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The Rubric

LOGIC AND SET THEORY (D)
24 lectures, Lent term
No specific prerequisites.

Introduction

Ordinals and cardinals

Well-orderings and order-types. Examples of countable ordinals. Uncount-
able ordinals and Hartogs’ lemma. Induction and recursion for ordinals. Ordinal
arithmetic. Cardinals; the hierarchy of alephs. Cardinal arithmetic. [5]

Posets and Zorn’s lemma.

Partially ordered sets; Hasse diagrams, chains, maximal elements. Lattices
and Boolean algebras. Complete and chain-complete posets; fixed-point theo-
rems. The axiom of choice and Zorn’s lemma. Applications of Zorn’s lemma in
mathematics. The well-ordering principle. [5]

Propositional logic

The propositional calculus. Semantic and syntactic entailment. The deduc-
tion and completeness theorems. Applications: compactness and decidability.[3]

Predicate logic

The predicate calculus with equality. Examples of first-order languages and
theories. Statement of the completeness theorem; *sketch of proof*. The com-
pactness theorem and the Löwenheim-Skolem theorems. Limitations of first-
order logic. Model Theory. [5]

Set theory

Consistency

Problems of consistency and independence. [1]

Appropriate books

J.L Bell and A Slomson. Models and Ultraproducts North Holland 1969
recently reissued by Dover

B.A. Davey and H.A. Priestley Lattices and Order. Cambridge University
Press 2002

T. Forster Logic, Induction and Sets. Cambridge University Press
A. Hájnal and P. Hamburger Set Theory. LMS Student Texts number 48,

CUP 1999
A.G. Hamilton Logic for Mathematicians. Cambridge University Press 1988
P.T. Johnstone Notes on Logic and Set Theory. Cambridge University Press

1987
D. van Dalen Logic and Structure. Springer-Verlag 1994
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1 Lecture 1: First of Five Lectures on Ordinals
and Cardinals

[Lecture 1: First of Five Lectures on Ordinals and Cardinals, preceded by some
introductory patter]

(The rubric says): Well-orderings and order-types. Examples of
countable ordinals. Uncountable ordinals and Hartogs’ lemma. In-
duction and recursion for ordinals. Ordinal arithmetic. Cardinals;
the hierarchy of alephs. Cardinal arithmetic.

(Some of the arithmetic of ordinals and cardinals cannot really be done
properly until we have some set theory under our belt. OTOH it’s good to at
least introduce the students to these ideas early on in the piece. The resulting
exposition is inevitably slightly disjointed.)

Warning! If you are reading this and your name isn’t ‘Thomas Forster’ then
you are eavesdropping; these notes are my messages to myself and are made
available to you only on the off-chance that such availability might help you in
preparing your own notes for this course. This warning doesn’t mean that you
shouldn’t be reading this document, but you should bear it in mind anyway
because i do not write out here in detail things i can do off the top of my head.
The things that I write out are things that i might, in the heat of the moment,
get wrong, or do in the wrong order—or forget altogether.

However it is my settled intention that by fairly early in the Lent Term these
notes will be in a state fit for students to use them to revise from..

1.1 Ordinals

Cantor’s discovery of a new kind of number. 1IR 6= 1IN etc etc. 1IR is a multi-
plicative unit whereas 1IN is the quantum of multiplicity (“how many?”). Brief
chat about datatypes.

“How many times do i have to tell you to tidy up your room?” the answer
will be an ordinal (possibly finite).

Cantor’s discussion of closed sets of reals.
Ordinals measure the length of discrete deterministic monotone pro-

cesses. (synchronous/asynchronous doesn’t matter)
Well, we mean something slightly more than discrete . . . the set of stages has

a total order, and it’s always the case that the set of unreached stages has a
first element. Monotonicity ensures that it’s always clear what the situation is
that you are in, and determinism-and-discreteness means that there is always
an immediately-next thing to do and that you know what it is.

ω, ω + n, ω + ω, ω · n, ω · ω ωn.

Ordinals are also the order types of special kinds of total orders. ω is the
order-type of 〈IN, <IN〉. (I write structures as tuples, carrier set followed by
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operations). Pick 0 off the front and put it on the end, get a bigger ordinal—
but the underlying set is the same size. In fact we get ω + 1, which illustrates
how addition corresponds to concatenation.

But to understand order types we need to put the project into a more general
context: We need to do some logic.

DEFINITION 1 Congruence relations.

