can observe that in the formal languages of logic there is
no tense or aspect or mood.

4.2 Some exercises to get you started
You might also like to think if any of these arguments are valid.

EXERCISE 45
Render the following fragments of English into predicate calculus, using a lexicon of
your choice.

This first bunch involve monadic predicates only and no nested quantifiers.

1. Every good boy deserves favour;
George is a good boy;
Therefore George deserves favour.

2. All cows eat grass;
Daisy eats grass;
Therefore Daisy is a cow.

3. Socrates is a man;
all men are mortal;
Therefore Socrates is mortal.
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4. Daisy is a cow;
all cows eat grass;
Therefore Daisy eats grass.

5. Daisy is a cow;
all cows are mad;
Therefore Daisy is mad.

6. No thieves are honest;
some dishonest people are found out.
Therefore Some thieves are found out.

7. No muffins are wholesome;
all puffy food is unwholesome.
Therefore all muffins are puffy.

8. No birds except peacocks are proud of their tails;
some birds that are proud of their tails cannot sing.
Therefore some peacocks cannot sing.

9. A wise man walks on his feet;
an unwise man on his hands.
Therefore no man walks on both.

10. No fossil can be crossed in love;
an oyster may be crossed in love.
Therefore oysters are not fossils.

11. All who are anxious to learn work hard;
some of these students work hard.
Therefore some of these students are anxious to learn.

12. His songs never last an hour;
A song that lasts an hour is tedious;
Therefore his songs are never tedious.

13. Some lessons are difficult;
what is difficult needs attention;
Therefore some lessons need attention.

14. All humans are mammals;
all mammals are warm blooded;
Therefore all humans are warm-blooded.

15. Warmth relieves pain;
nothing that does not relieve pain is useful in toothache;
Therefore warmth is useful in toothache.

16. Louis is the King of France;
all Kings of France are bald.
Therefore Louis is bald.
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EXERCISE 46 Render the following into Predicate calculus, using a lexicon of your
choice. These involve nestings of more than one quantifier, polyadic predicate letters,
equality and even function letters.

1. Anyone who has forgiven at least one person is a saint.

2. Nobody in the logic class is cleverer than everybody in the history class.

3. Everyone likes Mary—except Mary herself.

4. Jane saw a bear, and Roger saw one too.

5. Jane saw a bear and Roger saw it too.

6. Some students are not taught by every teacher;

7. No student has the same teacher for every subject.

8. Everybody loves my baby, but my baby loves nobody but me.

EXERCISE 47 These involve nested quantifiers and dyadic predicates
Match up the formulæ on the left with their English equivalents on the right. Duplicates page 113?

(i) (∀x)(∃y)(x loves y) (a) Everyone loves someone
(ii) (∀y)(∃x)(x loves y) (b) There is someone everyone loves
(iii) (∃y)(∀x)(x loves y) (c) There is someone that loves everyone
(iv) (∃x)(∀y)(x loves y) (d) Everyone is loved by someone

EXERCISE 48 Render the following pieces of English into Predicate calculus, using a
lexicon of your choice.

1. Everyone who loves is loved;

2. Every horse is an animal so every head of a horse is the head of an animal.

3. Everyone loves a lover;

4. The enemy of an enemy is a friend

5. The friend of an enemy is an enemy

6. Any friend of George’s is a friend of mine

7. Jack and Jill have at least two friends in common

8. Two people who love the same person do not love each other.

9. None but the brave deserve the fair.

10. If there is anyone in the residences with measles then anyone who has a friend
in the residences will need a measles jab.
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11. No two people are separated by more than six steps of aquaintanceship.

This next batch involves nested quantifiers and dyadic predicates and equality.

EXERCISE 49 Render the following pieces of English into Predicate calculus, using a
lexicon of your choice.

1. There are two islands in New Zealand;

2. There are three2 islands in New Zealand;

3. tf knows (at least) two pop stars;

(You must resist the temptation to express this as a relation between tf and a
plural object consisting of two pop stars coalesced into a kind of plural object
like Jeff Goldblum and the Fly3. You will need to use ‘=’, the symbol for equality.)

4. If there is to be a jackpot winner it will be me.

This is much trickier than it looks. If you are having difficulty with it, here is a
hint . . . . What is the top-level connective?

5. You are loved only if you yourself love someone [other than yourself!];

6. At least two Nobel prizewinners have changed Professor Körner’s nappies.

7. God will destroy the city unless there are (at least) two righteous men in it;

8. There is at most one king of France;

9. I know no more than two pop stars;

10. There is precisely one king of France;

11. I know three FRS’s and one of them is bald;

12. Brothers and sisters have I none; this man’s father is my father’s son.

13. * Anyone who is between a rock and a hard place is also between a hard place
and a rock.

EXERCISE 50 Using the following lexicon

S (x): x is a student;
L(x): x is a lecturer;
C(x): x is a course;
T (x, y, z): (lecturer) x lectures (student) y for (course) z;
A(x, y): (student) x attends (course) y;
F(x, y): x and y are friends;
R(x): x lives in the residences;
M(x): x has measles;

2The third is Stewart Island
3See [16]
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Turn the following into English. (normal English: something you can imagine
yourself saying—no xs and ys.)

(∀x)(F(Kim, x)→ F(Alex, x))

(∀x)(∃y)(F(x, y) ∧ M(y) ∧ Z(y))

(∀x)(F(Kim, x)→ Z(x))

(∀x)((Z(x) ∧ M(x))→ F(Kim, x))

(∀x)(Z(x)→ (∃y)(F(x, y) ∧ M(y)))

(∀x)(S (x)→ (∃yz)(T (y, x, z)))

(∃x)(S (x) ∧ (∀z)(¬A(x, z)))

(∃x)(C(x) ∧ (∀z)(¬A(z, x)))

(∃x)(L(x) ∧ (∀yz)(¬T (x, y, z)))

(∀x1x2)[(∀z)(A(x1, z)←→ A(x2, z))→ x1 = x2]

(∀x1x2)[(∀z)(A(z, x1)←→ A(z, x2))→ x1 = x2]

(∀y)(∃x, z)(T (x, y, z))→ (∀u, v)(¬T (y, u, v))

(∀xy)(x , y→ (∃z)(F(z, x)←→ ¬F(z, y)))

EXERCISE 51 Look up ‘monophyletic’. Using only the auxilliary relation “is de-
scended from” give a definition in first-order logic of what it is for a monadic predicate
of lifeforms to be monophyletic.

F is monophyletic iff both (∀xy)((F(x)∧F(y)→ (∃z)(F(z)∧D(z, x)∧D(z, y))) and
(∀x)(∀y)(F(x)→ (D(x, y)→ F(y))) hold
Should probably also accept (∃x)(∀y)(D(x, y)←→ F(y))

EXERCISE 52 Consider the two formulæ

(∀x)(∃y)(L(x, y)) and (∃y)(∀x)(L(x, y)).

Does either imply the other?

If we read ‘L(x, y)’ as ‘x loves y’ then what do these sentences say in ordinary English? Duplicates page 111?

I think of this exercise as a kind of touchstone for the first-year student of logic.
It would be a bit much to ask a first-year student (who, after all, might not be going
on to do second-year logic) to give a formal proof of the implication or to exhibit a
countermodel to demonstrate the independence, but exercise 52 is a fair test. Need some formalisation exer-

cises using function symbols
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4.3 Comparatives and Superlatives
Perhaps here some chat about comparatives and superlatives. The superlatives will prepare us for
Russell’s theory of descriptions. And also prepare us for some chat about predicate modifiers.

In the old grammar books I had at school we were taught that adjectives had three
forms: simple (“cool”) comparative (“cooler”) and superlative (“coolest”).

We can define superlatives in terms of comparatives because if you are the coolest
thing around then no-one is cooler than you. Or does it mean that you are cooler than
everyone [else]? Can you be first-equal? cooler-than is obviously transitive. Is it
irreflexive?haven’t defined ‘transitive’ yet

4.4 Russell’s Theory of Descriptions
‘There is precisely one King of France and he is bald’ can be captured satisfactorily
in predicate calculus/first-order logic by anyone who has done the preceding exercises.
We get

(∃x)((K(x) ∧ (∀y)(K(y)→ y = x) ∧ B(x))) (A)

Is the formulation we arrive at the same as what we would get if we were to try to
capture (B)?

“The King of France is bald” (B)

Well, if (A) holds then the unique thing that is King of France and is bald certainly
sounds as if it is going to be the King of France, and it is bald, and so if (A) is true then
the King of France is bald. What about the converse (or rather the contrapositive of the
converse)? If (A) is false, must it be false that the King of France is bald? It might be
that (A) is false because there is more than one King of France. In those circumstances
one might want to suspend judgement on (B) on the grounds that we don’t yet know
which of the two prospective Kings of France is the real one, and one of them might be
bald. Indeed they might both be bald. Or we might be cautious and say that we can’t
properly use expressions like “the King of France” at all unless we know that there is
precisely one. If there isn’t precisely one then allegations about the King of France
simply lack truth-value—or so one might feel.

What’s going on here is that we are trying to add to our language a new quantifier,
a thing like ‘∀’ or ‘∃’—which we could write ‘(Qx)(. . .) so that ‘(Qx)(F(x))’ is true
precisely when the King of France has the property F. The question is: can we translate
expressions that do contain this new quantifier into expressions that do not contain it?Is this the first place where we

talk about translations? The answer depends on what truth-value you attribute to (B) when there is no King
of France. If you think that (B) is false in these circumstances then you may well be
willing to accept (A) as a translation of it, but you won’t if you think that (B) lacks
truth-value.

If you think that (A) is the correct formalisation of (B), and that in general you
analyse “The F is G” as

(∃x)((F(x) ∧ (∀y)(F(y)→ y = x) ∧G(x))) (C)

then you are a subscriber to Russell’s theory of descriptions.
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4.5 First-order and second-order

We need to be clear right from the outset about the difference between first-order and
second-order. In first-order languages predicate letters and function letters cannot be
variables. The idea is that the variables range only over individual inhabitants of the
structures we consider, not over sets of them or properties of them. This idea—put
like that—is clearly a semantic idea. However it can be (and must be!) given a purely
syntactic description.

In propositional logic every wellformed expression is something which will evalu-
ate to a truth-value: to true or to false. These things are called booleans so we say
that every wellformed formula of propositional logic is of type bool. Explain this idiom

In first order logic it is as if we have looked inside the propositional letters ‘p’, ‘q’
etc that were the things that evaluate to true or to false, and have discovered that the
letter—as it might be—‘p’ actually, on closer inspection, turned out to be ‘F(x, y)’. To
know the truth-value of this formula we have to know what objects the variables ‘x’
and ‘y’ point to, and what binary relation the letter ‘F’ represents.

4.5.1 Higher-order vs Many-Sorted

Predicate modifiers

A predicate modifier is a second-order function letter. They are sometimes called ad-
verbial modifiers. For example we might have a predicate modifierV whose intended
meaning is something like “a lot” or “very much’, so that if L(x, y) was our formalisa-
tion of x loves y thenV(L(x, y)) means x loves y very much.

Review comparative and superlative
They could be represented in higher order logic by two predicate modifiers. The

‘ER’ (comparative) modifier takes a one-place predicate letter and returns a two-place
predicate letter. The ‘EST’ (superlative) operator takes a one-place predicate letter and
returns another one-place predicate letter.

Another predicate modifier is too.

No woman can be too thin or too rich.
Not a good example

We will not consider them further.

Many-sorted

If you think the universe consists of only one kind of stuff then you will have only one
domain of stuff for your variables to range over. If you think the universe has two kinds
of stuff (for example, you might think that there are two kinds of stuff: the mental and
the physical) then you might want two domains for your variables to range over. If
you are a cartesian dualist trying to formulate a theory of mind in first-order logic you
would want to have variables of two sorts: for mental and for physical entities.
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4.6 Validity
Once you’ve tangled with a few syllogisms you will be able to recognise which of
them are good and which aren’t. ‘Good’? A syllogism (or any kind of argument in this
language, not just syllogisms) is valid if the truth of the conclusion follows from the
truth of the premisses simply by virtue of the logical structure of the argument. Recall
the definition of valid argument from propositional logic. You are a valid argument
if you are a token of an argument type such that every token of that type with true
premisses has a true conclusion. We have exactly the same definition here! The only
difference is that we now have a slightly more refined concept of argument type.

We can use the expressive resources of the new language to detect that

Socrates is human
All humans are mortal
Socrates is mortal

. . . is an argument of the same type as

Daisy is a cow
all cows are mad
Daisy is mad

Both of these are of the form:

M(s) (∀x)(M(x)→ C(x))
C(s)

We’ve changed the letters but that doesn’t matter. The overall shape of the two
formulæ is the same, and it’s the shape that matters.

The difference between the situation we were in with propositional logic and the
situation we are in here is that we don’t have a simple device for testing validity the
way we had with propositional logic. There we had truth tables. To test whether an
argument in propositional logic is valid you form the condition whose antecedent is the
conjunction of the premisses of the argument and whose consequent is the conclusion.
The argument is valid iff the conditional is a tautology, and you write out a truth-table
to test whether or not the conditional is a tautology.

I am not going to burden you with analogues of the truth-table method for predicate
logic. For the moment what I want is merely that you should get used to rendering
English sentences into predicate logic, and then get a nose for which of the arguments
are valid.

There is a system of natural deduction we can set up to generate all valid arguments
capturable by predicate calculus and we will see it in section 4.7 but for the moment I
want to use this new gadget of predicate calculus to describe some important concepts
that you can’t capture with propositional logic.

Armed with this new language we can characterise some important properties:
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DEFINITION 23 A relation R is

symmetrical if (∀x)(∀y)(R(x, y)←→ R(y, x))
transitive if (∀x)(∀y)(∀z)((R(x, y) ∧ R(y, z))→ R(x, z))
reflexive if (∀x)(R(x, x))
irreflexive if (∀x)(¬R(x, x))
extensional if (∀x)(∀y)(x = y←→ (∀z)(R(x, z)←→ R(y, z)).

Finally a relation that is transitive, reflexive and symmetrical is an equivalence rela-
tion.

(People aften say ‘symmetric’ instead of ‘symmetrical’.)
The binary relation “full sibling of” is symmetrical, and so is the binary relation

“half-sibling of”. However, “full sibling of” is transitive whereas “half-sibling of” is
not; “full sibling of” is an equivalence relation (always assuming you are your own full
sibling)

Notice that a relation can be extensional without its converse being extensional: the
relation R(x, y) defined by “x is the mother of y” is extensional (because two women
with the same children are the same woman) but its converse isn’t (because two distinct
people can have the same mother).

There is a connection of ideas between ‘extensional’ as in ‘extensional relation’
and ‘extension’ as contrasted with ‘intension’,

It’s worth noting that

x is bigger than y; y is bigger than z. Therefore x is bigger than z. (S)

is not valid. (S) would be a valid argument if

(∀xyz)(bigger-than(x, y)∧ bigger-than(y, z)→bigger-than(x, z). (T)

were a logical truth. However (T) is not a logical truth. (S) is truth-preserving
all right, but not in virtue of its logical structure. It’s truth-preserving once we have
nailed down (as we noted, the Computer scientists would say “reserved”) the words
‘bigger-than’. Another way of making the same point is to say that the transitivity of
bigger-than is not a fact of logic: it’s a fact about the bigger-than relation. It’s not true
of the relation is-a-first-cousin-of nor of the relation is-a-half-sibling-of.

One way of putting this is to say that (T) is not a logical truth because there are
other things with the same logical structure as it which are not true. If you replace ‘is
bigger than’ in (T) by ‘is the first cousin of’ you obtain a false statement.

Notice in contrast that

(∀x∀y∀z)(x = y ∧ y = z → x = z)

is a logical truth! This is because ‘=’ is part of the logical vocabulary and we are
not allowed to substitute things for it.

Beginners often assume that symmetrical relations must be reflexive. They are
wrong, as witness “rhymes with”, “conflicts with”, “can see the whites of the eyes of”,
“is married to”, “is the sibling of” and many others.
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Observe that equality is transitive, reflexive and symmetrical and is therefore an
equivalence relation.

These properties of relations are in any case useful in general philosophy but they
are useful in particular in connection with possible world semantics to be seen in chap-
ter 6.

Observe that transitive, symmetrical, irreflexive, extensional etc are second-
order properties, being properties of properties/relations.Be careful! We want to say

that they are first-order but that
wellfounded is second-order.
Find the correct thing to say.

Wellfounded relations

ontological dependence

Not all relations are unary or binary

It may be worth making the point that not all relations are unary or binary relations.
Topical mundane examples are the three-place relation “student s is lectured by lecturer
l for course c”, or the four-place relation “Course c is lectured by lecturer l in room r
at time-slot t”.

There is also a natural three-place relation of betweenness that relates points on a
line, but that doesn’t concern us much as philosophers. Yet another example (again
not of particular philosophical interest but cutely everyday) is the three-place relation
of “later than” between times on a clock. We cannot take this relation to be binary
because, if we do, it will simply turn out to be the universal relation—every time on
the clock is later than every other time if you wait long enough:

3 o’clock is later than 12 o’clock. (A)

and

12 o’clock is later than 3 o’clock. (B)

(A) and (B) are both true, which is not what we want.
However, with a three-place relation we can say things like

Starting at 12 o’clock we first reach 3 o’clock and then 6 o’clock. (A′)

and

Starting at 12 o’clock we first reach 6 o’clock and then 3 o’clock. (B′)

Now (A′) is true and (B′) is false, which makes the distinction we want.
So we think of our three-place relation as “starting at x and reading clockwise we

encounter y first and then z”.

This is a simple illustration of a fairly common move in metaphysics. It happens
every now and then that there is an (apparently) binary relation that you are trying
vainly to make sense of, but things start to clarify only once you realise that the relation
holds not between the two things you were thinking of but between those two and an
extra one lurking in the background that you had been overlooking.
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Higher-order again

Notice that you are not allowed to bind predicate letters. It is in virtue of this restriction
that this logic is sometimes called first-order Logic. As we explained in section 4.1.1
if you attempt to bind predicate letters you are engaging in what is sometimes called
second-order logic and the angels will weep for you. It is the work of the Devil.

For the moment we are going to concentrate on just reading expressions of predicate
calculus, so that we feel happy having them around and don’t panic when they come
and sit next to us on the sofa. And, in getting used to them, we’ll get a feeling for the
difference between those that are valid and those that aren’t.

1. (∀x)(F(x) ∨ ¬F(x))

This is always going to be true, whatever property F is. Every x is either F or it
isn’t. The formula is valid.

2. (∀x)(F(x)) ∨ (∀x)(¬F(x))

This isn’t always going to be true. It says (as it were) that everything is a frog or
everything is not a frog; the formula is not valid. However it is satisfiable: take
F to be a property that is true of everything, or a property that is true of nothing.

3. (∃x)(F(x) ∨ ¬F(x))

This is always going to be true, whatever property F is, as long as there is some-
thing. So it is valid.

4. This next expression, too, is always going to be true—as long as there is some-
thing.

(∃x)(F(x)) ∨ (∃x)(¬F(x))

We adopt as a logical principle the proposition that the universe is not empty.
That is to say we take these last two expressions to be logically true.

5. These two formulæ are logically equivalent:

(∃x)F(x) ¬(∀x)¬F(x)

The only way it can fail to be the case that everything is a non-frog is if there is
a frog! (The universe is not empty, after all)

Similarly:

6. These two formulæ are logically equivalent:

(∀x)F(x) ¬(∃x)¬F(x)

If there are no non-frogs then everything is a frog. These last two identities
correspond to the de Morgan laws that we saw earlier, in exercise 20.

7. These two formulæ are logically equivalent:
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(∃x)(∀y)(F(y)→ F(x)) (∃x)((∃y)F(y))→ F(x))

(hint: what is the principal connective of each of the formulæ?)

EXERCISE 53 In each formula circle the principal connective. (This requires more
care than you might think! Pay close attention to the brackets)

In each of the following pairs of formulæ, determine whether the two formulæ in
the pair are (i) logically equivalent or are (ii) negations of each other or (iii) neither.
The last two are quite hard.

(∃x)(F(x)); ¬∀x¬F(x)
(∀x)(∀y)F(x, y); (∀y)(∀x)F(x, y)
(∃x)(F(x) ∨G(x)); ¬(∀x)(¬F(x) ∨ ¬G(x))
(∀x)(∃y)(F(x, y)); (∃y)(∀x)(F(x, y))
(∃x)(F(x))→ A; (∀x)(F(x)→ A)
(∃x)(F(x)→ A); (∀x)(F(x))→ A

(In the last two formulæ ‘x’ is not free in A)

Wouldn’t it be nice to do without variables, since once they’re bound it doesn’t
matter which they are? It would—and there is a way of doing it, called Predicate
Functor Logic. Quine [38] and Tarski-Givant [44] wrote about it, and we will see
glimpses in chapter 7. Unfortunately it seems that the human brain (most of them
anyway—certainly mine and probably yours) are not configured to process the kind of
syntax one is forced into if one doesn’t have variables. As far as I know all natural
languages have pronouns rather than the contrivances required by variable-free syntax.

4.7 Natural Deduction Rules for First-Order Logic
To the natural deduction rules for propositional calculus we add rules for introducing
and eliminating the quantifiers:

Rules for ∃

A(t)
∃-int(∃x)(A(x)

[A(t)](1)

...
C (∃x)(A(x))

∃-elim(1)
C

(4.1)

Notice the similarity between ∨-elimination and ∃-elimination.

Rules for ∀
...

A(t)
(∀x)(A(x))∀−int (∀x)(A(x))

A(t) ∀-elim
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To prove that everything has property A, reason as follows. Let x be an object about
which we know nothing, reason about it for a bit and deduce that x has A; remark that
no assumptions were made about x; Conclusion: all xs must therefore have property A.
But it is important that x should be an object about which we know nothing, otherwise
we won’t have proved that every x has A, merely that A holds of all those x’s that
satisfy the conditions x satisfied and which we exploited in proving that x had A. The
rule of ∀-introduction therefore has the important side condition: ‘t’ not free in the
premisses. The idea is that if we have proved that A holds of an object x selected
arbitrarily, then we have actually proved that it holds for all x.

The rule of ∀-introduction is often called Universal Generalisation or UG for
short. It is a common strategy and deserves a short snappy name. It even deserves a
joke.4 explain ‘arbitrary’

THEOREM 24 Every government is unjust.

Proof: Let G be an arbitrary government. Since G is arbitrary, it is certainly unjust.
Hence, by universal generalization, every government is unjust.

This is of course a fallacy of equivocation.

In the propositional calculus case a theorem was a formula with a proof that had
no undischarged assumptions. We have to tweak this definition slightly in this new
situation of natural deduction rules for first-order logic. We have to allow undischarged
assumptions like t = t: it’s hard to see how else we are going to prove obvious logical
truths like (∀x)(∀y)(x = y → y = x). (The fact that symmetry of equality is a logical
truth is worth noting. This is because equality is part of the logical vocabulary . . . ) Must say a lot more about

equality being part of the log-
ical vocabularyHowever, we will not develop this further but will procede immediately to a sequent

treatment.
more exercises here?

4.8 Sequent Rules for First-Order Logic

∀ left:
F(t),Γ ` ∆

(∀x)(F(x)),Γ ` ∆
∀ − left

where ‘t’ is an arbitrary term Do they know what a term is?

(If ∆ follows from Γ plus the news that Trevor has property F then it will certainly
follow from Γ plus the news that everybody has property F.) eigenvariable

∀ right:

Γ ` ∆, F(t)
Γ ` ∆, (∀x)(F(x)) ∀ − right

4Thanks to Aldo Antonelli.
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where ‘t’ is a term not free in the lower sequent. We explain ∀-R by saying: if we have
a deduction of F(a) from Γ then if we replace every occurrence of ‘a’ in Γ by ‘b’ we
have a proof of F(b) from the modified version [b/a]Γ. If there are no occurrences of
‘a’ to replace then [b/a]Γ is just Γ and we have a proof of F(b) from the original Γ. But
that means that we have proved (∀x)(F(x)) from Γ.Surely ‘t’ has to be a constant

not an arbitrary closed term
∃ left:

F(a),Γ ` ∆
(∃x)(F(x)),Γ ` ∆

∃ − left

where ‘a’ is a variable not free in the lower sequent.

∃ right:

Γ ` ∆, F(t)
Γ ` ∆, (∃x)(F(x)) ∃ − right

where ‘t’ is an arbitrary term.
(Notice that in ∀-L and ∃-R the thing that becomes the bound variable (the eigen-

variable) is an arbitrary term whereas with the other two rules it has to be a variable)
We will of course have to allow sequents like ` x = x as initial sequents.
You might like to think about what the subformula property would be for first-order

logic. What must the relation “subformula-of” be if it is to be the case that every proof
of a formula φ using only these new rules is to contain only subformulæ of φ?

4.8.1 Repeat a warning
Now is probably as a good a places as any to remind oneself that the sequent rules for
the quantifiers—like the sequent rules for the propositional connectives—always work
at top level only. One of my students attempted to infer

(∀x)(A ∨ F(x)) ` A ∨ (∀x)F(x)

from
(∀x)(A ∨ F(x)) ` A ∨ F(x)

by means of ∀-R. Check that you understand why this is wrong.

4.8.2 Some more exercises
EXERCISE 54 Find proofs of the following sequents:
¬∀xφ(x) ` ∃x¬φ(x);
¬∃xφ(x) ` ∀x¬φ(x);
φ ∧ ∃xψ(x) ` ∃x(φ ∧ ψ(x));
φ ∨ ∀xψ(x) ` ∀x(φ ∨ ψ(x)),
φ→ ∃xψ(x) ` ∃x(φ→ ψ(x)),
φ→ ∀xψ(x) ` ∀x(φ→ ψ(x)),
∃xφ(x)→ ψ ` ∀x(φ(x)→ ψ)
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∀xφ(x)→ ψ ` ∃x(φ(x)→ ψ),
∃xφ(x) ∨ ∃xψ(x) ` ∃x(φ(x) ∨ ψ(x)),
∀xφ(x) ∧ ∀xψ(x) ` ∀x(φ(x) ∧ ψ(x)),

In this exercise φ and ψ are formulæ in which ‘x’ is not free, while φ(x) and ψ(x)
are formulæ in which ‘x’ may be free.

EXERCISE 55 Prove the following sequents. The first one is really quite easy. (It is
Russell’s paradox of the set of all sets that are not members of themselves, and it’s
related to Grelling’s paradox that we saw on p. 34) (See section 10.4.) The third
sequent underlines the fact that you do not need a biconditional in the definition of
‘symmetric’.

1. ` ¬(∃x)(∀y)(P(y, x)←→ ¬(P(y, y)))

2. ` [(∃x)(∀y)(P(y, x)←→ (P(y, y)→ p))]→ p

3. ∀x∀y(R(x, y)→ R(y, x)) ` ∀x∀y(R(x, y)←→ R(y, x));

4. ` ¬(∃x)(∀y)(P(y, x)←→ (∀z)(P(z, y)→ ¬P(y, z)))

This formula concerns the modified paradox of Russell concerning the set of
those sets that are not members of any member of themselves.

It is noticeably harder, and is recommended mainly for enthusiasts. You will
certainly need to “keep a copy”! You will find it much easier to find a proof
that uses cut. Altho’ there is certainly a proof that never has more than one
formula on the right you might wish to start off without attempting to respect this
constraint.

5. Find a proof of the following sequent:

(∀x)[P(x)→ P( f (x))] ` (∀x)[P(x)→ P( f ( f (x)))]

For this you will definitely need to keep a copy. (On the left, as it happens) We need some natural deduc-
tion exercises for FOL

6. Find natural deduction and sequent proofs of

(∃x)A(x), (∀x)(A(x)→ B( f (x))) ` (∃x)B(x).

[This formula doesn’t need you to keep a copy but it does use function symbols.
Need more exercises on function symbols.]

4.9 Equality and Substitution
Frege gave a definition of equality, using higher-order logic. Equality is a deeply deeply
problematic notion in all branches of philosophy, so it was really quite brave of Frege
to even attempt to define it. His definition of equality says that it is the intersection of
all reflexive relations. Recall from definition 23 that a binary relation R is reflexive if
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R(w,w) holds for all w: (That’s what the ‘(∀w)(R(w,w))’ is doing in the formula 4.9
below.) So Frege’s definition is

x = y iff (∀R)[(∀w)(R(w,w))→ R(x, y)] (4.2)

The first thing to notice is that this definition is second-order! You can tell that
by the ‘(∀R)’ and the fact that the ‘R’ is obviously a predicate letter because of the
‘R(w,w)’.

Notice that this definition is not circular (despite what you might have expected
from the appearance of the word ‘reflexive’) since the definiendum does not appear in
the definiens.

4.9.1 Substitution
Consider the binary relation “every property that holds of x holds also of y and vice
versa”. This is clearly reflexive! If x and y are equal then they stand in this relation
(because two things that are equal stand in every reflexive relation, by definition) so
they have the same properties. This justifies the rule of substitution. (If you have good
French have a look at [13]).

A(t) t = x
substA(x)

(4.3)

In the rule of substitution you are not obliged to replace every occurrence of ‘t’ by
‘x’. (This might remind you of the discussion on page 60 where we consider cancelling
premisses.)

The following example is a perfectly legitimate use of the rule of substitution,
where we replace only the first occurrence of ‘t’ by ‘x’. In fact this is how we prove
that equality is a symmetrical relation!

t = t t = x substx = t (4.4)

Given that, the rule of substitution could more accurately be represented by

A[t/x] t = x
substA

(4.5)

. . . the idea being that A is some formula or other—possibly with free occurrences
of ‘x’ in it—and A[t/x] is the result of replacing all free occurrences of ‘x’ in A by ‘t’.
This is a bit pedantic, and on the whole our uses of substitution will look more like 4.3
than 4.5.

However we will definitely be using the A[t/x] notation in what follows, so be
prepared. Sometimes the [t/x] is written the other side, as

[t/x]A. (subst)

This notation is intended to suggest that [t/x] is a function from formulæ to formulæ
that is being applied to the formula A.
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One thing that may cause you some confusion is that sometimes a formula with a
free variable in it will be written in the style “A(x)” making the variable explicit. Some-
times it isn’t made explicit. When you see the formula subst above it’s a reasonable bet
that the variable ‘x’ is free in A, or at least could be: after all, there wouldn’t be much
point in substituting ‘t’ for ‘x’ if ‘x’ weren’t free, now would it?!

4.9.2 Leibniz’s law
“The identity of indiscernibles”. This is a principle of second-order logic:

(∀xy)((∀R)(R(x)←→ R(y))→ x = y) (4.6)

The converse to 4.6 is obviously true so we can take this as a claim about the nature
of equality: x = y iff (∀R)(R(x)←→ R(y)).

