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Chapter 1

From qo to wqo

1.1 Introduction

A relation < on a set (or class) @ is a quasi-order (often preorder, particularly for
category theorists) if < is reflexive (a < a for every a € Q) and transitive (a < cif a <b
and b < ¢). We will often abbreviate quasi-order by qo. A qo @ is well-quasi-ordered
(wqo) if @ has no infinite strictly decreasing sequences and no infinite antichains (subsets
X such that no two distinct a,b € X satisfy a < b). The notion of wqo is very natural;
it sits nicely between well-ordered and well-founded, providing a simple easy-to-express
notion of well-behaved well-founded order.

Many of the most interesting questions about quasi-orders ask whether a certain class
of natural objects is wqo under embeddability. Though the answer is obviously No in many
of the first cases that come to mind — groups, topological spaces, etc.—other examples
have sparked remarkable work in wqo theory. One example is the following conjecture of
Fraissé.

Call a linear order L scattered if there is no order-preserving injection Q < L. In the
1940s Fraissé conjectured that the class of scattered linear orders was wqo. Laver [6] even-
tually proved (a generalisation of) Fraissé’s conjecture, but not until after Nash-Williams
had revolutionised wqo theory by introducing in [14] the stronger notion of bgo (see §2.2
for the definition of bgo), on which Laver relied in his proof.

It turns out that —although many finitary operations do—important infinitary oper-
ations do not preserve wqoness. One might therefore hope for a notion stronger than wqo
(but still weaker than wellorderedness, of course) that is stable under infinitary operations
like the powerset operation &?. This notion is Nash-Williams’ better-quasi-order (bgo), and
we spend Chapter 2 defining it and describing many of bqo theory’s central results.

Nash-Williams’ main theorem in [14] asserts that rooted trees of height w are bqo, set-
tling a conjecture of Kruskal. Laver’s proof of Fraissé’s conjecture relies on a generalisation
of this theorem — namely, that Q-labelled trees are bgo if Q is bgo—and in §2 of |6] Laver
provides instructions for carrying out the generalisation. The primary purpose of this essay
is to undertake the generalisation carefully; this is the subject of Chapter 3.

This essay’s secondary purpose (hopefully fulfilled in Chapter 2) is to paint a more-or-



less complete picture of bqo theory from the topological perspective introduced by Simpson
in [18]. In particular, we provide a proof that Nash-Williams’ original definition of bqo
coincides with Simpson’s definition (Proposition 2.3.2). (This is not a difficult result, but
no proof appears in the literature.) Many early results in bqo theory were proved using the
so-called minimal bad array technique. This technique has been promoted to a theorem,
the Minimal Bad Array Lemma (2.3.3), and we explore several of its applications in §2.4.

For two reasons, our proof will be slightly less cluttered than the generalisation Laver
envisioned. First, we follow a slight simplification of Nash-Williams’ proof suggested by
Nash-Williams [14] and carried out by Kiihn in [5]. Second, our proof uses Simpson’s defi-
nition of bgo, which avoids some of the combinatorial baggage required by Nash-Williams’
original definition.

Sources consulted; acknowledgements

It would be difficult to conceal which sources I have consulted in this essay’s production,
as [ have already declared most of it to be modified versions of others’ results. The content
of Chapter 1 is basic and standard; much of it I have adapted from the Reading Group’s
discussion, Forster’s notes 2], or §1 of Laver’s paper [7].

The goals of Chapter 2 are to frame bqo theory from the ‘Simpsonian’ perspective
introduced in [18] and to prove (using Simpson’s topological definition) that certain op-
erations preserve bqoness (§2.4). To that end, I have included a proof that Simpson’s
definition is equivalent to Nash-Williams’. It is an elementary result, but to my knowledge
it appears nowhere in the literature. The proof of the Minimal Bad Array Lemma 2.3.3 1
extracted from my notes (and my memory, to fill some gaps) of Zachiri McKenzie’s Reading
Group presentation. It follows closely Simpson’s original proof [18]. Many of the proofs in
Chapter 2 are modified from proofs in other sources so that they use Simpson’s definition.
Though the perspective is different, the ideas are essentially the same.

In Chapter 3 I present the proof that Q-labelled trees are bqo. As noted above, this
proof differs from Laver’s suggested proof in two ways: (1) in the few places where a
definition of bqo is required, I use Simpson’s definition; and (2) the proof takes a slight
shortcut relative to Nash-Williams’ proof. Kiihn [5] provides an account of Nash-Williams’
original proof (the non-Q-labelled version) using this shortcut.

I would like to offer thanks to Dr. Forster, who introduced me to wqo/bqo theory and
to David, Zachiri, Oren, Lovkush, and Philipp, who participated in the Reading Group
and offered several illuminating comments and presentations as I learned the theory.

1.2 Quasi-orders and conventions

The reader should be familiar with the basic language of sets, functions, ordinals, and
partially ordered sets. Write ORD for the class of ordinals and CARD for the class of
cardinals. A sequence with terms in a set A is simply a function from an ordinal to A.
We write lh(s) for the length of a sequence s, which we identify with its domain. The nth
term of a sequence s will be written s[n], and a sequence will occasionally appear as a list



of its terms, in order, surrounded by angle brackets: s = (s[0], s[1],...). The restriction of
a function f to a set A is denoted f|,, and f applied to A is denoted f”A. (That is,
f"A={f(a):a € A}.) The preimage {a € dom f : f(a) € B} of a set B under a function
f will be denoted f_1B.

The central objects of our study will be quasi-orders and sequences. Our notation for
this is mostly standard. As in the Introduction, (@, <) is a qo if < is a reflexive transitive
relation on (). Unlike a partial order, a qo can have distinct elements a, b such that a < b
and b < a. When this is the case, we say a and b are indistinguishable and we write
a =g bora=b. (The overloaded term equivalent is more common in the literature.)

Because much of our study (particularly in Chapter 2) concerns strictly increasing
sequences in w, we will find it useful to identify (to a non-frightening extent, I hope)
a subset of w with the strictly increasing sequence that enumerates it. Thus of subsets
X,Y C w we will happily say, e.g., ‘X is an initial segment of Y’ when the (unique)
increasing sequence that enumerates X is an initial segment of the increasing sequence
that enumerates Y. Occasionally it will be useful to abbreviate the assertion ‘s is an initial
segment of ¢’; we will do so by writing s < ¢t. And s < t will abbreviate ‘s is a proper
initial segment of t’. We also say t is an end-extension of s to mean that s is an initial
segment of ¢.

This essay’s most controversial conventions are sure to be our notation for sets of
sequences and sets of subsets, as there seem to be several popular conventions, none of
which is universally liked. T follow most of my sources in writing [A]<“ for the set of finite
subsets of A, [A]™ for the n-element subsets of A, and [B]* for the set of infinite subsets of
B. (For us, such a B will always be a subset of w, so recall we will consider [B]* identical
to the set of strictly increasing infinite sequences in B.) Hoping to mark a clear distinction
between infinite subsets (= increasing sequences) and all sequences, I write ¥ B for the set
of sequences w — B. Similarly, <“A denotes the set of finite sequences with terms in A.

For a qo @ there are two natural ways of quasi-ordering the set Q) of subsets of Q.
(We use Laver’s <; and <, notation, which is also used in other sources.) The first is to
declare A <, B iff there is a function f: A — B such that a <g f(a) for every a € A.
(Since we are not concerned about the axiom of choice, this is equivalent to requiring that
for every a € A there is an element b € B such that a <g b.) The second is to declare
A <y B iff there is an injective f: A — B witnessing that A <,, B. There is also a natural
way to quasi-order Seq (), the class of sequences a — (), a an ordinal: for sequences
s:a—Qandt: f— Q,say s <t iff there is a strictly increasing function ¢: o — S such
that s(n) <g t(¢(n)) for every n < o. From this <“Q and “(@ inherit a quasi-order.

Finally, we quasi-order the cartesian product @ x R of two (and by extension, finitely
many) quasi-orders using the product order: (a;,a2) < (b1, b2) iff a1 <g by and az <p bs.

1.3 Basic properties of wqos

In this section we take a whirlwind tour of wqo theory, seeing only the sights necessary to
move on to bqo theory in the next chapter.



Definition. Let Q) be a quasi-order. A (Q-sequence is a function w — Q. A Q-sequence
frw— Qisbad if f(a) £g f(b) for all a,b € w such that a < b. A Q-sequence is good
if it is not bad. A @-sequence f is said to be perfect if f(a) <g f(b) for all a < b.!