Congruence relations give rise to operations on the quotient.
Cardinals are very simple. Read my countability notes on www.dpmms.cam.

ac.uk/~tf/cam_only/countability.pdf.
Multiplication, addition and exponentiation.

1.2 Wellfoundedness

Suppose we have a carrier set with a binary relation R on it, and we want to
be able to infer

∀x ψ(x)

from
(∀x)((∀y)(R(y, x) → ψ(y))→ ψ(x))

In words, we want to be able to infer that everything is ψ from the news that
you are ψ as long as all your R-predecessors are ψ. y is an R-predecessor of x
if R(y, x). Notice that there is no “case n = 0” clause in this more general form
of induction: the premiss we are going to use implies immediately that a thing
with no R-predecessors must have ψ. The expression “(∀y)(R(y, x) → ψ(y))”
is called the induction hypothesis. The first line says that if the induction
hypothesis is satisfied, then x is ψ too. Finally, the inference we are trying to
draw is this: if x has ψ whenever the induction hypothesis is satisfied, then
everything has ψ. When can we do this? We must try to identify some condition
on R that is equivalent to the assertion that this is a legitimate inference to draw
in general (i.e., for any predicate ψ).

Why should anyone want to draw such an inference? The antecedent says
“x is ψ as long as all the immediate R-predecessors of x are ψ”, and there are
plenty of situations where we wish to be able to argue in this way. Take R(x, y)
to be “x is a parent of y”, and then the inference from “children of blue-eyed
parents have blue eyes” to “everyone has blue eyes” is an instance of the rule
schematised above. As it happens, this is a case where the relation R in question
does not satisfy the necessary condition, for it is in fact the case that children
of blue-eyed parents have blue eyes and yet not everyone is blue-eyed.

To find what the magic ingredient is, let us fix the relation R that we are
interested in and suppose that the inference

(∀y)(R(y, x)→ ψ(y))→ ψ(x)
(∀x)(ψ(x))

R-induction
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has failed for some choice ψ of predicate. Then we will see what this tells us
about R. To say that R is well-founded all we have to do is stipulate that this
failure (whatever it is) cannot happen for any choice of ψ.

Let ψ be some predicate for which the inference fails.
Then the top line is true and the bottom line is false. So {x : ¬ψ(x)} is

nonempty. Let us call this set A for short. Using the top line, let x be something
with no R-predecessors. Then all R-predecessors of x are ψ (vacuously!) and
therefore x is ψ too. This tells us that if y is something that is not ψ, then
there must be some y′ such that R(y′, y) and y′ is not ψ either. If there were
not, y would be ψ. This tells us that the collection A of things that are not ψ
“has no R-least member” in the sense that everything in that collection has an
R-predecessor in that collection. That is to say

(∀x ∈ A)(∃y ∈ A)(R(y, x))

To ensure that R-induction can be trusted it will suffice to impose on R
the condition that (∀x ∈ A)(∃y ∈ A)(R(y, x)) never hold, for any nonempty
A ⊆ dom(R). Accordingly, we will attach great importance to the following
condition on R:

DEFINITION 2 R is well-founded iff for every nonempty subset A of dom(R()
we have (∃x ∈ A)(∀y ∈ A)(¬R(y, x))

(x is an “R-minimal” element of A.)

This definition comes with a health warning: it is easy to misremember. The
only reliable way to remember it correctly is to rerun in your mind the discussion
we have gone through: well-foundedness is precisely the magic property one
needs a relation R to have if one is to be able to do induction over R. No more
and no less. The definition is not memorable, but it is reconstructible.

THEOREM 1 Wellfounded induction: recursion on wellfounded relations

Induction over a wellfounded relation is immediate. Justification of recursion
requires a little thought.

Let 〈X,R〉 be a binary structure, with R wellfounded. Then the recursion

f(x) = G(x, {f(x′) : R(x′, x)})

has a unique solution as long as G is everywhere defined.

A niggle: why does G need to look at x? Why isn’t it enough for it
to look merely at {f(x′) : R(x′, x)}?
A: two distinct xs might have the same R-predecessors and we want
to keep open the possibility of f sending them to different things.

Fix f . We need the concept of the transitive closure of a relation. The
transitive closure of R, written ‘R∗’ is the ⊆-least transitive relation ⊇ R.
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However the clever idea which is specific to this proof is the concept of an
attempt. An attempt-at-x is a function fx which is defined at x and at every
y such that R∗(y, x), and obeys the recursion wherever it is defined. That is to
say, if fx is defined for all z s.t. R(z, y), and it is defined at y, then we must
have fx(y) = G(y, {fx(z) : R(z, y)}).