It’s not 100% clear how one would infer that x and y are identical in Frege’s sense
merely from the news that they have the same monadic properties: Frege’s definition
talks about reflexive relations, which of course are binary. The claim that 4.6 charac-
terises equality (by which we mean that if we replace ‘=’ in 4.6 by any other binary
relation symbol the result is no longer true) is potentially contentious. It is known as
Leibniz’s Law.

4.10 Prenex Normal Form
There is a generalisation of CNF and DNF to first-order logic: it’s called Prenex nor-
mal form. The definition is simplicity itself. A formula is in Prenex normal form if it
is of the form

(Qv1)(Qv2) · · · (Qvn)(....)

where the Qs are quantifiers, and the dots at the end indicate a purely proposi-
tional formula: one that contains no quantifiers, and is in conjunctive normal form. All
quantifiers have been “pulled to the front”.

EXERCISE 56 Which of the following formulæ are in Prenex normal form? Insert some formulae here!!

THEOREM 25 Every formula is logically equivalent to one in PNF.

To prove this we need to be able to “pull all quantifiers to the front”. What does
this piece of italicised slang mean? Let’s illustrate:

(∀x)F(x) ∧ (∀y)G(y)

is clearly equivalent to
(∀x)(∀y)(F(x) ∧G(y))

(If everything is green and everything is a frog then everything is both green and a frog,
and vice versa).
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In exercise 54 the point in each case is that in the formula being deduced the scope
of the quantifier is larger: it has been “pulled to the front”. If we keep on doing this to
a formula we end up with something that is in PNF. ]
. . . and explain to your flatmates what this has to do with theorem 25.Explain why PNF is

important—why normal
form theorems are important
in general. It imposes a linear
order on the complexity of
formulæ.

4.11 Soundness again

At this point we should have a section analogous to section 3.3 where we prove the
soundness of natural deduction for propositional logic and section 3.5.1 where we
prove the soundness of sequent calculus for propositional logic.Work to be done here

You will discover that it’s nowhere near as easy to test predicate calculus formulæ
for validity as it is to test propositional formulæ: there is no easy analogue of truth-
tables for predicate calculus. Nevertheless there is a way of generating all the truth-
preserving principles of reasoning that are expressible with this syntax, and we will be
seeing them, and I hope to prove them complete.well, will you or won’t you?

You must get used to the idea that all notions of logical validity, or of sound in-
ference, can be reduced to a finite set of rules in the way that propositional logic can
and predicate calculus can. Given that—as we noted on p 37—the validity of an argu-
ment depends entirely on its syntactic form, perhaps we should not be surprised to find
that there are finite mechanical methods for recognising valid arguments. However this
holds good only for arguments of a particularly simple kind. If we allow variables to
range over predicate letters then things start to go wrong. Opinion is divided on how
important is this idea of completeness. If we have something that looks like a set of
principles of reasoning but we discover that it cannot be generated by a finite set of
rules, does that mean it isn’t part of logic?see page 69

Mention here other notions of
validity: true in all finite mod-
els: true in all infinite models

In contrast to soundness, completeness is hard. See section 4.13.

4.12 Hilbert-style Systems for First-order Logic

At this point there should be a section analogous to section 3.6. However I think we
can safely omit it.

4.13 Semantics for First-order Logic

This section is not recommended for first-years.

4.13.1 stuff to fit in

We arrived at the formulæ of first-order logic by a process of codifying what was logi-
cally essential in some scenario or other. Semantics is the reverse process: picking up a
formula of LPC and considering what situations could have given rise to it by the kind
of codification that we have seen in earlier exercises such as 45.
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A valid formula is one that is true in all models. We’d better be clear what this
means! So let’s define what a model is, and what it is for a formula to be true in a
model.

[Signatures, structures, carrier set. Then we can explain again the difference be-
tween a first-order theory and a higher-order theory.]

Now we have to give a rigorous explanation of what it is for a formula to be true in
a structure.

Say something about how the ′ operation on variables has no semantics.
Also, the cute facts about words beginning with ‘sn’ or with ‘gl’ will not be cap-

tured by the kind of semantics we are about to do.

Semantics is the process of allocating extensions to intensions.

Semantics is useful for independence results. Peirce’s law independent of K and S .
Mind you, to do that we have to un-reserve→.

4.13.2 Syntactic types for the various pieces of syntax
It may be worth making the point that you can actually tell, on being a formula in
some language (plus the information that it is a well-formed formula) what “part of
speech” (to use the old terminology) each piece of syntax is at least if you have some
minimal extra information—such as being able to recognise the quantifiers and the
left and right parentheses, perhaps. Any symbol that immediately follows a quantifier
must be a variable. Any symbol that immediately precedes a variable must be (if not a
quantifier) then either a function symbol or a predicate symbol.

Thus each piece of syntax has a type, which reflects its rôle in the assembly of
formulæ. For example we say that constant symbols (and variables) have type ind,
since (in an interpretation) they point to individuals—inhabitants of the carrier5 set.
Similarly propositional constants are of type bool, since in any interpretation they
point to a truth-value.

Other pieces of syntax have more complicated (“molecular”) types:
One-place predicate symbols are of type ind -> bool

One-place function symbols are of type ind -> ind
Quantifiers are of type (ind -> bool) -> bool Marry this up with the material

on page 131Determiners are of type (ind -> bool) -> ((ind -> bool) -> bool)
Naturally we also have: Enlarge on this a bit

n-place predicate symbols are of type indn -> bool

n-place function symbols are of type indn -> ind

For example in
(∀x)( f (x) = 1)

you can tell that ‘x’ is a variable since one occurrence of it is preceded by a quan-
tifier. The symbol ‘1’ must be a constant symbol since it sits immediate to the right of
n occurrence of ‘=’. ‘ f ’ must now be either a function symbol or a predicate symbol

5“Carrier set” not yet defined
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because it is applied to a variable. Now the result of applying it to the variable sits to
the left of an occurrence of ‘=’ and therefore must be of type ind. This tells us that ‘ f ’
is a function symbol (has type ind -> ind) rather than type ind -> bool.

Aquiring the habit of performing this kind of calculation in your head makes for-
mulæ much more digestible and less scary, since it tells you how to read them. Indeed
this “part-of-speech” system of typing for the various pieces of syntax is a useful way
of thinking when we come to semantics . . . to which we now turn.

4.14 Truth and Satisfaction

In this section we develop the ideas of truth and validity (which we first saw in the case
of propositional logic) in the rather more complex setting of predicate logic.

We are going to say what it is for a formula to be true in a structure. We will
achieve this by doing something rather more general. What we will give is—for each
language L—a definition of what it is for a formula of L to be true in a structure.
Semantics is a relation not so much between an expression and a structure as between
a language and a structure. [Slogan: semantics for an expression cannot be done in
isolation.]

We know what expressions are, so what is a structure? It’s a set with knobs on.
You needn’t be alarmed here by the sudden appearance of the word ‘set’. You don’t
need to know any fancy set theory to understand what is going on. The set in question
is called the carrier set, or domain. One custom in mathematics is to denote structures
with characters in uppercase FRAKTUR font, typically with an ‘M’.

The obvious examples of structures arise in mathematics and can be misleading,
and in any case are not really suitable for our expository purposes here. We can start
off with the idea that a structure is a set-with-knobs on. Here is a simple example that
cannot mislead anyone.

The carrier set is the set {Beethoven, Handel, Domenico Scarlatti} and the knobs
are (well, is rather than are because there is only one knob in this case) the binary
relation is-the-favourite-composer-of. We would obtain a different structure by adding
a second relation: is-older-than perhaps.



4.14. TRUTH AND SATISFACTION 129

Beethoven

Handel

Scarlatti

If we are to make sense of the idea of an expression being true in a structure then the
structure must have things in it to match the various gadgets in the language to which
the expression belongs. If the expression contains a two-place relation symbol ‘loves’
then the structure must have a binary relation on it to correspond. This information is
laid down in the signature. The signature of the structure in the composers example
above has one binary relation symbol and three constant symbols; the signature of set
theory is equality plus one binary predicate; the signature of the language of first-order
Peano arithmetic has slots for one unary function symbol, one nullary function symbol
(or constant) and equality.

Let’s have some illustrations, at least situations where the idea of a signature is
useful.

• Cricket and baseball resemble each other in a way that cricket and tennis do not.
One might say that cricket and baseball have the same signature. Well, more
or less! They can be described by giving different values to the same set of
parameters.

• It has been said that a French farce is a play with four characters, two doors and
one bed. This aperçu is best expressed by using the concept of signature.

• Perhaps when you were little you bought mail-order kitsets that you assem-
bled into things. When your mail-order kitset arrives, somewhere buried in the The modern version is IKEA
polystyrene chips you have a piece of paper (the “manifest”) that tells you how
many objects you have of each kind, but it does not tell you what to do with them.
Loosely, the manifest is the signature in this example. Instructions on what you
do with the objects come with the axioms (instructions for assembly).
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• Recipes correspond to theories: lists of ingredients to signatures.

Structure Signature Axioms
French Farce 4 chars, 2 doors 1 bed Plot
Dish Ingredients Recipe
Kitset list of contents Instructions for assembly
Cricket/baseball innings, catches, etc Rules
Tennis/table tennis

A telephone directory is a structure with a total order, and a name for every element.
It has no other structure. As the old joke has it: lots of characters but no plot. A rather
linear narrative.

4.14.1 Definition of “truth-in-a-structure”
First we need to decide what our structure is to be. Suppose it is M, with carrier set
M. Next we need the concept of an interpretation. This is a function assigning to
each predicate letter, function letter and constant in the language a subset of Mn, or a
function Mk → M, or element of M mutatis mutandis. That is to say, to each syntactic
device in the language, the interpretation assigns a component ofM of the appropriate
arity. For this to be possible it is necessary that the structure and our language have the
same signature.

Now we have to get straight the difference between the rôles played by the various
different kinds of lexical items . . . what one might call the different parts of speech.

The first difference is between the logical vocabulary and the non-logical vocabu-
lary. The non-logical vocabulary is open to various kinds of stipulation, whereas the
nonlogical vocabulary isn’t. You might object that the symbol ‘∧’ acquires its meaning
(logical conjunction) by stipulation, which of course it does. However, in this game,
that particular kind of stipulation happened at the beginning of time, and it is not for us
to choose to make ‘∧’ mean anything else. Similarly ‘∀’, ‘∃’ and even ‘=’.

We are free to stipulate the meanings of the predicate symbols, the function letters,
the constants and the variables. There are two ways in which we stipulate these, and it is
helpful at this point to draw a contrast with the propositional case. The only nonlogical
vocabulary in the propositional case is the propositional letters, and we stipulate them
by means of valuations. The meaning of the items of the logical vocabulary emerges
from the way in which the semantics of complex expressions (complexed from the
propositional letters) emerges from the semantics of those propositional letters. (I don’t
want to say meaning of the propositional letters co’s in this case I mean truth-value
rather than anything intensional such as meaning.)

In the propositional case we stipulate (by means of valuations) the semantics of the
propositional letters, so that then the compositional rules for the connectives (the bits
of logical vocabulary) tell us the truth value of the complex formulæ.

In the first-order case there are two kinds of non-logical vocabulary, and they are
controlled by stipulation in two different ways. The two kinds are (i) constant symbols,
predicate letters and function symbols and (ii) individual variables. Now this difference
between the two kinds of non-logical vocabulary doesn’t corrrespond neatly to a type
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distinction such as we have just seen. Individual variables will be given a semantics
differently from constants, even tho’ both these gadgets are of type ind. Constants are
of a different syntactic type from predicate symbols, but their meanings are stipulated
in the same way. . . in a way which we must now explain. reserved word

There is a difference in Compsci-speak between configure time and run time. If
these expressions have any meaning for you, savour it. If not, don’t worry.

It’s at configure-time that we decide on the semantics of the constant symbols,
predicate letters and function symbols. That’s when we decide what the structure is to
be. Suppose we fasten on a structure M. This act determines what the universe (what
the totality of things over which our variables range) is going to be: it’s going to be the
carrier set M ofM. The interpretation now tells us which element of M corresponds to
which constant symbol, which subset of M corresponds to which one-place predicate
letter, which subset of M × M corresponds to which two-place predicate letter, which This is the first mention of

cartesian productsubset of Mn corresponds to which n-place predicate letter, which function Mn → M
corresponds to which n-place function letter. Thus an interpretation is a function that
sends

(individual) constant symbols to elements of M;
n-ary predicate symbols to subsets of Mn;
n-adic function symbols to functions Mn → M;
(propositional) constant symbols to true or false.

Marry this up with the material
on page 127An interpretation matches up the signature-in-the-language with the signature-in-

the-structure.
I shall use the calligraphic letter ‘I’ to vary over interpretations.

We have now equipped the language with an interpretation so we know what the
symbols mean, but not what the values of the variables are. In other words, settling
on an interpretation has enabled us to reach the position from which we started when
doing propositional logic.

When we did semantics for propositional logic I encouraged you to think of valua-
tions (rows in the truth-table) as states, as scenarios. The idea will be useful here too.
The interpretation tells us what the constant symbols point to, but it can’t tell us what
the variables point to. To understand how variables point to things we need a notion of
state very redolent of the notion of state suggested by propositional valuations.

It’s rather like the position we are in when contemplating a computer program but
not yet running it. When we run it we have a concept of instantaneous state of the
program: these states (snapshots) are allocations of values to the program variables.
Let us formalise a concept of state.

An assignment function is a function that takes a variable and returns a member
of M. (If we want to make it clear that we are talking about assignment functions
under an interpretation I we will speak of I-assignment functions.) What do we do
with assignment functions? Reflect that we don’t really want to say of a formula with
a free variable in it that it is true or that it is false—not straightforwardly anyway.
But we do want to say something of that nature that takes the assignment functions
into account. The gadget we need is a relation-between-assignment-functions-and-
formulæ of satisfaction. We want to be able to say that an assignment function satisfies
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a formula. Thus we say—for example—that an assignment function f satisfies the
formula ‘R(x)’ as long as that element of the domain M to which f sends the variable
‘x’ belongs to the subset of M to which the interpretation I sent the letter ‘R’.

Got that last bit? Read it again just to be sure.

The satisfaction relation between formulæ and assignment functions is defined
“compositionally”—by recursion on the subformula relation. Clearly an assignment
function will satisfy a conjunction iff it satisfies both conjuncts and will satisfy a dis-
junction iff it satisfies at least one of the disjuncts. The recursion steps for the quanti-
fiers are fiddly, and depend on whether or not we insist that the assignment functions
be total.

The recursions for the quantifiers

This is annoying and fiddly, because what one has to do depends very sensitively on
whether one’s assignment functions are total or partial.

• If our assignment functions are total, one says that

– f satisfies (∃x)(φ(x)) as long as f satisfies φ(x);

– f satisfies (∀x)(φ(x)) as long as φ(x) is satisfied by every f ′ which differs
from f only for input ‘x’.

• If our assignments functions are allowed to be partial one says that

– f satisfies (∃x)(φ(x)) as long as either (i) f is defined on ‘x’ and satisfies
φ(x), or (ii) f is not defined on ‘x’ but has an extension f ′ ⊃ f which
satisfies φ(x);

– f satisfies (∀x)(φ(x)) as long as φ(x) is satisfied by every f ′ which differs
from f only for input ‘x’.

I cannot put my hand on my heart and swear that I have got these right. Fiddly
details like these one tends to disregard!! If you ever find that you absolutely have toNo such disclaimer allowed
be on top of this detail contact me and we’ll go over it together.

Now we are in a position to define what it is for an expression φ to be true-
according-to-the-interpretation I. Again, we have two ways to proceed: (i) with
total assignment functions (ii) with partial assignment functions.

1. If our assignment functions have to be total then φ is true-according-to-the-
interpretation I iff every I–assignment-function satisfies φ.

2. If our assignment functions may be partial then φ is true-according-to-the-
interpretation I iff the empty assignment function satisfies φ.
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4.14.2 An illustration
Let’s illustrate with an example

(∃x)(F(x) ∧ ¬(x = a))

The ‘∃’, the ‘∧’ and the ‘=’ are part of the logical vocabulary. No stipulation. The
‘F’ is a part of the nonlogical vocabulary and when we stipulate our domain M we
also stipulate which subset of M is to be the extension of ‘F’. ‘a’ too is part of the
nonlogical vocabulary and when we stipulate our domain M we also stipulate which
element of M is to be the extension/denotation of ‘a’. The variable ‘x’ is a different
matter. A valuation f satisfies ‘F(x) ∧ ¬(x = a)’ if the member of M to which it sends
the variable ‘x’ is something other than the denotation (according to the interpretation
I) of the constant symbol ‘a’ and moreover is a member of that subset of M to which
the interpretation I has sent the predicate letter ‘F’. So is (∃x)(F(x) ∧ ¬(x = a)) true?
It is true as long as every valuation satisfies it. (Or if the empty valuation satisfies it—if
our valuations are allowed to be partial)

In search of another example, we can return to Handel, Scarlatti and Beethoven.
The languageL has the signature of one binary relation “is the favourite composer of”.
The structure into which we are going to interpret L has carrier set

{Beethoven, Handel, Domenico Scarlatti}

and our interpretation sends “is the favourite composer of” to the set (the relation-in-
extension)

{〈Handel, Beethoven〉, 〈Handel, Domenico Scarlatti〉, 〈Domenico Scarlatti, Handel〉}.

H I A T U S Novels, plays here?

DEFINITION 26
A theory is a set of formulæ closed under deduction.
We say T decides ψ if T ` ψ or T ` ¬ψ.
Let us extend our use of the ‘L’ notation to write ‘L(T )’ for the language to which T
belongs.6

A theory T is complete if T decides every closed φ in L(T ).
A Logic is a theory closed under uniform substitution.

Theories can arise in two ways: syntactically and semantically.
Syntactically a theory can arise as the set of deductive consequences of a set of

assumptions (in this context always called axioms that grab our attention somehow.
An example is set theory: we discover these entities which we call sets and we think
for a bit and come up with some principles that they might obey.

6For sticklers:
L(T ) =:

⋃
s∈T

L(s)

where L(s) is as defined in the second part of definition 15 on page 89.
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A typical semantic way for a theory to arise is as the set of things true in a given
structure M. Such a theory is denoted by ‘Th(M)’. Thus Th(M) = {φ : M |= φ}.
Theories that arise in this way, as the set of things true in a particular structure, are of
course complete—simply because of excluded middle.

A related typical way in which a theory can arise is as the set of all sentences true
in a given class of structures.

Surprisingly some theories that arise in this second way can be complete too: DLO
is the theory of dense linear orders. It is expressed in a languageL(DLO) with equality
and one two-place predicate <. Its axioms say that < is transitive and irreflexive, and
that between any two things there is a third, and that there is no first or last element.

EXERCISE 57 Write out the axioms of DLO. Can there be a finite model of DLO?7

It’s not hard to show that this theory is complete, using a famous construction of
Huntington. However we cannot do that until we have corollary 30.

A famous example of an incomplete theory is the theory known as Peano Arith-
metic. Its incompleteness was proved by Gödel.

We need one more technicality: the concept of a countable language. A first-order
language with a finite lexicon has infinitely many expressions in it, but the set of those
expressions is said to be countable: that is to say we can count the expressions using the
numbers 1, 2, 3, 4 . . . which are sometimes called the counting numbers and sometimes
called the natural numbers. (If you were a mathematics or computer science student I
would drag you kicking and screaming through a proof of the fact that the set of finite
strings you can form from a finite alphabet can be counted.). The set of natural numbers
is usually written with a capital ‘N’ in a fancy font, for example IN. There is some small
print to do with the fact that we might have an infinite supply of variables . . . . After
all, there is no limit on the length of expressions so there is no limit on the number of
variables that we might use, so we want to be sure we will never run out. The best way
to do this is to have infinitely many variables to start with. We can achieve this while
still having a finite alphabet by saying that our variables will be not ‘x’, ‘y’ . . . but ‘x’,
‘x′’, ‘x′′’ . . . the idea being that you can always make another variable by plonking a
‘′’ on the right of a variable. (Notice that the systematic relation that holds between a
variable and the new variable obtained from it by whacking it on the right with a ‘′’
has no semantics: the semantics that we have cannot see through into the typographical
structure of the variables.)

THEOREM 27 Every theory in a countable language can be extended to a complete
theory.

Proof: Suppose T is a theory in a language L(T ) which is countable. Then we count
the formulæ in L(T ) as φ1, φ2 . . . and define a sequence of theories Ti as follows.

T0 = T and thereafter

Ti+1 is to be Ti if Ti decides φi and is Ti ∪ {φi} otherwise.
7Some of my students said there is if you drop axiom 6, or something like that. There’s a belief there that

the object persists through changes done to it, like Theseus’ ship. Sets aren’t like that. Must find something
useful to say about this. . .
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The theory T∞ =:
⋃
{Ti : i ∈ IN} is now a complete theory.

There is no suggestion that this
can be done effectively
Set-theoretic notation. . . ?4.14.3 Completeness

∈-terms

For any theory T we can always add constants to L(T ) to denote witnesses to ∃n sen-
tences in T . ∃n sentence? ‘witness’ to exis-

tential quantifiers not explained
yet

Suppose T ` (∃x)(F(x)). There is nothing to stop us adding toL(T ) a new constant
symbol ‘a’ and adding to T an axiom F(a). Clearly the new theory will be consistent
if T was. Why is this? Suppose it weren’t, then we would have a deduction of ⊥ from
F(a). But T also proves (∃x)(F(x)), so we can do a ∃-elimination to have a proof of ⊥
in T . But T was consistent.

Notice that nothing about the letter ‘a’ that we are using as this constant tells us
that a is a thing which is F. We could have written the constant ‘aF’ or something
suggestive like that. Strictly it shouldn’t matter: variables and constant symbols do
not have any internal structure that is visible to the language8, and the ‘F’ subscript
provides a kind of spy-window available to anyone mentioning the language, but not
to anyone merely using it. The possibility of writing out novel constants in suggestive
ways like this will be useful later.

EXERCISE 58

(1) Find a proof of the sequent ` (∃x)(∀y)(F(y)→ F(x));
(2) Find a natural deduction proof of (∃x)(∀y)(F(y)→ F(x));
(3) Find a proof of the sequent ` (∃x)(F(x)→ (∀y)(F(y)));
(4) Find a natural deduction proof of (∃x)(F(x)→ (∀y)(F(y))).

The first item tells us that for any F with one free variable we can invent a constant
whose job it is to denote an object which has property F as long as anything does. If
there is indeed a thing which has F then this constant can denote one of them, and as
long as it does we are all right. If there isn’t such a thing then it doesn’t matter what
the constant denotes. There is a similar argument for the formula in parts 3 and 4. The
appeal to the law of excluded middle in this patter should alert you to the possibility
that this result is not constructively correct. (So you should expect to find that you have Do they know “constructively

correct”?to use the rule of double negation in parts 2 and 4 and will have two formulæ on the
right at some point in the proof of parts 1 and 3.)

This constant is often written (εx)F(x). Since it points to something that has F as
long as there is something that has F, we can see that

(∃x)(F(x)) and F((εx)F(x))

are logically equivalent. So we have two rules

(∃x)(F(x)) and F((εx)F(x))
F((εx)F(x)) (∃x)(F(x))

8Look again at formula 11.2 on page 218 and the discussion on page 104.
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The right-hand rule is just a special case of ∃-introduction but the left-hand rule is
new, and we call it ε-introduction. In effect it does the work of ∃-elimination, because
in any proof of a conclusion φ using ∃-elimination with an assumption (∃x)F(x) we
can replace the constant (as it might be) ‘a’ in the assumption F(a) being discharged
by the ε term ‘(εx)F(x)’ to obtain a new proof of φ, thus:

[A(t)](1)

...
C (∃x)(A(x))

∃-elim(1)
C

(4.7)

with

(∃x)(A(x))
ε-intA((εx)(A(x)))

...
C

(4.8)

. . . where, in the dotted part of the second proof, ‘t’ has been replaced by ‘(εx)(A(x))’
Notice that this gives us an equivalence between a formula that definitely belongs

to predicate calculus (co’s it has a quantifier in it) and something that appears not
to9. Hilbert was very struck by this fact, and thought he had stumbled on an important
breakthrough: a way of reducing predicate logic to propositional logic. Sadly he hadn’t,
but the ε-terms are useful gadgets all the same, as we are about to see.Explain ‘binder’?

Observe that the failure of Exercise 58 constructively is not a fact purely about
the constructive existential quantifier, but also the constructive conditional. Check that
constructively there isn’t even a proof of ¬(∀x)¬(∀y)(F(y) → F(x)); nor is there a
proof of (∃x)(∀y)¬(F(y) ∧ ¬F(x))—so it isn’t the constructive conditional either!

THEOREM 28 Every consistent theory in a countable language has a model.

Proof:
Let T1 be a consistent theory in a countable language L(T1).
We do the following things

1. Add axioms to T1 to obtain a complete extension;

2. Add ε terms to the language.

Notice that when we add ε-terms to the language we add new formulæ: if ‘(εx)F(x))’
is a new ε-term we have just added then ‘G((εx)F(x)))’ is a new formula, and T1 doesn’t
tell us whether it is to be true or to be false. That is to say L(T1) doesn’t contain
‘(εx)F(x)’ or ‘G((εx)F(x)))’. Let L(T2) be the language obtained by adding to L(T1)
the expressions like ‘(εx)F(x)’ and ‘G((εx)F(x)))’.

We extend T1 to a new theory in L(T2) that decides all these new formulæ we have
added. This gives us a new theory, which we will—of course—call T2. Repeat and

9The ‘ε’ is not a quantifier, but it is a binder: something that binds variables. ‘∃’ and ‘∀’ are binders of
course, and so is ‘λ’ which we will meet in chapter 7.
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take the union of all the theories Ti we obtain in this way: call it T∞. (Easy to see that
all the Ti are consistent—we prove this by induction).

It’s worth thinking about what sort of formulæ we generate. We added terms like
(εx)(F(x)) to the language of T1. Notice that if H is a two-place predicate in L(T ) then
we will find ourselves inventing the term (εy)H(y, (εx)F(x)) which is a term of—one
might say—depth 2. And there will be terms of depth 3, 4 and so on as we persist with
this process. All atomic questions about ε terms of depth n are answered in Tn+1.

T∞ is a theory in a language L∞, and it will be complete. The modelM for T∞ will
be the structure whose carrier set is the set of ε terms we have generated en route. All
questions about relations between the terms in the domain are answered by T∞. Does
this makeM into a model of T? We will establish the following:

LEMMA 29 M |= φ(t1, . . . tn) iff T∞ ` φ(t1, . . . tn)

Proof: We do this by induction on the logical complexity of φ. When φ is atomic
this is achieved by stipulation. The induction step for propositional connectives is
straightforward. (Tho’ for one direction of the ‘∨’ case we need to exploit the fact that
T∞ is complete, so that if it proves A ∨ B then it proves A or it proves B.)

The remaining step is the induction step for the quantifiers. They are dual, so we
need consider only ∀. We consider only the hard direction (L→ R).

Suppose M |= (∀x)φ(x, t1, . . . tn). Then M |= φ(t0, t1, . . . tn) for all terms t0. In
particular it must satisfy it even when t0 = (εx)(¬φ(x, t1, . . . tn)), which is to say

M |= φ((εx)(¬φ(x, t1, . . . tn)), t1, . . . tn)

So, by induction hypothesis we must have

T∞ ` φ((εx)(¬φ(x, t1, . . . tn)), t1, . . . tn)

whence of course T∞ ` (∀x)φ(x, t1, . . . tn).

This completes the proof of theorem 28. Observe the essential rôle played by the ε
terms.

This is a result of fundamental importance. Any theory that is not actually self-
contradictory is a description of something. It’s important that this holds only for first-
order logic. It does not work for second-order logic, and this fact is often overlooked.
(If you want a discussion of this, look at appendix 11.3.2). A touching faith in the
power of the completeness theorem is what lies behind the widespread error of reifying
possibilities into possible worlds. See [17].

Notice that this proof gives us something slightly more than I have claimed. If
the consistent theory T we started with was a theory in a countable language then the
model we obtain by the above method is also countable. It’s worth recording this fact:

COROLLARY 30 Every consistent theory in a countable language has a countable
model.

Is this the point at which to start
making a fuss about noncon-
structive proof?
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4.15 Interpolation
There is a precise analogue in predicate calculus of the interpolation lemma for propo-
sitional logic of section 3.7.

THEOREM 31 The Interpolation Lemma
If A→ B is a valid formula of first-order logic then there is a formula C containing

only predicate letters that appear in both A and B such that A → C and C → B are
both valid formulæ of first-order logic.

A proof of this fact is beyond the scope of this course. The proof relies on the
subformula property mentioned earlier. The disjoint-vocabulary case is intuitively
obvious, but it’s not at all clear how to do the induction.

Close attention to the details of the proof of the completeness theorem will enable
us to prove it and get bounds on the complexity of the interpolating formula. These
bounds are not very good!

The interpolation lemma is probably the most appealing of the consequences of the
completeness theorem, since we have very strong intuitions about irrelevant informa-
tion. Hume’s famous dictum that one cannot derive an “ought” from an “is” certainly
arises from this intuition. The same intuition is at work in the hostility to the ex falso
sequitur quodlibet that arises from time to time: if there has to be a connection in
meaning between the premisses and the conclusion, then an empty premiss—having
no meaning—can presumably never imply anything.

4.16 Compactness
Recall section 3.10 at this point.

4.17 Skolemisation
EXERCISE 59 Using either natural deduction or sequent calculus, deduce

(∀x1)(∃y1)(∀x2)(∃y2)(R(x1, y1) ∧ R(x2, y2) ∧ (x1 = x2 → y1 = y2))
from

∀x∃yR(x, y)
Schütte’s proof

Skolemised theories and synonymy.

4.18 What is a Proof?
“No entity without identity” said Quine. The point he is making is that you can’t claim
to know what your entities (widgets, wombats . . . ) are until you have a way of telling
whether two given widgets, wombats . . . are the same widget, wombat . . . or not. One
of the difficulties with proof theory is that although our notions of proof allow us to tell
whether two proofs are the same or not, they generally seem to be too fine.
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Consider the sequent
P(a), P(b) ` (∃x)P(x).

Given our concept of sequent proof it has two proofs depending on whether we
instantiate ‘x’ to ‘a’ or to ‘b’. But do we really want to distinguish between these two
proofs? Aren’t they really the same proof? This looks like a problem: if one had the
correct formal concept of proof, one feels, it would not be making spurious distinctions
like this. A correct formalisation would respect the folk-intuitions that the prescientific
notion comes with. Not all of them, admittedly, but some at least, and surely this one.
Arriving at the most parsimonious way of thinking about phenomena is part of what
good old conceptual analysis is for.

But does it matter? There are people who say that it doesn’t. Ken Manders is Work to do here
a philosopher of Mathematics at Pittsburgh who says that all formalisations of pre-
scientific concepts result in spurious extra detail in this way, and that it’s just a fact
of life. His favoured examples are knots and computable functions. He thinks this is
inevitable: this is the kind of thing that does just happen if you mathematise properly.
Typically there won’t be just one right way of thinking about any mathematical entity.
The error of thinking that there is always precisely one he lays at Frege’s door.