Q is well-quasi-ordered (wqo) if there is no bad Q-sequence.

Ramsey’s Theorem is fundamental to wqo theory, so we record it here.

Theorem 1.3.1 (Ramsey’s Theorem). Suppose c¢: [w]|™ — k is a function (a k-colouring
of [w]™). Then there is an infinite set monochromatic for ¢, an X € [w]* such that c[{xn
is constant.

The following equivalence is an easy application of Ramsey’s Theorem.
Proposition 1.3.2. Let ) be qo. The following are equivalent:
(i) @ is wqo; that is, every @-sequence is good.
(ii) Every strictly decreasing sequence in @ is finite, and every antichain in @ is finite.
(iii) Every @-sequence has a perfect subsequence.

One other equivalent definition is worth mentioning: @ is wqo iff every linear extension
of () is a wellorder.
A moment’s reflection on the definition of wqo reveals that:

(i
(i

) every subset of a wqo @ (given the order it inherits from Q) is wqo;
)
(iii) the binary product of two wqos is wqo;
)
)

a homomorphic image of a wqo is wqo;

(iv) the union of two wqo subsets of a qo @ is wqo; and

(v

if (Q, <) is wqo and <’ is a qo on @ containing < (that is, ¢1 < g implies ¢1 <’ ¢2),
then (@, <') is wqo.

The first proper theorem of wqo theory is Higman’s Lemma (attributed by many sources
to [3]), which we prove here to highlight a striking similarity between wqo theory and bqo
theory. The proof of Higman’s Lemma is a prototypical example of the minimal bad se-
quence technique, the ‘poor man’s version’ of the minimal bad array technique, which forms
the backbone of our study of bqos in Chapters 2 & 3. To render completely transparent the
analogy between the minimal bad sequence technique and the minimal bad array technique,
we (following Laver [7]) state a general result that will assume the role of the minimal bad
sequence technique.

Tt isn’t clear to me why authors of wqo theory prefer perfect to, e.g., nondecreasing; perhaps it helps
remind the reader that in a qo an injective nondecreasing sequence needn’t be strictly increasing: in fact,
an injective sequence can be both nondecreasing and nonincreasing!



Let @ be qo. With an eye toward the <* relation defined in §2.3, we define, for bad
Q-sequences f and g,

g <* f iff Vm3n g(m) <q f(n)
g <* fiff ¢ <* fand Im3In g(m) <q f(n).

(Note that the relation <* is not the strict part of the relation <*!) A bad Q-sequence
f is called minimal bad if there is no bad g such that ¢ <* f. It is clear from the
definition that {q € Q : ¢ < f[n] for some n € w} is wqo if f is a minimal bad Q-sequence.
A nontrivial observation that we will not use: a subsequence of a minimal bad sequence is
minimal bad.

Lemma 1.3.3. If Q) is well-founded but not wqo, then there is a minimal bad ()-sequence.

Proof. Define f inductively (using DC) as follows: since @ is well-founded, we can pick f[0]
to be minimal among first terms of bad Q-sequences. If we have picked f[0],..., f[n], pick
f[n + 1] to be minimal among first terms of bad end-extensions of (f[0],..., f[n]). Then
f is minimal bad:

Suppose for a contradiction that the bad Q)-sequence g satisfies g <* f. Let n be least
such that g[m] <g f[n] for some m. Pass to a terminal segment of g so that g[0] <g f[n].
By the choice of n and the badness of g, at most n terms of g are < one of the first
n—1 terms of f; so we may assume — by passing to a subsequence of g that excludes these
terms — that

(Vj) Gk =) gljl <q fIkI. ()

(A subsequence of a bad sequence is still bad, so this is a fair assumption to make of g.)
Consider the sequence

s = (fl0;..., fln=1],4[0), g1], .. ).

If it were the case that f[j] <¢ g[n + k| for some j < n — 1, our assumption (}) would
demand that f[j] <q g[n + k] <¢g f[m] for some m > n, contradicting the badness of
f. Therefore s is bad. But this contradicts the minimality of f[n] arranged for in the
construction of f, so no such g exists. We conclude that f is minimal bad. |

Theorem 1.3.4 (Higman’s Lemma). If @ is wqo, then <¥Q is wqo.

Proof. Suppose f is a bad <“@Q-sequence. Certainly <“() is well-founded, so we can apply
Lemma 1.3.3 to assume that f is minimal bad. Since f is bad, each term of f (a finite
sequence in Q) has positive length. Let g[n] be the final term of f[n]|. Let f. denote the
sequence whose nth term is f[n]y(fpp)—1; 1-e., fi[n] is f[n] without its final term g[n].
The set A := {fi[n] : n € w}, asubset of {¢g € Q : ¢ < f[n] for some n € w}, is wqo since f
is minimal bad. Therefore A x @ is wqo, and so is {(f«[m],¢[m]) : m € w}. Consequently
there are m,n such that m < n, fi[m] <<ug fi[n], and ¢[m] <g ¢[n]. But this means
fIm] <<wq f[n], contradicting the badness of f. [ |



The first major theorem in wqo theory is ([4]) Kruskal’s theorem —a generalisation
of Higman’s Lemma 1.3.4—which asserts that the class of finite trees is wqo (under an
embeddability relation similar to the one we define for infinite trees in §3.2). See Nash-
Williams’ paper [13] for a proof of Kruskal’s theorem. It is worth noting that Kruskal
proved a ‘Q-labelled’ version of the theorem; this generalisation is very similar to Laver’s
‘@-labelled’ generalisation of Nash-Williams’ theorem, which is the subject of Chapter 3.

Much more can be said about wqos. The reader unsatisfied with the minimal treatment
here should consult Milner’s paper [12], §1 of Laver [7], and Forster’s notes [2].



Chapter 2

From wqo to bqo

2.1 We need a stronger notion: Rado’s example

The operations that preserve wqoness are all finitary. And the following example of
Rado [17] proves that this inconvenience is unavoidable. Rado’s example demonstrates
that neither “Q nor ZQ need be wqo if @ is.

Let R be [w]?>—that is, R = {(a,b) € w:a < b} —and quasi-order R in the following
way:
az < by, or

ai,a2) <g (by,be) iff
(a1, az) <p (b1, b2) {alzblandagng.

For clarity we will write (a,b) € R as {a < b} in this section.
Proposition 2.1.1. R is wqo, yet “R (hence & R) is not wqo.

Proof. Suppose f: w — R is a bad R-sequence. There are three mutually exclusive ways
in which {a < b} can satisfy f(a) = {a1 < a2} €r {b1 < b2} = f(b):

(i) a1 = by and as > bs;
(ii) a1 < by <ag < bQ;
(iii) b1 < a1 and a9 < by.

Colour {a < b} in [w]? according to whether (i), (ii), or (iii) holds of (f(a), f(b)). By
Ramsey’s theorem there is a monochromatic set {1, x2,...}. A monochromatic set of
colour (i) or (iii) cannot exist, since it would give—Dby considering the first or second
coordinates, respectively, of the f(z;)—a strictly decreasing infinite sequence of natural
numbers. Therefore we have a monochromatic set of colour (ii). But this is also impossible,
since the sequence of first coordinates of the f(x;) must be strictly increasing, yet there
are for every {a; < ag} only finitely many by such that a1 < b; < ag. We conclude that R
is wqo.

For i € wlet f;: w — R be the sequence whose j' term is {i < i +j + 1}. (f;
enumerates the i'" column of R.) It is easy to see that i — f; is a bad “R-sequence, so
“R is not wqo. |



For an illuminating account of the motivation for the Rado order R, see Chapter 5 of
Forster’s notes [2]. We will conclude this section by mentioning that in a strong sense R is
the simplest example of a wqo whose powerset and set of infinite sequences are not wqo.
See 1.7 of Laver’s paper [7] for a proof.

Proposition 2.1.2. If Q is wqo but “(@ is not wqo, then ) contains a copy of R.

2.2 Blocks & barriers

The central objects of study in Nash-Williams’ definition of bqo are (sets of) finite subsets
of w. Recall [w]<“ denotes the set of finite subsets of w, and we identify a subset X C w
with the unique strictly increasing sequence that enumerates it. We will make extensive
use of two bits of notation, of which neither (as far as I know) is standard outside bqo
theory.

Definition. For X C w, we write ,X (read ‘butfirst(X)’ or t1(X) for Forster) for the set
X N {min(X)}. If s,t € [w]<¥, write s < ¢ if ,s (which may be empty) is a proper initial
segment of ¢.!

