Prof Pitts’ 1B CS Computation theory notes: A
Discussion of Exercise 10 part (c)

Thomas Forster

April 23, 2020

Two of my supervisees were asking me about the last part of Q 10 on [I]. I think
it may be worth setting down in writing the off-the-cuff answer i gave them, and
amplifying it.

The question is: show that all the slices of the Ackermann function are primitive
recursive. You prove by induction on n that the nth slice is primitive recursive. That
is to say, you show how to obtain a primitive recursive declaration for the n+ 1th slice
from a primitive recursive declaration for the nth slice. I might write out a proof of
this later if there is a call for it. It’s fiddly, but there is no great mystery to it.

The next part is: why does this show that the Ackermann function is total recur-
sive? The answer to this is quite subtle. How do I compute, say, ack(15,17)? Well, I
reach for the code for the 15th slice and I run it on input 17. Since the 15th slice is
primitive recursive it is total (remember that we proved by induction on the recursive
datatype of primitive recursive functions that they are all total) so when we run the
code for the 15th slice on the input 17 we can be confident of getting an answer.

This prompts the question (which was what I took my supervisee to be asking)
Why does this not prove that the Ackermann function is primitive recursive?’—and i
shall answer that later. However it later occurred to me that what she was not happy
about was the expression ‘total recursive’. Here ‘recursive’—as so often—just means
‘computable’. It is also recursive in a more natural sense in that it has a declaration
which uses recursion, but is not primitive recursive in that it recurses on two variable
places simultaneously.

What Prof. Pitts wanted you to say was that, on the basis that all the slices are
primitive recursive, one can conclude that one can reliably compute Ackermann on all
inputs.

What i took her question to be was: “Why does this not prove that the Ackermann
function is primitive recursive?” Good question.

The first point to make is that the recursive datatype of primitive recursive func-
tions is closed under if ...then ...else ... in the sense that if f and g are primitive
recursive functions and p is a predicate whose characteristic function is primitive re-
cursive then

if p then f else g

is primitive recursive too. (I don’t know if it is proved in the lectures—there isn’t
time to prove everything! You might like to try it as an exercise ...it’s a standard
fact)



Indeed we can clearly stitch together any fixed finite number of primitive recursive
functions in this way.

Contrast this with what we are doing when we try to compute Ackermann of z
and y. We call up the code for the xth slice of Ackermann, and feed y to it. But there
are infinitely many slices! And we can’t reach them all with finitely many branch
commands like the one above. We have to do something like:

Input xr and y;
compute the code for the xth slice of Ackermann;
run that code on y.

... which calls the function that accepts input ¢ and outputs code for the ith slice
of the Ackermann function. This is a perfectly respectable computable function; it
just doesn’t happen to be primitive recursive. [proving that it isn’t primitive recursive
relies on showing that Ackermann itself is not primitive recursive and we don’t need
to get into why that is so unless you want to.]

This gives us another illustration of the central ambiguity in Computation The-
ory: a number can be both a data object (input to a computable function) and—
simultaneously—a numeric code for a program.

What is being pointed up here is the difference between two ways in which code
for functions g, h, ...might be embedded/encoded/represented inside the code for a
function f:

e In the first case (with the if ...then...else ...) the code for the
embedded functions is hard-coded: code for each of the embedded func-
tions is there as itself as it were. This route is available if the number of
functions to be embedded is finite.

e In the second case (the case of the Ackermann function we are consider-
ing) no code is there as—itself; what we have is code that will output code
for each of the embedded function on demand.

Frege, writing about something closely related to this, has a wonderful image that
may be of help:

“Sie sind in der Tat in den Definitionen enthalten, aber wie die Pflanze
im Samen, nicht wie der Balken im Hause.”

“...they are indeed contained in the definitions, but rather in the way that plants
are contained in seeds, not in the way that timbers are contained in a building.”

References

[1] Prof A.M. Pitts: Lecture notes for CS1B Computation Theory at https://www.
cl.cam.ac.uk/teaching/1920/CompTheory/lectures/lecture-10.pdfl


https://www.cl.cam.ac.uk/teaching/1920/CompTheory/lectures/lecture-10.pdf
https://www.cl.cam.ac.uk/teaching/1920/CompTheory/lectures/lecture-10.pdf