This makes me think: might we not be able to avoid this overdetermination by
having an operationalist view of mathematical entities? Operationalism is usually a
dirty word in Philosophy of Science and Ken says this is because it results in very
impoverished theoretical entities (He mentions Bridgeman in this connection).

So why might it be less problematic in Mathematics? Anything to do with the
idea that Mathematics has no subject matter? If you are a scientific realist then oper-
ationalism is clearly a bad idea because it won’t capture the full throbbing reality of
the entities you are looking at. But in Mathematics. . . ? If it is true that anything done
with sufficient rigour is part of Mathematics then we might be all right. Of course the
idea that Mathematics has no subject matter is just, in new dress, the old idea that all
of Mathematics is a priori and has no empirical content. Better still, it might even be
the correct expression of that insight. Reference?

EXERCISE 60 If S and T are theories, S ∩ T is the set of those formulæ that are
theorems of both S and T .

Show that, if S and T are both finitely axiomatisable, so is S ∩ T.

4.19 Relational Algebra
Some syllogisms seem to invite formalisation without variables:

“All A are B, all B are C, so all A are C”

asks to be formalised as:

A ⊆ B, B ⊆ C, so A ⊆ C;

Similarly
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“All A are B, some A are C, so some B are C”

asks to be formalised as

A ⊆ B, A ∩C , ∅, so B ∩C , ∅.

We are tempted to try to get rid of the “intrusive” variable ‘x’ in ‘(∀x)(A(x) → B(x))’,
‘(∃x)(A(x)∧C(x))’ and so on, and to express this all using only the Venn diagram stuff

we learnt at school.
We recycle the predicate letters as letters that point to sets. Predicate letters point

to predicates, which can be thought of as either properties-in-intension or properties-
in-extension—it doesn’t matter. The sets that the recycled letters point to are definitely
extensional things!Fit this in somewhere: take a

formula of the Σ1 fragment of
second-order logic. Delete the
existential quantifiers. The re-
sult is a formula in 1st order
logic with function letters. If
it is refutable then so was the
Σ1 formula we started with. So
there is a refutation procedure
for the Σ1 fragment of second-
order logic.
Similarly there is a refutation
procedure for the set of for-
mulæ true in all finite struc-
tures.

All this is fine. In fact all the earlier exercises 45 [and possibly others—check!] that
use only monadic logic can be captured in this way. The reader might like to attempt a
few, just to get the hang.

We can do even more, and quite neatly, but we need cartesian product. (This is
where it turns up first)

We encountered ordered pairs on page 36. X × Y is the set of ordered pairs whose
first components are members of X and whose second components are members of Y .
A binary relation-in-extension on a set X is simply a subset of X × X. We write ‘X2’
instead of ‘X × X’.

Thus armed we can give cute characterisations of the properties of transitive, re-
flexive, symmetrical that we saw first in definition 23:

DEFINITION 32 If R ⊆ D2 then

R is symmetrical if R = R−1;
R is transitive if R2 ⊆ R;
R is reflexive if 11D ⊆ R;
R is irreflexive if 11D ∩ R = ∅.

What is 11D? Well, given that you know what a reflexive relation is you can deduce
what 11D must be . . . it’s the identity relation on members of D: {〈x, x〉 : x ∈ D}.

The first line of definition 32 involves an ‘R2’. Do we ever naturally have R3, R4

and so on? After all, if R is transitive we will have R3 ⊆ R, R4 ⊆ R and so on. Observe
that we can infer all these from our definition of transitivity because

R ⊆ S → R ◦ T ⊆ S ◦ T

Composition of two reflexive relations is reflexive;
Intersection of two reflexive relations is reflexive10;
Intersection of two transitive relations is transitive;

All these facts are expressible in first-order logic and are in fact theorems of first-
order logic.

10connect this with Frege’s dfn of equality
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(∀xyz)(R(x, y) ∧ R(y, z).→ R(x, z)) ∧ (∀xyz)(S (x, y) ∧ S (y, z).→ S (x, z))→

(∀xyz)((R(x, y) ∧ S (x, y)) ∧ (R(y, z) ∧ S (y, z)).→ R(x, z) ∧ S (x, z))

A proof would be quite a mouthful.
Look at exercise 48 parts 4 and following:

The friend of my friend is my friend; F ◦ F ⊆ F;
The enemy of an enemy is a friend; E ◦ E ⊆ F;
The enemy of a friend is an enemy; E ◦ F ⊆ E;
The friend of an enemy is an enemy. F ◦ E ⊆ E.

The way to prove these equations is by appeal to extensionality.

It’s a nice fragment of second-order logic
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Chapter 5

Constructive and Classical truth

stuff to fit in
Include my constructive treatment of Sorites? Supervaluationism?

There is one great advantage of constructive existence proofs: there is a technique
for detecting mistakes in (purported) constructive existence proofs that isn’t available
for detecting mistakes in (purported) nonconstructive existence proofs. The construc-
tive existence proof of a wombat tells you where to find the wombat; if you go there
and find no wombat, you know you’ve made a mistake. A nonconstructive existence
proof doesn’t provide that sort of check. The existence proof of The Great Watchmaker
is nonconstructive, so it doesn’t tell us where to find the Great Watchmaker. (There is
Mock Turtle soup so there must be a Mock Turtle!) Thus Paley cannot be refuted
merely by saying “I went to where you told me, and i found nothing!”. He may be
refuted by other means of course, but . . . indeed there are still people hoping to find
him.

It’s very tempting to think that because two proofs give you different information,
they must therefore be proofs of different propositions. This reminds me of the way in
which the deduction theorem for a logic internalises information about that logic. Con-
structive logic internalises some things that classical logic does not. See also Kleene’s
theorem about finite axiomatisability.

To the classically-minded, when someone asserts¬¬p but doesn’t assert p—thereby
revealing that they think there is a difference—it seems that that difference is that they
are not making-an-assertion-about-the-subject-matter-of-p [making an assertion at the
same level as p so to speak] so much as an assertion about the assertion p itself—about
[for example] the prospects for establishing or refuting it.

There are times when you don’t care—in the slightest—that your existence proof
is nonconstructive. Here is a real-life example. The City of Wellington reconfigured
its one-way system in the city centre, to make motorway access and egress easier.
Some one-way streets became one-way in the opposite direction (sense!). In these
circumstances one can be entirely confident that, one day, some Wellingtonian crossing

143
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one of these streets on autopilot will look for oncoming traffic in the wrong direction,
see none, step out and get mown down.

burble ensemble properties.
If you are kind of constructivist who says that because this existence proof (of a

pedestrian casualty) is not constructive then we don’t have to accept its conclusion,
then you are misunderstanding something! The fact that the proof is nonconstructive
doesn’t give us any grounds to hope that no-one will be mown down.

There is an issue in here of more than merely logical concern. Public policy affects
the environment within which individual people make their own decisions. If some
of the decisions made by those individuals result in blameworthy acts, where does
the blame lie? If morality is to have any meaning then people must be blamed for
the blameworthy acts they perform, but should they cop all the blame that is going?
If some of the blameworthy acts being performed would not have been performed if
public policy had taken a different tack, presumably some of the blame being dished
out should lie with the people who control public policy. But how much?

There are some features of this situation that may be worth discussing. The actual
real-life chain of reasoning doesn’t stop with “(∃x)(x is going to get killed)” but rather
“We shouldn’t reconfigure”. Constructively we seem to have established “¬¬(∃x)(x is
going to get killed)” What is the conclusion we are trying to draw? It will be one of

“We should not reconfigure”

and

“It is not the case that we should reconfigure”

and these two are distinct, even classically. Constructively (tho’ not classically) we can
distinguish between negative and non-negative expressions. And any negative assertion
that follows constructively from p also follows from ¬¬p. So, since we have

“(∃x)(x is going to get killed)” implies “It is not the case that we should
reconfigure”

and we know “¬¬(∃x)(x is going to get killed)”, and that the conclusion is negative,
we can infer it from the doubly negated

“¬¬(∃x)(x is going to get killed)”

which we have established, we can safely conclude that it is not the case that we should
configure.

Nonconstructive proof is widespread in real life.
Every artefact has a purpose. It is often possible to determine that something is

an artefact without knowing what that purpose is. When you’ve done that you have a
nonconstructive existence proof.

When you find in the library a body with a knife in its heart you know there is a
murderer but you have no idea who it is. One could say that—seen from outside—
the logical structure of a murder mystery is the process of replacing a nonconstructive
proof of the existence of a murderer by a constructive existence proof.
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end of digression

Suppose you are the hero in a mediæval romance. You have to rescue the Princess
from captivity and maltreatment at the hands of the Evil Dragon. To do this you will
of course need a Magic Sword to cut off the head of the Evil Dragon, and a Magic Key
to open the door of the dungeon, co’s it had a Spell put on it by the Evil Dragon so, if
you are to open it, only a Magic Key will do. How are you to procede? You can cheer A better example is ε-terms
yourself up with the thought: “Things aren’t as bad as they might look. After all, God
In His Infinite Mercy would not have given me this task if it were impossible, if there
were no Magic Key or no Magic Sword it would be impossible. This being the case
there must be a Magic Key and there must be a Magic Sword!

You can say this to yourself—and you’d be right: there must indeed be a Magic
Sword and a Magic Key. However this is not a great deal of use to you. It doesn’t
begin to solve the problem, since what you want is not an existence theorem for Magic
Keys and Magic Swords—what you actually want is to find the gadgets and have them
in your little hot hand. And the chain of reasoning you have just put yourself through,
sound tho’ it undeniably is, tells you nothing about where to find the damned things. It’s
reassuring up to a point, in that this inference-from-authorial-omniscience constitutes
a sort of prophecy that the Magic Key and Magic Sword will turn up eventually, but it
doesn’t put them in your wee sweaty hand. (We will return to Prophecy in section 5.3).

The problem I am trying to highlight1 is one that arises most naturally in Mathe-
matics, and it is in Mathematics that the clearest examples are to be found. (See the
discussion in appendix 11.4.) The mediæval romance is the best I can do in the way of
a non-mathematical example. The phenomenon goes by the name of nonconstructive
existence theorem. We have a proof that there is a whatever-it-is, but the proof that
there is one does not reveal where the whatever-it-is is to be found. Further, this is an
example of a situation where a nonconstructive existence theorem is of very little use,
which of course is why we worry about having a nonconstructive existence proof.

In order not to find ourselves in the predicament of the hero of the mediæval ro-
mance who has proved the existence of the sword and the key but does not know where
to find them we could consider restricting the principles of reasoning we use to those
principles which, whenever they prove that (∃x)(Sword(x)), also prove Sword(a) for
some a. The thinking behind this suggestion is that the Hero’s energies (and perhaps
his wits) are limited, and there is therefore no point in having clever inferences that
supply him with information that he cannot use and which will only distract him.

The principles of reasoning it is suggested we should restrict ourselves to are said
to be constructive and proofs constructed in accordance with them are also said to be
constructive. We have to be able to exhibit the things whose existence we think we
have proved. In fact, one of my students said that principles of reasoning that were
well-behaved in this way should be called “exhibitionist” and that the philosophy of
mathematics that insisted on them should be called “exhibitionism”.

(A reluctance to infer ∀xF(x) from ¬∃x¬F(x) may be what is behind the reluctance
a lot of people have in concluding that vacuous universal quantification always gives
you the true.

⋂
∅ = V . Trivially everything belongs to all members of the empty set. One reason why people are re-

luctant to accept “All A are B”
as a good inference when A is
empty is that when A is empty
there is no experimental sup-
port for “All A are B”

1I nearly said showcase there. . .



146 CHAPTER 5. CONSTRUCTIVE AND CLASSICAL TRUTH

Clearly there cannot be a member of the empty set to which you do not belong (that’s
a ¬∃¬) so you belong to all of them.)

BAD JOIN

You are sitting in your shed, your workshop, at your bench, building a widget. Now
it happens that at some point you have to ascertain whether or not p holds. If it does,
your construction of a widget procedes along one path; if it doesn’t, it proceeds along
a different path. The law of excluded middle tells you that one of the two will hold, so
you’re OK either way: you succeed in constructing you widget. You have an existence
proof: there is (or will be) a widget. You don’t know which of the two (or more—there
may be more than one fork in the road) widgets you get, but you know you will get
one.

So you at least get your existence proof. However, your proof is not constructive.
Notice the significance of the law of excluded middle here. The foregoing means that
if excluded middle didn’t hold then you wouldn’t have an existence proof. You come
to a fork in the road but not only do you not know which branch you will be taking you
don’t even know that there is a way through it. So, in particular (‘a fortiori”!) you don’t
get a nonconstructive existence proof. The point is not that if you didn’t have excluded
middle your proof of the existence theorem would have been constructive; the point is
that if you didn’t have excluded middle you wouldn’t have an existence theorem at all.
But this does at least mean that if you eschew excluded middle then you have closed
off one way, at least, in which nonconstructive existence theorems can happen.

There is a standard example of a conconstructive proof that features the law of
excluded middle in precisely this way. Suppose you are given the challenge of finding
two irrational numbers α and β auch that αβ is rational. It is in fact the case that both e
and loge(2) are transcendental but this is not easy to prove. Is there an easier way in?
Well, one thing every schoolchild knows is that

√
2 is irrational, so how about taking

both α and β to be
√

2? This will work if
√

2
√

2
is rational. Is it? As it happens, it isn’t

(but that, too, is hard to prove). If it isn’t, then we take α to be
√

2
√

2
(which we now

believe to be irrational—had it been rational we would have taken the first horn) and
take β to be

√
2.

αβ is now

(
√

2
√

2
)
√

2 =
√

2
√

2·
√

2
=
√

2
2

= 2

which is rational.2

What does this prove? It certainly doesn’t straightforwardly show that the law of
excluded middle is false; it does show that there are situations where you don’t want
to reason with it. There is a difference between proving that there is a widget, and
actually getting your hands on the widget. Sometimes it matters, and if you happen to
be in the kind of pickle where it matters, then you want to be careful about reasoning
with excluded middle. But if it doesn’t matter, then you can happily use excluded
middle.

2We can actually exhibit such a pair, and using only elementary methods, at the cost of a little bit more
work. log2(3) is obviously irrational: 2p , 3q for any naturals p, q. log√2(3) is also irrational, being

2 · log2(3). Clearly (
√

2)(log√2(3))
= 3.
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“But what” i can hear you asking “is special about excluded middle? What happens
if the fork in the road is p ∨ q where we know that one of them must hold (so we
know that the process continues) but we don’t know which? Don’t we have the same
problem?” A very good point. This is why we have to design constructive logic so that
whenever you prove p∨ q it is beco’s you have proved (or can prove) one of the two, p
and q.

BAD JOIN

Excluded middle isn’t the only thing that can give us nonconstructive proofs. Let’s
go back to our mediæval-romance illustration. What principle of reasoning have we
used that conflicts with exhibitionism? Well, we started off by supposing that there
was no key and no sword, and found that this contradicted the known fact there is a
happy ending. So our assumption must have been wrong. It isn’t true that there is no
key and no sword. That is to say

¬(There is no key) and ¬(There is no sword) (*)

And from this we wished to infer

There is a key and a sword (**)

Now our proof of (*) can’t violate exhibitionism—not literally at least—co’s (*)
isn’t of the form (∃x) . . .. But our proof of (**) definitely can—and it does. And since
the only thing we did to our proof of (*) (which was exhibitionist) to obtain the proof
of (**) (which is not exhibitionist) is to apply of the law of double negation then clearly
that application of the law of double negation was the fatal step.

(And this isn’t a rerun of the problem with reductio ad absurdum that we saw in
section 3.2.1!!!)

Since we can sometimes find ourselves in situations where a nonconstructive proof
is no use to us, we want to distinguish between constructive and nonconstructive proofs
of, say

(∃x)(x is a Magic Sword). (MS)

Typically (tho’ not invariably) a nonconstructive proof of MS will take the form of
an assumption that there are no Magic Swords followed by a deduction of a contradic-
tion from it. Such a proof can be divided into two parts:

1. a first half—not using excluded middle or double negation—in which we derive
a contradiction from ¬(∃x)(x is a Magic Sword), and thereby prove ¬¬(∃x)(x is
a Magic Sword); and

2. a second part in which we use the law of double negation to infer (∃x)(x is a
Magic Sword).

This certainly throws the spotlight on the law of double negation. Let’s intermit
briefly to think about it. One thing to notice is that we can give a natural deduction
proof of triple negation: ¬¬¬p→ ¬p without using the rule of double negation. Indeed
we can prove (((p → q) → q) → q) → (p → q) just using the rules for→. (This was
part 6 of exercise 28 on page 66.)
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Classically we acknowledge nonconstructive proof (in that we think the second part
of the proof is legitimate) and we believe that (∃x)(x is a Magic Sword) and ¬¬(∃x)(x
is a Magic Sword) are the same proposition—and we can do this even while recognis-
ing the important difference between constructive proof and nonconstructive proof. Is
there anything to be said for a contrasting viewpoint in which we acknowledge only
constructive proof and we believe that (∃x)(x is a Magic Sword) and ¬¬(∃x)(x is a
Magic Sword) are different propositions? That is to say we renounce step (2) not be-
cause it gives us misleading information about a true conclusion (namely that it tells
us that there is a Magic Sword without telling us where to find it) but rather because it
tells us something that is simply not true!

The first thing to say here is that our desire to distinguish between constructive and
nonconstructive proof absolutely does not commit us to this second position. It would
be an error to think that because we wish to eschew certain kinds of proof it therefore
follows either that the proofs are not good proofs or that the things whose proofs are
eschewed are not true, or have not been proved. This error has parallels elsewhere.
Here are five I can think of, and no doubt the reader can think of more.

• Philosophers of Science are—rightly—concerned that the endeavour to under-
stand science done by earlier people in the West should not be seen merely as
part of a process whose culminating point is us. They warn us against doing
‘whig history’. One strategy for doing this is to pretend that there is no such
thing as progress in the sciences.

• People who study sociology of science are concerned with how scientific theories
propagate though communities. For them, questions of the content and truth of
those theories are a distraction, and one strategy for not being distracted is to
pretend that the theories simply do not have content.

• A strategy for not worrying about the ills to which flesh is heir is to deny the
reality of matter.

• The law of rape protects girls under the age of consent from the sexual attentions
of men. It protects them whether they are 4, or even 15 and sexually mature.
People who are concerned to protect adolescent girls will not wish any debate
on how to do it to be sidetracked into a discussion of precisely how much worse
a rape of a 4-year old is that of a 15-year old. One way of forstalling such a
discussion is to deny that between these two crimes is there any difference to be
discussed.

• Psychotherapists have to help their clients in their (the clients’) difficulties in
personal relations. The pyschotherapist has no way of telling whether or not
the client’s version of events is true, but they have to help anyway. Therefore
the truth (or otherwise) of the client’s story cannot be a consideration. In these
circumstances it is easy to slip into the position that there is no such thing as
truth.

The fact that the inference from considerations like MS to exhibitionism is falla-
cious doesn’t mean that exhibitionism is mistaken. (If you wish to pursue this look at
[14], [27] and [28].)
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Even if constructivism is a mistake there might nevertheless be something to be
said for exploring some of the consequences of adopting it: plenty of truths have been
inferred from falsehoods (see www.dpmms.cam.ac.uk/˜tf/kannitverstan.html).

5.1 The Radical Translation Problem with Classical and
Constructive Logic

Radical Translation is the problem confronted by the field anthropologist observing
members of an exotic tribe going about their everyday business, doing things, making
utterances and expressing agreement or disagreement. All this is going on in a language
the field anthropologist has no dictionary for, and no interpreter. The problem is: how
does the anthropologist translate utterances of the exotic tribe’s language into his-or-
her own language? There is a procedural problem of course: (“how do you set about
it?”) but there is also a more philosophical problem: what are the criteria for success
or failure? Should the anthropologist be willing to ascribe deviant notions of truth or
deviant notions of inference to the tribe if that makes the translation go more smoothly?
Might the anthropologist ever be forced to the conclusion that the people of the alien
tribe do not believe the law of non-contradiction, for example?

Quine wrote extensively about this problem of radical translation (it all starts in
[37]), and his general drift is that the anthropologist would never (or hardly ever!) be
forced into concluding that the tribe has a deviant notion of truth or a deviant logic;
there would always be enough slop in the system for one to be able to reinterpret
one’s way out of such an impasse. The catchphrase associated with this view was “the
indeterminacy of translation”.

The general view nowadays seems to be that Quine was wrong in at least some of
what he wrote about this, if not all of it. However he did at least do us a favour by
making us think about what the criteria for correct versus incorrect translations might
be. Constructive and classical logic might be a good case study because we have quite
a lot of data to work on. How are classical logicians and constructive logicians to make
sense of what the other is saying? Edit below here

Do constructivists have a different concept of proposition from the rather opera-
tional concept held by classical logicians? For that matter do paraconsistentists have a
different concept of proposition..?

Is it that the two parties have different propositional attitudes that they are calling
by the same name? Or do they have the same attitudes to two different propositions for Readers do not know what a

propositional attitude is; this is
the first appearance of this id-
iom

which they are using the same description? Can they agree on a description of their
disagreement?

This touches a very delicate area in philosophy, and one on which there is very little
satisfactory literature. How can one give a coherent acount of the incoherent? (cf Prior
on the Liar paradox ?reference) Say something about how

there is nothing like the nega-
tive interpretation for paracon-
sistent logics.

The classical logician probably regards the intuitionist’s insistence on putting dou-
ble negations in front of propositions that haven’t been proved constructively as a
manœuvre that imports into the language some considerations that properly belong to
pragmatics. He would say “The constructivist and I agree that there is a Magic Sword,

www.dpmms.cam.ac.uk/~tf/kannitverstan.html
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but our reasons for being sure there is one don’t actually give us a recipe for finding it.
Why not just leave it at that? The logic is surely the last thing to mutilate!” This point
(that Logic is the last thing you tweak in order to accommodate data) is one that Quine
was fond of making.

The classical principles of reasoning preserve truth. What do the principles of
constructive reasoning preserve? The answer you will give seems to depend on whether
you are a classical or a constructive mathematician/logician/philosopher. From the
classical point of view the answer seems to be that they preserve the property of having-
a-proof-that-respects-exhibitionism. And from the constructive point of view? Some
constructivists think that constructive reasoning preserves truth, and some would say
that it preserves something rather-like-truth-but-not-exactly.

Leaving this second flavour of constructivist out of the debate for the moment one
can ask: given that classical and constructive logicians agree that the purpose of rea-
soning is to preserve truth, is the disagreement between them a disagreement about

(i) which things are true? or

(ii) the nature of truth? or

(iii) which rules preserve truth?

If (ii) then does this disagreement arise from a different view of what propositions
are?

For the classical logician a proposition is something that in each setting evaluates
to a truth-value determined by that setting. You hold it up to the light and you see true
or false.3

I suspect that the disagreement is rather over the idea that propositions are charac-
terised by their propensity to evaluate to truth-values.

What is a proposition, constructively?
see [41] and [11].

5.2 Classical Reasoning from a Constructive Point of
View

Let’s approach this radical translation problem from the point of view of the construc-
tive logician. Quine somewhere alludes to a principle of charity: there is a default
assumption that what the foreigner is saying not only can be made sense of but can
probably be made sense of in such a way that it comes out true.

3As it happens there are only two truth-values in this picture but the number of truth-values is not, I think,
the point at issue. Indeed, constructivists even agree that (in some sense) there are no more than two truth
values: the assumption that no two of the three propositions A, B and C agree on their truth value leads to a
contradiction. That is to say there is a constructive proof of the sequent

¬(A←→ B), ¬(B←→ C), ¬(A←→ C) `

Do not waste time trying to find it—it is very big!
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The considerations that led us to consider constructive logic lead us to expect that
if A is a classical tautology then ¬¬A should be constructively correct. This is straight-
forwardly true in the propositional case, and was proved by Glivenko many years ago
([19] and [20].) Let’s announce this fact as a theorem.

THEOREM 33 If there is a classical proof of a formula Φ of propositional logic then
there is a constructive proof of ¬¬Φ.

Proof:
To do this properly we have to have a Hilbert-style axiomatisation (one whose sole

rule of inference is modus ponens) that does not exploit any definitions of connectives
in terms of other connectives. (We retain the definition of ¬ in terms of ⊥). The
obvious thing to do is replace every rule of inference by an axiom taking the form of a
conditional whose antecedent is the premiss and whose consequent is the conclusion.
This gives us immediately the following axioms:

A→ A ∨ B (from ∨-introduction)
A→ B ∨ A (from ∨-introduction)
A ∧ B→ A (from ∧-elimination)
A ∧ B→ B (from ∧-elimination)

If we have more than one premiss in the rule then one gets the following

A→ (B→ (A ∧ B)) (from ∧-introduction)
A→ (B→ (B ∧ A)) (from ∧-introduction)
A→ ((A→ B)→ B) (from→-elimination)
(A→ B)→ (A→ B) (from→-elimination)

The rule of double negation can be captured easily:

¬¬A→ A

The two “action at a distance” rules require a bit more thought. First→-introduction:
Suppose we have a Hilbert proof

A

...

B

We want to obtain from this a Hilbert proof of

...

A→ B
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To do this we exploit the deduction theorem from section 3.6.1. For this it is sufficient
to have K and S as axioms.

∨-elimination is a bit harder. Suppose we have two proofs of C, one from A and
the other from B:

A B
...

...

C C

and we have A ∨ B. How are we to obtain a proof of C?
Well, the two proofs of C will give us proofs of A→ C and of B→ C by means of

the deduction theorem (theorem 13) . So all we need now is an axiom that says

(A→ C)→ ((B→ C)→ ((A ∨ B)→ C))

Now, to complete the proof of Glivenko’s theorem, suppose we have a Hilbert-style
proofD of Φ:

...

Φ

Suppose we simply prefix every formula in the list with ¬¬. What does that give us?
The result—let us call itD∗—isn’t a Hilbert-style proof of ¬¬Φ but we are very nearly
there. It is a string of formulæ wherein every formula is either the double negation of a
(substitution instance of an) axiom or the double negation of a theorem. There are two
key facts that we now need:

1. The double negation of each of the new axioms is constructively provable;

2. There is a Hilbert-style proof (not using double negation!) of ¬¬B from ¬¬A
and ¬¬(A→ B).

So, to obtain our proof of ¬¬Φ from our proof D of A we first decorate D with
double negations to obtainD∗ as above. We next replace every occurrence of a doubly
negated axiom in D∗ with a prefix containing a proof of that doubly negated axiom
that does not use the rule of double negation. Next, wherever we have an entry ¬¬B in
the list that is preceded by ¬¬(A → B) and ¬¬A we insert the missing lines from the
Hilbert-style proof of ¬¬B from ¬¬(A→ B) and ¬¬A.

The result is a Hilbert-style proof of ¬¬Φ.

EXERCISE 61
Provide, without using the rule of double negation,

a natural deduction proof of ¬¬((¬A→ B)→ ((¬A→ ¬B)→ A));
a natural deduction proof of ¬¬B from ¬¬A and ¬¬(¬¬A→ ¬¬B).

Provide proofs of the following sequents, respecting the one-formula-on-the-right
constraint.
` ¬¬((¬A→ B)→ ((¬A→ ¬B)→ A));
¬¬A, ¬¬(¬¬A→ ¬¬B) ` ¬¬B.
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It’s much harder to prove theorem 33 by reasoning about natural deduction proofs
or sequent proofs instead of Hilbert proofs, though it can be done. The reader may have
been wondering why we ever used Hilbert-style proofs in the first place, since they do
not have the subformula property and are so hard to find. The reason is that they are
much better than natural deduction proofs when it comes to proving results like this.

Theorem 33 doesn’t work for predicate calculus because

¬¬(¬(∀x)(F(x))→ (∃x)(¬F(x))) (5.1)

is classically valid but is not constructively provable. Something like theorem 33 is There should be an exercise to
find a countermodel for ittrue, but the situation is more complicated. In the propositional case, the constructive

logician who hears the classical logician assert A can interpret it as ¬¬A. If there are
quantifiers lurking then the constructive logician not only has to whack ‘¬¬’ on the
front of A but has to do something to the inside of A, and it’s not immediately obvious
what that might be. Working out quite what has to be done to the inside of A was one
of the many major contributions to Logic of Gödel [21]. I think the analogue of

Glivenko works for the ∃

fragment but not if you allow
∀.

5.2.1 Interpretations, specifically the Negative Interpretation
(If you are to do any philosophy you will need in any case to think a bit about the
explanatory power of interpretations. It’s behind a lot of reductionist strategies in the
sciences. The negative interpretation is a nice simple example to start on.)

The way the constructive logician narrates this situation is something like the fol-
lowing. Here grokking is a propositional attitude whose precise nature is known at Readers do not know what a

propositional attitude isany rate to the constructive logician but possibly not to anyone else. The constructive
logician muses:4

“The classical logician reckons he can grok A ∨ B whenever he groks A
or groks B but he also says that when he groks A ∨ B it doesn’t follow
from that—according to him—that he groks either of them. How different
from me! When I grok A∨ B it certainly follows that I grok at least one of
them. Since—when he says that he groks A ∨ B—he does at least say that
in those circumstances he cannot grok either ¬A or ¬B, it might be that
what he really means is that he groks something like ¬(¬A ∧ ¬B), since
he can at least grok that without grokking A or grokking B. Accordingly
henceforth, whenever I hear him assert A ∨ B, I shall mentally translate
this into ¬(¬A ∧ ¬B). At least for the moment.”

Or again:

“When the classical logician says that he groks (∃x)W(x) it doesn’t follow
from that—according to him—that there is anything which he groks to be
W, though he certainly groks (∃x)W(x) whenever there is an a such that
he groks W(a). How different from me! When I grok (∃x)W(x) there

4 For you SciFi buffs: Robert Heinlein: Stranger in a Strange Land.
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most certainly is an x which I grok to be W. Since—when he says that he
groks (∃x)W(x)—it is entirely possible that there is no x which he groks
to be W—it must be that what he really means is that he groks something
like ¬(∀x)(¬W(x)) since he can at least grok that even without there being
anything which he groks to be W. Accordingly henceforth whenever I hear
him assert (∃x)W(x) I shall mentally translate this into ¬(∀x)(¬W(x))—at
least until anybody comes up with a better idea.”

and again:

“Given what the classical logician says about the conditional and truth
preservation, it seems to me that when (s)he claims to grok A → B all
one can be certain of it that it cannot be the case that A is true and B is
false. After all, (s)he claims to have a proof of ¬¬A → A! Accordingly
henceforth whenever I hear them assert A → B I shall mentally translate
this into ¬(A ∧ ¬B). That covers the ¬¬A → A case nicely, because
it cannot be the case that ¬¬A is true but that A is false and it captures
perfectly what the buggers say they mean.”