Observe that the relation < is not transitive: e.g., {0,1} < {1,2,3} < {2,3,5}, yet
{0,1} 4 {2,3,5}.

Since Ramsey’s theorem 1.3.1 plays an important role in wqo theory, it is sensible to
expect a theorem of Ramsey Theory to play a similar role in bgo theory. That theorem
is Open Ramsey, Theorem 2.4.1. Following Nash-Williams [14] and Milner [12] we will
use the following finitary version till we need the infinitary version 2.4.1 after introducing
Simpson’s definition of bqo.

Theorem 2.2.1 (Finitary version of Open Ramsey). Let Y € [w]“. If B C [Y]|<¥, there
is A € [Y]“ such that either

(i) for every X € [A]¥ there is b € B that is a (proper) initial segment of X; or
(ii) BN[A]<¥ = 2.

Definition. A block B is an infinite subset of [w]<“ that contains an initial segment of
every infinite subset of | JB. We will occasionally refer to | J B as the base of B. (Note
the base of a block B is denoted B in Nash-Williams’ papers.) For a qo Q a Q-pattern
is a function from a block into Q.

A barrier B is a block that is also a C-antichain; that is, distinct elements of B are
incomparable under the subset relation C. For a qo @), a Q-array is a function from a
barrier into Q.

Examples.

(i) For every n > 0, the set [w]™ of n-element subsets of w is a barrier.

T suggest ‘s tries at ¢’ as a possible reading of ‘s <1 ¢



(ii) An important operation for Nash-Williams (that we will not make use of) is the
‘exponent’ operation for blocks: if B is a block, then B™ (written B(n) by other
authors) is the set

{blu-"Ubn:bl,...,bHEB, b1<]b2<1"~<]bn}.
It is easy to verify that B is a barrier if B is.

Notice that some authors (e.g., Forster [2] and Marcone [9]) require that a block B
own a unique initial segment of any given X € [|J B]¥. This is the notion of thin block in
Nash-Williams [14]. This gives an equivalent definition of bqo, since every block contains
a thin block. Of course, if B is a barrier, then an initial segment in B of X € [|J B]* must
be unique; we denote this member of B by X A B (written ‘X@B’ by Forster [2]).

Definition. Let @ be a qo. A Q-pattern (especially a Q-array) f: B — @ is bad if
f(s) £o f(t) for all s,t € B such that s < t. We say f is good otherwise. The qo @ is
better-quasi-ordered (bqo) if there is no bad Q-array.

As an immediate consequence of the definition of bqo, we see that homomorphic images
and subsets of a bqo are bqo. Moreover, if (Q,<) is bqo and <’ is a quasi-order on @
containing < (i.e., such that ¢; < g2 = ¢1 <’ ¢2), then (@, <’) is bqo.

An important observation (Lemma 1.3 of Marcone’s paper [9]) is that every block is
well-ordered by the lexicographic order. In light of this, it is sensible to consider the
approximation to bqo given by forbidding bad Q-arrays whose domain has length < «, for
a given ordinal a. In [9] Marcone provides a thorough study of this notion.

Nash-Williams first defined bgo to be there is no bad @Q-pattern, but we will soon prove
(as an easy corollary to Theorem 2.2.1) that these definitions are equivalent. (NB. In [12]
Milner confusingly uses Q-pattern in place of Q-array.) Milner [12] offers the following
proof, a simplification of Nash-Williams’ original.

Proposition 2.2.2. Every block contains a barrier.

Proof. Let B be a block, and let C' be the set of C-minimal elements of B. By Theo-
rem 2.2.1 there is A € [|J B]¥ such that either

(i) for every X € [A]“ there is an initial segment ¢ € C of X, or
(i) CN[A]<Y = @.

Any b € BN [A]<“ of minimal size must belong to C, so (ii) cannot hold. Therefore (i)
holds, and CN[A]<Y is a barrier: (i) guarantees that CN[A]<% is a block, and the definition
of C ensures C'N [A]<¥ is a C-antichain. [

Corollary 2.2.3. Let ) be a qo. There is a bad Q-pattern if and only if there is a bad
Q-array.

10



In light of Corollary 2.2.3 we will follow Nash-Williams and take there is no bad Q-array
as our working definition of bqo, until it is replaced by Simpson’s in the next section.

It is immediate from the definitions that every wellorder is bqo and every bqo is wqo.
To wit, certainly every block contains an infinite <1-increasing sequence by <1 by <1 - - - ; the
values of a purportedly bad @Q-array at the b; would give an infinite strictly decreasing
sequence in a wellorder Q.2 And every bad Q-sequence is a bad Q-array, since [w]' is a
barrier on which the relation < is simply the usual order < on w.

More can be said about the combinatorics of blocks and barriers, but we will adopt
Simpson’s approach to bqos for the remainder of the essay.

2.3 Simpson’s insight

In [18] Simpson provides a new topological perspective for bqo theory. His chief insight is
that a Q-array f on a barrier B can be thought of as a continuous (wrt the product topology
on [w]¥) function f: [w]* — @, because continuity gives finite sequences s € [w]<* power to
dictate where f’ sends their end-extensions. From this perspective the fiddly combinatorial
definitions of blocks, barriers, and <1 are hidden away behind a tidy topological definition
of bad array.

NB. There are at least two sensible ways to topologise [A]*, for A € [w]*:

(i) By endowing [A]“ with the topology it inherits as a subspace of 2* (after sets are
identified with their characteristic functions), which has the product topology: This
is known as the product topology, the T-topology, and the usual topology on
[A]“. This will be our default choice of topology for [A]¥, and any unqualified use
of, e.g., open will mean open wrt the product topology. In a situation that is likely to
cause confusion, we will say, e.g., A is T-open.

(ii) By endowing [A]“ with the *-topology (aka Ellentuck topology): The x-topology
is strictly finer (i.e., has more open sets) than the product topology; its basic open
sets are of the form

[s,U] :=={X C[A]¥: s an initial segment of X and X \s C U},

for s € [A]<¥ and U € [A]*. We will use x-open, *-continuous, etc., to mean open,
continuous, etc., wrt to the x-topology. Notice that this notation allows us to write
the basic open sets for the product topology as [s, A] for s € [A4]<¥.

Definition. Let Q be quasi-ordered, and endow () with the discrete topology. A (Q-Sarray
(S for Simpson) is a (7-)continuous function g: [A]* — @ for some A € [w]¥. A Q-Sarray
is bad if, for every X € [A]“,

9(X) £q 9(.X).

A @Q-Sarray that is not bad is good.

2The reader sensitive to uses of AC may be reassured to know that there is a direct proof that wo — bqo
using the non-Dc definition of wellorder.

11



In light of the following theorem of Mathias, 7-continuous can be replaced in the
definition of bad Q-Sarray by *x-continuous or by Borel. (Q-Sarrays are Borel maps in
Simpson’s paper [18|, and they are (puzzlingly) *-continuous maps in Kiihn’s paper [5].
This simplified version of Mathias’ theorem (6.1 of [11]) is the one provided in Simpson
([18], 9.10).

Theorem 2.3.1 (Mathias). Suppose A € [w]“, X is a metric space, and f: [A]* — X is
a Borel map. Then There is a B € [A]* such that f[p. is continuous.

The proof that this (Simpson’s) definition of bgo is equivalent to Nash-Williams’ is
nowhere to be found in the literature, so I provide it here.

Proposition 2.3.2. A quasiorder @ is bqo iff there is no bad @Q-Sarray.

Proof. We will prove that there is a bad Q-array iff there is a bad Q-Sarray.

Suppose first that there is a bad Q-array f: B — @ on a barrier B. Put A = |JB,
the base of B. For each X € [A]¥ there is a unique initial segment X A B of X in B.
Let g: [A]* — @ be the function that sends X to f(X A B). We need to show that g is
continuous and bad. Let X € [A]¥ and suppose Y € [A]“ is any end-extension of X A B
(i.e., any member of [X A B, A]). Then Y A B = X A B by the uniqueness of Y A B, so

9(Y) = f(Y AB) = f(X A B) = g(X).

So every member of [A]“ has a basic open neighbourhood on which g is constant; that is,
g is continuous. Now we show that ¢ is bad. Let X € [A]“ and recall that . X denotes
X N\ {max X}. The fact that B is a barrier forbids .X A B C X A B, so it must be that
X AN B < ,.X A B. But now we see that g easily inherits badness from f:

9(X) = f(X A B) £Q fGX A B) = g(+X).