The concept of attempt is the only clever part of this proof. All that remains
to be done is to choose the right thing to prove by induction. We prove by R-
induction on ‘x’ that (i) every x has an attempt-at-x and that (ii) all attempts-
at-x agree at x and at all y such that R∗(y, x). Everything has been set up to
make that easy.

So: suppose the induction hypothesis holds for all y s.t. R(y, x).
That is to say, for every y s.t. R(y, x) there is fy, an attempt-at-y, and all

attempts-at-y agree on all y′ s.t. R∗(y′, y).
Is there an attempt-at-x? Yes. We take the union of all the fy for R(y, x)

and add the ordered pair that tells us to send x to G(x, {fy(y) : R(y, x)}).
Then the function that we are declaring by this recursion is simply the

function that, for each x ∈ X, sends it to whatever-it-is that all attempts-at-x
want to send x to. This function is defined everywhere and it clearly obeys the
recursion.

That is to say, for any set X with a wellfounded relation R on it, and every
function G : X × V → V there is a unique f making the following diagram
commute.

X × P(X)

V

11X ×R

11X × f∗
X × V

G

X
f

DEFINITION 3 Wellordering a wellfounded strict total order

“every terminal seg has a least elt” is equivalent. It’s the “always an imme-
diate next stage” condition.

COROLLARY 1 Principle of induction for wellorderings
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COROLLARY 2 Definition by recursion for wellorderings

DEFINITION 4 Ordinals are isomorphism types of wellorderings.

2 Lecture 2

THEOREM 2

1. Every wellordering is rigid (no nonidentity automorphisms);

2. If there is an isomorphism between two wellorderings 〈A,<A〉 and 〈B,<B〉
then it is unique;

3. Given two wellorderings 〈A,<A〉 and 〈B,<B〉 one is isomorphic to a
unique initial segment of the other.

Proof:

1. The automorphism group of a total order is torsion-free—every nontrivial
cycle looks like Z and can have no least element. If τ is an automorphism
of a wellordering consider {τn(x) : n ∈ IN}. What is its least element?

2. Suppose σ and τ were two distinct isomorphisms 〈A,<A〉 → 〈B,<B〉;
Then σ · τ−1 would be a nontrivial automorphism of 〈B,<B〉.

3. We define an isomorphism by recursion in the obvious way. It must ex-
haust either 〈A,<A〉 or 〈B,<B〉 and, by the earlier parts, it will be unique.

To be slightly more formal about it, define f : A → B by the recursion
f(a) =: sup{f(a′) : a′ <A a} and g : B → A mutatis mutandis. We prove
by wellfounded induction that f · g is the identity where it is defined. One
of f and g must be total. If not, let a be the first thing not in the domain
of f and b the first thing not in the domain of g. Then 〈a, b〉 should have
been in f and 〈b, a〉 should have been in g.

We will give a slightly more detailed proof of part (3) later.

DEFINITION 5 〈X,≤X〉 is an end-extension of 〈Y,≤Y 〉 iff
(i) Y ⊆ X,
(ii) ≤Y ⊆ ≤X and
(iii) (∀y ∈ Y )(∀x ∈ X)(x ≤ y → x ∈ Y ).

Alternatively “〈Y,≤Y 〉 is an initial segment of 〈X,≤X〉”

“New stuff cannot be earlier than old stuff”.

For the moment we use this only where 〈Y,≤Y 〉 and 〈X,≤X〉 are wellorder-
ings, but the idea is susceptible of generalisations to arbitrary posets and even
to binary structures (models of set theory) where the binary relation (∈) is not
even transitive. But that is for later.
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LEMMA 1 Every suborder of a wellorder is isomorphic to an initial segment
of it.

The suborder inherits totality and wellfoundedness so is a wellorder. Apply
theorem 2.

Notice that this is not true of arbitrary total orders. Not every subordering
of Z is iso to an initial segment.

DEFINITION 6 α ≤On β if every wellordering of length β (every wellordering
whose equivalence class is β) has an initial segment of length α.

(The two ways you might define it are equivalent)
And that initial segment is unique, as we have just seen.

α0

α1

α2

α3

α4

a1

a2

a3

a3

a4

THEOREM 3 <On is wellfounded.

Proof: Let α be an ordinal. We will show that the ordinals below α are well-
founded. The long arrow represents a wellordering 〈A,<A〉 of length α = α0. If
(per impossibile1) there is a family {αi : i ∈ I} of ordinals with no least member
(and all of them < α) then, for each i ∈ I, 〈A,<A〉 has a (unique) proper initial
segment of length αi. For i ∈ I let ai be the supremum of that (unique) initial
segment of 〈A,<A〉 of length αi. Then {ai : i ∈ I} is a subset of A with no
<A-least member.