Let us summarise the clauses in the translation here. φ∗ is what the constructive
logician takes the classical logician to be saying when they say φ.

DEFINITION 34 We define φ∗ by recursion on the subformula relation:
φ∗ is ¬¬φ when φ is atomic; φ∗ is φ when φ is negatomic;“negatomic”?

(¬φ)∗ is ¬(φ∗);
(φ ∨ ψ)∗ is ¬(¬φ∗ ∧ ¬ψ∗);
(φ ∧ ψ)∗ is (φ∗ ∧ ψ∗);
(φ→ ψ)∗ is ¬(φ∗ ∧ ¬ψ∗);
((∀x)φ(x))∗is (∀x)(φ(x)∗);
((∃x)φ(x))∗is ¬(∀x)(¬φ(x)∗).

What drives the constructivists’ choices of readings of the classical logicians’ ut-
terances? How did they know to interpret A ∨ B as ¬(¬A ∧ ¬B)? Why do they not
just throw up their hands? Because of the principle of charity from p. 150: this in-
terpretative ruse enables the constructivist to pretend, whenever the classical logician
is uttering something that (s)he believes to be a classical tautology, that what is being
uttered is something that the constructivist believes to be constructively correct. Isn’t
that a feature one would desire for a translation from my language into yours, that it
should send things that look good in my world to things that look good in yours. . . ?
(One wouldn’t want to go so far as to say that it enables the constructivist to actu-
ally understand the classicist, but it does enable him to construe what he hears as both
sensible and true.)

The claim is that if φ is a classical tautology then φ∗ is constructively provable. In
fact we will prove something rather more fine-grained. For this we need the notion of
a stable formula.
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DEFINITION 35 A formula φ is stable if ¬¬φ→ φ is constructively correct.

This is an important notion because if we add the law of double negation to constructive
propositional logic we get classical propositional logic; nothing more is needed.

We will need the following

LEMMA 36 Formulæ built up from negated and doubly-negated atomics solely by ¬,
∧ and ∀ are stable.

Proof: We do this by induction on quantifiers and connectives.
For the base case we have to establish that ¬¬A → A holds if a is a negatomic or

a doubly negated atomic formula. This is easy. The induction steps require a bit more
work.

¬ :

For the case of ¬we need merely the fact that triple negation is the same as single
negation. In fact we can do something slightly prettier.5

[p]2 [p→ q]1

→-elimq
→-int (1)

(p→ q)→ q [((p→ q)→ q)→ q]3

→-elimq
→-int (2)p→ q

→-int (3)
(((p→ q)→ q)→ q)→ (p→ q)

(5.2)

. . . noting that ¬p is just p→ ⊥.

∧ :

We want to deduce (p∧q) from ¬¬(p∧q) given that we can deduce p from ¬¬p
and that we can deduce q from ¬¬q. The following is a derivation of ¬¬p from
¬¬(p ∧ q):

[p ∧ q]1

∧-elimp [¬p]2

→-elim
⊥

→-int (1)
¬(p ∧ q) ¬¬(p ∧ q)

→-elim
⊥

→-int (2)¬¬p

(5.3)

and the following is a derivation of ¬¬q from ¬¬(p ∧ q):

[p ∧ q]1

∧-elimq [¬q]2

→-elim
⊥

→-int (1)
¬(p ∧ q) ¬¬(p ∧ q)

→-elim
⊥

→-int (2)¬¬q

(5.4)

5This was part 6 of exercise 28 on page 66.
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But both p and q are stable by induction hypothesis, so we can deduce both p
and q and thence p ∧ q.

∀ :

First we show ¬¬∀ → ∀¬¬.

[(∀x)φ(x)]1

∀ elim
φ(a) [¬φ(a)]2

→-elim
⊥

→-int (1)
¬(∀x)φ(x) [¬¬(∀x)φ(x)](3)

→-elim
⊥

→-int (2)
¬¬φ(a)

∀-int(∀x)¬¬φ(x)
→-int (3)

¬¬(∀x)φ(x) → (∀x)¬¬φ(x))
(5.5)

So ¬¬∀xφ implies ∀x¬¬φ. But ¬¬φ→ φ by induction hypothesis, whence ∀xφ.

So in particular everything in the range of the negative interpretation is stable. Also,
φ and φ∗ are classically equivalent. So the negative interpretation will send every for-
mula in the language to a stable formula classically equivalent to it.

LEMMA 37 If φ is classically valid then φ∗ is constructively correct.

Proof: We do this by showing how to recursively transform a classical proof of φ into
a constructive proof of φ∗.

There is no problem with the three connectives ¬, ∧ or ∀ of course. We deal with
the others as follows.

∨-introduction

[¬p∗ ∧ ¬q∗]1

∧-elim
¬p∗ p∗

→-elim
⊥

→-int (1)
¬(¬p∗ ∧ ¬q∗)

[¬p∗ ∧ ¬q∗]1

∧-elim
¬q∗ q∗

→-elim
⊥

→-int (1)
¬(¬p∗ ∧ ¬q∗)

(5.6)
are derivations of (p ∨ q)∗ from p∗ and from q∗ respectively.

∨-elimination

We will have to show that whenever there is (i) a deduction of r∗ from p∗ and (ii) a
deduction of r∗ from q∗, and (iii) we are allowed (p ∨ q)∗ as a premiss, then there is a
constructive derivation of r∗.
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[p∗]1

...
r∗ [¬r∗]3

→-elim
⊥
→-int (1)

¬p∗

[q∗]2

...
r∗ [¬r∗]3

→-elim
⊥
→-int (2)

¬q∗
∧-int

¬p∗ ∧ ¬q∗ ¬(¬p∗ ∧ ¬q∗)
→-elim

⊥
→-int (3)

¬¬r∗
(5.7)

. . . and we infer r∗ because r∗ is stable.

→-introduction

Given a constructive derivation

p∗

...
q∗ we can build the following

[p∗ ∧ ¬q∗]1

∧-elimp∗

...
q∗

[p∗ ∧ ¬q∗]1

∧-elim
¬q∗

→-elim
⊥

→-int (1)
¬(p∗ ∧ ¬q∗)

(5.8)

which is of course a proof of (p→ q)∗.

→-elimination

The following is a deduction of q∗ from (p→ q)∗ and p∗:

p∗ [¬q∗]1)

∧-intp∗ ∧ ¬q∗ ¬(p∗ ∧ ¬q∗)
→-elim

⊥
→-int (2)

¬¬q∗

(5.9)

. . . q∗ is stable so we can infer q∗.

∃-introduction

Constructively ∃ implies ¬∀¬ so this is immediate.

∃-elimination

We use this where we have a classical derivation



158 CHAPTER 5. CONSTRUCTIVE AND CLASSICAL TRUTH

φ(x)
...
p

and have been given ∃yφ(y).
By induction hypothesis this means we have a constructive derivation

φ∗(x)
...

p∗
.

Instead of ∃yφ(y) we have ¬(∀y)¬φ∗(y).

[φ∗(a)]2

...
p∗ [¬p∗]1

→-elim
⊥

→-int (2)
¬φ∗(a)

∀-int(∀y)¬φ∗(y) ¬(∀y)¬φ∗(y)
→-elim

⊥
→-int (1)

¬¬p∗(1)

(5.10)

and p∗ follows from ¬¬p∗ because p∗ is stable.

The Classical Rules
We want double negation not
classical negation here. Sort
this out

In a classical proof we will be allowed various extra tricks, such as being able to assume
p ∨ ¬p whenever we like. So we are allowed to assume (p ∨ ¬p)∗ whenever we like.
But this is ¬(¬p∗ ∧ ¬¬p∗) which is of course a constructive theorem.

The starred version of the rule of double negation tells us we can infer p∗ from
¬¬p∗. By lemma 36 every formula built up from ∀, ∧ and ¬ is stable. But, for any
formula p whatever, p∗ is such a formula.

There are other rules we could add—instead of excluded middle or double negation—
to constructive logic to get classical logic, and similar arguments will work for them.

Substitutivity of Equality

To ensure that substitutivity of equality holds under the stars we want to prove

(∀xy)(¬¬φ(x)→ ¬¬(x = y)→ ¬¬φ(y))

This we accomplish as follows:
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[¬φ(y)]1 [x = y]2

subst
¬φ(x) ¬¬φ(x)

→-elim
⊥

→-int (2)
¬(x = y) ¬¬(x = y)

→-elim
⊥

→-int (1)
¬¬φ(y)

(5.11)

which is a proof of ¬¬φ(y) from ¬¬φ(x) and ¬¬(x = y).
This completes the proof of lemma 37

5.3 Prophecy
What does this * interpretation tell the constructive logician? Let us consider a sim-
ple case where φ(x) and φ(x)∗ are the same, and the classical logician has a proof
of (∃x)(φ(x)). Then the constructive logician acknowledges that there is a proof of
¬(∀x)(¬φ(x)). What is (s)he to make of this? There isn’t officially a proof of (∃x)(φ(x)),
but they can at least conclude that there can never be a proof of ¬(∃x)(φ(x)). This makes
a good exercise!

EXERCISE 62 Using the natural deduction rules derive a contradiction from the two
assumptions ¬(∀x)(¬φ(x)) and ¬(∃x)(φ(x)).

If there can never be a proof of ¬(∃x)(φ(x)) then the assumption that there is an x which
is φ cannot lead to contradiction. In contrast the assumption that there isn’t one will
lead to contradiction. So would your money be on the proposition that you will find
an x such that φ or on the proposition that you won’t? It’s a no-brainer. This is why
people say that, to the constructive logician, nonconstructive existence theorems have
something of the character of prophecy.
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Chapter 6

Possible World Semantics
Split the quantifiers off. Need
two sectionsThis should really be called “Multiple Model Semantics” but the current terminology

is entrenched.
How is the classical logician supposed to react when the constructive logician does

something obviously absurd like deny the law of excluded middle? (S)he will react in
the way we all react when confronted with apparently sensible people saying obviously
absurd things: we conclude that they must mean something else.

Possible world semantics is a way of providing the classical logician with some-
thing sensible that the constructive logician might mean when they come out with ab-
surdities like excluded-middle-denial. It’s pretty clear that constructive logicians don’t
actually mean the things that classical logicians construe them as meaning in their (the
classicists’) attempt to make sense of their (the constructivists’) denial of excluded
middle. But that doesn’t mean that the exercise is useless. It’s such a good story that it
doesn’t matter where it comes from.

DEFINITION 38 A possible world modelM has several components:

• There is a collection of worlds with a binary relation ≤ between them; If W1 ≤

W2 we say W1 can see W2.

• There is also a binary relation between worlds and formulæ, written ‘W |= φ’;

• Finally there is a designated (or ‘actual’ or ‘root’) world W M
0 .

We stipulate the following connections between the ingredients:

1. W |= ⊥ never holds. We write this as W 6|= ⊥.

2. W |= A ∧ B iff W |= A and W |= B;

3. W |= A ∨ B iff W |= A or W |= B;

4. W |= A→ B iff every W ′ ≥ W that |= A also |= B;

5. W |= ¬A iff there is no W ′ ≥ W such that W ′ |= A;

161
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At some point we have to have
explain how to use this stuff for
� and �

(We will deal with the quantifiers later)
We stipulate further that for atomic formulæ φ, if W |= φ and W ≤ W ′, then

W ′ |= φ. (The idea is that if W ≤ W ′, then W ′ in some sense contains more information
than W.) We will call this phenomenon persistence.

Then we say

M |= A if W M
0 |= A

5 is a special case of 4: ¬A is just A→ ⊥, and no world believes ⊥!
The relation which we here write with a ‘≤’ is the accessibility relation between

worlds. We assume for the moment that it is transitive and reflexive. Just for the
record we note that ‘A ≤ B’ will sometimes be written as ‘B ≥ A’.

[Chat about quantifier alternation. There is a case for writing out the definitions in
a formal language, on the grounds that the quantifier alternation (which bothers a lot of
people) can be made clearer by use of a formal language. The advantage of not using a
formal language is that it makes the language-metalanguage distinction clearer.]

If one takes these worlds too seriously then one will find that the |= relation between
worlds and propositions is epistemically problematic. For example W believes ¬p iff
no world beyond W believes p. This being so, how can anyone in W come to know
¬p? They would have to visit all worlds ≥ W! So this possible worlds talk is not part
of an epistemic story! This being the case, one should perhaps beware of the danger
of taking the “world W believes φ” slang too literally. Even if W believes ¬φ then in
some sense it doesn’t know that it believes ¬φ. . . unless of course W includes among
its inhabitants all the worlds ≥ W. But that makes for a scenario far too complicated
for us to entertain in a book like this. And it is arguable that it is a scenario of which
no coherent account can be given. See [17].

The possible worlds semantics is almost certainly not part of a constructivist ac-
count of truth or meaning at all. (Remember: we encountered it as the classical logi-
cians’ way of making sense of constructive logic!) If it were, the fact that it is epistem-
ically problematic would start to matter.

The relation ≤ between worlds is transitive. A model M believes φ (or not, as the
case may be) iff the designated world W0 of M believes φ (or not). When cooking up
W0 to believe φ (or not) the recursions require us only to look at worlds ≥ W0. This has
the effect that the designated world of M is ≤ all other worlds in M. This is why we
sometimes call it the ‘root’ world. This use of the word ‘root’ suggests that the worlds
beyond W0 are organised into a tree: so if W1 and W2 are two worlds that cannot see
each other then there is no world they can both see. However we are emphatically not
making this assumption.

[bad join: this para uses ‘R’ for the accessibility relation, so it should probably be
put in after we have generalised, and also introduced � and �.]

It’s probably a good idea to think a bit about how this gadgetry is a generalisation
of the semantics for propositional logic that we saw in section 3.13, or—to put it the
other way round—how the semantics there is a degenerate case of what we have here.
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Worlds here correspond to valuations (or rows of a truth-table) there. In section 3.13
each valuation went on its merry way without reference to any other valuation: if
you wanted to know whether a valuation v made a formula φ true you had to look
at subformulæ of φ but you didn’t have to look at what any other valuation did to φ or
to any of its subformulæ. If you think about this a bit you will realise that if you have
a possible world model where the the accessibility relation R is the identity relation duplicates section 6.2.2
[so that the only valuation that a valuation v ever has to consult is v itself] then the
semantics you get will be the same as in section 3.13. Another thing that happens if R
is the identity is that �p, p and �p turn out to be the same.

6.0.1 Quantifiers
Definition 38 didn’t have rules for the quantifiers. We’d better have them now.

Definition 38 continued

6 : W |= (∃x)A(x) iff there is an x in W such that W |= A(x);

7 : W |= (∀x)A(x) iff for all W ′ ≥ W and all x in W ′, W ′ |= A(x).

In the first instance the only thing the worlds have to do is believe (or not believe)
atomic propositions: the rules in definition 38 for the connectives don’t compel us to
think of the worlds as having inhabitants. In contrast the rules for the quantifiers do as-
sume that worlds have inhabitants. In the propositional case we stipulate which atomic
propositions each world believes, and the rest of the semantics is done by the recur-
sion. When we add quantifiers we stipulate which atomic formulaæ a world believes
of which of its inhabitants.

I think we generally take it that our worlds are never empty: every world has at
least one inhabitant. However there is no global assumption that all worlds have the
same inhabitants. Objects may pop in and out of existence as we turn our gaze from
one world to another. However we do take the identity relation between inhabitants
across possible worlds as a given.

6.1 Language and Metalanguage again
It is very important to distinguish between the stuff that appears to the left of a ‘|=’ sign
and that which appears to the right of it. The stuff to the right of the ‘|=’ sign belongs to
the object language and the stuff to the left of the ‘|=’ sign belongs to the metalanguage.
So that we do not lose track of where we are I am going to write ‘→’ for if–then in
the metalanguage and ‘&’ for and in the metalanguage instead of ‘∧’. And I shall use
square brackets instead of round brackets in the metalanguage.

If you do not keep this distinction clear in your mind you will end up making one
of the two mistakes below (tho’ you are unlikely to make both.)

Remember what the aim of the Possible World exercise was. It was to give people
who believe in classical logic a way of making sense of the thinking of people who
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believe in constructive logic. That means that it’s perfectly OK to use classical logic in
reasoning with/manipulating stuff to the left of a ‘|=’ sign.

For example here is a manœuvre that is perfectly legitimate:

If

¬[W |= A→ B]

then it is not the case that

(∀W ′ ≥ W)(W ′ |= A → W ′ |= B)

So, in particular,

(∃W ′ ≥ W)(W ′ |= A & ¬(W ′ |= B))

The inference drawn here from ¬∀ to ∃¬ is perfectly all right in the classical met-
alanguage, even though it’s not allowed in the constructive object language.

In contrast it is not all right to think that—for example—W |= ¬A∨¬B is the same
as W |= ¬(A ∧ B) (on the grounds that ¬A ∨ ¬B is the same as ¬(A ∧ B)). One way
of warding off the temptation to do it is to remind ourselves—again—that the aim of
the Possible World exercise was to give people who believe in classical logic a way
of making sense of the mental life of people who believe in constructive logic. That
means that it is not OK to use classical logic in reasoning with/manipulating stuff to
the right of a ‘|=’ sign.

Another way of warding off the same temptation is to think of the stuff after the
‘|=’ sign as stuff that goes on in a fiction. You, the reader of a fiction, know things
about the characters in the fiction that they do not know about each other. Just because
something is true doesn’t mean they know it!! (This is what the literary people call
Dramatic Irony.)1

(This reflection brings with it the thought that reading “W |= ¬¬A” as “W be-
lieves not not A” is perhaps not the happiest piece of slang. After all, in circumstances
where W |= ¬¬A there is no suggestion that the fact-that-no-world-≥-W-believes-A is
encoded in W in any way at all. )Could say more about this

Another mistake is to think that we are obliged to use constructive logic in the meta-
language which we are using to discuss constructive logic—to the left of the ‘|=’ sign. It
is probably the same mistake made by people who think that hypothetical reasoning—
and specifically reductio ad absurdum is incoherent. If you are a philosophy student
you might find this an interesting topic in its own right. I suspect it’s a widespread
error. It may be the same mistake as the mistake of supposing that you have to convert
to Christianity to understand what is going on in the heads of Christians. Christians of
some stripes would no doubt agree with the assertion that there are bits of it you can’t
understand until you convert, but I think that is just a mind-game.Doesn’t this duplicate earlier

stuff? section ???
1Appreciation of the difference between something being true and your interlocutor knowing it is some-

thing that autists can have trouble with. Some animals that have “a theory of other minds” (in that they know
that their conspecifics might know something) too can have difficulty with this distinction. Humans seem to
be able to cope with it from the age of about three.
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We could make it easier for the nervous to discern the difference between the places
where it’s all right to use classical reasoning (the metalanguage) and the object lan-
guage (where it isn’t) by using different fonts or different alphabets. One could write
“For all W” instead of (∀W) . . .”. That would certainly be a useful way of making the
point, but once the point has been made, persisting with it looks a bit obsessional: in
general people seem to prefer overloading to disambiguation.

6.1.1 A Possibly Helpful Illustration
Let us illustrate with the following variants on the theme of “there is a Magic Sword.”
All these variants are classically equivalent. The subtle distinctions that the possible
worlds semantics enable us to make are very pleasing.
¬∀x¬MS (x)
¬¬∃xMS (x)
∃x¬¬MS (x)
∃xMS (x)
The first two are constructively equivalent as well.
To explain the differences we need the difference between histories and futures.

• A future (from the point of view of a world W) is any world W ′ ≥ W.

• A history is a string of worlds—an unbounded trajectory through the available
futures. No gaps between worlds...?

¬∀x¬MS (x) and ¬¬∃xMS (x) say that every future can see a future in which there
is a Magic Sword, even though there might be histories that avoid Magic Swords alto-
gether: Magic Swords are a permanent possibility: you should never give up hope of
finding one.

How can this be, that every future can see a future in which there is a magic sword
but there is a history that contains no magic sword–ever? It could happen like this:
each world has precisely two immediate children. If it is a world with a magic sword
then those two worlds also have magic swords in them. If it is a world without a magic
sword then one of its two children continues swordless, and the other one acquires a
sword. We stipulate that the root world contains no magic sword. That way every
world can see a world that has a magic sword, and yet there is a history that has no
magic swords.
∃x¬¬MS (x) says that every history contains a Magic Sword and moreover the

thing which is destined to be a Magic Sword is already here. Perhaps it’s still a lump
of silver at the moment but it will be a Magic Sword one day.

6.2 Some Useful Short Cuts

6.2.1 Double negation
The first one that comes to mind is W |= ¬¬φ. This is the same as (∀W ′ ≥ W)(∃W ′′ ≥
W ′)(W ′′ |= φ). “Every world that W can see can see a world that believes φ”. Let’s
thrash this out by hand.
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By clause 5 of definition 38

W |= ¬(¬φ)

iff
(∀W ′ ≥ W)¬[W ′ |= ¬φ] (6.1)

Now

W ′ |= ¬φ iff (∀W ′′ ≥ W ′)¬[W ′′ |= φ] by clause 5 of definition 38 so

¬[W ′ |= ¬φ] is the same as ¬(∀W ′′ ≥ W ′)¬[W ′′ |= φ] which is

(∃W ′′ ≥ W ′)(W ′′ |= φ).

Substituting this last formula for for ‘W ′ |= ¬φ’ in (6.1) we obtain

(∀W ′ ≥ W)(∃W ′′ ≥ W ′)(W ′′ |= φ)

6.2.2 If there is only one world then the logic is classical
IfM contains only one world—W, say—thenM believes classical logic. Let me illus-
trate this in two ways:

1. Suppose M |= ¬¬A. Then W |= ¬¬A, since W is the root world of M. If
W |= ¬¬A, then for every world W ′ ≥ W there is W ′′ ≥ W that believes A. So
in particular there is a world ≥ W that believes A. But the only world ≥ W is W
itself. So W |= A. So every world ≥ W that believes ¬¬A also believes A. So
W |= ¬¬A→ A.

2. W either believes A or it doesn’t. If it believes A then it certainly believes A∨¬A,
so suppose W does not believe A. Then W can see no world that believes A. So
W |= ¬A and thus W |= (A ∨ ¬A). So W believes the law of excluded middle.

It looks as if we have used the law of excluded middle to prove the law of ex-
cluded middle (“W either believes A or it doesn’t”). But we have used in it the
metalanguage—and the metalanguage is classical.

In these circumstances the logic of quantifiers is classical too.
Suppose W |= ¬∀x¬F(x). This is

(∀W ′ ≥ W)(¬[W ′ |= ∀x¬F(x)])

But, since there is only one W ′ ≥ W, and that W ′ is W itself, this becomes

¬[W |= ∀x¬F(x)]

which becomes

¬[(∀W ′ ≥ W)(∀x ∈ W ′)(W ′ |= ¬F(x))]
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Now, again, since there is only one W ′ ≥ W, and that W ′ is W itself, this becomes

¬[(∀x ∈ W)(W |= ¬F(x))]

which becomes

(∃x ∈ W)(¬[W |= ¬F(x)])

and

(∃x ∈ W)(∃W ′ ≥ W)¬[W ′ |= ¬F(x)])

giving

(∃x ∈ W)¬[W |= ¬F(x)]

If ¬[W |= ¬F(x)] it must be that W can see a world that believes F(x). But the only
world it can see is itself, so we infer

(∃x ∈ W)(W |= F(x))

which is to say

W |= (∃x)(F(x))

as desired.

One can perform a similar calculation to reduce ¬∃¬ to ∀, but one can obtain this
second equivalence as a corollary of the first.
¬∃¬ is equivalent to ¬¬∀¬¬ by the forgoing, but now we can cancel the two ‘¬¬’s

to obtain ∀.

The same arguments can be used even in models with more than one world, as long
as the worlds in question can see only themselves.

6.3 Persistence
[

stuff to fit in

Persistence enables us to connect possible world semantics with many-valued logic.
Each truth-value corresponds to an upper set in the quasiorder, in the sense that [[φ]] =

{W : W |= φ}. Upper sets in quasiorders form a Heyting Algebra, so that the truth-
values [[A]] are members of a Heyting algebra, and [A]] = > iffM |= A.

For the other direction any Heyting valuation can be turned into a possible-world
model by appealing to the representation theorem for distributive posets: every Heyting
algebra is isomorphic to a subset of a power set algebra. The truth-value [[A]] then
corresponds to a set A, which we can take to be a set of worlds. We then rule that
W |= A iff W ∈ A.
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Supply missing details; calculate [[A→ B] and [[A ∨ B]] and [[A ∧ B]].

(1) [[A→ B]] = {W : W |= A→ B}
(2) {W : (∀W ′ ≥ W)((W ′ |= A)→ (W ′ |= B)}
(3) {W : (W |= A)→ (W |= B)}
(4) {W : (W 6|= A) ∨ (W |= B)}
(5) {W : W 6|= A} ∪ {W : W |= B)}
(6) {W : W 6|= A} ∪ [[B]]
(7) {W : W |= A} → [[B]]
(8) [[A]]→ [[B]]

We need persistence to ensure
|= p→ ¬¬p! For atomic formulæ φ we know that if W |= φ then W ′ |= φ for all W ′ ≥ W.

We achieved this by stipulation, and it echoes our original motivation. Even though
¬¬(∃x)(x is a Magic Sword) is emphatically not to be the same as (∃x)(x is a Magic
Sword), it certainly is inconsistent with ¬(∃x)(x is a Magic Sword) and so it can be
taken as prophecy that a Magic Sword will turn up one day. The idea of worlds as
states of knowledge where we learn more as time elapses sits very well with this. By
interpreting ¬¬(∃x)(x is a Magic Sword) as “Every future can see a future that contains
a Magic Sword” possible world semantics captures the a way in which ¬¬(∃x)(x is
a Magic Sword) can be incompatible with the nonexistence of Magic Swords while
nevertheless not telling us how to find a Magic Sword.

We will say φ is persistent if whenever W |= φ then (∀W ′ ≥ W)(W ′ |= φ)
We want to prove that all formulæ are persistent.

THEOREM 39 All formulæ are persistent.

Proof:
We have taken care of the atomic case. Now for the induction on quantifiers and

connectives.

¬ W |= ¬φ iff (∀W ′ ≥ W)¬(W ′ |= φ). Therefore if W |= ¬φ then (∀W ′ ≥ φ)¬[W ′ |=

φ], and, by transitivity of ≥, (∀W ′′ ≥ W ′)¬[W ′′ |= φ]. But then ¬[W ′ |= ¬φ].

∨ Suppose φ and ψ are both persistent. If W |= ψ ∨ φ then either W |= φ or W |= ψ.
By persistence of φ and ψ, every world ≥ satisfies φ (or ψ, whichever it was) and
will therefore satisfy ψ ∨ φ.

∧ Suppose φ and ψ are both persistent. If W |= ψ ∧ φ then W |= φ and W |= ψ. By
persistence of φ and ψ, every world ≥ satisfies φ and every world ≥ satisfies ψ
and will therefore satisfy ψ ∧ φ.

∃ Suppose W |= (∃x)φ(x), and φ is persistent. Then there is an x in W which W
believes to be φ. Suppose W ′ ≥ W. As long as x is in W ′ then W ′ |= φ(x) by
persistence of φ and so W ′ |= (∃x)(φ(x)).
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∀ Suppose W |= (∀x)φ(x), and φ is persistent. That is to say, for all W ′ ≥ W and
all x, W ′ |= φ(x). But if this holds for all W ′ ≥ W, then it certainly holds for all
W ′ ≥ any given W ′′ ≥ W. So W ′′ |= (∀x)(φ(x)).

→ Finally suppose W |= (A → B), and W ′ ≥ W. We want W ′ |= (A → B). That
is to say we want every world beyond W ′ that believes A to also believe B. We
do know that every world beyond W that believes A also believes B, and every
world beyond W ′ is a world beyond W, and therefore believes B if it believes A.
So W ′ believes A→ B.

That takes care of all the cases in the induction.

It’s worth noting that we have made heavy use of the assumption that ≤ is transitive.
Later we will consider other more general settings where this assumption is not made.
In those more general settings we will use symbols other than ‘≤’ to denote the acces-
sibility relation (since the use of that symbol inevitably connotes transitivity) and we
will drop the assumption of persistence for atomic formulæ. However such generality
is beyond the scope of this book.

Now we can use persistence to show that this possible world semantics always
makes A → ¬¬A comes out true. Suppose W |=. Then every world ≥ W also believes
A. No world can believe A and ¬A at the same time. (W |= ¬A only if none of the
worlds ≥ W believe A; one of the worlds ≥ W is W itself.) So none of them believe
¬A; so W |= ¬¬A.

This is a small step in the direction of a completeness theorem for the possible
world semantics.

THEOREM 40 Every propositional formula with a natural deduction proof using only
the constructive rules is true in all possible world models.

Proof:
In the propositional case at least we prove by induction on proofs . . .
Let M be a possible world model. We prove by induction on proofs D in L(M)

that, for all W ∈ M, if W |= every premiss inD, then W |= the conclusion ofD.
It’s pretty straightforward. Consider the case of a proof of A → B. The last step

is a→-introduction, The induction hypothesis will be that every world that believes A
(and the other premisses) also believes B. Now let W be a world that believes all the
other premisses. Then certainly (by persistence) every W ′ ≥ W also believes all the
other premisses, so any such W ′ that believes A also believes B. But that is to say that
any world that believes all the other premisses believes A→ B.

I don’t know how to prove the other direction! A later version of this mate-
rial is to be found in partii-
ilogic2017
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6.4 Independence Proofs Using Possible world seman-
tics

6.4.1 Some Worked Examples

Challenge 6.4.1.1: Find a countermodel for A ∨ ¬A

The first thing to notice is that this formula is a classical (truth-table) tautology. Be-
cause of subsection 6.2.2 this means that any countermodel for it must contain more
than one world.

The root world W0 must not believe A and it must not believe ¬A. If it cannot see a
world that believes A then it will believe ¬A, so we will have to arrange for it to see a
world that believes A. One will do, so let there be W1 such that W1 |= A.

W0

W1 |= A

Challenge 6.4.1.2: Find a countermodel for ¬¬A ∨ ¬A

The root world W0 must not believe ¬¬A and it must not believe ¬A. If it cannot see a
world that believes A then it will believe ¬A, so we will have to arrange for it to see a
world that believes A. One will do, so let there be W1 such that W1 |= A. It must also
not believe ¬¬A. It will believe ¬¬A as long as every world it can see can see a world
that believes A. So there had better be a world it can see that cannot see any world
that believes A. This cannot be W1 because W1 |= A, and it cannot be W0 itself, since
W0 ≤ W1. So there must be a third world W2 which does not believe A.

W0

W1 |= A

W2

Challenge 6.4.1.3: Find a model that satisfies (A → B) → B but does not satisfy
A ∨ B

The root world W0 must not believe A∨ B, so it must believe neither A nor B. However
it has to believe (A→ B)→ B, so every world that it can see that believes A→ B must
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also believe B. One of the worlds it can see is itself, and it doesn’t believe B, so it had
better not believe A → B. That means it has to see a world that believes A but does
not believe B. That must be a different world (call it W1). So we can recycle the model
from Challenge 6.4.1.2.