For the other direction, assume there is a bad Q-Sarray g: [A]Y — Q. We can identify
A with w by an increasing enumeration of A, so wlog A = w. Let X € [w]¥. Continuity
says that g is constant on the set of end-extensions of a proper initial segment s of X. Let
sat(X) denote the shortest such s.> Now let B be the set of all such sat(X): B := sat”[w]*.
For every X € [w]¥, certainly sat(X) is an initial segment of X that belongs to B, so B
is a block (not a barrier!). If sat(X) = sat(Y), then Y is an end-extension of sat(X),
so g(X) = g(Y). As a result, f(sat(X)) := ¢g(X) unambiguously defines a Q-pattern
f: B — Q. To complete the proof, we will show that f is bad. Suppose b; = sat(X;) and
by = sat(X3) are members of B such that by <1 be. Let X =byUboU{n € w:n > maxby}.
(Any end-extension X of b; such that ,X is an end-extension of be will do.) Then X is
an end-extension of by, so g(X) = ¢g(X1) = f(b1); and . X is an end-extension of by, so
9(+X) = g(X2) = f(b2). We conclude that

fb1) = 9(X) £q 9(+X) = [(b2),

3 sat abbreviates shortest approzimation to.
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so f is a bad @-pattern. The observation that there is a bad @-pattern iff there is a bad
Q-array (2.2.3) completes the proof. [ |

One essential method for proving a qo is bqo is the so-called minimal bad array tech-
nique, whereby one shows that no bad Q-array exists by deducing absurdity from the
existence of a minimal bad Q-array. Nash-Williams introduced the technique in [14], and
it was first synthesised into a theorem by Laver (|8], Theorem 1.9). We prove the theo-
rem here both because proving it by Simpson’s approach to bqos is slightly less stressful
than proving it using the combinatorial definition, and because it is essential for the next
section’s results. Our main result — that @) bqo implies ()-labelled trees are bqo— relies
on the minimal bad sequence technique, as Nash-Williams’ original proof did. Appealing
directly to the Minimal Bad Array Lemma will allow us to present a proof that is tidier
and more modern in style than a straightforward generalisation of Nash-Williams’ proof
would be.

Hereafter we will use only the Simpsonian definition of bgo, so we will refer to Q-Sarrays
as Q-arrays and use bqo to mean has no bad Q-Sarray.

The proof presented here of the Minimal Bad Array Lemma is Simpson’s proof (9.17
of [18]). (Notice, though, that we require Q-arrays to be continuous, whereas Simpson
requires them to be only Borel.) Many thanks to Zachiri McKenzie for presenting it
to the Reading Group. In [8] Laver presents a proof (1.9) using Nash-Williams’ original
combinatorial definition of bqo. Another version of Laver’s proof appears as 2.19 in Milner’s
paper [12].

It is often useful to consider a finer version of a quasi-order on Q. If () is quasi-ordered
by <g@, and <’ is a well-founded partial order on @ ‘compatible’ with <-—that is, g1 <’ g2
implies ¢1 <@ g2 — then we say <’ is a partial ranking of the qo . We will often refer
to a quasi-order as ranked when there is an understood partial ranking attached to it.

Definition. Let @ be a qo ranked by <’. For bad Q-arrays f: [A]Y — @ and g: [B]* — @Q,
define <* and <* thus:

f<*giff BC Aand g(X) <" f(X) for every X € [B];

f<*giff BC Aand g(X) <" f(X) for every X € [B]”.
A bad Q-array f is minimal bad if f is <*-minimal among bad Q-arrays.

Warning: <* is not the strict part of the relation <*. The relations <* and <*, introduced
by Simpson, are the topological analogues of the ‘forerun’ relations introduced by Nash-
Williams in [14]. Note, however, that the forerunning relations are (strangely) backwards:
‘f <* g’ corresponds to ‘g foreruns f’ and ‘f <* ¢’ corresponds to ‘g strictly foreruns f’.

Theorem 2.3.3 (Minimal Bad Array Lemma). Let @ be a ranked qo. Suppose f: [A]* —
Q is a bad @Q-array. Then there exists a minimal bad Q-array ¢ such that g <* f.

Proof. The idea is to assume the theorem is false and obtain a contradiction by producing

an unreasonably long strictly decreasing sequence of subsets of w. Suppose the theorem is
false and set fo = f, Ag = A.
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We will define inductively a sequence (fy: [Aa]Y = @)acw, such that
(i) each f, is bad; and
(ii) if o < B then fg <* f, and A, # Ag (though A, C Ag since fg <* fa).

This is a problem, since choosing a member of each relative complement A, \ Ay41 would
give N; distinct members of w.

Suppose f, has been defined and fg for every 8 < a has been defined. Since fo, <* fo,
f is not minimal bad; thus there is a bad Q-array go: [Ba]* — @ such that g, <* f, and
An N\ By is infinite. (Shrink B, as necessary until A, \ B, is infinite.) The continuity of
Jo ensures that there is an initial segment s, of B, such that g, is constant (and takes the
value By) on [sq, Bal. (ga is not quite good enough to be fu41, which will need a domain
larger than B, so that we can handle the limit case.) Define

Agy1:=BaU{n € Ay :n <maxs,}.

Observe that A,11 is a proper subset of A,, since A, \ B, is infinite. Define f,11 on
[Aq+1]@ as follows:

9o(X) if X € [Bq)”
foz+1(X) = . w w

fa(X) if X € [Aq41]¥ N [Ba]“.
Certainly fo41 <* fa, since go <* fo. Suppose that foi11(X) <@ fat1(+X) for some
X € [Aqa+1]°. The only possibility is that fo11(X) = fo(X) and fot41(+X) = ga(+X), as
the other possibilities are immediately ruled out. Then we have

fa(X) SQ ga(*X) <Q fa(*X)a

which contradicts the badness of f,. Therefore f,y1 is bad.

Both [B,]“ and [Aq+1]“\[Ba]* are open in [A4+1]¥, and both f, and g, are continuous,
SO fa+1 is continuous. This concludes the successor case.

Now suppose « is a limit and for all v < 8 < a we have defined f, and fg so that

fs <* fy. Suppose also that we have defined gg, sg, and Bg as in the successor case.
Define A, :={A4p: 8 < a}.

Claim. A, is infinite.

Proof of Claim. Suppose for a contradiction that A, € m < w. For every g < « let
ng be the least n > m such that n € Ag. The set C := {8 < a:ng ¢ Ag41} is infinite:
indeed, if cofinitely many 3 satisfied ng € Agiy, then the function 8 — ng would be
eventually constant, and its eventual value would belong to A,. (8 + ng is continuous,
by our definition of Ag for § a limit.) This is ludicrous, since we have assumed A, C m
and ng > m. Recall that sg C Ag. For every 3 € C, ng € Ag \ Ag41; so ng > maxsg
by the definition of Ag; ;. No member of Ag sits between m and ng, so we conclude that
max sg < m for every 3 € C. But there are infinitely many 8 € C and only finitely many
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possible finite sequences sg with terms < m, so there must be some infinite set ' C C
such that sz = s, for every pair 3,7 of elements of C’. But if 8 < 7, we have B, C Bg,
so By € [sy, Bg] = [sg, Bg]. But this yields the inequality

f(By) < fp11(By) = g5(Bg) <’ f3(Bg).

Thus the infinite set C” gives an infinite strictly decreasing <’-sequence, which contradicts
the well-foundedness of the partial ranking <. We are forced to conclude that A, is
infinite, which was the Claim. Boaim
Notice that for every X € [A,]* the sequence (f3(X))g<q is <'-decreasing and therefore
must be eventually constant. With this in mind, define f, to be the pointwise limit of the
fﬁ, b <a:
fa(X) = lim f5(X).

B<a

The pointwise limit of Borel maps is Borel, so f, is Borel. By Mathias’ theorem 2.3.1 we
can restrict A, further to assume that f, is continuous. For every X € [A,]¥ the values
of fo(X) and f,(+X) are just the values of fg(X) and f3(,X) for some 8 < a, so f, must
be bad. One can see that f, <* fg for 8 < a by choosing v such that 8 < v < a and
fo(X) = fy(X) for a given X € [A,]Y. Then fo(X) = f1(X) <" f3(X), so we see that f,
satisfies all required conditions. This concludes the limit case and the proof. |

2.4 Bqo-preserving operations

Because infinitary operations rarely preserve wqoness (see §2.1) wqo theory alone failed to
provide Nash-Williams with the tools necessary to prove his infinite tree theorem [14|. He
therefore found it necessary to introduce the bgo notion, since (as it turns out) bqoness
is stable under infinitary operations. This section’s purpose is to depict the wealth of qo-
to-qo operations that preserve bqoness. The title ‘Applications of the Minimal Bad Array
Lemma’ would have been just as accurate: every nontrivial result in this section makes
typical use of the Minimal Bad Array Lemma.