This result is nontrivial: it’s not always true that the family of isomorphism
types of widgets has a widget structure. Recall linear order types without
wellfoundedness; not linearly ordered.

1As Prof Körner points out, a well-known Swedish-Italian mathematician.
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Beware! Some textbooks contain theorems with statements that sound like
theorem 3 but are actually much weaker. A proof that the order relation on von
Neumann ordinals is wellfounded is not a proof that 〈On,<On〉 is a wellfounded
any more than a check that UBUNTU runs properly on my laptop means that it
will run safely on yours. The fact that UBUNTU runs safely on my laptop is not
a fact about the safety of UBUNTU but a fact about the binary for my machine,
and that says nothing about the binary for your machine.

THEOREM 4 Vital, central fact! (Cantor)
Every ordinal is the order type of the set of ordinals below it in their natural

order.
Equivalently, the order type of an initial segment of the ordinals is the least

ordinal not in it.

Proof: You prove this by induction.

COROLLARY 3 (The Burali-Forti Paradox)☠ ☠
The collection On of all ordinals cannot be a set.

Proof:
By thm 3 〈On,<on〉 is a wellordering. Since it is downward-closed, thm 4

tells us that its order type must be the least ordinal not in it. The least ordinal
that is not a ordinal? I don’t need this! Beam me up, Scottie.

Strictly speaking we cannot correctly state and prove these last two allega-
tions until we know what a set of ordinals is. So this is a promissory note. . . to
be redeemed when we do some set theory. In any case one can argue that
corollary 3 goes deeper than set theory. That fact that On turns out not to be
a set is a consequence of the fact that we have chosen to clothe this particu-
lar mathematical spirit in set-theoretic flesh. There is something deeply weird
going on, and it’s not primarily a fact about set theory.

DEFINITION 7

Preorderings are transitive and reflexive;
A preorder is a set equipped with a preordering.
A Partial ordering is an antisymmetric preordering.
Also disjoint unions, products and lexprods of posets.

Not just of posets: remember we do products of groups.

3 Lecture 3

DEFINITION 8 Addition and Multiplication of ordinals defined synthetically.
Uniqueness of ordinal subtraction. What might we mean by ‘α − β’? If

β ≤ α then whenever 〈B,<B〉 belongs to β and 〈A,<A〉 belongs to α then there
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is an isomorphism π : 〈B,<B〉 to a unique initial segment of 〈A,<A〉. The Explain f“x
notationtruncation 〈A \ π“B, <A�(A \ π“B)〉 is our wellordering of length α − β. This

definition ensures that β + (α− β) = α.

Part 3 of theorem 2 reassures us that ordinal subtraction is uniquely defined.
We really do need wellfoundedness here. You’d think that ω∗ − ω∗ would

be 0, wouldn’t you? But it can be any natural number. The set of negative
integers has lots of initial segments of length ω∗.

We remark without proof that it is immediate from the definitions of addition
and multiplication in terms of disjoint union and lexicographic product that both
operations are associative, and that multiplication distributes over addition.

We need ordinal subtraction for Cantor Normal Forms.

So now we can do induction/recursion on ordinals.

DEFINITION 9 cofinality; regular ordinal

(‘regular’ is topological jargon) You have never seen anything of cofinality
> ω.

Now might be a good time to attempt the example sheet exercise that says
that every countable limit ordinal has cofinality ω.

DEFINITION 10 Recursive definition of addition, multiplication and exponen-
tiation of ordinals.

α+0 = α; α+(β+1) = (α+β)+1, and α+sup(B) = sup({α+β : β ∈ B}).
α · 0 = 0; α · (β + 1) = α · β + α, and α · sup(B) = sup({α · β : β ∈ B}).
α0 = 1; αβ+1 = αβ · α, and αsup(B) = sup({αβ : β ∈ B}).

Remember which way round to write multiplication. Not commutative!!!
Wellorderings of length ωω, ε0.

DEFINITION 11 Countable ordinal
A countable ordinal is the order type of a wellordering of IN.

It’s an immediate consequence of this definition, in conjunction with theorem
4, that an ordinal is countable iff there are countably many ordinals below it.
This fact is too elementary to merit a label, but you need to internalise it. This
absolutely must underpin your understanding of countable ordinals. Without it
you would be entirely lost.