Challenge 6.4.1.4: Find a countermodel for ((A→ B)→ A)→ A

You may recall from exercise 32 on page 68 that on Planet Zarg this formula is believed
to be false2. There we had a three-valued truth table. Here we are going to use possible
worlds. As before, with A ∨ ¬A, the formula is a truth-table tautology and so we will
need more than one world.

Recall that a modelM satisfies a formula ψ iff the root world ofM believes ψ: that
is what it is for a model to satisfy ψ. Definition!

As usual I shall write ‘W0’ for the root world; and will also write ‘W |= ψ’ to mean
that the world W believes ψ; and ¬[W |= ψ] to mean that W does not believe ψ.

So we know that ¬[W0 |= ((A→ B)→ A)→ A].
Now the definition of W |= X → Y is (by definition 38)

(∀W ′ ≥ W)[W ′ |= X → W ′ |= Y] (6.1)

So since

¬[W0 |= ((A→ B)→ A)→ A]

we know that there must be a W ′ ≥ W0 which believes (A → B) → A but does not
believe A. (In symbols: (∃W ′ ≥ W0)[W ′ |= ((A→ B)→ A) & ¬(W ′ |= A)].) Remember
too that in the metalanguage we are allowed to exploit the equivalence of ¬∀ with ∃¬.
Now every world can see itself, so might this W ′ happen to be W0 itself? No harm in
trying. . .

So, on the assumption that this W ′ that we need is W0 itself, we have:

1. W0 |= (A→ B)→ A; and

2. ¬[W0 |= A].

This is quite informative. Fact (1) tells us that every W ′ ≥ W0 that believes A→ B
also believes A. Now one of those W ′ is W0 itself (Every world can see itself: remember
that ≥ is reflexive). Put this together with fact (2) which says that W0 does not believe
A, and we know at once that W0 cannot believe A → B. How can we arrange for W0
not to believe A → B? Recall the definition 38 above of W |= A → B. We have to
ensure that there is a W ′ ≥ W0 that believes A but does not believe B. This W ′ cannot
be W0 because W0 does not believe A. So there must be a new world (we always knew
there would be!) visible from W0 that believes A but does not believe B. (In symbols
this is (∃W ′ ≥ W0)[W ′ |= A & ¬(W ′ |= B)].)

So our countermodel contains two worlds W0 and W ′, with W0 ≤ W ′. W ′ |= A but
¬[W0 |= A], and ¬[W ′ |= B].

2I have just corrected this from “You may recall from exercise 32 on page 68 that this formula is believed
to be false on Planet Zarg”—which is not the same!
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Let’s check that this really works. We want

¬[W0 |= ((A→ B)→ A)→ A]

We have to ensure that at least one of the worlds beyond W0 satisfies (A→ B)→ A
but does not satisfy A. W0 doesn’t satisfy A so it will suffice to check that it does satisfy
(A→ B)→ A.

So we have to check (i) that if W0 satisfies (A → B) then it also satisfies A and we
have to check (ii) that if W ′ satisfies (A → B) then it also satisfies A. W ′ satisfies A so
(ii) is taken care of. For (i) we have to check that W0 does not satisfy A → B. For this
we need a world ≥ W0 that believes A but does not believe B and W ′ is such a world.
This is actually the same model as we used in Challenge 6.4.1.1.

W0

W ′ |= A

Challenge 6.4.1.5: Find a model that satisfies (A → B) → B but does not satisfy
(B→ A)→ A

We must have
W0 |= (A→ B)→ B (1)

and

¬[W0 |= (B→ A)→ A] (2)

By (2) we must have W1 ≥ W0 such that

W1 |= B→ A (3)

but

¬[W1 |= A] (4)

We can now show

¬[W1 |= A→ B] (5)

If (5) were false then W1 |= B would follow from (1) and then W1 |= A would follow
from (3). (5) now tells us that there is W2 ≥ W1 such that

W2 |= A (6)

and
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¬[W2 |= B] (7)

From (7) and persistence we infer

¬[W1 |= B] (8)

and

¬[W0 |= B] (9)

Also, (4) tells us

¬[W0 |= A]. (10)

So far we have nothing to tell us that W0 , W1. So perhaps we can get away with
having only two worlds W0 and W1 with W1 |= A and W0 believing nothing.

W0 believes (A → B) → B vacuously: it cannot see a world that believes A →
B so—vacuously—every world that it can see that believes A → B also believes B.
However, every world that it can see believes (B → A) but it does not believe A itself.
That is to say, it can see a world that does not believe A so it can see a world that
believes B→ A but does not believe A so it does not believe (B→ A)→ A.

Thus we have the by-now familiar picture:

W0

W1 |= A

6.4.2 Exercises

EXERCISE 63 Return to Planet Zarg!3

The truth-tables for Zarg-style connectives are on p 68.

1. Write out a truth-table for ((p→ q)→ q)→ (p ∨ q).

(Before you start, ask yourself how many rows this truth-table will have).

2. Identify a row in which the formula does not take truth-value 1.

3. Find a sequent proof for ((p→ q)→ q)→ (p ∨ q).

EXERCISE 64

Find a model that satisfies (p→ q)→ q but does not satisfy p ∨ q.
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It turns out that Zarg-truth-value 1 means “true in W0 and in W1”; Zarg-truth-value Where does this aperçu be-
long?2 means “true in W1”, and Zarg-truth-value 3 means “true in neither”—where W0 and

W1 are the two worlds in the countermodel we found for Peirce’s law. (Challenge
6.4.1.5)

EXERCISE 65 Find a model that satisfies p→ q but not ¬p ∨ q.

EXERCISE 66 Find a model that doesn’t satisfy p∨¬p. How many worlds has it got?
Does it satisfy ¬p ∨ ¬¬p? If it does, find one that doesn’t satisfy ¬p ∨ ¬¬p.

EXERCISE 67

1. Find a model that satisfies A→ (B ∨C) but doesn’t satisfy
(A→ B) ∨ (A→ C))4.

2. Find a model that satisfies (A→ B) ∧ (C → D) but doesn’t satisfy
(A→ D) ∨ (C → B))5.

3. Find a model that satisfies ¬(A ∧ B) but does not satisfy ¬A ∨ ¬B

4. Find a model that satisfies (A→ B)→ B) and (B→ A)→ A but does not satisfy
A ∨ B.

Check that in the three-valued Zarg world ((A → B) → B) ∧ ((B → A) → A)
always has the same truth-table as A ∨ B.

EXERCISE 68 Find countermodels for:

1. (A→ B) ∨ (B→ A);

2. (∃x)(∀y)(F(y)→ F(x)) (which is the formula in exercise 58 part 1 on page 135).

EXERCISE 69 Consider the model in which there are two worlds, W0 and W1, with
W0 ≤ W1. W0 contains various things, all of which it believes to be frogs; W1 contains
everything in W0 plus various additional things, none of which it believes to be frogs.
Which of the following assertions does this model believe?

1. (∀x)(F(x));

2. (∃x)(¬F(x));

3. ¬∃x¬F(x);

4. ¬¬(∃x)(¬F(x)).
3Beware: Zarg is a planet not a possible world!
4You saw a fallacious attempt to prove this inference on page 64.
5This is a celebrated illustration of how→ does not capture ‘if-then’. Match the antecedent to “If Jones

is in Aberdeen then Jones is in Scotland and if Jones is in Delhi then Jones is in India”.
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Find countermodels for
(∃x)(∀y)(F(y)→ F(x))
¬(∀x)¬(∀y)(F(y)→ F(x))
(∃x)(∀y)¬(F(y) ∧ ¬F(x))

At some point demonstrate that K does not hold for the strict implication of S5, for
example. Failure of deduction theorem.

6.5 Modal Logic
Do we really want a section of
modal logic???Some modal logics do not obey 3.6.1, the deduction theorem. A logic obeys the de-

duction theorem iff it proves both K and S . [We should really prove this at some point]
K is rejected by the modal logicians who (following C. I. Lewis) have the effrontery to
call it a paradox of material implication.

A word is in order about this, since K is valid constructively. The key point is that
in constructive logic we assume persistence of atomic formulæ. Persistence of atomics
implies persistence generally,

Persistence for complex formulæ enforces the constructive theory of the condi-
tional: First we show that this enforces K:

We wish to establish that every world visible from the root world W0 that believes A
also believes B→ A. So ignore all worlds that do not believe A. So let W be any world
that believes A. Then (by persistence) any world that it can see believes A, so certainly
any world that it can see that believes B also believes A. So definitely W |= B → A.
But W was an arbitrary world visible from W0 that believes A. So every world visible
from W0 that believes A also believes B→ A, which is to say that W0 |= A→ (B→ A).

Persistence in a possible world model also implies that S holds, even if the acces-
sibility relation is not transitive (as long as it is at least reflexive). Let us write ‘ 7→’ for
the accessibility relation, so we don’t find ourselves assuming that it is transitive.

We want the following for all W.
if W |= A→ (B→ C) then W |= (A→ B)→ (A→ C)
So, for all W, we want
For all W ′ 7→ W, if W ′ |= A→ B then W ′ |= A→ C.
Suppose W ′ 7→ W. We have W ′ |= A → (B → C) by persistence. Suppose further

that W ′ |= A → B. We desire W ′ |= A → C. Suppose it doesn’t. Then there is
W ′′ 7→ W ′ s.t. W ′′ |= A but W ′′ 6|= C. By persistence we have

W ′′ |= A→ (B→ C)
and
W ′′ |= A→ B
and (by assumption)
W ′′ |= A.
On the (surely safe. . . ?) assumption that the beliefs of any one world are deduc-

tively closed we can infer
W ′′ |= C,
contradicting assumption.
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Is it safe to assume that {φ : W |= φ} is deductively closed? For it to be closed
under modus ponens we need the acessibility relation to be reflexive. It’s certainly
closed under ∧-int and ex falso

Clearly persistence enforces constructive logic but not excluded middle: the usual
countermodel does the trick.

Presumably persistence for complex formula doesn’t follow from persistence from
atomics in the absence of transitivity.

However, if we do not assume persistence, then we can cook up countermodels for
A→ (B→ A), even if the accessibility relation is transitive and reflexive.

We need two worlds: the designated world W0 (which believes both A and B) and
W1 that believes only B. These two worlds can see themselves, and W0 can see W1;
there are no other worlds. Persistence fails because W0 believes A but it can see W1
which has “forgotten” A. W0 6|= A → (B → A) because it can see a world (itself) that
believes A but does not believe B → A. W0 6|= B → A because it can see the world
W1 that does not believe B → A. W1 6|= B → A because it can see a world (itself) that
believes B but does not believe A.



Chapter 7

Curry-Howard

This chapter is particularly recommended for anyone who is thinking of going on to do
linguistics. It’s actually less alarming than most first-years will think, and it may well
be worth having a bash at. Must introduce the slang

expression “propositions-as-
types”The Curry-Howard trick is to exploit the possibility of using the letters ‘A’, ‘B’ etc.

to be dummies not just for propositions but for sets. This means reading the symbols
‘→’, ‘∧’, ‘∨’ etc. as symbols for operations on sets as well as on formulæ. The am-
biguity we will see in the use of ‘A → B’ is quite different from the ambiguity arising
from the two uses of the word ‘tank’. Those two uses are completely unrelated. In
contrast the two uses of the arrow in ‘A→ B’ have a deep and meaningful relationship.
The result is a kind of cosmic pun. Here is the simplest case.

Altho’ we use it as a formula in propositional logic, the expression ‘A→ B’ is used
by various mathematical communities to denote the set of all functions from A to B.
To understand this usage you don’t really need to have decided whether your functions
are to be functions-in-intension or functions-in-extension; either will do. The ideas in
play here work quite well at an informal level: the best way to think of a function from
A to B is purely operationally, as a thing such that when you give it a member of A it
gives you back a member of B. You don’t know anything else about it and you don’t
need to. This duplicate points made on

page 179[before we decorate formulæ we need some discussion of the cosmic pun: how K
lives inside every A → (B → A). The various manifestations of K depend on A and B
of course, but they are all things that output constant functions in a way that invites us
to give them all the same name ‘K’. I find myself reaching for the wonderful conceit in
The Hitch-hiker’s Guide to the Galaxy that every galactic civilisation has a drink called
gin-and-tonix. They’re all different of course, but every civilisation has one. Whatever
the sets A and B are, the drinks cabinet A→ (B→ A) has a bottle in it called ‘K’1.]

1“It is a curious fact, and one to which no one knows quite how much importance to attach, that something
like 85% of all known worlds in the Galaxy, be they primitive or highly advanced, have invented a drink
called jynnan tonnyx, or gee-N’N-T’N-ix, or jinond-o-nicks, or any one of a thousand or more variations
on the same phonetic theme. The drinks themselves are not the same, and vary between the Sivolvian
‘chinanto/mnigs’ which is ordinary water served at slightly above room temperature, and the Gagrakackan

177
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7.1 Decorating Formulæ

7.1.1 The rule of→-elimination
Consider the rule of→-elimination

A A→ B
→-elimB (7.1)

If we are to think of A and B as sets then this will say something like “If I have an
A (abbreviation of “if i have a member of the set A”) and an A → B then I have a B”.
So what might an A→ B (a member of A → B) be? Clearly A → B must be the set of
those functions that give you a member of B when you feed them a member of A. Thus
we can decorate 7.1 to obtain

a : A f : A→ B
→-elimf (a) : B

(7.2)

which says something like: “If a is an A and f takes As to Bs then f (a) is a B.2 This
gives us an alternative reading of the arrow: ‘A→ B’ can now be read ambiguously as
either the conditional “if A then B” (where A and B are propositions) or as a notation
for the set of all functions that take members of A and give members of B as output
(where A and B are sets).

These new letters preceding the colon sign are decorations. The idea of Curry-
Howard is that we can decorate entire proofs—not just individual formulæ—in a uni-
form and informative manner.

We will deal with→-int later. For the moment we will look at the rules for ∧.

7.1.2 Rules for ∧
7.1.2.1 The rule of ∧-introduction

Consider the rule of ∧-introduction:

A B
∧-intA ∧ B (7.3)

If I have an A and a B then I have a . . . ? thing that is both A and B? No. If I have
one apple and I have one bratwurst then I don’t have a thing that is both an apple and a
bratwurst; what I do have is a sort of plural object that I suppose is a pair of an apple
and a bratwurst—a packed lunch perhaps. (By the way I hope you are relaxed about
having compound objects like this in your world. Better start your breathing exercises
now.) The thing we want is called an ordered pair: 〈a, b〉 is the ordered pair of a and
b. So the decorated version of 7.3 is

‘tzjin-anthony-ks’ which kill cows at a hundred paces; and in fact the one common factor between all of
them, beyond the fact that the names sound the same, is that they were all invented and named before the
worlds concerned made contact with any other worlds. ”

The Restaurant at the End of the Universe, Ch. 24, p. 138 of the Pan paperback.
2So why not write this as ‘a ∈ A’ if it means that a is a member of A? There are various reasons, some of

them cultural, but certainly one is that here one tends to think of the denotations of the capital letters ‘A’ and
‘B’ and so on as predicates rather than sets.
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a : A b : B
∧-int

〈a, b〉 : A × B
(7.4)

Say something about how we
use × here . . .What is the ordered pair of a and b? It might be a kind of funny plural object,

like the object consisting of all the people in this room, but it’s safest to be entirely
operationalist 3 about it: all you know about ordered pairs is that there is a way of
putting them together and a way of undoing the putting-together, so you can recover
the components. Asking for any further information about what they are is not cool:
they are what they do. Be doo be doo. That’s operationalism for you. Computer
Scientists often describe this in terms of security: you are given information about
ordered pairs only on a need-to-know basis . . . and all you need to know is how to pair
things up and how to extract components. So that’s all you are told. This duplicate points made on

page 177
7.1.2.2 The rule of ∧-elimination

If you can do them up, you can undo them: if I have a pair-of-an-A-and-a-B then I can
have an A and I can have a B.

〈a, b〉 : A ∧ B
a : A

〈a, b〉 : A ∧ B
b : B

A × B is the set {〈a, b〉 : a ∈ A ∧ b ∈ B} of pairs whose first components are in A
and whose second components are in B. A × B is the Cartesian product of A and B.

(Never forget that it’s A× B not A∩ B that we want. A thing in A∩ B is a thing that
is both an A and a B: it’s not a pair of things one of which is an A and the other a B;
remember the apples and bratwürste above.)

We need to explain fst and snd. . .

x : A ∧ B
fst(a) : A

x : A ∧ B
snd(x) : B

7.1.3 Rules for ∨
To make sense of the rules for ∨ we need a different gadget.

A
A ∨ B

B
A ∨ B

If I have a thing that is an A, then I certainly have a thing that is either an A or a
B—namely the thing I started with. And in fact I know which of A and B it is—it’s an
A. Similarly If I have a thing that is a B, then I certainly have a thing that is either an A
or a B—namely the thing I started with. And in fact I know which of A and B it is—it’s
a B.

Just as we have cartesian product to correspond with ∧, we have disjoint union to
correspond with ∨. This is not like the ordinary union you may remember from school
maths. You can’t tell by looking at a member of A ∪ B whether it got in there by being
a member of A or by being a member of B. After all, if A ∪ B is {1, 2, 3} it could have

3Have a look at chapter 1
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been that A was {1, 2} and B was {2, 3}, or the other way round. Or it might have been
that A was {2} and B was {1, 3}. Or they could both have been {1, 2, 3}! We can’t tell.
However, with disjoint union you can tell.

To make sense of disjoint union we need to rekindle the idea of a copy from section
2.3.4. The disjoint union A t B of A and B is obtained by making copies of everything
in A and marking them with wee flecks of pink paint and making copies of everything
in B and marking them with wee flecks of blue paint, then putting them all in a set. We
can put this slightly more formally, now that we have the concept of an ordered pair:
A t B is

(A × {pink}) ∪ (B × {blue}),

where pink and blue are two arbitrary labels.
(Check that you are happy with the notation: A × {pink} is the set of all ordered

pairs whose first component is in A and whose second component is in {pink} which is
the singleton of4 pink, which is to say whose second component is pink. Do not ever
confuse any object x with the set {x}—the set whose sole member is x! We can think
of such an ordered pair as an object from A labelled with a pink fleck.)

Notice that, since pink , blue, A t B , B t A . . . in contrast to A ∪ B = B ∪ A!

∨-introduction now says:

a : A b : B
〈a, pink〉 : A t B 〈b, blue〉 : A t B

∨-elimination is an action-at-a-distance rule (like →-introduction) and to treat it
properly we need to think about:

7.2 Propagating Decorations
The first rule of decorating is to decorate each assumption with a variable, a thing with
no internal syntactic structure: a single symbol.5 This is an easy thing to remember,
and it helps guide the beginner in understanding the rest of the gadgetry. Pin it to the
wall:

Decorate each assumption with a variable!

Two assumptions that are discharged at the same place should be given the same
decoration, otherwise they should be given different decorsations.

How are you to decorate formulæ that are not assumptions? You can work that out
by checking what rules they are the outputs of. We will discover through some exam-
ples what extra gadgetry we need to sensibly extend decorations beyond assumptions
to the rest of a proof.

4The singleton of x is the set whose sole member is x.
5You may be wondering what you should do if you want to introduce the same assumption twice. Do you

use the same variable? The answer is that if you want to discharge two assumptions with a single application
of a rule then the two assumptions must be decorated with the same variable.
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7.2.1 Rules for ∧
7.2.1.1 The rule of ∧-elimination

A ∧ B
∧-elimB (7.5)

We decorate the premiss with a variable:

x : A ∧ B
∧-elimB (7.6)

. . . but how do we decorate the conclusion? Well, x must be an ordered pair of
something in A with something in B. What we want is the second component of x,
which will be a thing in B as desired. So we need a gadget that, when we give it an
ordered pair, gives us its second component. Let’s write this ‘snd’.

x : A ∧ B
snd(x) : B

By the same token we will need a gadget ‘fst’ which gives the first component of
an ordered pair so we can decorate6

A ∧ B
∧-elimA (7.7)

to obtain

x : A ∧ B
fst(x) : A

7.2.1.2 The rule of ∧-introduction

Actually we can put these proofs together and whack an ∧-introduction on the end:

x : A ∧ B x : A ∧ B
snd(x) : B fst(x) : A
〈snd(x), fst(x)〉 : B ∧ A

7.2.2 Rules for→
7.2.2.1 The rule of→-introduction

Here is a simple proof using→-introduction.

[A→ B]1 A
→-elimB
→-int (1)

(A→ B)→ B
(7.8)

6Agreed: it’s shorter to write ‘x1’ and ‘x2’ than it is to write ‘fst(x)’ and ‘snd(x)’ but this special use of
subscripts would prevent us using ‘x1’ and ‘x2’ as variables on their own account. In any case I feel strongly
that the fact that there is a function that extracts components from ordered pairs is an important one, and it
should be brought out into the open and given its own name.



182 CHAPTER 7. CURRY-HOWARD

We decorate the two premisses with single letters (variables): say we use ‘ f ’ to
decorate ‘A→ B’, and ‘x’ to decorate ‘A’. (This is sensible. ‘ f ’ is a letter traditionally
used to point to functions, and clearly anything in A → B is going to be a function.)
How are we going to decorate ‘B’? Well, if x is in A and f is a function that takes
things in A and gives things in B then the obvious thing in B that we get is going to be
denoted by the decoration ‘ f (x)’:

f : [A→ B]1 x : A
f (x) : B

??? : (A→ B)→ B

So far so good. But how are we to decorate ‘(A → B) → B’? What can the ‘???’
stand for? It must be a notation for a thing (a function) in (A→ B)→ B; that is to say,
a notation for something that takes a thing in A → B and returns a thing in B. What
might this function be? It is given f and gives back f (x). So we need a notation for a
function that, on being given f , returns f (x). (Remember, we decorate all assumptions
with variables, and we reach for this notation when we are discharging an assumption
so it will always be a variable). We write this

λ f . f (x)

This notation points to the function which, when given f , returns f (x). In general
we need a notation for a function that, on being given x, gives back some possibly
complex term t. We will write:

λx.t

for this. Thus we have

f : [A→ B]1 x : A
→-elimf (x) : B
→-int (1)

λ f . f (x) : (A→ B)→ B
(7.9)

Thus, in general, an application of→-introduction will gobble up the proof

x : A
...

t : B

and emit the proof

[x : A]
...

t : B
λx.t : A→ B
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This notation—λx.t—for a function that accepts x and returns t is incredibly simple
and useful. Almost the only other thing you need to know about it is that if we apply
the function λx.t to an input y then the output must be the result of substituting ‘y’ for
all the occurrences of ‘x’ in t. In the literature this result is notated in several ways, for
example [y/x]t or t[y/x]. Go over a proof of S at this

point

7.2.3 Rules for ∨
We’ve discussed ∨-introduction but not ∨-elimination. It’s very tricky and—at this
stage at least—we don’t really need to. It’s something to come back to—perhaps!

EXERCISE 70 Go back and look at the proofs that you wrote up in answer to exercise
26, and decorate those that do not use ‘∨’.

7.2.4 Remaining Rules
7.2.4.1 Identity Rule

Here is a very simple application of the identity rule. See [39]:
Semantical Archæology.

A B
B

B→ A
A→ (B→ A)

Can you think of a function from A to the set of all functions from B to A? If I give
you a member a of A, what function from B to A does it suggest to you? Obviously the
function that, when given b in B, gives you a.

This gives us the decoration

a : A b : B
b : B

λb.a : B→ A
λa.(λb.a) : A→ (B→ A)

The function λa.λb.a has a name: K for Konstant. (See section 3.6.) Show how do do this using
the option of cancelling non-
existent assumptions.7.2.4.2 The ex falso

The ex falso sequitur quodlibet speaks of the propositional constant ⊥. To correspond
to this propositional constant we are going to need a set constant. The obvious can-
didate for a set corresponding to ⊥ is the empty set. Now ⊥ → A is a propositional
tautology. Can we find a function from the empty set to A which we can specify with-
out knowing anything about A? Yes: the empty function! (You might want to check
very carefully that the empty function ticks all the right boxes: is it really the case
that whenever we give the empty function a member of the empty set to contemplate it
gives us back one and only one answer? Well yes! It has never been known to fail to
do this!! Look again at page 145.) That takes care of ⊥ → A, the ex falso.
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7.2.4.3 Double Negation

What are we to make of A→ ⊥? Clearly there can be no function from A to the empty
set unless A is empty itself. What happens to double negation under this analysis?

((A→ ⊥)→ ⊥)→ A

• If A is empty then A→ ⊥ is the singleton of the empty function and is not empty.
So (A → ⊥) → ⊥ is the set of functions from a nonempty set to the empty set
and is therefore the empty set, so ((A → ⊥) → ⊥) → A is the set of functions
from the empty set to the empty set and is therefore the singleton of the empty
function, so it is at any rate nonempty.

• However if A is nonempty then A → ⊥ is empty. So (A → ⊥) → ⊥ is the
set of functions from the empty set to the empty set and is nonempty—being
the singleton of the empty function—so ((A → ⊥) → ⊥) → A is the set of
functions from the singleton of the empty function to a nonempty set and is sort-
of isomorphic to A. empty.

So ((A → ⊥) → ⊥) → A is not reliably inhabited, in the sense that it’s inhabited
but not uniformly. This is in contrast to all the other truth-table tautologies we have
considered. Every other truth-table tautology that we have looked at has a lambda term
corresponding to it.to be continued

A final word of warning: notice that we have not provided any λ-gadgetry for the
quantifiers. This can in fact be done, but there is no spacetime here to do it properly.

7.3 Exercises
In the following exercises you will be invited to find λ terms to correspond to particular
wffs—in the way that the λ term λa.λb.a (aka ‘K’) corresponds to A→ (B→ A) (also
aka ‘K’!) You will discover very rapidly that the way to find a λ-term for a formula is
to find a proof of that formula: λ-terms encode proofs!

EXERCISE 71 Find λ-terms for
(A ∧ B)→ A;
((A→ B) ∧ (C → D))→ ((A ∧C)→ (B ∧ D));
(A→ B)→ ((B→ C)→ (A→ C));
((A→ B)→ A)→ ((A→ B)→ B);
(A→ (B→ C))→ (B→ (A→ C));
(A→ (B→ C))→ ((B ∧ A)→ C));
((B ∧ A)→ C))→ (A→ (B→ C)).

Finding λ-terms in exercise 71 involves of course first finding natural deduction
proofs of the formulæ concerned. A provable formula will always have more than one
proof. (It won’t always have more than one sensible proof!) For example the tautology
(A→ A)→ (A→ A) has these proofs (among others)
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[A→ A]1
identity rule

A→ A
→-int (1)

(A→ A)→ (A→ A)
(7.10)

[A]1 [A→ A]2

→-elimA
→-int (1)

A→ A
→-int (2)

(A→ A)→ (A→ A)

(7.11)

[A]1 [A→ A]2

→-elimA [A→ A]2

→-elimA
→-int (1)

A→ A
→-int (2)

(A→ A)→ (A→ A)

(7.12)

[A]1 [A→ A]2

→-elimA [A→ A]2

→-elimA [A→ A]2

→-elimA
→-int (1)

A→ A
→-int (2)

(A→ A)→ (A→ A)

(7.13)

[A]1 [A→ A]2

→-elimA [A→ A]2

→-elimA [A→ A]2

→-elimA [A→ A]2

→-elimA
→-int (1)

A→ A
→-int (2)

(A→ A)→ (A→ A)
(7.14)

EXERCISE 72 Decorate all these proofs with λ-terms. If you feel lost, you might like
to look at the footnote7 for a HINT.

7Notice that in each proof of these proofs all the occurrences of ‘A → A’ are cancelled simultaneously..
Look at the footnote on page 180.
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On successful completion of exercise 72 you will be in that happy frame of mind
known to people who have just discovered Church numerals.

Then we will define plus . . .

***************************************************************

Things still to do in this chapter.
Is every λ term a decoration of a proof? No. There is an obvious way to run-in-

reverse the process-of-decoration to obtain a proof, but it doesn’t always work. Some-Should we Say something
about typing algorithms?
There is a connection here with
syntactic typing in the section
on semantics

times it fails, and when it fails it will be because the λ-term is UNTYPED!

(i) Make more explicit the connection with constructive logic

(ii) Scott’s cute example in [39]:

(iii) So far we’ve been inputting proofs and outputting λ-terms. It’s now time to
start doing it the other way round.

(iv) Church Numerals, fixed point combinators

(v) Explain α and β conversion.

(vi) Do something with

λx.(λw.w(λz.x(λy.z)))

We might find some nice things to say about∧
C

[(A→ C)→ ((B→ C)→ C)]

which is supposed to be A ∨ B. After all,

A→ [(A→ C)→ ((B→ C)→ C)]

and
B→ [(A→ C)→ ((B→ C)→ C)]

are both provable and therefore

(A ∨ B)→ [(A→ C)→ ((B→ C)→ C)]

will be provable as well. (We saw this in exercise 28. Think about how both A and
B imply (∀x)[(A→ F(x))→ ((B→ F(x))→ F(x))])

blah harmony section 3.4
(∀x)[(A→ F(x))→ ((B→ F(x))→ F(x))]
We could have a rule of ∨-elimination that goes like this

A ∨ B

(A→ C)→ ((B→ C)→ C)

. . . where C can be anything. How about a λ-term?
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λ f g. f a and λ f g. f b

(vii) Provide a similar analysis of
∧

C(A→ (B→ C))→ C.
We want to show that it follows from {A, B}. Use→-elimination twice on {A, B, A→

(B → C)}. To infer A instantiate ‘C’ to ‘A’ getting (A → (B → A)) → A; to infer B
instantiate ‘C’ to ‘B’ getting (A → (B → B))toB. How, one might ask, have we made
any progress by explaining finitary con junction in terms of infinitary conjunction? The
answer is that

∧
isn’t really conjunction (aka intersection)—remember that A ∧ B is

A × B rather than A ∩ B.
K isn’t really of type A→ (B→ A), but of type

∧
A
∧

B(A→ (B→ A)).
A λ-term? ‘λ f . f ab’ should do the trick.
This shows how, by using

∧
, we can find λ-terms inside the pure lambda calculus

and don’t need pairing and unpairing.

Worth pointing out that if we think of A ∨ B and A ∧ B as syntactic sugar for the
complicated formulæ with

∧
then the introduction and elimination rules are harmo-

nious.
(viii) Say something about Paul Taylor’s aperçu in [43] that Curry-Howard retro-

spectively makes sense of logicism.