Our proof in the next chapter that @)-labelled trees are bqo will rely heavily on results
from this section, but we will need ‘effective’ versions of the results. That is, it won’t
suffice to know simply that ) bqo implies X bqo for some operation X; our result should
provide a suitably well-behaved bad array on Q) given a bad array on XQ.

The following theorem (which, according to [1], was proved first by our own Nash-
Williams) is a consequence of the Galvin—Prikry lemma.

Theorem 2.4.1 (Nash-Williams [15]). Open sets are Ramsey. That is, if A C [w]¥ is
open, then there is B € [A]“ such that either [B]* C Aor [B[*NA = .

Definition. For a qo @, a Q-array f: [A]Y — Q is perfect if f(X) <q f(+X) for every
X € [A]v.

The following Corollary (a version of the Perfect Subarray Lemma 2.4.3) is proved in
several sources using Nash-Williams’ original blocks-and-barriers definition; our proof is
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adapted from the standard one to use Simpson’s definition.

Corollary 2.4.2. Suppose f: [A]Y — @ is a Q-array. There exists B € [A]¥ such that
f [[ B~ 18 either bad or perfect.

Proof. Let C = {X € [A]¥: f(X) <qg f(+X)}. We need to show that C' is open to apply
Theorem 2.4.1. Recall the sat function from the proof of Proposition 2.3.2: sat(X) is
the shortest proper initial segment of X such that f is constant on [sat(X), A]. Suppose
X € C and let Y be any end-extension in A of sat X Usat,X. Then f(X) = f(Y)
and f(,X) = f(.Y), so Y € C. That is, the neighbourhood [sat X U sat X, A] of X is
contained in C. Therefore C' is open. Since open sets are Ramsey, there is B € [A]¥ such
that [B]* C C or [B]* N C = @. This is exactly the statement that f[p). is either bad or
perfect. |

In particular, we have:

Corollary 2.4.3 (Perfect Subarray Lemma). If f: [A]* — @ is a Q-array and @ is bqo,
then there is a B € [A]* such that f[p is perfect.

(Compare wqo theory, where Ramsey’s theorem guarantees that every @Q-sequence on
a wqo @ has a perfect subsequence.)

The first operation we will prove preserves bqoness is the binary union operation. Our
proof is simply the Simpsonian version of the standard combinatorial proof, which can be
found in many sources (e.g., Nash-Williams’ original paper [14]).

Proposition 2.4.4. If Q = @1 U Q2 and both @)1 and Q)2 are bqo, then so is Q.

Proof. Suppose f: [A]Y — @ is bad. We may assume @ is nonempty, so either f_1Q; or
f-1Q2 is nonempty, and each is open. Wlog f_1(Q)1 is nonempty. By Open Ramsey 2.4.1
there is an infinite B C A such that either [B]Y C f_1Q; or [B]Y N f_1Q1 = @. In the
second case, we just have [B]* C f_1Q2, so f[[B]w is either a bad @)1- or Qs-array. This is
a contradiction, so no such f exists. |

The assertion that @), Q" bgo implies @ x Q' bqo is an easy consequence of Proposi-
tion 2.4.5. Recall that we order the product Q x @’ of two qos Q and Q" by the product
ordering: (a,a’) < (b,0) iff a <g band a’ <o V'

Proposition 2.4.5. Suppose Q' is bqo and f = (f1, f2) is a bad @ x Q'-array with domain
[A]“. Then there is a B € [A]” and a bad Q-array g: [B]* — @ such that g = fi[[p..

Proof. By Corollary 2.4.2, there is B € [A]* such that fa[p). is perfect. Set g = fi[(pe.
Since f[pe is bad, it must be that f1(X) £¢q fi(+X) for every X € [B]*. That is, g is
bad. |

The next theorem is the main theorem of Nash-Williams’ 1968 paper [16]. Though
Nash-Williams’ original proof is fairly involved, Simpson’s topological approach and the
Minimal Bad Array Lemma 2.3.3 take care of many of the technical complications, leaving
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us to prove the result with little difficulty. The proof we present here is nearly identical to
the proof Simpson provides (9.19 of [18]). A reader looking for a less lucid proof should
see [5], Lemma 4.

Write Seq@ (Simpson writes @) for the class of sequences @ — @, « an ordinal.
Recall from Chapter 1 that we quasi-order Seq @ as follows: if s:a — Q and t: § — @
are sequences, say s < t iff there is a strictly increasing function ¢: @ — [ such that
s(n) <g t(o(n)) for every n € a. As usual we write lh(s) for dom(s), the length of s, and
we write s <t to mean s is an initial segment of t.

Lemma 2.4.6. If s,t € Seq @ satisfy s € ¢, then there is a 8 < lh(s) such that sy < ¢
and s[g,q £ 1.

Proof. Inductively define h as follows:
h(€) := the least n < lh(t) such that s(£) < t(n) and n > h(¢’) for every & < €.

Let 6 be the least ¢ such that h(§) is undefined. Then ¢ o h witnesses that sy < ¢, but
slor1 £ 1. n

Theorem 2.4.7 (Nash-Williams [16]). Suppose g: [A]¥ — Seq@ is a bad Seq Q-array.
There is a set B € [A]* and a bad f: [B]* — @ such that f(X) is a term of the sequence
g(X) for every X € [B].

Proof. Define an ordering <’ on Seq  as follows: for s: a« — Q and t: f — Q, say s <’ tiff
a < fand s =t[, (i.e., sis an initial segment of ¢). It is easy to see that <’ is well-founded
and a partial order, so Seq @ is ranked by <’. By the Minimal Bad Array Lemma 2.3.3 we
may assume that the bad Seq Q-array g is minimal bad (wrt <’).

For every X € [A]* we have g(X) £ ¢g(+X). Thus Lemma 2.4.6 gives for every X a
6(X) such that

9(X)Mgxy < 9(:+X) and g(X)[gxy41 £ 9(:X).

Note that the following inequality of Seq Q-arrays holds:

(X = g(X)lox)) <" g-

(Indeed, certainly g(X)[gx) <" g(X) for every X € [A]“. And g is bad, so we cannot have
9(X) <" g(X)lgx) < g(+X). Hence g(X)[gx) <" g(X).) Because g is minimal bad, (X +
9(X)lg(x)) cannot be a bad SeqQ-array; so it has a perfect subarray (Corollary 2.4.2).
That is, there is a B € [A]” such that g(X)[gx) < 9(+X)lg( x) for every X € [B]”.
Consequently,

9(X)Toxy < 9(«X)To(. x) but g(X) Tox)+1 £ 9GX) o x)+1- ()

Writing f for the Q-array that maps X € [B]¥ to g(X)[0(X)], the (X)th term of the
sequence g(X), we conclude from (x) that f is a bad Q-array. Certainly f(X) is a term of
the sequence g(X), so the proof is complete. |
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It is immediate from Theorem 2.4.7 that ) bqo — Seq@ bqo. Another important
corollary to the theorem is the fact that @ bqo — £Q bqo, ordered either by <; or by
<. We will need effective versions of these corollaries in our proof that ()-labelled trees
are bqo.

The following corollary is essentially Lemma 28 of Nash-Williams’ paper [14], and it
also appears as Corollary 5 in Kiihn’s paper [5]. (Note Q) quasi-ordered by <; is denoted
by &7(Q) (ugh) in [14] and by .##(Q) in [5].)

Corollary 2.4.8. If f: [A]Y — ZQ is a bad (£Q, <1)-array, then there is a B € [A]¥
and a bad Q-array g: [B]* — @ such that g(X) € f(X) for every X € B.

Proof. Let E assign to each A € 2@ a sequence enumerating A. If f is a bad (£Q, <1)-
array, then Fo f is a bad Seq Q-array (since A £; B — EA £geqq EB). By Theorem 2.4.7
there is a B € [A]* and a bad Q-array ¢: [B]* — @ such that for every X € [B]“ the
element g(X) is a term of the sequence E o f(X). But ‘g(X) is a term of F o f(X)’ just
means g(X) € f(X). [ |

The following corollary is a trivial consequence of Corollary 2.4.8, but we state it
explicitly since we will need it in our proof that ()-labelled trees are bqo.