DEFINITION 12 Normal functions
A total function f : On → On is normal if it is total, strictly increasing

and continuous.
The range of a normal function is a clubset “closed unbounded set”

12



“Continuous”? It means that the following diagram commutes.

P(On) f∗

sup

On

P(On)

sup

On

f

“f∗” is a nonce notation for the function X 7→ f“X. I don’t expect to use
it again.

Addition, multiplication and exponentiation on the Right are normal. Not
on the Left!

LEMMA 2 Division Algorithm for Normal Functions.
If f : On → On is normal, and α is any ordinal, then there is β such that

f(β) ≤ α < f(β + 1).

Proof:
The β we want is sup{β : f(β) ≤ α}. What is f(β)? By normality it must

be sup{f(β) : f(β) ≤ α}, which is clearly ≤ α. So β is not merely the supremum
of {β : f(β) ≤ α}, it is actually the largest element of {β : f(β) ≤ α}. But then
f(β + 1) must be strictly greater than α.

ω is a countable ordinal. Observe that ω + 1, ω2 and lots of other ordinals
are also countable. Are all ordinals perhaps countable . . . ? No!

4 Lecture 4

THEOREM 5 Hartogs’ Lemma.
For every set X there is a wellordered set Y s.t. Y 6↪→ X.

Proof:
Notice that—despite Cantor’s theorem—P(X) will not do, beco’s there is

no reason to suppose that it can be wellordered.

We exhibit a uniform construction of such a Y .
Consider P(X ×X). This is the set of all binary relations on X. We define

a map f : P(X ×X) → On. If R ∈ P(X ×X) is a wellordering we send it to
its order type, its length; if it is not a wellordering we send it to 0. The range
f“(P(X ×X)) of f is the set Y that we want.
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What is the cardinality of Y ? Y is naturally wellordered, so what is its
order-type in this ordering? Y is downward-closed so, by theorem 4 its order-
type is the least ordinal not in Y . The ordinals in Y are precisely the ordinals
of wellorderings of subsets of X. So the order type of Y is the least ordinal not
the length of a wellordering of any subset of X. So Y is not the same size as
any subset of X. It’s too big.

An aside about notation. Professors Leader and Johnstone write ‘γ(X)’ for
the order type of Y in the obvious ordering. This is a nice notation, but it’s
not standard. A standard notation is ‘ℵ(|X|)’, but beware! That notation is for
for the cardinal |Y | of the Y thus obtained, not for the ordinal of the obvious
wellordering of Y . This function is sometimes called ‘Hartogs’ aleph function’.
Do not confuse this notation with the notation that gives subscripts to alephs:
ℵ0 is not ℵ(0)!

It’s natural to ask specifically what happens if we do the construction of
theorem 5 in the particular case where X = IN. The answer is that we get
the set of countable ordinals, a set that Cantor called the second number class.
We need a name for the cardinal of this set: ℵ1. The supremum of the second
number class is the ordinal ω1, the least uncountable ordinal.

We take up this thread again on page ??. .

DEFINITION 13 Rank functions for wellfounded (binary) structures.

If 〈X,R〉 is a wellfounded binary structure we define:

ρ(x) = sup{ρ(y) + 1 : R(y, x)}.

(The intention is that ρ(x) shall be the least ordinal bigger than all the ρ(y) for
y Related to x.)

LEMMA 3 Rank function is uniquely defined.

Proof: By coroll 1.2.

Now would be a good moment to attack the following example sheet question:

“Let 〈X,R〉 be a wellfounded binary structure, with rank function
ρ. Prove that (∀x ∈ X)(∀α < ρ(x))(∃y ∈ X)(ρ(y) = α).”

Uniqueness by recursion. Hartogs’ tells you ∃ enuff ordinals.
Uniquely parsimonious. Let us say that a homomorphism h : 〈X,R〉 →

〈Y, S〉 between wellfounded structures is parsimonious if, for all x ∈ X, h(x)
is an S-minimal member of {y : (∀x′)(R(x, x′)→ R(h(x′), y)}. But don’t worry
about this, co’s it’s not examinable.
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5 Lecture 5: First of 5 lectures on Posets

(The rubric says): Partially ordered sets; Hasse diagrams, chains,
maximal elements. Lattices and Boolean algebras. Complete and
chain-complete posets; fixed-point theorems. The axiom of choice
and Zorn’s lemma. Applications of Zorn’s lemma in mathematics.
The well-ordering principle.