7.4 Combinators and Hilbert Proofs
Work to do here

Take the proof on p 83 and decorate it with combinators:

K A→ ((A→ A)→ A)
S (A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))
S K (A→ (A→ A))→ (A→ A)
K A→ (A→ A)
(S K)K A→ A

‘S ’ is the proper name for the λ term λadc.(ac)(dc)
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Chapter 8

How Not to Use Logic

Logic an exercise in concealment. Shouldn’t conceal the wrong things. Talk about this
in connection with hasty formalisation. A useful form of words: “must be held constant
during the exercise”. Use this in connection with *drilling down* in formalisation of
English in LPC.

hasty formalisation→ excessive concealment→ fallacies of equivocation.
The key to using logic correctly is concealing precisely the right amount . . . showing

precisely the right amount of leg.

If you want to apply Logic (or formal methods) you first have to decide what it
is you want a formal theory for. I mean ‘for’ not ‘of’. Why do you want this formal
theory? This may be determined for you, of course. Then you have to identify those
features that can safely be hidden.

For formalisation to work, two things must be in place. (i) the concepts you are
trying to formally reason about must be well-defined, hard-edged; (ii) the concepts
you are not going to reason about must be concepts that can be safely partitioned-off-
from/invariant-over the things you are going to reason about.

I would go so far as to say that—to a first approximation—all the failures and
infelicities of bad formalisations come from inattention to these considerations.

What does this mean, exactly? (i) means that if the things you are reasoning about
are measurements of values of a parameter then you’d better be sure that if you measure
some quantity a second time, and at a time when it hasn’t changed, you’d better record
the same value. (ii) means . . .

It may be of course that your instruments are imperfect, and you have no guarantee
that recording a quantity for a second time will give the same reading as you got the
first time. Such is life. One can’t give up altogether of course, but what it does mean
is that one shouldn’t reason about the figures that one gets as if they are snapshots of
the system, one has to take into account that are at one remove from the system of
interest, and the fact that they are at one remove cannot be safely concealed. They are
snapshots not of the system, but of the system+observer. The error made by “Fuzzy

189
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Logic” is that it attempts to conceal this remove. It’s a form of the mind-projection fal-
lacy. see http://en.wikipedia.org/wiki/Mind_projection_fallacy. Identi-
fying the world with your knowledge of it is really a form of solipsism, of extreme
vanity.

If, after having made your initial assessment of what it is safe to conceal, and after
having started work on that basis, you feel the urge to use a nonclassical logic, that
almost certainly means that you were mistaken in your assessment of what it was safe
to conceal. See appendix p 221.

It may be felt that this appeal to the legitimacy of classical logic is circular, and it
can certainly seem that way. The best way to set out one’s stall is to say that IF you start
off with a presumption in favour of classical logic, your bad experiences with attempts
at formalisation will never overturn it, for all such bad experiences arise from hasty
formalisation and inappropriate concealment. You might have a ab initio objection to
classical logic, but don’t try to justify it by narratives of attempted formalisation.The iteration test?

Some very special conditions have to be met before you can properly use a logic
to formalise anything. Of course sometimes you can use a logic as a kind of syntactic
sugar for the formalism that you are are constructing (but withholding from the public)“syntactic sugar”?

So why do people do it? I think the answer is, in part, that there are a lot of syntax
buffs around, who just love inventing new logics.

Propositional logic is a triumph of ellipsis. We can get away with writing ‘p’
instead of ‘pch,co

t ’ (which would mean that Chap ch in context co asserts p at time
t) as long as we can hold all these other parameters constant. In settings where the
other parameters cannot be held constant the ellipsis is not safe. Yet it is precisely this
kind of ellipsis we have to perform if what we want is a logic rather than a first-order
theory of deduction-tokens-in-context. Here is an example of how not to do it, takenceteris paribus other things be-

ing equal from a standard text (names changed to preserve anonymity). Kevin (not his real name)
and his friends have been having some fun in the chemistry lab, and they wrote:

MgO + H2 →Mg + H2O

(This would require extreme conditions but never mind1; this is at least standard chem-
ical notation.)

Then assume we have some MgO and some H2. They (Kevin and his friends) end
up representing reactions by means of logical formulæ like

(MgO ∧ H2)→ (Mg ∧ H2O) (K1)

This is on the basis that if one represents “I have some MgO” by the propositional letter
‘MgO’ (and others similarly)2 then the displayed formula does not at all represent the
reaction it is supposed to represent. p → q does not say anything like “p and then q”
(at which point p no longer!) but once one “has” Mg and H2O as a result of the reaction

1I suppose it just might work if you roasted magnesia in a stream of hydrogen at a temperature above the
melting point of magnesium metal. However I suspect not: Kevin probably not only knows no logic but no
chemistry either.

2Do not be led astray by the fact that ‘MgO’ is three letters in English! It’s only one in the propositional
language we are setting up here!

http://en.wikipedia.org/wiki/Mind_projection_fallacy
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allegedly captured by the displayed formula one no longer “has” any Mg or H2O: it’s
been used up! In contrast, p and p → q are not in any sense “used up” by modus
ponens. And nothing will be achieved by trying to capture the fact that the reagants are repetition
used up by writing something like

(MgO ∧ H2)→ ((Mg ∧ H2O) ∧ ¬MgO ∧ ¬ H2)

Consider what this would mean. It would mean that from the assumption MgO
∧ H2 we would be able to infer ¬MgO ∧ ¬ H2, and this conclusion contradicts the
assumption, so we would infer ¬(MgO ∧H2), and that is clearly not what was intended.
The problem—an important part of it at least—is that we have tried to get away without
datestamping anything.

Now if we spice up the formalism we are using by means of datestamping, then it
all becomes much more sensible. Rather than write ‘MgO’ to mean “Kevin has some
magnesia” we write ‘MgO(t)’ to mean “at time t Kevin [or whoever it happens to be]
has some magnesia”—and the other reagents similarly—then instead of (K1) we have

MgO(t) ∧ H2(t)→Mg(t + 1) ∧ H2O(t + 1) (K2)

which is altogether more sensible. Notice that just as we left the datestamps out of the
original formulation, here we have left out the name of the poor helot in the lab coat.
That is perfectly OK, because the chemistry doesn’t depend on the chemist.

In writing ‘MgO(t)’ we have taken the (possession-by-Kevin of) magnesia to be
a predicate, and points-in-time as arguments. We could have written it the other way
round: ‘t(MgO)’ with time as the predicate and magnesia as the argument. That way
it more obviously corresponds to “at time t there is some magnesia”. Or we could
make the lab technician explicit by writing something like ‘K(MgO, t)’ with a two-
place predicate K(, ) which would mean something like “Kevin has some magnesia at
time t”. Indeed we could even have had a three-place predicate and a formulation like
‘H(k,MgO,t)’ to mean that “k has some magnesia at time t”. All of these can be made
to work.

The moral of all this is that if there are important features—such as datestamping—
that your formalisation takes no account of, then you shouldn’t be surprised if things
go wrong.

To forestall the charge that I have tried to burn a straw man instead of a heretic, I
should point out that this example (of how not to do it) comes from a textbook (which
should be showing us how we should do it), to wit [censored]3

Mind you, there might be a useful parallel one can draw here between logical-truth-
plus-evaluation-strategies on the one hand and chemical-reactions-with-mechanism on
the other. The arrow syntax that one remembers from school chemistry

3Most of us have at one time or another committed to paper sottises like this—if not worse—and nev-
ertheless subsequently gone on to lead entirely blameless lives. The law providing that spent convictions
should be overlooked is a good one, and it is there to protect others as well as me. Kevin has been granted
name suppression.
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NaOH + HCl→ NaCl + H2O

hides mechanism.

8.1 Many-Valued Logic is an Error
Edit this section

[summary: to be eventually suppressed
Many–states does not correspond to many–truth-values–of–a–single–proposition.

Sometimes (if the number of states is a power of 2) they might correspond to compound
propositions. But never if the number of states is not a power of two. Why not? Why
might there not be lots of truth-values? The point is that all the different stories in the
different case have to cohere.

Nobody thinks that trichotomy is a reason for having a 3-valued logic for describing
total order. Why are people attracted to this error? Probably lots of reasons. evaluation
blah mind-projection fallacy]

In section 3.2.5 we met a device called three-valued logic. No suggestion was
made there that the third truth-value has any meaning. It is purely a device to show that
certain things do not follow from certain other things. However there is the obvious
thought that perhaps the third truth-value really might mean something, and that the
logic with the three values is a theory of something, something different from classical
two-valued logic. Might there be any mileage in this idea? Might there, perhaps, have
always been three truth-values, and the thought (often called bivalence) that there are
only two a naı̈ve delusion?

I don’t see any way of refuting the idea that there really are more than two truth
values (in fact I don’t even know what such a refutation would look like) but what one
can do is analyse all the lines of chat that suggest that there might be, and show how
they stand up under examination.

What phenomena become intelligible, what puzzles disappear, if we think there are
more than two truth-values?

Not to say that there cannot be particular restricted settings in which a pretence that
there are more than two truth-values might not be a useful programming trick. But
that’s not metaphysics.

8.1.1 Many states means many truth-values . . . ?
One of the impulses towards many-valued logic is the thought that for any system with
many states there is a special proposition about that system, such that the system being
in any one state is simply that proposition having a particular truth value.

This is completely crazy, but there are special cases in which it can look plausible.
If a parameter can take one of two values, A and B, there is no harm in thinking of

these two outcomes as two truth-values of a proposition. Indeed it’s obvious what that
proposition must be: “The value of the parameter is A”. If ¬p then the value isn’t A so
it must be B, co’s the parameter is two-valued. The sensitive reader might feel that this
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is a bit of a cheat, a virtus dormitiva. It is, but it does at least work. What happens if
the parameter can take more than two values?

Suppose my local supermarket has four brands of vegetarian sausage. It may
be that there are two natural yes/no parameters that I can use to describe them, say
gluten-free vs ¬gluten-free and with-garlic vs without-garlic, so I can
characterise my purchase by giving truth values to two independent propositions (my–
sausage–has–garlic and my–sausage–is–gluten-free) but equally it might be that there
are no natural divisions of that nature. But even if there is no natural division—as in the
case where there are four varieties unilluminatingly called A, B, C and D—I can still
cook up two propositions p and q such that four possibilities A, B, C and D correspond
to the four possible combinations p ∧ q, p ∧ ¬q, ¬p ∧ q and ¬p ∧ ¬q.

EXERCISE 73 What might p and q be? (Remember that A, B, C are mutually exclusive
and jointly exhaustive. There is more than one correct answer!)

[strongly agree / agree / disagree /strongly disagree does look like four truth-values
rather than two propositions. agree/disagree and strong/mild doesn’t seem to do it.
Must discuss this. “ “To what four situations do the four truth-value attributions of
“Professor Copeland is with us today” correspond?” Our course even if there are four
truth-values some props behave as if they have only two. The real global truth-value
algebra must be something of which all these little algebras are quotients. It is very
striking that there is no consideration in the literature of what that global truth-value
algebra might be.]

The Blood Group Exercise

Consider the relation between humans “It is safe for x to receive a transfusion of blood
from y.” Ignoring the blood-borne diseases like HIV, CJD, Hep C and so on, we find
that if x can safely receive a transfusion of blood from y, and y′ belongs to the same
blood group as y, then x can safely receive a transfusion of blood from y′. That is to
say, the equivalence relation of having-the-same-blood-group is a congruence relation
for the binary relation “x can safely receive a transfusion of blood from y”. That way Are we going to explain con-

gruence relations?we can think of the relation “x can safely receive a transfusion of blood from y” as
really a relation between the blood groups, and summarise it in the following matrix.

Columns are donors, rows are recipients.

O− O+ B− B+ A− A+ AB− AB+

O− ×

O+ × ×

B− × ×

B+ × × × ×

A− × ×

A+ × × × ×

AB− × × × ×

AB+ × × × × × × × ×
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So the table is telling you that O- people can donate blood to everyone, and so on.
Your blood group is a parameter that can take one of eight values. You would have

to be very obtuse not to suspect that there are three switches (three propositions) each
of which can take two values.

Perhaps enough has been said for the reader to appreciate that a system with 2n

states can be described by n propositions each taking two truth-values.
These analyses—and some others like them—are sensible, but they don’t argue for

lots of truth-values, rather for lots of propositions, and they don’t work at all when the
number of states is not a power of 2:

(i) We don’t want to infer from the fact that there are n alleles at a locus that there
is a proposition with n truth values.

(ii) The electronic lock on my building at work has three states: locked, unlocked
and disabled. Nobody thinks there is a proposition which has three truth-values corre-
sponding to these three states.

A jumble below here

By implication if it doesn’t work for a number of states that isn’t a power of 2 then
it might perhaps not be a good idea even when the number of states is a power of 2. A
cricket match has four possible outcomes: win, lose, draw and tie. But this situation
doesn’t seem to invite an analysis in terms of two propositions. Even less does it seem
to invite an analysis using a single proposition and four truth-values, where—say—
winning corresponds to true, losing to false, and the other two to two novel truth-values
draw and tie, say.

If there really were four such truth-values, one would be able to ask (and would
have to be able to answer) “What state of affairs is described by the proposition “Balbus
loves Julia” having truth-value tie? Why? The point is that the number of truth-values
is a fact about nature herself. No-one is suggesting that propositions about wombats
are two-valued but propositions about dingbats are three-valued, propositions about
widgets have four values but propositions about gadgets have five. One policy to rule
them all. If we have one story that suggests there are three truth-values and they behave
like this, and another story that says there are five truth-values and they behave like that,
then we don’t have two arguments against bivalence, we merely have two potential
arguments against bivalence, and—sadly—they are mutually contradictory, so at least
one of them must be wrong.

failure to evaluate

refer back to p 29.
It’s an example of the mind projection fallacy.
It’s a bad idea to think that the failure of evaluation is a third truth-value. For one

thing, if you wait a bit longer, the thing you are looking at that hasn’t yet evaluated
might yet evaluate, which means you are hiding a (date) parameter that you shouldn’t
have hidden. That probably won’t matter, but you might want to take seriously the
time consumption of the evaluation. So that, if A and B are both undetermined at time
t, then A ∧ B is undetermined at time t + 1. (It takes you one clock tick to compute the
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conjunction.) For another (and more seriously) if we pretend that failure-to-evaluate-
at-time-t is a truth-value we find that the intended semantics for this logic is no longer
compositional, and we no longer have the theorem that eager and lazy evaluation give
the same answer. The truth value of A→ B is undetermined if the truth-values of A and Should have a proof of this.

See section 3.14.B are undetermined, but the truth value of A→ A is always 1. Thus an eager semantics
will not detect the fact that the truth-value of A → A is 1 but a lazy semantics (or at
least a suitably ingenious top-down semantics) will.

On a related topic. We have to be very careful with the impulse to use three-
valued logic in connection with Sorites. If we believe that logical equivalence of two
expressions is having-the-same-truth-value-under-all-valuations then A and A ∧ A will
have the same truth-value-under-all-valuations. Further, we desire that the truth-value
of A ∧ B under any given valuation will depend solely on the truth-values of A and B
under that valuation. (This is a point about truth-functionality not compositionality.) So
if A and B have the same truth-value under a given valuation, A∧ B will have the same
truth-value as A ∧ A, which is to say, the same as A. In other words the conjunction
operator acting on truth-values must be idempotent. (Ditto disjunction, for that Do they know ‘idempotent’?
matter). But then that means that the ruse of giving all the assertions

“If a man with n hairs on his head is not bald, then
neither is a man with n − 1 hairs on his head” bald(n)

the same truth value of 0.99999 will not have the desired effect. For then the con-
ditional

“If a man with 150000 hairs on his head is not bald, then neither is a man
with 0 hairs on his head”

which must have a truth value at least as great as the conjunction of the truth val-
ues of all the 150000 expressions bald(n). But conjunction is idempotent and truth-
functional, so this conjunction has truth-value 0.99999, not the truth-value (0.99999)150000 'could say more about

truth-functionality-plus-
idempotence

0.223 which we wanted, so we don’t get the leaking away of truth that we wanted. This
kind of thing works with probabilities or credences but not truth-values.

8.2 Beware of the concept of logically possible

For the purposes of this discussion a (Chalmerian) zombie is a creature physiologi-
cally like us but without any mental life. I have heard it claimed (as part of a wider
programme) was that zombies are logically possible but perhaps not metaphysically
possible.

The only sane point of departure for a journey that uses the concept of logical
possibility is that of satisfiable formula of first-order logic. (‘Logically possible’ is
presumably a logical notion so one’s first enquiries are to logicians—presumably!) An
important but elementary point which we have been emphasising (see section 2.3.2 et
seq) is that whether or not a proposition is logically possible depends only on its logical
structure, and not on the meanings of any tokens of the non-logical vocabulary to be
found in it. It’s not logically possible that, say
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All bachelors are unmarried and at least some bachelors are married.

because there is no way of interpreting those two predicates in such a way that the con-
junction comes out true. (that is, if we agree to take ‘unmarried’ to be syntactic sugar
for ‘not-married’, so that the displayed expression has the logical form ‘(∀x)(B(x) →
¬M(x)) ∧ (∃x)(B(x) ∧ M(x))’). So is it logically possible that there are zombies? Yes,
clearly. The physiological vocabulary and the mental vocabulary are disjoint so it’s
easy (using the interpolation lemma, thm 16) to find a structure which contains zom-
bies (= things that according to that structure are zombies).

Now i don’t think that was what is meant by people who think it’s logically possi-
ble that there should be zombies. They want to “reserve” the denotations of the mental
predicates and the physiological predicates, rather in way that the meaning of the sym-
bol ‘=’ is reserved. (Forgive me using the Compsci jargon word ‘reserved’: it happens
to be exactly what i mean—even tho’ it is the property of a different community!) Now
reserving a word in this way is a very significant move. The only predicate letter that
logicians ever reserve is ‘=’, and when they do that they are aware that they are doing
something that needs to be flagged. They speak of ‘predicate calculus with equality’ or
‘predicate calculus without equality’. Nowhere in the logical literature is the possibil-
ity of reserving any other predicate letter ever considered. Nevertheless philosophers
appear to be talking as if such reservations were routine. Predicate calculus with zom-
bies(!) But never mind. Let us suppose one can reserve mental predicates in this
way and see what happens. But if we really knew what the denotation of the mentalI think this is where philoso-

phers reach for the modish ex-
pression ‘rigid designator’

predicates were—so that we could fix them—the question of whether or not there are
interpretations of the predicate letters in “There are zombies” which make that sentence
true would reduce to the question of whether or not there are, in fact, any zombies.

And i don’t think that is what was meant either!



Chapter 9

Other Logics

Logic of questions. Logic of commands is the study of programming languages. A rich
and beautiful topic. Here the distinction between different kinds of evaluations lazy vs
strict really matters

Infinitary Logic? The quantifiers as infinitary conjunction and disjunction. Har-
mony tells us that A∨B can be seen as the conjunction of all [(A→ C)∧(B→ C)]→ C Since ‘A ∨ B’ can be subst for

‘C’ we have an illfounded sub-
formula relation.

Monadic second-order logic is OK. Possibly talk about branching-quantifier logics.

The logics we consider have arisen from thinking about modes of inference that
preserve certain features of the propositions we are reasoning about. In the case of
classical logic, the thing being preserved is truth. As it happens it doesn’t make any
difference whether it is truth-in-a-particular-interpretation we are preserving or truth-
in-all-interpretatations. With constructive logic we restrict ourselves to rules that pre- Say something about this
serve the property of having a proof that respects the existence property. That tightens
up the rules we are allowed to use. Sometimes it might make sense to relax them.
When? If we think that the universe is not infinite then we might drop our guard to the
extent of allowing ourselves the luxury of rules of inference that do not preserve the
property of being true in all models but do at least preserve the property of being true
in all finite models. After all, if the only models in which the conclusions we are now
allowed to draw could fail would be infinite models then we have nothing to fear. As it
happens, the extra principles we could safely allow ourselves to use on this assumption
are neither easy to capture with rules nor particularly useful. But the thought opens the
door to other possibilities.

We might be interested in principles of reasoning that—even if they don’t work in
all models, at least preserve truth-in-models-where-there-is-a-God, or truth-in-models-
that-contain-humans (we aren’t going to find ourselves in any that don’t, are we!)
or all truth-in-all-models-where-there-has-not-been-a-nuclear-war (not much point in
planning for that contingency really, is there?—it’s something you try to avoid, not
something you prepare for.)

However most of these relaxations don’t result in new logics as that word is gener-
ally understood. . .

197
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9.1 Relevance Logic
K seems obvious: Clearly we can deduce A from A. Adding further information might
enable us to deduce more things, but it cannot prevent us from deducing things we could
deduce already. If we could deduce A from A, we can certainly deduce it from A and B.
Thus no-one can argue against A∧ B→ A. And—as long as we accept the equivalence
of A → (B → C) and A ∧ B → C—we can deduce K. (There are connections here to
the principle of Independence of Irrelevant Alternatives from economics.).

This thought—that if we can deduce A from A we can deduce it from {A, B}—is
sometimes referred to as the monotonicity of deductive logic.

Digression on Monotonicity

It can do no harm to have this word explained. The word ‘monotone’ in mathematics
refers to functions f which satisfy conditions like

x ≤ y→ f (x) ≤ f (y).

We say such a function is monotone increasing with respect to ≤. (If instead f satisfies
x ≤ y → f (x) ≥ f (y) we say f is monotone decreasing with respect to ≤.) Of course,
it may be (as it is in fact the case here) that the partial order in the antecedent of the
condition is not the same partial order as in the consequent, so ideally we would need
a more complex form of words along the lines of “ f is monotone [increasing] with
respect to ≤ and ≤′”. However this ideal notation is never used, being sacrificed by
ellipses to the form of words “ f is monotone [increasing]”.

We use it here because the function F that takes a set of assumptions A and returns
the set F(A) of its logical consequences is monotone with respect to set-inclusion :

A ⊆ B→ F(A) ⊆ F(B).

[We have in fact encountered this notion of monotonicity earlier under a different
name: the phenomenon of persistence that we saw in section 6.3 tells us that in a
possible world model for constructive logic the function λW.{Φ : W |= Φ} (that sends
each world to the set of things it believes) is a function that is monotone with respect
to the accessibility relation and logical strength.]

However, ordinary commonsense reasoning is not monotone in this way. In real life
we might infer1 A from B even if we are not deductively authorised to do so, as long
as the evidence is suggestive enough—while reserving the right to change our minds
later. There are circumstances in which I might risk inferring A from B but definitely
not from B ∧ C. This can happen if A is true in most cases where B holds (so we are
generally happy to risk inferring A from B) but not in the unlikely event of C.

The standard example is

Tweety is a bird
Tweety can fly.

1Notice that I am using the word ‘infer’ not the word ‘deduce’ here!



9.2. RESOURCE LOGICS 199

The sting in the tail is that Tweety is a penguin. I am writing this in NZ so actually
Tweety was a kiwi but never mind. In those cases we infer q from p but not from p∧ r.
Defeasible reasoning (thought of as a function from sets-(of assumptions) to (sets-of)
conclusions) is not monotone with respect to set-inclusion. Nor is it monotone with
respect to temporal-order and set-inclusion. If i am allowed to retract beliefs then the
set of things K(t) that I hold true at time t is not a monotone functon of t: t ≤ t′ does
not imply K(t) ⊆ K(t′). After all, if at time t I am told that Tweety is a bird, then I may
well hold-true-at-time-t that Tweety can fly. However, when I learn—at time t+1—that
Tweety is in fact a kiwi I no longer hold true that Tweety can fly.

Blah a theory of inference-tokens not inference-types Blah

9.2 Resource Logics
Drop weakening and contraction.

p doesn’t suddenly cease to be true just because I act on the assumption that p.
Let’s return to our example from page 58 . . . where it is sunny and it’s a tuesday. By
∧-elimination I infer that it is sunny and consequently that it would be good to go for a
walk in the botanics. However altho’ i have used the assumption that it-is-sunny-and-
it’s-a-tuesday i definitely haven’t used-it-up. It remains available to me, for me to infer
from it also that it is tuesday—which will remind me that I have an 11 o’clock lecture
to go to. No doubt it would be nice if i didn’t have to go to 11 o’clock lectures on sunny
tuesdays but logic gives me no help there.

So the idea that you can use each “assumption” precisely once means that the ps
and qs that you are minding so carefully are not propositions, but something else: they
must be dollar coins, or something.2 When I make this point and say “Why call it a
logic, not just a first-order theory of double-entry bookkeeping?”, Ed Mares replies:
“Because it has cut-elimination”. What I should have replied then (but i am doing it
belatedly now, because i didn’t see it at the time) is that if it’s not propositions we
are manipulating then why is cut-elimination such a big deal? I suppose it means that
this theory of double-entry bookkeeping has additive cancellation: you can borrow a
resource and pay it back. Or perhaps it means that you can lay off your bets. That
makes it important all right, but what does that have to do with *logic*?

2One of these logics was started by the great French proof-theorist Jean-Yves Girard, and I remember the
example he used in a talk I went to: “Eeef I have zee dollaire, I can buy zee packet of condoms, and Eeef I
have zee dollaire, I can buy zee packet of fags; but Eeef I have zee dollaire I cannot buy boace zee packet of
fags and zee packet of condoms!”.
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Chapter 10

Some Applications of Logic

The logical gadgetry we have seen so far can lead in two directions:

1. The gadgetry can be exposed to philosophical analysis. We can try to get straight
things like the constructive concept of proposition or truth. See, for example,
[27], [28] and [14].

2. We can use the logic tools to attack problems in philosophy. e.g. Synonymy is a
concept from philosophy of language which logic has quite a lot to say about.

This chapter will have examples of both.
Exercise 21, part 10 is a minor example of the kind of thing we are after. This

argument, valid tho’ it is, isn’t going to impress a firm believer. That’s not to say that it
is a completely pointless exercise. It can help to focus our minds on the issues.

H I A T U S marry these two paras together
In the two examples we are about to see Logic is useful to us because it gives us

a formal proof of something which appears to be fairly clearly absurd. The dscipline
of formalisation helps us to see which of the conditions-for-correct-use-of-logic have
been violated, and this gives us feedback about the way we have been thinking about
the phenomena.

10.1 Berkeley’s Master Argument for Idealism
Berkeley’s Master Argument [1] for Idealism combines immediate appeal and extreme
murk, which makes it an ideal thing for logicians to practice their gadgets on. In this
section I cover some of the modern work on it using those gadgets. My purpose here
is pædogogical rather than investigatory: I want to show what can be done with the
logical machinery we developed in the earlier chapters. I want to put the machinery
through its paces, and Berkeley’s Master argument is a stretch where the going is hard
enough to test all the runners thoroughly: the murkiness of Berkeley’s argument makes
for lots of pitfalls in the application of logical gadgetry—and that of course suits my
pædogogical purpose.
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In what follows we will see natural deduction, modal operators, ε-terms, and the
intension/extension distinction.

The purpose of Berkeley’s Master Argument is to prove that everything exists in
the mind. Berkeley cast it in the form of dialogue, as people did in those days. The two
interlocutors are Philonous and Hylas. Philonous is Berkeley’s mouthpiece, Hylas the
stooge1.

HYLAS : What more easy than to conceive of a tree or house existing by
itself, independent of, and unperceived by any mind whatsoever. I do at
present time conceive them existing after this manner.

PHILONOUS : How say you, Hylas, can you see a thing that is at the same
time unseen?

HYLAS : No, that were a contradiction.

PHILONOUS : Is it not as great a contradiction to talk of conceiving a thing
which is unconceived?

HYLAS : It is

PHILONOUS : This tree or house therefore, which you think of, is con-
ceived by you?

HYLAS : How should it be otherwise?

PHILONOUS : And what is conceived is surely in the mind?

HYLAS : Without question, that which is conceived exists in the mind.

PHILONOUS How then came you to say, you conceived a house or a tree
existing independent and out of all mind whatever?

HYLAS That was I own an oversight . . .

There is surely some simple point to be made by appealing to the difference be-
tween “intensional” and “extensional” attitudes. You can desire-a-sloop without thereReaders do not know what a

proppositional attitude is
slooplessness

being a sloop. Don’t we have to ask some awkward questions about which of these
“conceive” is, intensional or extensional? Surely it is only if it is extensional that
Philonous’ trick ever gets started; and it is surely clear that Hylas reckons that the con-
ceiving he is doing is intensional. Though this is probably intentional with a ‘t’, as in
Chisholm.

10.1.1 Priest on Berkeley
In [32] Graham Priest gives a very elegant formulation of Berkeley’s Master Argument,
and I will recapitulate it here.

Priest starts off by distinguishing, very properly, between conceiving objects and
conceiving propositions. This answers our concerns in the previous section about
equivocating between intensional and extensional kinds of conceiving. Accordingly

1I am endebted to my colleague Aneta Cubrinovska for pointing out to me that ‘Hylas’ comes from a
Greek word meaning ‘matter’ and ‘Philonous’ means lover of ‘nous’ or (loosely) mind.
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in his formalisation he will have two devices. One is a sentence operator T which is
syntactically a modal operator and a the other is a predicate τ whose intended inter-
pretation is that τ(x) iff x is conceived. It is presumably true that both these devices
should be relativised—in the sense of having an extra argument place where we can
put in a name of whoever is doing the conceiving, but since this is probably going to be
plugged with some fixed constant we will ignore it. As a matter of record, no develop-
ments of this problem have depended on “conceivable” meaning conceivable not just
by me but by anyone else, but one certainly should not exclude this possibility. Until
further notice, then Tφ means that the proposition φ is being conceived by me, and τ(x)
means that I am contemplating the object x.

In addition to the usual devices of the ε-calculus from section 4.14.3 we will adopt
the following schemes for these syntactic devices.

φ→ ψ

T (φ)→ T (ψ)

Priest calls this affixing. The other rule is one that tells us that if we conceive an object
to be something then we conceive it.

T (φ(x))
τ(x)

Let us call it the mixed rule. We of course have the usual rule of ε-introduction for
ε-terms (from page 136) namely

∃yΨ(y)
Ψ(εxΨ(x))

Priest’s formalisation procedes as follows. One particular ε-term we shall need a
great deal is εx.¬τ(x). Since it takes up a lot of space it will be abbreviated to ‘c’.
The only thing we know about this c is that (∃x¬τ(x)) → ¬τ(c). This indeed is a
logical truth, so we can allow it to appear as an undischarged assumption in the natural
deduction proof which we will now exhibit:

(∃x¬τ(x))→ ¬τ(c)
Affixing

T (∃x¬τ(x))→ T (¬τ(c)) T (∃x¬τ(x))
→-elimT (¬τ(c))

Mixed Rule
τ(c)

(∃x¬τ(x))→ ¬τ(c) (∃x¬τ(x))
→-elim

¬τ(c)
→-elim

⊥
(10.1)

Thus, by judicious use of the ε machinery, we have derived a contradiction from
the two assumptions (∃x)¬τ(x) and T (∃x¬τ(x)), which both sound like possible for-
mulations of realism.