Corollary 2.4.9. If f: [A]Y — 2Q is a bad (£Q, <,,)-array, then there is a B € [A]¥
and a bad Q-array g: [B]* — @ such that g(X) € f(X) for every X € B.

The following result is not necessary for our proofs in Chapter 3, but any list of appli-
cations of the Minimal Bad Array Lemma would be incomplete without it.

We have shown (2.4.8) that Q) (under <; or <,;,) is bqo, but what if we iterate 22?7
Define 22%Q inductively as follows: 2°Q = Q, 2°t1Q = 2°Q, and 2°Q = Ua<ps 2°Q
for B a limit. Write 222Q for the class Uacorn 2% Q, which we quasi-order as follows. We
may assume for simplicity Q N 2°HQ = @ for all . For z € 2°Q and y € 2PQ, we
define inductively a quasi-order <,, on Z%Q:

(i) f a =4 =0, then x <, y iff z <g y;
(ii) if @« =0 and 8 > 0, then x <,,, y iff © <,,, 2z for some z € y;

(iii) if @« > 0 and 8 > 0, then x <,,, y iff there is h: x — y such that w <,,, h(w) for every
w € T.

We obtain an order <; on 2Q using the same definition, except we require that the
function h in (iii) be injective.

The following proof is essentially Milner’s [12], though I have modified it to use Simp-
son’s approach to bqos. For a proof that 222Q ordered by <; is bqo, see 1.11 of Laver [§].

Theorem 2.4.10. If Q is bqo, then (£9Q, <,,) is bqo.

Proof. For x € 2%Q write p(x) for the least o such that € 2%Q. Define a partial order
on Z9Q by declaring x <’ y iff p(x) < p(y). It is clear that <’ is a partial ranking of
29Q.
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Suppose f: [A]Y — 29Q is bad. By the Minimal Bad Array Lemma 2.3.3 we may
assume f is minimal bad. Recalling that @ is given the discrete topology and that f is
continuous, we observe that, by Open Ramsey 2.4.1, there is B € [A]“ such that either
[B]* C f_1Q or [B]* N f_1Q = @. We cannot have B C f_1Q); else flip~ would be a
bad Q-array. Therefore f maps every member of [B]“ into {:L‘ e 79Q : p(x) > 0}. Fix
X € [B]¥. Since f is bad, f(X) £ f(,X). This and the fact that p(f(X)) > 0 give a

g(X) € f(X) such that g(X) £, y for every y € f(,X).

Because the value of f at every end-extension of sat(X) is just f(X), we can pick g(X) to
depend only on sat(X) so that g is a continuous map [B]* — 29Q. Notice g(X) <’ f(X)
and that g(X) £ g(+X) since g(+X) € f(+X). That is, g is a bad 2?Q-array and g <* f.
This contradicts the minimal badness of f, so our assumption that a bad f exists is false. W

To conclude the chapter we provide a(n incomplete) list of operations that preserve
bqo.

Theorem 2.4.11. Let (Q, <) be bqo.
(i) If Ris qo and f:  — R is an order-preserving map, then f”@ is bqo.
(i) If @' C @, then Q' is bqo.

(iii) If <" is a quasi-order on @ containing <, then (@, <’) is bqo.
(v) f @ C R and R~ @ is bqo, then R is bqo.

(vi) Seq@ is bqo;

)
)
)

(iv) If Q" is bqo, then @ x @' is bqo.
)
)

(vil) ZQ, ordered by <,, or by <y, is bqo;
)

(viii) 229Q is bqo.
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Chapter 3

@ bgo — Tg bqo

3.1 Laver’s proof of Fraissé’s conjecture

Though this essay presents in full only one piece of Laver’s proof of Fraissé’s conjecture,
this section aims to outline briefly the rest of Laver’s proof. Recall from the introduction
that Fralssé’s conjecture is the assertion that

Scattered linear ordertypes are wqo under embeddability. (Fraissé)

Laver [6] settles this conjecture by proving a vast generalisation of it: ‘If @ is bqo, then
the class of Q-labelled o-scattered ordertypes is bqo under embeddability’. As a corollary
of this theorem, Laver observes that the o-scattered (hence the scattered) ordertypes are
bqo by taking @ to be the one-point bqo in the theorem. Before proceeding, we will define
the terms in Laver’s theorem.

Definition. The ordertype of a linear order L is o-scattered iff L can be expressed as
the countable union of scattered orders. The class of o-scattered ordertypes is . .

For @ a qo, a Q-labelled linear order (L,1) is a linear order L together with a labelling
function I: L — ). Quasi-order the class of Q)-labelled linear orders in the following way:

(L1,11) < (La,lo) iff there is a strictly increasing function f: L; — Lo such
that {1(z) <g lo(f(z)) for every x € L;.

Say Q-labelled linear orders (L1,l1) and (Lg,l3) are Q-isomorphic iff there is an order-
isomorphism f: Ly — Ly such that 1 (z) = lo(f(x)) for every x € L;. The Q-type tp(L,1)
of a @-labelled linear order is its Q-isomorphism-type. For a class € of linear ordertypes,
write Q¢ for the class of Q-types tp(L,1) such that tp L € €.

Now we can state Laver’s theorem properly:
Theorem 3.1.1 (Theorem 4.8 of [6]). If Q is bqo, then Q“ is bqo.

Though technically complicated, Laver’s proof avoids fiddly block-and-barrier compu-
tations. Remarkably, it relies entirely on bqo-preservation results, without ever mentioning
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Nash-Williams’ combinatorial definition of bgo. This might be seen as evidence that bqo
is a robust notion. (It might also suggest that the bgo notion could be characterised
category-theoretically by some universal property.)

Next we describe Laver’s strategy for proving 3.1.1. The chief task is to build a class
H(Q) of hereditarily reqular unbounded Q-types with the following properties:

(i) 2(Q) € Q”;
(i) @ bao = A#(Q) bao:
(iii) every member of @ can be expressed as a finite sum of members of J2(Q).

From the existence of such an .7(Q) the theorem follows:
Q bgo — H(Q) bqo — <“#(Q) bqo — Q" bqo.

The remaining difficulty —and the point where Laver relies on the generalisation of Nash-
Williams’ theorem — is to establish (ii), that #(Q) is bqo if @ is. Laver overcomes this
difficulty by defining a suitable extension Q* of @ such that Q bqo — Q% bqo, and S (Q)
is a homomorphic image of T+ (the class of QT-labelled trees). Then an appeal to the
fact that (Q-labelled trees are bqo completes the proof.

We conclude by remarking that — as Laver explains on page 41 of [8] — Theorem 3.1.1
can be obtained by appealing to the Minimal Bad Array Lemma rather than the fact that
QQ-labelled trees are bqo. Thus his theorem provides yet another example of an operation
that can be proved bqo-preserving using the Minimal Bad Array Lemma.

3.2 (-labelled trees are bqo

Fix a bqo () for the remainder of this chapter.
In this section we, as promised, will prove that 7g, the class of @-labelled trees, is bqo.
The trees of interest to us will be rooted trees of height w.

Definition. A tree is a partially ordered set (T, <7) such that {y € T': y <p z} is well-
ordered (by <r) for every node x € T. A rooted tree of height w is a tree such that

(i) T has a unique root, a node z such that x <p y for every y € T'; and

(ii) for every node y € T', the ordertype of (the wellordered chain) {z € T : z <7 y} is at
most w.

Let T denote the class of rooted trees of height w.

Some familiar terminology and notation will help us discuss trees more easily. For us,
the term successor will always mean immediate successor; that is, in a tree, a node y is a
successor of a node z iff y > x and no z satisfies y > z > x. Write S(z) for the set of
successors of z (the tree of which x is a node should be understood).
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The class 7T is quasi-ordered in the following way: for 171,75 € T,
Ty, < T, iff there is an injection f: T — T3 such that Vz,y € T f(z Ay) = f(z) A f(y).

We call such an f an embedding of T into T5. (Of course, x Ay denotes the greatest lower
bound of x and y.) The condition f(x Ay) = f(x) A f(y) is more memorably expressed as

‘f sends distinct successors of x € T above distinct successors of f(x) € Ty .

More precisely, if y and z are distinct members of S(z) in 77, then there are distinct w and
v in S(f(x)) such that f(y) >p, w and f(z) >7, v.

The branch br(z) at z is the set {y € T : y >1 x} of nodes above z. A branch br(x)
of T is strict iff T £ br(z); a branch br(z) is regular if 7' = br(x).

