0.1 Some ML code for unification

This code comes from a dialect of M1 known as HOL. All terms are regarded as
curried: operator applied to operand. Thus HOL would regards f(z,y) as f(z,
applied to y. rev_itlist iteratively applies a list of functions to an arguments
to obtain a values. Thus apply_subst successively applies a list of substitutions
to a term. A substitution is a pair of terms. @ concatenates two lists.

let apply_subst 1 t = rev_itlist (\pair term.subst[pairlterm) 1 t;;

% Find a substitution to unify two terms (lambda-terms not dealt with) %

letrec find_unifying_subst t1 t2
if t1=t2
then []
if is_var t1
then if not(mem t1 (frees t2)) then [t2,tl1l] else fail
if is_var t2
then if not(mem t2 (frees t1)) then [t1,t2] else fail
if is_comb t1 & is_comb t2
then
(let ratl,rndl = dest_comb t1
and rat2,rnd2 dest_comb t2
in
let s = find_unifying_subst ratl rat2
in s@find_unifying_subst(apply_subst s rndl) (apply_subst s rnd2)
Jelse fail;;

This currying corresponds to a determination—when unifying (for example)—
‘fla,b, f(2)) with ‘f(x,y,w)—to detect  — a and then do that to the third
argument of the first occurrence of ‘f’ so that it becomes ‘f(a)’ before we get
there. This finesses questions about simultaneous versus consecutive execution
of substitution.

0.2 Unification: an illustration
In the two axioms.

1. (Vzy)(z >y — Sz > Sy)

2. (Yw)(Sw > 0)

‘S’ is the successor function: S(x) = x + 1. (Remember that IN is the
recursive datatype built up from 0 by means of the successor function.)



Now suppose we want to use PROLOG-style proof with resolution and uni-
fication to find a z such that z > S0. We turn 1 and 2 into clauses getting
{~(z > y),Sx > Sy} and {Sw > 0}, and the (negated) goal clause {—=(z > S0)}.

The idea now is to refute this negated goal clause. Of course we can’t refute
it, beco’s there are indeed some z of which this clause holds, but we might be
able to refute some instances of it, and this is where unification comes in.

z > S0 will unify with Sz > Sy generating the bindings z — Sx and y — 0.
We apply these bindings to the two clauses clauses {—(z > y), Sz > Sy} and
{=(z > S0)}, obtaining {—(z > S0), Sz > S0} and {—~(Sxz > S0)}. These two
resolve to give {—(x > 0)}. Clearly the substitution x — Sw will enable us to
resolve {—(z > 0)} (which has become {—~(Sw > 0)}) with {Sw > 0} to resolve
to give the empty clause. En route we have generated the bindings z — Sz and
x +— Sw, which compose to give z — SSw, which tells us that the successor
of the successor of any number is bigger than the successor of 0 as desired.
Notice that the answer given by this binding (z — SSW) is the most general
possible response to “find me something > S0”. This is because the unification
algorithm finds the most general answer.

The idea is this: We are trying to find a witness to (3z)(A(x)). Assume the
negation of this, and try to refute it. In the course of refuting it we generate
bindings that tell us what the witnesses are.

Higher-order Unification

Unification in first-order logic is well-behaved. For any two complex terms ¢;
and to if there is any unifier at all there is a most general unifier which is
unique up to relettering. This doesn’t hold for higher-order logic where there
are function variables. It’s pretty clear what you have to do if you want to unify
f(3) and 6: you replace f by something like

if x = 3 then 6 else don’t care

(which one might perhaps write (ef)(f(3) = 6)).

However what happens if you are trying to unify f(3) and ¢(6)? You want
to bind ‘f’ to

if x = 3 then g(6) else don’t care (A)
but then you also want to bind ‘g’ to
if x =6 then f(3) else don’t care (B)

and you have a vicious loop of substitutions. There are restricted versions that
work, and there was even a product called Q-PROLOG (‘Q’ for Queensland) that
did something clever. I've long ago forgotten.

I find in my notes various ways of coping with this, one using € terms. One
can have an epsilon term which is is a pair of things satisfying (A) and (B):

(ep)(3h1, h2)(p = (h1, h2) A h1(3) = ha(6))



so that we bind ‘f’ to ‘fst(p)’ and ‘g’ to ‘snd(p)’.

* 20 x For each of the following pairs of terms, give a most general unifier
or explain why none exists.
f(g(x), z) and f(y, h(y))

f(g(x),h(g(x))) is the most general unifier.

J(@,y,2) and j(f(y,y), f(2,2), f(a,a))

i(f(f(f(a,a), f(a,a)), f((a,a), f(a,a))), f(f(a,a), f(a,a)), f(a, a)) is the most
general unification.

(@, z,x) and j(y, f(y), 2)

Any unification requires that = y = 2z and that z = f(y) also. Therefore
the terms cannot be unified without allowing f(f(f(--))).

J(f(x),y,a) and j(y, z, z)

This cannot be unified because it required that y = z = a and also that
y = f(z). This will only work if f(x) = a for all z.

i(g(x),a,y) and j(z,z, f (2, 2))

jlg(a),a, f(g(a),g(a))) is the most general unification.