Do we accept this argument as legitimate? Or, for that matter, as an accurate for-
malisation of what Berkeley was trying to do? The answer to the first question de-
pends on whether or not we think that the premiss T (¬τ(c)) really has an occurrence of
‘εx.¬τ(x)’ in it. If ‘¬τ(c)’ is merely syntactic sugar for ‘(∃x)¬τ(x)’ then T (¬τ(c)) has
no occurrence of ‘εx.¬τ(x)’ in it, so the use of the mixed rule is illegimate. If we think
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it does have an occurrence of ‘εx.¬τ(x)’ in it then the use of the mixed rule is perfectly
legitimate. But then we feel cheated. Surely it cannot be intended that we should be
allowed to use the mixed rule when the argument to ‘τ’ in the conclusion is a dodgy
term invented only as syntactic sugar for something? Perhaps we can get round this by
insisting that the ‘φ’ in the mixed rule must be in primitive notation . . . ?

Let us follow this idea wherever it may lead and try accordingly for a proof that
uses no ε machinery. I have also kept the proof constructive. This is in part because I
want to use as little machinery as possible, but another consideration is that I suspect
that the existence proof for a contemplation-of-an-arbitrary-object that Berkeley has in
mind might be nonconstructive, and this possibility is something worth keeping an eye
on. (We certainly don’t want any badnesses in the proof to be attributable to peculiarly
classical modes of reasoning if we can prevent it.)

[p]1 [τ(x)→ ⊥]2
identity rule

τ(x)→ ⊥
→-int (1)

p→ (τ(x)→ ⊥)
Affixing

T p→ T (τ(x)→ ⊥) T p
→-elimT (τ(x)→ ⊥)

Mixed Rule
τ(x) [τ(x)→ ⊥]2

→-elim
⊥

→-int (2)
(τ(x)→ ⊥)→ ⊥

∀-int(∀x)((τ(x)→ ⊥)→ ⊥)

(10.2)

The presence of the undischarged assumption T p is admittedly an infelicity, but
it’s one we cannot hope to be rid of. Neither the affixing rule nor the mixed rule
have anything of the form Tφ as a conclusion. This means that if we want to draw
conclusions of the form Tφ then we have to have premisses of that form. So if we
(i) interpret T as a falsum operator—so that T p is always false, and (ii) interpret τ
as a predicate with empty extension—so τ(x) is always false, then the rules are truth-
preserving. So we cannot expect to be able to prove that even one thing is τ without
some extra premisses.

Do we like this proof any better? It seems to capture Berkeley’s aperçu just as well
as the last one—10.1—did. But there still seems to be trouble with the mixed rule.
The idea that one is contemplating x whenever one is entertaining a proposition about
x seems entirely reasonable, but surely this is only because one is tacitly assuming that
the term denoting the contemplated object is a constant not a variable. If we allow the
argument to ‘τ’ in the conclusion to be a variable then one derives the absurd conclusion
that Berkeley is trying to foist on us. The mixed rule surely invites the side condition“Side condition”?
that the argument to ‘τ’ in the conclusion must be a closed term in primitive notation. If
we respect that restriction we then find that from the assumption T p (which, as we have
seen, we cannot avoid) we can infer ¬¬τ(t) for any closed term t. This is an entirely
congenial conclusion: if we have a name for something then we can graciously concede
that it is not unconceived.
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What about affixing?

The complications have all arisen in connection with the mixed rule, but the rule of
affixing invites comment too. It does seem disquietingly strong. Suppose there is a
proposition p such that we entertain p and2 we entertain ¬p; Then, by affixing, we
infer T p → T⊥, whence T⊥. But we certainly have ⊥ → q whence T⊥ → Tq by
affixing and then Tq. But q was arbitrary.

T (p→ ⊥)
Affixing

T p→ T⊥ T p
→-elimT⊥

[⊥]1

ex falsoq
→-int (1)

⊥ → q
Affixing

T⊥ → Tq
→-elimTq

(10.3)

The conclusion is that if one contemplates/entertains both p and ¬p (and what fair-
minded person entertaining p does not also entertain ¬p? one might ask) then every
proposition is contemplated. This seems too strong. Let us not forget that whatever
affixing-style rule we use in an effort to recuperate Berkeley’s argument should be as
weak as possible.

Priest, being a dialetheist, might deny that ⊥ → q holds for arbitrary q. Again,
one might deny that ¬p has the logical form of a conditional, and insist that therefore
affixing cannot be used in the left branch of 10.3. If affixing is not hamstrung by some
manœuvre such as these it does seem very strong: too strong to be what we want,
perhaps.

Another possibility to ponder is that if τ(x) then there must be a φ with a free
occurrence of ‘x’ in it such that Tφ. . .

10.2 Fitch’s Knowability Paradox

See the Stanford Encyclopædia article at http://plato.stanford.edu/entries/
fitch-paradox/

The idea is to show that there is no truth which is not known.
Clearly if p is a truth not known to you then this very fact itself (that p is a truth

not known to you) is not a truth you can know, so we should expect trouble if we have
a principle that says that all truths are knowable.

The apparatus we are about to use needs a couple of new principles. One is nec-
cessitation, which says that if we have proved something outright then we have proved
also that it is necessary [we should have seen this in the chapter on modal logic]. The reference, please
other is the principle that from p we can infer�K p, that is to say: if p then it is possible
for p to be known. We also need (tho’ these are hardly as contentious) the two princi-
ples that (i) if p ∧ q is known then so are p and q, and (ii) the equally uncontentious
view that p follows from p-is-known. (We say K is factive.)

2Surely, for at least some notions of entertaining a proposition entertaining p and entertaining ¬p are the
same thing . . . ? Plausibly this holds for the kind of entertaining at play in Berkeley’s Master argument.

http://plato.stanford.edu/entries/fitch-paradox/
http://plato.stanford.edu/entries/fitch-paradox/
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[K(p ∧ ¬K p)]1

K-distribK p ∧ K¬K p
∧-elimK p

[K(p ∧ ¬K p)]1

K-distribK p ∧ K¬K p
∧-elimK¬K p

factivity
¬K p

→-elim
⊥

→-int (1)
¬(K(p ∧ ¬K p))

necessitation
�¬(K(p ∧ ¬K p))

p ¬K p
∧-intp ∧ ¬K p

possible knowledge
¬�¬K(p ∧ ¬K p)

→-elim
⊥

(10.4)
So we have derived a contradiction from p and ¬K p.
Something has clearly gone wrong: for we know that there are unknown truths. So

what has happened, and what was the point of this exercise?
The first thing to say is that we shouldn’t think of the above as a failed attempt to

use Logic to prove that every truth is known. That’s not the kind of thing Logic does.
The rôle of Logic here is to formalise our arguments and thereby focus our attention
on features of those arguments that may be suspect. The enterprise throws up the
following questions that one might like to ask:

(i) What does K p mean? Does it mean: Everybody knows p? Someone knows p?
Someone specific knows p? Most people know p? Were we justified in concealing the
person who is doing the knowing? And what concept of knowledge is in play?

(ii) Are the two notions of necessity that are in play in the two branches of the proof
one and the same notion? If they aren’t we have a fallacy of equivocation.

(iii) Notice that we have used the classical concept of negation in assuming the
duality of � and �. Do we really have to use classical logic? After all, one normally
expects any contradiction provable classically to be provably constructively.

(iv) One feature that should make you suspicious is that the contradiction concerns
only the K operator, but we seem nevertheless to have had to use the modal operators
to obtain the contradiction. The way the modal operators pop in, do their work and
then disappear seems to violate the spirit of the interpolation lemma. Agreed, it may
just be that interpolation doesn’t hold for the logic with both K and �, but the matter
needs looking into. Perhaps we could recast the paradox using, instead of the principle
that every truth is knowable, rather the principle that no truth is known to be false—so
that we just replace ‘�’ by ‘K’ throughout.

10.3 Curry-Howard Unifies Two Riddles
Copy in aphrodisiac stuff from
bradley.tex Curry-Howard enables us to make a connection between two riddles familiar from

the philosophical literature. The two riddles are Lewis Carroll’s discussion “What
the tortoise said to Achilles” in [7] and F.H. Bradley’s infinite regress argument about
predication.
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10.3.1 What the Tortoise Said to Achilles
The Tortoise challenges Achilles to reach the end of a logical race-course that begins
with a ’Hypothetical Proposition’. The race runs something like this: suppose that there
are two formulæ A and B, and that we have proved A and A → B; we want to infer B.
Achilles is ready to race immediately to this conclusion, but the Tortoise objects that
Achilles is being too hasty. The Tortoise professes unwillingness to obtain B from {A,
A → B}. He demands reassurance that this is legitimate, the sought reassurance being
along the lines of a certificate that (A ∧ (A → B)) → B. This Achilles is happy to
furnish, but the Tortoise now professes unwillingness to obtain B from A ∧ (A → B)
and (A ∧ (A → B)) → B. He demands reassurance that this is legitimate, the sought
reassurance being along the lines of a certificate that (A∧ (A→ B)∧ (A∧ (A→ B))→
B)→ B. This Achilles is happy to furnish, but . . .

10.3.2 Bradley’s regress
Bradley’s riddle is to be found in the text

Let us abstain from making the relation an attribute of the related, and let
us make it more or less independent. “There is a relation C, in which A
and B stand; and it appears with both of them.” But here again we have
made no progress. The relation C has been admitted different from A and
B, and no longer is predicated of them. Something, however, seems to be
said of this relation C; and said, again, of A and B. And this something
is not to be the ascription of one to the other. If so, it would appear to
be another relation, D, in which C, on one side, and, on the other side, A
and B, stand. But such a makeshift leads at once to the infinite process.
The new relation D can be predicated in no way of C, or of A and B; and
hence we must have recourse to a fresh relation, E, which comes between
D and whatever we had before. But this must lead to another, F; and so
on, indefinitely.

F. H. Bradley: [5], p 27.3

Let me recast Bradley’s argument in a form that is slightly more suitable for our
purposes. We have a function f (unary, to keep things simple) and we are going to
apply it to things. How are we to think of the result of applying f to an argument
x? Presumably as f applied to x, so that we denote it ‘ f (x)’. The regress is launched
by the thought: should we not think of f (x) as the result of applying the (binary)
function apply to the pair of arguments f and x? And why stop there? Should we
not be thinking of it as the result of applying the (binary) function apply to the pair of
arguments apply and the pair f -and-x? And why stop there. . . !?

The thinker of the recurring thought “should we not be thinking of this object as
apply applied to the two argument . . . ?” is of course the Tortoise in disguise. The
Carroll regress is the the proposition version and the Bradley regress the types version

3Thanks to Paul Andrews for supplying the reference and the source code!
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of some thing that can with the help of the Curry-Howard propositions-as-types insight
be seen as one regress. The particular instance of the correspondence that concerns us
is not ∨ or ∧ but→ and specifically the rule of→-elimination.

So, when f is a function from A to B, are we to think of f (x) as the result of
applying f (which is of type A → B) to x (which is of type A) so that we have the
picture

A A→ B
→-elimB (10.5)

? Or are we to think of it as the result of applying apply (which is of type ((A →
B) × A) → B) to the pair 〈 f , a〉 (which is of type (A → B) × A) so that we have the
picture

(A→ B) × A ((A→ B) × A)→ B
→-elimB

(10.6)

? Or are we to think of it as the result of applying apply (which is of type ((((A →
B) × A) → B) × ((A → B) × A)) → B) to the pair 〈apply,〈 f , a〉〉 (which is of type
((A→ B) × A))→ B) × ((A→ B) × A)) so that we have the picture

((A→ B) × A))→ B) × ((A→ B) × A) ((((A→ B) × A)→ B) × ((A→ B) × A))→ B
→-elimB

(10.7)
Where will it all end?!

10.4 The Paradoxes
I have apologized to my readers—several times—(e.g. section 3.11)—for inflicting on
them all this apparatus of proof systems despite the fact that it is usually easier to check
for validity of a formula by inspecting a truth-table than it is to find a proof. Even in
predicate calculus (where there is no straightforward analogue of truth-tables) it seems
easier to check validity by inspection than by looking for a proof. In this section we are
going to see some natural deduction and sequent rules for a subject matter in a setting
where the proof-theoretical gadgetry is genuinely illuminating.

Let us consider Russell’s paradox of the set of those sets that are not members of
themselves. Let us use the notation ‘{x : φ(x)}’ for the set of all x that are φ. We write
‘x ∈ y’ to mean that x is a member of y. Since {x : φ(x)} is the set of all things that are
φ we want to have

φ(a)←→ a ∈ {x : φ(x)} (10.8)

This gives us two natural deduction rules

φ(a)
a ∈ {x : φ(x)} ∈-int; a ∈ {x : φ(x)}

φ(a) ∈-elim

(Do not confuse these with the rules for ε-terms from page 136!! ‘∈’ is not a
typographical variant of ‘ε’!)
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Let us now use this to analyse Russell’s paradox of the set of all sets that are not
members of themselves. We can, as before, write ‘¬(x ∈ x)’ instead of ‘x ∈ x → ⊥’,
but to save yet more space we will instead write ‘x < x’.

The following is a proof that {x : x ∈ x→ ⊥} is not a member of itself.

[({x : x < x} ∈ {x : x < x})]1

∈-elim({x : x < x} ∈ {x : x < x})→ ⊥ [{x : x < x} ∈ {x : x < x}]1

→-elim
⊥

→-int (1)
{x : x < x} ∈ {x : x < x})→ ⊥

(10.9)
Clearly space is going to be a problem, so let’s abbreviate ‘{x : x < x}’ to ‘R’ (for

Russell).

[R ∈ R]1

∈-elim(R ∈ R)→ ⊥ [R ∈ R]1

→-elim
⊥

→-int (1)
(R ∈ R)→ ⊥

(10.10)

But we can extend this proof by one line to get a proof that {x : x < x} is a member
of itself after all!

[R ∈ R]1

∈-elim(R ∈ R)→ ⊥ [R ∈ R]1

→-elim
⊥

→-int (1)
(R ∈ R)→ ⊥

∈-intR ∈ R

(10.11)

. . . and put these two proofs together to obtain a proof of a contradiction

[R ∈ R]1

∈-elim(R ∈ R)→ ⊥ [R ∈ R]1

→-elim
⊥

→-int (1)
(R ∈ R)→ ⊥

∈-intR ∈ R

[R ∈ R]1

∈-elim(R ∈ R)→ ⊥ [R ∈ R]1

→-elim
⊥

→-int (1)
(R ∈ R)→ ⊥

→-elim
⊥

(10.12) Must say something about how
this ties in with the proof of
the nonexistence of the Russell
class in exercise 55.
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Chapter 11

Appendices

11.1 Notes to Chapter one

11.1.1 The Material Conditional

Lots of students dislike the material conditional as an account of implication. The
usual cause of this unease is that in some cases a material conditional p→ q evaluates
to true for what seem to them to be spurious and thoroughly unsatisfactory reasons,
namely: that p is false, or that q is true. How can q follow from p merely because q
happens to be true? The meaning of p might have no bearing on q whatever! Standard
illustrations in the literature include

If Julius Cæsar is Emperor then sea water is salt.

need a few more examples
These example seem odd because we feel that to decide whether or not p implies q we
need to know a lot more than the truth-values of p and q.

This unease shows that we have forgotten that we were supposed to be examining
a relation between extensions, and have carelessly returned to our original endeavour
of trying to understand implication between intensions. ∧ and ∨, too, are relations
between intensions but they also make sense applied to extensions.1 Now if p implies
q, what does this tell us about what p and q evaluate to? Well, at the very least, it tells
us that p cannot evaluate to true when q evaluates to false. That is to say that we
require—at the very least— that the extension corresponding to a conditional should
satisfy modus ponens.

How many extensions are there that satisfy modus ponens? For a connective C to
satisfy modus ponens it suffices that in each of the two rows of the truth table for C
where p is true, if p C q is true in that row then q is true too.

1should say something here about how ∨ and ∧ commute with evaluation but that conditionals don’t
. . . think along those lines
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p C q
1 ? 1
0 ? 1
1 0 0
0 ? 0

We cannot make p C q true in the third row, because that would cause C to disobey
modus ponens, but it doesn’t matter what we put in the centre column in the three other
rows. This leaves eight possibilities:

(1) :
p q

q
(2) :

p p←→ q
q

(3) :
p ¬p

q
(4) :

p p→ q
q

p C1 q
1 1 1
1 0 0
0 1 1
0 0 0

p C2 q
1 1 1
1 0 0
0 0 1
0 1 0

p C3 q
1 0 1
1 0 0
0 1 1
0 1 0

p C4 q
1 1 1
1 0 0
0 1 1
0 1 0

(5) :
p ⊥

q
(6) :

p p ∧ q
q

(7) :
p ¬p ∧ q

q
(8) :

p ¬p ∧ ¬q
q

p C5 q
1 0 1
1 0 0
0 0 1
0 0 0

p C6 q
1 1 1
1 0 0
0 0 1
0 0 0

p C7 q
1 0 1
1 0 0
0 1 1
0 0 0

p C8 q
1 0 1
1 0 0
0 0 1
0 1 0

obtained by replacing the major premiss ‘p → q’ in the rule of modus ponens by
each of the eight extensional binary connectives that satisfy the rule.

(1) will never tell us anything we didn’t know before; we can never use (5) because
its major premiss is never true; (6) is a poor substitute for the rule of ∧-elimination;
(3), (7) and (8) we will never be able to use if our premisses are consistent.

(2), (4) and (6) are the only sensible rules left. (2) is not what we are after because
it is symmetrical in p and q whereas “if p then q” is not. The advantage of (4) is that
you can use it whenever you can use (2) or (6). So it’s more use!

We had better check that we do not get into trouble with this policy of adopting (4),
and evaluating p→ q to true unless there is a very good reason not to. Fortunately, in
cases where the conditional is evaluated to true merely for spurious reasons, then no
harm can be done by accepting that evaluation. For consider: if it is evaluated to true
merely because p evaluates to false, then we are never going to be able to invoke it (as
a major premiss at least), and if it is evaluated to true merely because q evaluates to
true, then if we invoke it as a major premiss, the only thing we can conclude—namely
q—is something we knew anyway.

This last paragraph is not intended to be a justification of our policy of using only
the material conditional: it is merely intended to make it look less unnatural than it
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otherwise might. The astute reader who spotted that nothing was said there about
conditionals as minor premisses should not complain. They may wish to ponder the
reason for this omission.

11.1.2 The Definition of Valid Argument
There is a difficulty with definition 5, namely that there could be an argument type
so vast that no token of it small enough to fit into the universe has true premisses
and a false conclusion. Such an argument type would be waved on as valid when— An example could help
really—it shouldn’t. If you are a purist of a certain stamp you might lose sleep over
it, feeling that altho’ definition 5 captures the extension of ‘valid’ it doesn’t capture its
intension. There isn’t really much practical point to this worry: after all, ex hypothesi
the universe isn’t big enough to contain the scenario that you were worrying might be a
counterexample to definition 5. As soon as the universe becomes big enough to contain
a hitherto convincing counterexample the definition of valid changes to accommodate
it.

The alternative to the admittedly rather brutal strategy of definition 5 would be to
give a definition in terms of possible argument-tokens. The trouble with this approach
is that it tries to explain something apparently straightforward (namely valid argument)
in terms of something metaphysically much more problematic—possibilia. And what
is to be gained? Not much. At all events, if Tweedledum goes for definition 5 and
Tweedledee goes for a definition involving possibilia, they will still never find an in-
stance to disagree on. “If the Good Lord had meant us to worry, Mr Fawlty, he would
have given us something to worry about!” Tweedledum and Tweedledee will instead
have to fight over their rattle.

11.1.3 Valuation and Evaluation
see also subsection 8.1. Needs to be drastically rewrit-

tenBog standard first-year propositional logic does not examine evaluation at all. We
are aware in an abstract sort of way that if we know what a valuation does to proposi-
tional letters (atomic formulæ then we know what it does to molecular formulæ but we
pay no attention to the mechanics of how these truth-values are actually calculated . . .

This is a perfectly sensible thing to do because all the different ways of computing
the truth-value give the same answer. [prove it by induction on composition of for-
mulæ]. So of course it’s safe to hide the calculation (“Hide anything that it is safe to
hide”)

explain: eager vs lazy see section 3.14. This needs to
be properly rewritten

Suppose we allow valuations that are merely partial functions.) What is the truth-
value given by v to A∨B when A is not given a truth-value by v? Do we want to say that
it, too, is undecided, on the grounds that indecision about a subformula is enough to
contaminate the whole formula? Or do we rather say “Well, it’s true if the truth-value
of B is true and undecided otherwise”.

If we are evaluating eagerly then one does not give a value to A ∨ B until one has
given values both to A and to B. Thus, when evaluating A ∨ B eagerly, we cannot give
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it a value without having a value for A. So even if we know that B has evaluated to true
we cannot give a value to A ∨ B. On the other hand, if we are evaluating lazily, once
we know that B is true we are allowed to infer that A ∨ B must have the value true.
Our choice of policy concerning this question is crucial. If we rule that A ∨ B is to be
true [under a valuation] as long as A is true under that valuation (never mind B) then
eager evaluation and lazy evaluation no longer reliably give the same answer, so one
cannot regard evaluation as something that takes place instantaneously in a black box
somewhere: it is no longer something one can hide in the way we could when we were
using complete (“total”) valuations.

Reflecting on this can banish some of the puzzlement that people feel when they
incautiously think that they can treat ‘undecided’ as a third truth-value.

One’s intuitions about what v(A ∨ B) should be when one or both of v(A) and v(B)
is intermediate seems to depend to a certain extent on whether our evaluation strategy
is eager or lazy.

Suppose we kid ourselves that there should be three truth-values: true, false and
undecided.

A ∨ (B ∧ (C ∨ (D ∧ . . .))))

If we really want to get this straight we have to have a binary relation “undecided
at time t”

H I A T U S

Computer science has been a wonderfully fertilising influence on modern philoso-
phy. Not only has it brought new ideas to the subject, but it has breathed new life into
old ones. A striking example is the way in which Computer Science’s concern with
evaluation and strategies (lazy, eager and so on) for evaluation has made the inten-
sion/extension distinction nowadays almost more familiar to computer scientists than
to philosophers. Intensions evaluate to extensions. In the old, early-twentieth cen-
tury logic, evaluation just happened, and the subject was concerned with that part of
metaphysics that was unaffected by how evaluation was carried out. For example, the
completeness theorem for propositional logic says that a formula is derivable iff it is
true under all valuations: the internal dynamic of valuations is not analysed or even
considered. Modern semantics for programming languages has a vast amount to say
about the actual dynamics of evaluation as a process. The old static semantics gave a
broad and fundamental picture, but was unsuited for the correct analysis of certain in-
sights that happened to appear at that time. A good example of an insight whose proper
unravelling was hampered by this lack of a dynamic perspective is Popper’s idea of
falsifiability. Let us examine a natural setting for the intuition that gave rise to it.

Do we inseert here stuff from
lazy.tex Hereditary Hæmor-
rhagic telangiectasia?

As well as thinking a bit about the evaluation strategy one is to use (the order in
which one is to attempt to evaluate subformulæ one can also take some thought about
the order in which one asks the given valuation for truth-values of the atomics that go
into the complex propositions we are going to evaluate.

Let us suppose that, in order to be confirmed as a widget, an object x has to pass a
number of independent tests, all of similar cost. If investigator I wants to test whether
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a candidate x is a widget or not, I subjects it to these tests, all of which it has to pass.
Which test does I run first? Obviously the one that is most likely to fail! It will of
course be said that this is so that if x passes it then the theory T (that x is a widget) is
more strongly confirmed than it would have been if it had passed an easy one. Indeed
I have heard Popperians say precisely this.

It seems to me that although this may be true, it does not go to the heart of the
insight vouchsafed to Popper. This traditional account concerns merely the theory that
is being confirmed, and not any of I’s other preoccupations. By taking into account
a more comprehensive decription of I we can give a more satisfactory account of this
intuition. Specifically it is helpful to bear in mind the cost to I of these tests. Suppose
candidate x has to pass two tests T1 and T2 to be confirmed as a widget, and the costs-
to-I of the two tests are similar. Suppose also that most candidates fail T1 but most pass
T2. What is I to do? Obviously I can minimise his expected expenses of investigation
by doing T1 first. It is of course true that if x is indeed a widget then by the time it has
passed both tests, I will have inevitably have incurred the costs of running both T1 and
T2. But a policy of doing T1 first rather than doing T2 first will in the long run save I
resources because of the cases where x is not a widget.

Notice that this point of view has something to say also about the situation dual to
the one we have just considered, in which the investigator I has a number of tests and a
candidate x can be shown to be a widget by passing even one of them. In this situation
the dual analysis tells I that the best thing to do in order to minimise the expected cost
of proving x to be a widget is to try first the test most likely to succeed. Although this
is logically parallel (“dual”) to the situation we have just considered, the traditional
Popperian analysis has nothing to say about it at all. This is surely a warning sign.

This is not to say that Popper’s insight is not important: it clearly is. The claim is
rather that it has not been received properly. Properly understood it is not straightfor-
wardly a piece of metaphysics concerning verification and support, but a superficially
more mundane fact about strategies for minimising costs for agents in an uncertain
world.

One is reminded of the story of the drunkard who has dropped his house keys
and is looking for them under the street light. He didn’t drop them exactly under the
streetlight but unless they are dropped reasonably near the street light he has no hope
of finding them anyway. So he looks for them under the street light.

11.2 Notes to Chapter 3

11.2.1 Hypothetical Reasoning: an Illustration
The late Lance Endersbee’s [15] is an intruiging book about the origin of groundwater,
and promotes the thesis that much groundwater—even in artesian basins—is plutonic in
origin, and is not (as is popularly supposed) water that fell as rain and became trapped
between impervious layers of rock. Endersbee is worth quoting in extenso. . .

“A key feature of the [Queensland Government’s] report is the use of ra-
dioactive isotope ratios to indicate age of the groundwater. The assessment
of age of groundwater is based on the knowledge of these isotope ratios in
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rainfall and surface waters, and the change of these ratios, over time, when
the water is no longer exposed to the atmosphere. It is a technique that is
used worldwide.

The logical steps in this method of assessment of age of groundwater are
as follows:

(a) the isotope ratios in rainwater are known.

(b) It is assumed that the groundwater was originally derived from rain-
fall; and that the groundwater once had the isotope ratios of rainwa-
ter.

(c) the decay times of the two marker isotopes are known, and thus the
change in these ratios over time provides an estimate of age since the
groundwater was originally rainwater.

(d) the age of the groundwater is estimated from the difference of the
isotope ratios of the groundwater and rainwater. In the case of the
Great Artesian Basin, the estimate of age may be up to 2 million
years.

Note the circular argument. The procedure is directed towards proving
the assumption that the groundwater was originally rainfall, but that fact
is not recognised. The procedure specifically excludes the possibility that
the groundwater was never rainfall. Unfortunately, it is normal for ground-
water hydrologists to be quite unaware of the assumptions involved. From
their perspective, a date determined by nuclear physics must be right, and
they thereby manage to prove that all groundwater is derived from surface
rainfall.”

[15] pp 51–2.
It is not straightforward to reconstruct the author’s thought-processes, but it does

seem to be a safe bet that he doesn’t see the discussions he alludes to as establishing
the proof of a conditional along the lines of

“If the groundwater in the Great Artesian basin was ever rainwater, that
was at least 2 × 106 years ago.”

And this conditional is entirely consistent with his thesis that the groundwater was
never rainfall.

This is a salutory lesson. Endersbee was no fool, and if even he can make errors of
logic of this magnitude then we all of us need to be on our guard.

11.2.2 ∨-elimination and the ex falso

What happens with ∨-elimination if the set of proofs (and therefore also the set of
assumptions) is empty? That would be a rule that accepted as input an empty list of
proofs of C, and an empty disjunction of assumptions (recall from section 2.4.2 that
the empty disjunction is the false). This is just the rule of ex falso sequitur quodlibet.
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If you are a third-year pedant you might complain that all instances of∨-elimination
have two inputs, a disjunction and a list of proofs; ex falso sequitur quodlibet in con-
trast only has one: only the empty disjunction. So it clearly isn’t a special case of
∨-elimination. However if you want to get A rather than B as the output of an instance
of ∨-elimination with the empty disjunction as input then you need as your other input
the empty list of proofs of A, rather than the empty list of proofs of B. So you are right,
there is something fishy going on: the rule of ex falso sequitur quodlibet strictly has
two inputs: (i) the empty disjunction and (ii) the empty list of proofs of A. It’s a bit
worrying that the empty list of proofs of A seems to be the same thing as the empty
list of proofs of B. If you want to think of the ex falso sequitur quodlibet as a thing
with only one input then, if you feed it the false and press the start button, you can’t
predict which proposition it will give you a proof of! It’s a sort of nondeterministic
engine. This may or may not matter, depending on how you conceptualise proofs. This
is something that will be sorted out when we reconceptualise proof theory properly if
we ever do. We will think about this a bit in section 4.18. For the moment just join the “Will think”? We are already in

an appendix!first and second years in not thinking about it at all.

Of course you can also think of the false as the conjunction of all propositions
(instead of as the disjunction of none of them). In that case you will believe the ex falso
because it is a special case of ∧-elimination.

11.2.3 Negation in Sequent Calculus

It is possible to continue thinking of ¬P as P → ⊥. In a sequent calculus context this
means we have to think of any sequent as having an unlimited supply of ‘⊥’s on the
right. (Miniexercise: why is this all right?) Infinitely many? Not necessarily: it will
suffice to have an indeterminate finite number of them. Or perhaps a magic pudding
(see [26]) of ‘⊥’s: something that emits a ⊥ whenever you ask it nicely. In these
circumstances the ¬-R rule simply becomes a special case of→-R. Considerations of
this kind are an essential input into any discussion that aims to determine precisely
what sort of data object the right-hand-side of a sequent is: list, set, multiset,
stream, magic-pudding . . .

Similarly we can think of the rule of ¬-L as a→-L:

∆ ` Γ, A ⊥,∆ ` Γ
→ L

∆,¬A ` Γ
(11.1)

We can think of the sequent ⊥,∆ ` Γ as an initial sequent because of the cryptic
‘⊥’ on the right, so there is a ‘⊥’ on both sides.

11.2.4 What is the right way to conceptualise sequents?

From time to time people have felt that part of the the job of philosophy is to find the
right way to think about—to conceptualise—certain phenomena. . . to carve nature at
the joints to use Plato’s imagery (one assumes he was no vegetarian).
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In chapter 3 I equivocated as much as I decently could between the various ways of
conceptualising sequents. Here are some of the issues2

• Are the two parts (left and right) of the sequent to be sets, or multisets, or lists?

If they are multisets or lists we need contraction;
If they are lists we need exchange;
If they are sets we have to specify the eigenformula. This suggests
we should be using lists, so that the eigenformula is always the first
(or always the last) formula.