Loads of definitions

DEFINITION 14 poset you know; likewise toset; poset subsumes toset

[pointwise and lexicographic products of posets already done]

complete poset - PTJ question about Hasse Diagrams of posets with 4 ele-
ments

directed poset. Every complete poset is directed. 〈Pℵ0(X),⊆〉

chain-complete poset; directed-complete poset.

Lattices

distributive lattice (can define ≤ from ∧, ∨ and =) distributive: examples and
non-examples. Subspaces of a vector space2.

Complemented lattice.
Boolean Algebra

Complete lattice. Power sets and topologies. A topology on X is a sub-poset
of the complete poset P(X). It is also a complete poset, though it is not a
sub–complete-poset, co’s the

∨
and

∧
operations are not the same in the two

cases. I forgot to
say: The reg
open sets form
a complete
poset that is
actually a b.a.

Aside here to explain subalgebra.
For each set X the set of topologies on X is a complete poset. This justifies

such definitions as “The subset topology is the coarsest topology making the
inclusion map cts”

added later

2Someone in lectures asked about the meaning of distributivity. A very good question!
If we have two binary operations o1 and o2 where o1 distributes over o2:

(∀xyz)(o1(x, o2(y, z)) = o2(o1(x, y), o1(x, z)))

what we are saying is that, for any x, the operation y 7→ o1(x, y) is an endomorphism of the
o2 structure. Obvious when you think of it. For example, on the integers, multiplication by
a fixed integer is an endomorphism of the additive structure of the integers—if it’s injective
it’ll be a scaling factor.
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Separative poset. A separative poset is one that is as undirected as possible.
In a directed poset any two points have an upper bound. Clearly we cannot say
that no two (distinct) points have an upper bound, beco’s if x ≤ y then anything
≥ y is an upper bound for both. What we can say is that if x is not ≤ y then
there is y′ ≥ y s.t. x and y′ have no upper bound. Thus we say:
〈X,≤〉 is separative iff

(∀x, y ∈ X)(x 6≤ y → (∃z ≥ y)(∀w)(w 6≥ z ∨ w 6≥ x))

There are lots of separative posets and they matter.

6 Lecture 6: Fixed-point theorems

THEOREM 6 Tarski-Knaster
Let 〈X,≤〉 be a complete lattice and f an order-preserving map 〈X,≤〉 →

〈X,≤〉. Then f has a fixed point.

Proof: Set A = {x : f(x) ≤ x} and a =
∧
A. (A is nonempty because it must

contain
∨
X.)

That’s the only part of the proof you need to remember, co’s you can work
the rest of it out from the definition of a.

But, for the sake of completeness, we continue . . .
Since f is order-preserving, we certainly have f(x) ≤ x → f2(x) ≤ f(x),

and so f(a) is also a lower bound for A as follows. Let x ∈ A be arbitrary; we
have f(x) ≤ x, whence f2(x) ≤ f(x), so f(x) ∈ A and a ≤ f(x).

f(a) ≤(1) f2(x) ≤(2) f(x) ≤(3) x

(1) holds beco’s a ≤ f(x) (as we’ve just showed) and f is order-
preserving;

(2) holds beco’s f(x) ≤ x and f is order-preserving;

(3) holds beco’s x ∈ A.

. . . giving f(a) ≤ x as desired. But a was the greatest lower bound, so
f(a) ≤ a and a ∈ A. But then f(a) ∈ A since f“A ⊆ A, and f(a) ≥ a since a
is the greatest lower bound.

Observe that this a is not only a fixed point, it is the least fixed point.

Observe further that if 〈X,≤〉 is a complete poset then so too, for any a ∈ X,
is {x ∈ X : x ≥ a} equipped with the restriction of ≤, and it has the same sup I haven’t

stated this
correctly

and inf operations. It is a genuine sub–complete-poset. This has the immediate
consequence that

COROLLARY 4 Let 〈X,≤〉 be a complete lattice; let a be a member of X and
let f an order-preserving map 〈X,≤〉 → 〈X,≤〉. Then f has a fixed point ≥ a.
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and this in turn has the further corollary

COROLLARY 5 Let 〈X,≤〉 be a complete lattice and f an order-preserving
map 〈X,≤〉 → 〈X,≤〉. Then f has a complete poset of fixed points.

Proof:
We need to show that every set of fixed points for f has a sup. So let A be

a set of fixed points for f . Clearly A has a sup
∨
A beco’s 〈X,≤〉 is a complete

lattice. Is this the thing we want? The obvious thing to do is to try to prove
that it is a fixed point. You will fail! However, all is not lost, because you use
corollary 4 to show that there is a least fixed point above

∨
A, and that fixed

point is the one we want.