The main theorem of Nash-Williams’ paper [14] is that 7 under our notion of embed-
ding is bqo. To provide our piece of Laver’s proof we need to generalise this theorem to
the class of members of T ‘decorated’! by elements of a bgo Q.

Definition. For a qo @ (especially a bqo), a Q-labelled tree is a tree T € T equipped
with a labelling (or colouring) function {: 7" — @ of its nodes by members of ). We will
often use an ordered pair (7,1) to denote the tree T' € T with labelling function I: T — Q.
Write T for the class of Q-labelled trees.

Of course, we quasi-order Tg by using embeddings that ‘respect the Q-labelling’: for
(T1,11), (T2, 12) € Tq,

(T1,01) < (Ty,lp) iff Ty <7 T3 by a function f such that l;(z) <¢g l2(f(z)) for all z € T7.

There are three major ideas in Nash-Williams’ proof that 7 is bgo. The first is to
reduce the problem to proving that the class of so-called ‘descensionally finite’ trees is bqo.
To accomplish this, Nash-Williams proves that the set of descensionally finite branches of
any descensionally infinite tree must fail to be bqo. (Our Q-labelled version of this result
is Proposition 3.2.1.) This proof provides a prototype of the ‘approximation technique’
later used to exploit the Minimal Bad Array Lemma.

The second idea is to use the minimal bad array technique (here we will appeal explicitly
to the Minimal Bad Array Lemma 2.3.3) to obtain a contradiction under the assumption
that there is a bad T-array.

But how is a contradiction reached? This is the third idea. To prove that every bad
T-array is >* another bad T-array, we rely on the infinitary operations that preserve
bqgoness. (And this is where the effective versions of results in §2.4 earn their keep.) We
approximate each tree T' by O(7T), an element of a suitable extension of 7, and then use
the effective results from §2.4 to reduce a bad array on the ©(7")s to a bad T-array <* our
given bad array. The Minimal Bad Array Lemma then provides the contradiction.

Our proof that @Q-labelled trees are bqo will follow this general plan. Our first task is to
reduce the problem to showing that Fq, the class of descensionally finite ()-labelled trees,

'TF’s term.
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is bqo. The proof of Proposition 3.2.1 (Lemma 32’ in §2 of [6]) should give the reader a
taste of how to approximate a (Q-labelled) tree in a way that allows us to appeal to the
stability of bqoness under operations like &2. The ® ‘approximation’ is similar in spirit to
the © operation we will use to prove that every Tg-array is >* some other 7g-array.

Definition. Let (7,1) be a Q-labelled tree. If there is a sequence z1 < x9 < --- of nodes
of T such that br(zy) > br(xy) > ---, then we say (T,1) is descensionally infinite.
Otherwise (7,1) is descensionally finite. Write F¢ for the class of descensionally finite
Q-labelled trees. Let F(T,1) denote the set of descensionally finite branches of (T',1).

Of course, we want all -labelled trees to be descensionally finite, and we will eventually
prove this.

Proposition 3.2.1. Let (7,¢) € Tg. If F(T',¢) is bqo, then (T',¢) is descensionally finite.
That is, F(7T',¢) bqo — (T,¢) € Fg.

We will need to introduce some auxiliary functions to describe (7,1). For nodes x of
T, define

dfba(x) := {br(y) : y € S(z) and br(y) descensionally finite} ;
diso(z) := {y € S(x) : br(y)

Apyy(w) := (dfba(z), |diso(z)| (x)).2

descensionally infinite} .

(NB. dfba(x) is a set of branches of (T, 1), whereas diso(z) is a set of nodes of T'.) Finally,

Oy (2) = {Aap(y) 2 <7y}

Thus @7y () is a member of the class (P Fg X CARD x @), which we quasi-order in the
following way: £ Fq is quasi-ordered by the ordering <; inherited from the quasi-order
on Fg; PFg x CARD X @ is given the usual product ordering; and Z(ZFg x CARD X Q)
is given the <, ordering it inherits from the ordering on &Fg x CARD X Q.

Proof of 3.2.1. Since it shouldn’t cause any ambiguity, we will abbreviate A7) by A and
@7y by @ in this proof.

By assumption F(7,1) is bqo, so Z(Z(F(T,1)) x CARD X Q) is bqo, hence wqo. Suppose
(T,1) ¢ Fo and choose a node = € T such that br(z) ¢ Fg. We will obtain a contradiction
by exhibiting a strictly decreasing sequence in the wqo Z(Z(F(T,1)) x CARD X Q).

Claim 1. There is a sequence x <7 x1 <7 2 <7 --- of nodes such that
O(z) > P(z1) > P(z2) > - .

Proof of Claim 1. Suppose for a contradiction that there is no xy >p x such that

2dfba(z) —the set of descensionally finite branches above x—is Laver’s L(z), and diso(x), the set of
descensionally infinite successors of z, is Laver’s M(x).
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br(z) ¢ Fg and ®(x) > ®(z1). Thus every z > x satisfies ®(z) < ®(x). In particular,
(Vu >7 z) br(u) ¢ Fo — ®(z) = ®(u). (%)

Because br(z) ¢ Fq, there is a node y > « such that br(y) ¢ Fg and br(y) < br(z).
(Take, e.g., y to be the second node in any sequence witnessing that br(z) is descensionally
infinite.) Apply (%) to this y to see that ®(z) = ®(y).

Claim 2. There is an embedding f: br(z) < br(y); that is, br(z) < br(y).

Proof of Claim 2. We will construct f iteratively. Since ®(x) <,, ®(y) in P (P Fg x
CARD X @), we can pick a z >p y such that A(z) < A(z). Put f(x) = z. The fact
that A(z) < A(z) gives [(x) <@ l(z) = I(f(x)). Use the fact that dfba(z) <; dfba(z) in
P Fq to extend f to embed the members of dfba(x) into distinct members of dfba(z). For
a2’ € diso(x) and y' € diso(y) we have ®(a’) = ®(y') by (%), so there is a 2’ >p ' such
that A(z") < A(2’). Repeat the process for (2/,2') as for (z, z). This process produces an
embedding f: br(z) < br(y). Bolim 2

Claim 2 gives a contradiction, since y was chosen so that br(y) < br(z). We are forced
to conclude that our assumption at the beginning of the Claim 1 was false, so we obtain
x1 >  such that br(z) ¢ Fg and ®(x) > ®(x1). Continuing in this way gives a sequence
as required in Claim 1. BoLim 1

This completes the proof of the proposition. |

For completeness we record here that we have reduced the problem of showing 7¢ is
bgo to showing F¢ is bqo.

Corollary 3.2.2. If Fq is bqo, then Fg = Tg, so Tg is bqo.

Proof. Suppose Fg is bqo and let (T',1) € Tq. Certainly F(T,1) C Fg, so F(T,1) is bqo.
By Proposition 3.2.1 (T,1) € Fg, so Tg = Fq. [ |

To prove that Fg is bqgo, Laver (|6, §2) suggests that we follow Nash-Williams and
reduce the problem to showing that every closed, well-branched subset of Fg is bgo. We
have managed to avoid this additional reduction because our effective version of ‘Q) bqo —
(ZQ,<1) bqo’ (2.4.8) is better suited to the problem than Nash-Williams’ Lemma 28 of
[14]. Nash-Williams suggests this alternative approach in a Note on page 710 of [14], and
Kiihn employs it in [5] to provide a less cluttered version of Nash-Williams’ proof.

Our next task is to produce from a purportedly bad Fp-array f another bad Fp-array
g such that g <* f (for Nash-Williams, f strictly foreruns g). Following Laver ([6], §2) and
imitating our approach in the proof of Propisition 3.2.1, we first lift f to a bad ©” Fy-array
for a suitable bqo-preserving operation ©. Then we will use the effective results from §2.4
to reduce this lifted version of f to the required g.

The following result is Lemma 29’ of [6], §2; it is the Q-labelled version of Nash-
Williams’ Lemma 29 ([14]) or Lemma 6 of [5].

As we did for Proposition 3.2.1, we will need several auxiliary functions. Fix (T,1) € Tg.
Recall that a branch br(x) of (T,1) is said to be strict iff br(z) < (T',1); that is, (7', 1) does
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not embed into br(x). For a node x € T', define:

sba(z) := {br(y) : y € S(z) and br(y) < (T,1)}
rs(z) := {y € S(z) : br(y) = (T, 1)}
L(ry)(z) := (sba(x), [rs(z)] , () ®

an

~—_ ~—

As in Proposition 3.2.1, #7Tg —of which each sba(z) is a member —is given the <
ordering. Finally, put
O(T,1) := {T(py(x) :z € T}.