To be continued
Edmund writes:

the good answer is that it all comes down to the kinds of distinctions
you’re trying to make. The CS answer is that prop = type, proof =

term and what you are doing is a kind of type theory. The things on
either side are contexts.
This gives you an answer in which you can make all the distinctions
you want, encoding just about all the rules.
Then you can “forget” bits of that structure. The key bit being a theo-
rem that says the logical rules are properly supported on the quotient
structure. Sets are OK from a certain perspective, but you’d have
problems in detail co’s you might not be able to lift a set-based proof
back to an arbitrary term-based one.

• other issues?

11.3 Notes to Chapter 4

11.3.1 Subtleties in the definition of first-order language
The following formula looks like a first-order sentence that says there are at least n
distinct things in the universe. (Remember the

∨
symbol from page 40.)

(∃x1 . . . xn)(∀y)(
∨
i≤n

y = xi) (11.2)

But if you are the kind of pedant that does well in Logic you will notice that 11.2
isn’t a formula of the first-order logic we have just seen because there are variables (the
subscripts) ranging over variables! If you put in a concrete actual number for n then
what you have is an abbreviation of a formula of our first-order language. Thus

(∃x1 . . . x3)(∀y)(
∨
i≤3

y = xi) (11.3)

is an abbreviation of
2And, yes, i do mean issues, not problems.
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(∃x1x2x3)(∀y)(y = x1 ∨ y = x2 ∨ y = x3) (11.4)

(Notice that formula 11.2 isn’t actually second-order either, because the dodgy vari-
ables are not ranging over subsets of the domain.)

11.3.2 Failure of Completeness of Second-order Logic

Second-order arithmetic includes as one of its axioms the following:
Second-order induction axiom:

(∀F)([F(0) ∧ (∀n)(F(n)→ F(n + 1))]→ ∀n)(F(n)))

And we can give a second-order definition of what it is for a natural number to be
standard:

DEFINITION 41
standard(n)←→d f (∀F)([F(0) ∧ (∀m)(F(m)→ F(m + 1))]→ F(n))

This axiom enables us to prove—in second-order arithmetic—that every natural
number is standard: simply take ‘F(n)’ to be ‘standard(n)’.

Another thing we can prove by induction is the following:

if n is a natural number then, for any model M of arithmetic, there is a unique
embedding from [0, 1, . . . n] into an initial segment ofM. This isn’t really second-order;

it’s much worse. . .
It requires a little bit of work to show that the converse is true, but it is.
One consequence of this is that second-order arithmetic is what they call categori-

cal: it is a theory with only one model. We exploit this fact here. Add to the language
of second-order arithmetic the constant symbol ‘a’, and infinitely many axioms a , 0,
a , 1, a , 2, a , 3 . . . . This theory is now consistent, since no contradiction can be
deduced from it in finitely many steps, but it has no models.

11.4 Notes to Chapter 5

If my favourite theorem-prover says ` 0 = 1 then i know it has made a mistake, even if
i can’t find it!

Another—more striking—example is Prior’s Cretan: “Everything I say is false”. It
is clear that he must have said something else. For suppose that were the only thing
he had said. Then we would have the liar paradox, since “Everything I say is false” is
equivalent to “what I am now saying is false” if that is the only thing the speaker says.
Yet we cannot determine what else he has said!

This is more striking, but it is a less satisfactory example, since it relies on self-
reference, which is fraught with problems. Those problems have nothing to do with
nonconstructivity, so it is best not to use an example that drags them in.
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HOLE A very good example is the pigeonhole principle. If you have more pigeons
then pigeonholes then it can’t be the case that every pigeon has a pigeonhole all
of its own: at least one hole must have at least two pigeons. But it doesn’t tell
you which hole, or which pigeons (even if all the pigeons and all the holes have
names).

11.4.1 Church on Intension and Extension
“The foregoing discussion leaves it undetermined under what circumstances
two functions shall be considered the same. The most immediate and, from
some points of view, the best way to settle this question is to specify that
two functions f and g are the same if they have the same range of argu-
ments and, for every element a that belongs to this range, f (a) is the same
as g(a). When this is done we shall say that we are dealing with functions
in extension.

It is possible, however, to allow two functions to be different on the ground
that the rule of correspondence is different in meaning in the two cases al-
though always yielding the same result when applied to any particular ar-
gument. When this is done we shall say that we are dealing with functions
in intension. The notion of difference in meaning between two rules of
correspondence is a vague one, but, in terms of some system of notation,
it can be made exact in various ways. We shall not attempt to decide what
is the true notion of difference in meaning but shall speak of functions in
intension in any case where a more severe criterion of identity is adopted
than for functions in extension. There is thus not one notion of function in
intension, but many notions; involving various degrees of intensionality”.

Church [10]. p 2.

The intension-extension distinction has proved particularly useful in computer science—
specifically in the theory of computable functions, since the distinction between a
program and the graph of a function corresponds neatly to the difference between a
function-in-intension and a function-in-extension. Computer Science provides us with
perhaps the best-motivated modern illustration. A piece of code that needs to call an-
other function can do it in either of two ways. If the function being called is going to
be called often, on a restricted range of arguments, and is hard to compute, then the
obvious thing to do is compute the set of values in advance and store them in a look-up
table in line in the code. On the other hand if the function to be called is not going
to be called very often, and the set of arguments on which it is to be called cannot be
determined in advance, and if there is an easy algorithm available to compute it, then
the obvious strategy is to write code for that algorithm and call it when needed. In the
first case the embedded subordinate function is represented as a function-in-extension,
and in the second case as a function-in-intension.

The concept of algorithm seems to be more intensional than function-in-extension
but not as intensional as function-in-intension. Different programs can instantiate the
same algorithm, and there can be more than one algorithm for computing a function-
in-extension. Not clear what the identity criteria for algorithms are. Indeed it has
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been argued that there can be no satisfactory concept of algorithm (see [2]). This is
particularly unfortunate because of the weight the concept of algorithm is made to bear
in some philosophies of mind (or some parodies of philosophy-of-mind [“strong AI”]
such as are to be found in [31]).3

11.5 Notes to Chapter 8
This doesn’t mean that it’s a mistake to add modal operators, but it does mean that you
want them to sit on top of a classical logic.

3Perhaps that is why is is made to carry that weight! If your sights are set not on devising a true philo-
sophical theory, but are set merely on cobbling together a philosophical theory that will be hard to refute
then a good strategy is to have as a keystone concept one that is so vague that any attack on the theory can
be repelled by a fallacy of equivocation. The unclarity in the key concept ensures that the target presented to
aspiring refuters is a fuzzy one, so that no refutation is ever conclusive. This is why squids have ink.
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Chapter 12

Answers to some Exercises

Exercises from Chapter 2

Exercise 14
Each time you add a new propositional letter you double the number of possible com-
binations.

Exercise 21, part 10
Here are the basic propositions and the letters we are going to abbreviate them to.

God exists E
God is omnipotent P
God is omniscient O
God is benevolent B
God can prevent Evil D
God knows that Evil exists K
God prevents Evil J
Evil exists V

If God exists then He is omnipotent. E → P (1)

If God exists then He is omniscient. E → O (2)

If God exists then He is benevolent. E → B (3)

If God can prevent Evil then—if He
knows that Evil exists—then He is not D→ (K → (¬J → ¬B)) (4)
benevolent if He does not prevent it.

If God is omnipotent, He can prevent Evil. P→ D (5)

223
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If God is omniscient then He knows that
Evil exists if it does indeed exist. O→ (V → K) (6)

Evil does not exist if God prevents it. J → ¬V (7)

Evil exists. V (8)

We want to persuade ourselves that God does not exist. Well, suppose he does.
Let’s deduce a contradiction

Assume E. Then (1), (2) and (3) give us

P (9),

O (10)

and

B (11)

Now that we know O, (7) tells us that

V → K (12)

But we know V (that was (8)) so we know

K (13)

We know P, so (5) tells us that

D (14)

We can feed D into (4) and infer

K → (¬J → ¬B) (15)

But we know K (that was line 13) so we get

¬J → ¬B (16)

(8) and (7) together tell us ¬J, so we get ¬B. But we got B at line 11.

Exercises from Chapter 3

Exercise 28, part 16

((A ∨ B) ∧ (A ∨C))→ (A ∨ (B ∧C)); hard!
Here is a proof:
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[(A ∨ B) ∧ (A ∨C)]1
∧-elim

A ∨ B

[A]2
∨-int

A ∨ (B ∧C)

[B]2 [C]3
∧-int

B ∧C
∨-int

A ∨ (B ∧C)
∨-elim (2)

A ∨ (B ∧C)

[A]3
∨-int

A ∨ (B ∧C)

[(A ∨ B) ∧ (A ∨C)]1
∧-elim

A ∨C
∨-elim (3)

A ∨ (B ∧C)
→-int (1)

((A ∨ B) ∧ (A ∨C))→ (A ∨ (B ∧C))
(12.2)

Why is this exercise hard? The point is that in this proof the two conjuncts in the
antecedent—namely A ∨ B and A ∨ C—play differing rôles in the proof, despite the
fact that their two contributions to the truth of the consequent seems to be the same.
This last fact means that one naturally starts by looking for a proof wherein these two
conjuncts are symmetrically placed. Sadly there is no such proof. Instead we have two
distinct proofs, where each is obtained from the other by permuting the two conjuncts.
Here is the other one:

[(A ∨ B) ∧ (A ∨C)]1
∧-elim

A ∨C

[A]2
∨-int

A ∨ (C ∧ B)

[C]2 [B]3
∧-int

C ∧ B
∨-int

A ∨ (B ∧C)
∨-elim (2)

A ∨ (C ∧ B)

[A]3
∨-int

A ∨ (B ∧C)

[(A ∨ B) ∧ (A ∨C)]1
∧-elim

A ∨ B
∨-elim (3)

A ∨ (C ∧ B)
→-int (1)

((A ∨ B) ∧ (A ∨C))→ (A ∨ (B ∧C))
(12.3)

I think that the sequent calculus proof is symmetrical. Supply it here.work on this

Exercise 39
Go back to Zarg (exercise 32 p. 68) and—using the truth-table for ¬ that you decided
that the Zarglings use—check that the Zarglings do not believe axiom T to be a tautol-
ogy.

T fails when [[A]] = 3 and [[B]] = 1.
The truth-table for S has 33 = 27 rows.

Exercise 41
Find an interpolant Q for

(A ∧ B) ∨ (¬A ∧C) ` (B→ C)→ (D→ C)

and supply proofs (in whatever style you prefer) of

(A ∧ B) ∨ (¬A ∧C) → Q

and

Q → ((B→ C)→ (D→ C))

The interpolant can contain only the letters ‘B’ and ‘C’. It’s pretty clear that the
antecedent implies B ∨C so might that be what we are looking for? Yes!
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Exercises from Chapter 4

Exercise 45

In my model answers I have tended to use bits of English text in verbatim font (as
is the habit in certain computer science cultures) for predicate letters, rather than use
the single letters that are more customary in most logical cultures. I have done this
merely in order to make the notation more suggestive: there is no cultural significance
to it. And in any case, further down in the list of model answers I have reverted to the
philosophico-logical standard practice of using single capital Roman letters.

This first bunch involve monadic predicates only and no nested quantifiers.

1. Every good boy deserves favour; George is a good boy. Therefore George de-
serves favour.

Lexicon:
Unary predicate letters: good-boy( ); deserves-favour( )
Constant symbol: George

Formalisation

(∀x)(good-boy(x)→ deserves-favour(x));
good-boy(George);
deserves − favour(George)

You might prefer to have two unary predicate letters good( ) and boy( ), in which
case you would have

(∀x)((good(x) ∧ boy(x))→ deserves-favour(x));
good(George) ∧ boy(George));
deserves − favour(George).

2. All cows eat grass; Daisy eats grass. Therefore Daisy is a cow.

Lexicon:
Unary predicate letters: eats-grass( ), Cow( );
Constant symbol: Daisy.

Formalisation

(∀x)(Cow(x)→ eats − grass(x))
eats − grass(Daisy);
(Daisy).

3. Socrates is a man; all men are mortal. Therefore Socrates is mortal.

Lexicon:
Unary predicate letters: man( ), mortal( ),
Constant symbol: Socrates.

Formalisation
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man(Socrates);
(∀x)(man(x)→ mortal(x));
mortal(Socrates).

4. Daisy is a cow; all cows eat grass. Therefore Daisy eats grass.

Lexicon:
Unary predicate letters: eats-grass( ), cow( );
Constant symbol: Daisy.

Formalisation

cow(Daisy);
(∀x)(cow(x)→ eats − grass(x));
eats − grass(Daisy).

5. Daisy is a cow; all cows are mad. Therefore Daisy is mad.

Lexicon:
Unary predicate letters: mad( ), cow( );
Constant symbol: Daisy.

Formalisation

cow(Daisy);
(∀x)(cow(x)→ mad(x));
mad(Daisy).

6. No thieves are honest; some dishonest people are found out. Therefore some
thieves are found out.

Lexicon:
Unary predicate letters: thief( ), honest( ), found-out( ).

Formalisation

(∀x)(thief(x)→ ¬(honest(x));
(∃x)(¬honest(x) ∧ found-out(x));
(∃x)(thief(x) ∧ found − out(x)).

7. No muffins are wholesome; all puffy food is unwholesome. Therefore all muffins
are puffy.

Lexicon:
Unary predicate letters: muffin( ), wholesome( ), puffy( ).

Formalisation

¬(∃x)(muffin(x) ∧ wholesome(x));
(∀x)(puffy(x)→ ¬(wholesome(x)));
(∀x)(muffin(x)→ puffy(x)).
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8. No birds except peacocks are proud of their tails; some birds that are proud of
their tails cannot sing. Therefore some peacocks cannot sing.

Lexicon:
Unary predicate letters: peacock( ), can-sing( ), proud-of-tail( ).

Formalisation

(∀x)(proud-of-tail(x)→ peacock(x));
(∃x)(proud-of-tail(x) ∧ ¬(can-sing(x)));
(∃x)(peacock(x) ∧ ¬(can − sing(x))).

9. A wise man walks on his feet; an unwise man on his hands. Therefore no man
walks on both.

Formalisation

(∀x)(wise(x)→ walks-on-feet(x));
(∀x)(¬(wise(x))→ walks-on-hands(x));
(∀x)(¬(walks − on − feet(x) ∧ walks − on − hands(x))).

You might want to try to capture the fact that walks-on-feet( ) and walks-on-hands( )
share some structure, and accordingly have a two-place relation walks-on( , ).
Then i think you will also want binary predicate letters feet-of( , ) and hands-of( , )
so you would end up with

(∀x)(wise(x)→ (∀y)(feet-of(x, y)→ walks-on(x, y)))

and of course

(∀x)(¬wise(x)→ (∀y)(hands-of(x, y)→ walks-on(x, y)))

You might feel that the following are equally good formalisations:

(∀x)(wise(x)→ (∃y)(∃z)(feet-of(x, y)∧feet-of(x, z)∧¬(y = z)∧walks-on(x, y)∧
walks-on(x, z))) . . . and the same for unwise men and hands.

However that involves two-place relations and we haven’t got to them yet!

10. No fossil can be crossed in love; an oyster may be crossed in love. Therefore
oysters are not fossils.

Lexicon:
Unary predicate letters: fossil( ). oyster( ), crossed-in-love( ).

Formalisation

(∀x)(fossil(x)→ ¬can-be-crossed-in-love(x));
(∀x)(oyster(x)→ can-be-crossed-in-love(x));
(∀x)(oyster(x)→ ¬fossil(x))

11. All who are anxious to learn work hard; some of these students work hard.
Therefore some of these students are anxious to learn.

Lexicon:
Unary predicate letters: anxious-to-learn( ), works-hard( ), student( ).
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Formalisation

(∀x)(anxious-to-learn(x)→ works-hard(x));
(∃x)(student(x) ∧ works-hard(x));
(∃x)(student(x) ∧ anxious − to − learn(x)).

12. His songs never last an hour. A song that lasts an hour is tedious. Therefore his
songs are never tedious.

Lexicon:
Unary predicate letters: last-an-hour( ), song( ), his( ), tedious( ).

Formalisation

(∀y)((song(y) ∧ (his(y))→ last-an-hour(y));
(∀x)((song(x) ∧ last-an-hour(x))→ tedious(x));
(∀z)((song(z) ∧ his(z))→ ¬tedious(z)).

13. Some lessons are difficult; what is difficult needs attention. Therefore some
lessons need attention.

Lexicon:
Unary predicate letters: lesson( ), difficult( ), needs-attention( ).

Formalisation

(∃x)(lesson(x) ∧ difficult(x));
(∀z)(difficult(z)→ needs-attention(z)).
(∃x)(lesson(x) ∧ needs − attention(x)).

14. All humans are mammals; all mammals are warm blooded. Therefore all humans
are warm-blooded.

Lexicon:
Unary predicate letters: human( ), mammal( ), warm-blooded( ).

Formalisation

(∀y)(human(y)→ mammal(y));
(∀y)(mammal(y)→ warmblooded(y));
(∀z)(human(z)→ warmblooded(z)).

15. Warmth relieves pain; nothing that does not relieve pain is useful in toothache.
Therefore warmth is useful in toothache.

Lexicon:
Unary predicate letters: relieves-pain( ), useful-in-toothache( );
Constant symbol: warmth,

Formalisation

relieves-pain(warmth);
(∀x)(useful-in-toothache(x)→relieves-pain(x);
useful − in − toothache(warmth)spacing!?
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You might want to break up relieves-pain by having a binary predicate letter
relieves( , ) and a constant symbol pain, giving

relieves(warmth, pain);
(∀x)(useful-in-toothache(x)→ relieves(x, pain);
useful − in − toothache(warmth).

16. Louis is the King of France; all Kings of France are bald. Therefore Louis is
bald.

Lexicon:
Unary predicate letters: bald( ), King-of-France( ),
Constant symbol: Louis.

Formalisation

king-of-France(Louis);
(∀x)(king-of-France(x)→ bald(x));
bald(Louis).

You might feel that King-of-France is not really a unary predicate but a binary
predicate (king-of) with one argument place plugged by a constant (France).

Exercise 46
Render the following into Predicate calculus, using a lexicon of your choice. These
involve nestings of more than one quantifier, polyadic predicate letters, equality and
even function letters.

1. Anyone who has forgiven at least one person is a saint.

Lexicon:
Unary predicate letters: saint( )
Binary predicate letters: has-forgiven( , )

Formalisation

(∀x)(∀y)(has-forgiven(x, y)→ saint(x))

2. Nobody in the logic class is cleverer than everybody in the history class.

Lexicon:
Unary predicate letters: is-in-the-logic-class( ), is-in-the-history-class( )
Binary predicate letter: is-cleverer-than( , )

Formalisation

(∀x)(is-in-the-logic-class(x)→ (∃y)(is-in-the-history-class(y)∧
¬(is-cleverer-than(x, y));

Here you might prefer to have a two-place relation between people and subjects,
so that you then have two constants, history and logic.
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3. Everyone likes Mary—except Mary herself.

Lexicon:
Binary predicate letter: L( , )
Constant symbol: m

Formalisation

¬L(m,m) ∧ (∀x)(x , m→ L(x,m))

4. Jane saw a bear, and Roger saw one too.

Lexicon:
Unary predicate letter: B( )
Binary predicate letter: S ( , )
Constant symbols: j, r

Formalisation

(∃x)(B(x) ∧ S ( j, x)) ∧ (∃x)(B(x) ∧ S (r, x));

5. Jane saw a bear and Roger saw it too.

(∃x)(B(x) ∧ S ( j, x) ∧ S (r, x))

6. God will destroy the city unless there is a righteous man in it;Supply an answer or delete

7. Some students are not taught by every teacher;

Lexicon:
Unary predicate letters: teacher( ), student( ).
Binary predicate letter: taught-by( , )

Formalisation

(∃x)student(x) ∧ ¬(∀y)(teacher(y)→ taught-by(x, y))

Of course you might want to replace ‘teacher(x)’ by ‘(∃y)(taught-by(y, x))’.

8. No student has the same teacher for every subject.

Lexicon:
Ternary predicate letter: R( , , )
Unary predicate letters: student( ), teacher( ), subject( ).

Formalisation

(∀x)(student(x)→ ¬(∀y)(teacher(y)→ (∀z)(subject(z)→ R(x, y, z))))

9. Everybody loves my baby, but my baby loves nobody but me.

Lexicon:
Binary predicate letter1: L( , );
Constant symbols: b, m.

Formalisation
1Observe that we do not have to specify that ‘=’ is part of the lexicon. That’s a given, since it is part of

the logical vocabulary.
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(∀x)(L(x, b)) ∧ (∀x)(L(b, x)→ x = m);

Exercise 47
Match up the formulæ on the left with their English equivalents on the right.

(i) matches (a); (iii) matches (b); (ii) matches (c).

Exercise 48
(These involve nested quantifiers and dyadic predicates)

1. Everyone who loves is loved: (∀x)(∀y)(L(y, x)→ (∃z)(L(z, y)).

2. Everyone loves a lover: (∀x)(∀y)(L(y, x)→ (∀z)(L(z, y)).

3. The enemy of an enemy is a friend

4. The friend of an enemy is an enemy

5. Any friend of George’s is a friend of mine

6. Jack and Jill have at least two friends in common

7. Two people who love the same person do not love each other.

8. None but the brave deserve the fair: (∀x)(∀y)((F(x) ∧ D(y, x))→ B(y)).

9. If there is anyone in the residences with measles then anyone who has a friend
in the residences will need a measles jab.

Exercise 49
Render the following pieces of English into Predicate calculus, using a lexicon of your
choice.

1. There are two islands in New Zealand;

2. There are three2 islands in New Zealand;

3. tf knows (at least) two pop stars: (∃xy)(x , y ∧ K(x) ∧ K(y)).

‘K(x)’ of course means that x is a pop star known to me.

4. If there is to be a jackpot winner it will be me.

The lexicon is obviously going to have a one-place predicate wins-the-jackpot.
The temptation is to write something like

(∃x)wins-the-jackpot(x)→ x = me

2The third is Stewart Island
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But nothing like that will work. Do you mean

(∃x)(wins-the-jackpot(x)→ x = me)

or

(∃x)(wins-the-jackpot(x))→ x = me

. . . ? Neither is correct. The first one is true as long as there is someone who
does not win the jackpot (because that person is a witness to the ‘x’) or as long
as there is someone equal to me; the second one is not a closed formula, because
the occurrence of ‘x’ in ‘x = me’ is not bound by the ‘∃x’.

What we want is:

(∀x)(wins-the-jackpot(x)→ x = me)

Of course the following would also work

(∃x)(wins-the-jackpot(x))→ wins-the-jackpot(me)

but one gets steered away from that by the thought that one needs equality.

5. You are loved only if you yourself love someone [other than yourself!];

(∀x)(∀y)(L(y, x)→ (∃z)(z , x ∧ L(x, z))

(∀x)((∃y)(L(y, x))→ (∃z)(z , x ∧ L(x, z))

will do too.

But of course the sensible thought that the original English sentence is grasping
elliptically is “you are loved by someone else only if you love someone else”,
and that is

(∀x)((∃y)(y , x ∧ L(y, x))→ (∃z)(z , x ∧ L(x, z)))

or
(∀x, y)(y , x ∧ L(y, x)→ (∃z)(z , x ∧ L(x, z)))

6. God will destroy the city unless there are (at least) two righteous men in it;

7. There is at most one king of France;

(∀xy)(K(x) ∧ K(y)→ x = y)
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8. I know no more than two pop stars;

(∀xyz)((K(x) ∧ K(y) ∧ K(z))→ (x = y ∨ x = z ∨ y = z))

9. There is precisely one king of France;

(∃x)(K(x) ∧ (∀y)(K(y)→ y = x))

Notice that
(∃x)(∀y)(K(x) ∧ (K(y)→ y = x))

would do equally well. Make sure you are happy about this.

10. I know three FRS’s and one of them is bald;

11. Brothers and sisters have I none; this man’s father is my father’s son.

12. * Anyone who is between a rock and a hard place is also between a hard place
and a rock.

Using the lexicon:

S (x): x is a student;
L(x): x is a lecturer;
C(x): x is a course;
T (x, y, z): (lecturer) x lectures (student) y for (course) z;
A(x, y): (student) x attends (course) y;
F(x, y): x and y are friends;
R(x): x lives in the residences;
M(x): x has measles;

Turn the following into English. (normal English: something you can imagine yourself
saying—no xs and ys.)

(∀x)(F(Kim, x)→ F(Alex, x))
Every friend of Kim is a friend of Alex.

(∀x)(∃y)(F(x, y) ∧ M(y) ∧ Z(y))
Everyone has a friend in the residences with measles

(∀x)(F(Kim, x)→ R(x))
All Kim’s friends live in the residences

(∀x)((R(x) ∧ M(x))→ F(Kim, x))
The only people in the residences with measles are friends of Kim

(∀x)(R(x)→ (∃y)(F(x, y) ∧ M(y)))
Everyone who lives in the residences has a friend with measles

(∀x)(S (x)→ (∃yz)(T (y, x, z))
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Every student goes to at least one lecture course

(∃x)(S (x) ∧ (∀z)(¬A(x, z))
There is a student that isn’t going to any course

(∃x)(C(x) ∧ (∀z)(¬A(z, x))
There is a course that nobody is taking

(∃x)(L(x) ∧ (∀yz)(¬T (x, y, z))
One of the lecturers is giving a course that nobody is taking.3

(∀x1x2)[(∀z)(A(x1, z)←→ A(x2, z))→ x1 = x2]
No two students go to exactly the same courses

(∀x1x2)[(∀z)(A(z, x1)←→ A(z, x2))→ x1 = x2]
No two courses have exactly the same students going to them.

(∀xy)(x , y→ (∃z)(F(z, x)←→ ¬F(z, y)))
No two people have exactly the same friends.

Exercise 55 part 4
(Thanks to Matt Grice)

Exercise 58 part 1
[F(a)]1

→-intF(b)→ F(a)
∀-int(∀y)(F(y)→ F(a))
∃-int(∃x)(∀y)(F(y)→ F(x)) [¬(∃x)(∀y)(F(y)→ F(x))]2

→-elim
⊥ ex falsoF(b)

→-int (1)
F(a)→ F(b)

∀-int(∀y)(F(y)→ F(b))
∃-int(∃x)(∀y)(F(y)→ F(x)) [¬(∃x)(∀y)(F(y)→ F(x))]2

→-elim
⊥

→-int (2)
¬¬(∃x)(∀y)(F(y)→ F(x))

double negation
(∃x)(∀y)(F(y)→ F(x))

(12.5)

A(a) ` A(a) B( f (a)) ` B( f (a))
→ LA(a), A(a)→ B( f (a)) ` B( f (a))
∀ LA(a), (∀x)(A(x)→ B( f (x))) ` B( f (a))
∃ RA(a), (∀x)(A(x)→ B( f (x))) ` (∃x)B(x)
∃ L(∃x)A(x), (∀x)(A(x)→ B( f (x))) ` (∃x)B(x)

(12.6)

3That’s not right!
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(∃x)A(x)

[A(a)](1)
(∀x)(A(x)→ B( f (x)))

∀ elimA(a)→ B( f (a))
→-elimB( f (a))

∃-int(∃x)B(x)
∃-elim(1)

(∃x)B(x)

(12.7)

Exercise 43

Exercises from Chapter 5

Exercises from Chapter 6

Exercise 63 Part 2
Identify a row in which the formula does not take truth-value 1

Try [[p]] = 2 and [[q]] = 3. Then [[p ∨ q]] = 2; [[p → q]] = 3 whence [[(p →
q)→ q]] = 1, giving [[((p→ q)→ q)→ (p ∨ q)]] = 3.

Exercises from Chapter 7

Exercises from Chapter 8

Exercise 73

p

¬p

q ¬q

A B

C D

We want to say something like: p says A ∨ B and q says A ∨ C. But that doesn’t
capture the exclusiveness, so we want p to say (A ∨ B) ∧ ¬(C ∨ D). Similarly we want
q to say (A ∨ C) ∧ ¬(B ∨ D). Then p ∧ q says A; p ∧ ¬q says B; ¬p ∧ q says C; and
¬p ∧ ¬q says D.
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Chapter 13

Indexes

13.1 Index of definitions

Definition of Definition number Page

conjunction, conjunct, disjunction,
disjunct, conditional, biconditional,
consequent, antecedent, principal connective 2 24

Associativity, Idempotence
Commutativity, distributivity 3 26

extensional, symmetrical, irreflexive
transitive, reflexive, equivalence relation 23 117

Valuation 4 30

Valid 5 37

Sound argument 6 37

tautology, logically true,
logically false, satisfiable 7 39

Valid Argument 8 39

Disjunctive Normal Form 9 42

Harmonious rules 11 73

Negative Interpretation 34 154

Stable formula 35 155
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Satisfaction for possible worlds 38 161
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General Index

algorithm
antecedent
antimonotonic
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atomic
axiomatisable
biconditional
binder
body
Boolean algebra
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bounded quantifier
bounded search
Carnap
Cantor’s normal form theorem
Cantor’s theorem
cartesian product ×
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class
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connexity
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constant function
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continuous function
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countable choice
countable set
countably presented
counted set
cumulative hierarchy
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disjunctive normal form
distributive lattice

double negation
downward Skolem-Löwenheim theo-

rem
elementary equivalence
elementary extension
end-extension
equinumerous
equipollent
equivalence relation
equivocate
excluded middle
existence property
extension
extension of a theory
filter
filter base
finite assignment function
finite branching tree
finitely presented
first-order theory
first-person
fitness function
fixed point
fixed point theorem
formula
free occurrence
function-in-extension
function-in-intension
gnumbering
Gödel numbering
Gödel-style proof
graph
greatest lower bound
Hartogs’ theorem
head
Heyting algebra
hierarchy theorem
Horn clause
Horn formula
induction hypothesis
initial segment
instruction
intension
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interpolation lemma
interpretation
irreflexive relation
kernel
label
lambda notation
language
language over P
lattice
least upper bound
lexicographic order
Lindenbaum algebra
literal
logic
logical predicate letter
logical vocabulary
major premiss
material conditional
mind projection fallacy
minor presmiss
model
modus ponens
monotone function
natural deduction
negatomic
nonmontonic reasoning
normal form theorem
normative descriptive
object language
output
operationalist
Pareto-efficient point
partial function
partial order
partition
Penrose
perseveration
persistent
Platonist
pointwise product
poset
power set
preorder
predicate language

prenex normal form theorem
program
proof
proper extension
propositional language
propositional latter
realist
reduction
relation-in-extension
relation-in-intension
restriction
satisfaction
saturated
Scott’s trick
semantic entailment
semantically equivalent
sequent
Skolem constant
strict partial order
strict total order
structural induction
structure
successor function
support
supremum
syntactic entailment
syntactic sugar
tail
tautology
theorem
theory
total function
total order
tree
truth-functional
universal generalisation
upward Skolem-LÃ¶wenheim theo-

rem
vacuous quantification
valuation
variable
witness
word

2
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tarum Mathematicarum 7 1934-5 pp 222–43.

[26] Norman Lindsay The Magic Pudding.
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