There is an echo here of the fuss i was making last time about how the
complete poset of open sets in a topology on a set X is not a sub–complete-
poset of the power set of X.

This proof of theorem 6 shows not only that order-preserving functions have
fixed points but that they have least fixed points. This gives us the existence
of inductively defined sets because the operation of taking a set and adding to
it the result of applying all the constructors once to all its members is order-
preserving (with respect to ⊆). The above definition of the element a echoes
precisely the declaration of IN as an intersection of a family of sets. Compare∧

{x : f(x) ≤ x} with
⋂
{X : (S“X ∪ {0}) ⊆ X}.

There are three things you might worry about here:

(i) is {X : (S“X ∪{0}) ⊆ X} a set? Co’s, if not, it isn’t there for us
to take

⋂
of it;

(ii) if we want to use theorem 6 to deduce the existence of IN then
we seem to be using T-K on the complete poset of the power set of
the set of cardinals, and is that a set?;

(iii) what is S(α) when α is a cardinal about which we know nothing?

(i) and (ii) you are not to worry about for the moment. These are set-
theoretic issues which we will sort out later.

The answer to (iii) is that actually you know this already: S(α) is just α+ 1
which is |x ∪ {y}| whenever |x| = α and y 6∈ x. When we come to the axiom of
choice we shall see that typically S(α) = α for infinite α.

COROLLARY 6 Cantor-Bernstein

There are lower-tech proofs of CB that do not involve assuming that P(A)
is a set, and you will find them in the older textbooks but they are fiddly.

Other applications include Banach-Tarski.
There are other fixed-point theorems of this flavour “a slick function from

a nice poset into itself has lots of fixed points” (for example “every normal
function from On to On has a fixed point”) and we will deal with them as they
come up, not all together.
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6.1 The Axiom of Choice

AC = axiom of Choice; ZL is Zorn’s Lemma3 WO is the Wellordering Principle
every set can be wellordered.

REMARK 1 WO implies AC.

Proof: Suppose you can wellorder anything that is shown to you, and you want
a choice function on a family X of nonempty sets. You wellorder

⋃
X by some

wellorder which you call ‘<’ and then, for each x ∈ X, declare f(x) to be the
<-least element of x.

REMARK 2 ZL implies WO.

Proof: You are given a set X and you want to wellorder it. Your weapon is
ZL, which means that whenever you have a chain-complete poset, it will have a
maximal element. How do you use ZL? Well, you seek a chain-complete poset
such that a maximal element of it is a wellordering of X. How about taking your
chain-complete poset to be the poset of wellorderings of subsets of X (thought
of as subsets of X ×X) ordered by ⊆? Not quite. The problem is that a union
of a chain of wellorderings under ⊆ might not be a wellordering. You need to
partially order the wellorderings by end-extension. (Recall definition 5.)

7 Lecture 7

REMARK 3 AC implies WO

Again we have a matching challenge. We want to wellorder a set X and we
are told we can have a choice function on any family of nonempty sets that we
like. The obvious suspect is P(X) \ {∅}. We now define, by recursion on the
ordinals, a sequence s of elements of X indexed by ordinals. By AC, the family
P(X)\{∅} of nonempty sets has a choice function f . Then we declare s(α), the
αth member of our sequence, to be f(X \ {s(β) : β < α}).

How can we be sure that we do not run out of ordinals? Hartogs’ lemma
(theorem 5) tells us that there is a wellordering too big to be embedded in X.
So we must have used up all of X by the time we reach the order type of any
such wellordering.

DEFINITION 15
A function f : 〈X,≤X〉 → 〈X,≤X〉 is inflationary if (∀x ∈ X)(x ≤X f(x)).

Inflationary is NOT the same as increasing!

For AC → ZL we need

3What is yellow and equivalent to the axiom of choice?
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THEOREM 7 The Bourbaki-Witt theorem
Every inflationary function from a chain-complete poset into itself has a fixed

point.

Proof: Let 〈X,≤X〉 be a chain complete poset, and let f : X → X be inflation-
ary. The idea is to build a chain, starting at some (any) x ∈ X, extend it at
successor stages by doing f to the latest element obtained, and at limit stages
by taking sups—〈X,≤X〉 is chain complete. If we reach a fixed point at any
stage we have our hearts’ desire. But Hartogs’ lemma (theorem 5) tells us that
we cannot run out of ordinals.