Each ©(T,1) is a member of the class Z(Z7Tg x CARD X (), which we give the <,,, ordering.
(The use of <; for 7 and <,,, for Z(FTg x CARD x Q) will be important in the proof
of Proposition 3.2.4.)

Proposition 3.2.3. If O(T1,11) <, O(13,1l2) in P(PTg x CARD x @), then (T1,1;) <
(T»,12). That is, ©: Tg — Z(PTg x CARD x Q) preserves the relation £.

Proof. It will be convenient for I'y to abbreviate I'(1, ;,) and I's to abbreviate I'(p, 1,).

Suppose O(T1,11) <, O(Ts,l2). We inductively construct an embedding (77,1;) <
(Ts,13). Suppose that for v <7, v in T} the value f(u) has been defined and that a
partition Aj(u) U As(u) of rs(f(u)) has been chosen such that

(i) sba(u) <y sba(f(u))U{br(z):z € Ai(u)}, and
(if) frs(u)] < |Az(u)].

We will show how to define f on S(v). (It’s essential here that 7" be a tree of height < w+1.)
Use functions witnessing (i) to extend f so that f embeds distinct members of sba(v) into
distinct members of sba(f(v)) U {br(z):x € A;(v)}. Now we need to define f on rs(v).
Of course, f must send each member of rs(v) to a node of some br(z), some z € As(v) C
rs(f(v)). If y and 3/ are distinct members of rs(v), and f(y) € br(z) and f(y') € br(z’) for
z,z € As(v), then z and 2’ must be distinct. Since by (ii) |rs(v)| < |A2(v)], it will suffice
to show that a suitable f(y) € br(z) can be chosen for any given z € As(v). Then f(y)
can be defined by choosing z = i(y) for any injection i: rs(v) < Aa(v).

Claim. For any y € rs(v) and z € Ay(v), we can choose f(y) € br(z) that satisfies the
inductive hypothesis and a partition A;(y) U A2(y) of rs(f(y)) satisfying (i) & (ii).

Proof of Claim. Because z € Az(v) C rs(f(v)), there is an embedding j: (T2,l2) <
br(z). And O(T1,11) < O(T5,12), so there is, in particular, a node w € Ty such that
[1(y) < Fa(w). (*)

3sba(z) — the set of strict branches above x —is Laver’s J(z); rs(x) — the set of reqular successors of x—is
Laver’s K(x).
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Put f(y) = j(w), an element of br(z). By () and the fact that j is an embedding of
Q-trees, we have

h(y) <q la(w) <q L(j(w)) = (f(y))-

That is, f preserves the Q-labelling at y.
The difficulty now is that A;(y) must be sufficiently large so that (i) holds, and As(y)
must be large enough for (ii) to hold. To help balance A;(y) and As(y), we define

V= {w’ € S(w) : br(w') € sba(w) and j(w') € br(x) for some x € rs(j(w))}.

(V' is the set of ‘strict’ successors of w that j sends above ‘regular’ successors of j(w).)
Now set

A1(y) ={x € S(f(y)) : o <p, j(t) for some t € V'}; Aa(y) :==r1s(f(y)) ~ A1(y).

First we show (i), that sba(y) < sba(f(y)) U {br(z):z € A1(y)}. Recall (%), which
implies that sba(y) <j sba(w). Use an injection witnessing that sba(y) <; sba(w) to map
branches br(a) € sba(y) to branches in sba(w). Then apply j to get distinct (since j is an
embedding) branches of the tree br(f(y)). Because j is an embedding, distinct branches
obtained in this way sit above distinct successors b of f(y). This argument shows that
the map sending a branch br(a) € sba(y) to br(b) € S(f(y)) is injective. We defined V' to
arrange that the resulting br(b) belongs either to sba(f(y)) or to {br(x):x € Ai(y)}, so
this establishes (i).

Now we want to prove (ii), that |rs(y)| < |A2(y)|. The embedding j sends distinct
members of rs(w) above distinct members of rs(j(w)) = rs(f(y)). (Note that an embedding
(T,1) < (T, 1) must send ‘regular’ nodes — z such that br(x) is regular — to regular nodes,
though a node x with br(x) strict may be sent to a regular node.) That is, there is an
injection rs(w) < rs(f(y)) whose image is contained in As(y) by the definitions of A; and

V. Therefore |rs(y)| < |rs(w)| < [A2(y)|. BClaim
This completes the proof of the proposition, as we have constructed inductively an
embedding (Tl, ll) — (TQ, 12) [ ]

The main complication in proving Proposition 3.2.3 is the asymmetry between ‘regular’
nodes and ‘strict’ nodes. As noted in the proof’s penultimate paragraph, an embedding
must send regular nodes to regular nodes, though it needn’t send strict nodes to strict
nodes. Thus it’s important to keep track of the partition Ay U Ay during the construction,
because this ensures that we have above f(v) enough regular nodes to map the regular
successors of v into.

Proposition 3.2.3 shows that we can transform a bad Fg-array f into a bad Z2(2Fg x
CARD X @)-array; now our effective results from §2.4 will allow us to whittle this new array
down to a bad Fg-array that is <* f. Our partial ranking <’ on F¢ will be the relation
‘is a strict branch of’, which is well-founded by the definition of descensionally finite.

The following result is essentially a Q-labelled version of Lemma 7 in [5]. Our approach
is similar in flavour to Laver’s discussion on page 91 of [6], though we provide a slightly
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cleaner argument by using Simpson’s topological approach rather than Nash-Williams’
original combinatorial definition of bqo. (Laver’s paper [6] predates Simpson’s paper [18].)

Proposition 3.2.4. If f: [A]* — @ is a bad Fg-array, then there is a bad Fg-array g
such that g <* f (wrt </, the relation ‘is a strict branch of”).

Proof. By Proposition 3.2.3 the composite © o f is a bad Z(FFg X CARD x )-array,
also with domain [A]“. By Corollary 2.4.9 (our effective version of ‘Q bqo — (2Q, <)
bqo’) there is a bad (P Fg X CARD x Q)-array fi with domain [A;]* C [A]* such that

f1(X) € O(f(X)) for every X € [A1]~.

Since a product of bqos is bqo (Proposition 2.4.5), CARD X Q) is bqo. Apply Proposition 2.4.5
(our effective version of ‘binary product of bgos is bqo’) to fi to obtain a bad (ZFg, <1)-
array fs such that dom fo = [A3]¥ C [A;]* and

f2(X) is the first coordinate of f;(X) for every X € [Ag]“.

Now apply Corollary 2.4.8 (our effective version of ‘Q bqo — (£Q,<1) bqo’) to f2 to
obtain a bad Fg-array g such that dom g = [B]¥ C [A2]* and

9(X) € fa(X) for every X € [B]“.

For every X € [B]¥ we have g(X) € f2(X), and fo(X) is the first coordinate of a member
of ©(f(X)). Unraveling this and the definition of O, we see that g(X) is a strict branch
of f(X) for every X € [B]¥. So g <* f. [ |

That was the final ingredient in our proof that 7¢ is bqo.
Theorem 3.2.5. 7 is bqo.

Proof. Suppose f is a bad Fp-array. By the Minimal Bad Array Lemma 2.3.3, we may
assume f is minimal bad. By Proposition 3.2.4, this is impossible. Therefore F¢ is bqo.
By Corollary 3.2.2, Fg = T, so Tg is bqo. |

Conclusion

By offering an ample supply of bqo-preserving operations, this essay has hopefully provided
its reader with an appreciation for the efficacy both of the Minimal Bad Array Lemma
and of Simpson’s approach to bqo theory. The interested reader will find several other
examples of theorems —some very hard —like those we have presented here. One recent
example introduces an exciting connection between bqo theory and forcing axioms: in [10]
Carlos Martinez-Ranero proves that, under the Proper Forcing Axiom (PFA) the class of
Aronszajn lines is bqo.

To date the most imposing result in wqo theory is the Robertson—-Seymour Theorem,
that the class of graphs under the graph minor relation is wqo. The frightening length of
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Robertson & Seymour’s proof makes one wonder whether there is a more digestible proof
of a result like @ bqo — %5 bqo, where ¥ is the class of ‘Q-labelled’ graphs under a
suitable ()-minor relation.

One avenue of research that bqo theorists have not yet pursued (as far as I know) is a
pleasing characterisation of the operations that preserve bqoness. Such a characterisation
would add another layer of richness to an already-beautiful theory.
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