COROLLARY 7 AC implies ZL

Proof: Now let 〈X,≤X〉 be a chain-complete poset. By AC we have a choice
function f on P(X) \ {∅}. The function

x 7→ if x is ≤X -maximal then x else f({x′ ∈ X : x <X x′})

is inflationary and must have a fixed point by theorem 7. That fixed point
will be maximal by construction.

7.0.1 Weak versions: countable choice, and a classic application
thereof; DC

ctbl U of ctbls is ctbl. Do the same with DC
[not being written up for the notes: i can do this in my sleep]
A Dedekind-Infinite set is one the same size as some proper subset of itself.

If countable choice fails there may be infinite sets that are not Dedekind-infinite.
König’s Lemma

7.0.2 Applications of Zorn’s Lemma

We look for chain-complete posets.
Comparability of cardinals
Independent sets in a vector space
Filters in a boolean algebra. Filters? Wossat?!

DEFINITION 16 Filters and ideals in boolean algebras
A filter in a boolean algebra is a subset closed under ∧ and ≥; it’s a collection

of “big” elements. The dual concept is *Ideal*: closed under ∨ and ≤. A
filter is proper iff it does not contain ⊥. ⊆ −maximal proper filters are called
“ultrafilters”. and maximal ideals (“prime ideals”)

Filters in a b.a. form a poset under ⊆.
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8 Lecture 8: Boolean Algebras Continued

Yer typical boolean algebra is a power set algebra, which is to say a product of
lots of copies of the two-element boolean algebra, commonly written ‘22’. yes/no.
Hence the connection to logic.

Set of proper filters chain-complete. In fact it’s directed-complete.
Arbitrary intersection of a nonempty family of proper filters is a proper filter.

Dual to a filter is an ideal. Called ideals because they are ideals in boolean
rings. A boolean algebra becomes a ring if we take × to be ∧ and + to be XOR:
x+ y = (x ∩ y) ∨ (y ∩ x)

DEFINITION 17 Principal and nonprincipal ideals and filters.

Boolean homomorphism h must send a ∧ b to h(a) ∧ h(b) and so on for all
the other operations.

Ideals are kernels of boolean algebra homomorphisms .
A principal ideal is a ba in its own right. The ideal generated by x is the

kernel of the homomorphism y 7→ y ∧ x.

DEFINITION 18 Quotient over an ideal, or filter
x ∼I y if (x XOR y) ∈ I;
or
x ∼F y if (x ∧ y) ∨ (x ∧ y) ∈ F .

(Consider the ideal of finite sets in P(IN), and the quotient algebra.
This may remind you of a puzzle about Dons and hats and only finitely

many of them getting it wrong. You will need the axiom of choice.)

General patter about representation theorems.

THEOREM 8 Stone’s representation theorem
Every Boolean algebra is isomorphic to one where the order relation is ⊆—

set inclusion; ∧ is ∩; ∨ is ∪, and complementation is set complementation.

Proof:
The challenge is to associate to each element of the algebra a set in such a

way that elements higher in the algebra get sent to bigger sets (more elements).
(Of course we also have to respect the boolean operations ∧, ∨ and complement).
In principle these sets could be anything, but in fact we don’t have to look very
far from home. It turns out that we can send each element b to the set of
maximal filters F such that b ∈ F . The higher up in the algebra you are the
more filters you belong to. Clearly if a ≤ b then any maximal filter containing
a contains b. It remains to check that the inclusion is strict. That is . . .

We need a lemma that says that
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LEMMA 4 If b 6≥ a then there is a maximal filter containing a but not b.

Proof:
Consider the collection of those filters that are supersets of the principal filter

generated by a ∧ b. This is a chain-complete poset and must have a maximal
element by ZL.

It’s easy to check that the boolean operations are respected. Any maxi-
mal filter must contain either b or b so that ensures that complementation is
respected. [It also explains why we need maximal [proper] filters not just any-
old-proper-filters.]

8.1 Reduced products

Suppose {Ai : i ∈ I} is a family of algebras. (Think groups, for the sake of
concreteness).

We define the operations on the product
∏
i∈I Ai in the usual way (point-

wise). So that, for an operation @ and for f, g ∈
∏
i∈I Ai, we declare f@h to

be the function i 7→ f(i)@g(i).

DEFINITION 19
Let F ⊆ P(I) be a filter on I.

For f , g in {Ai : i ∈ I} say f ∼F g iff {i ∈ I : f(i) = g(i)} ∈ F .

We had better check that ∼F is a congruence relation for all the operations
defined pointwise-style on the product. Let @ be such a (binary) operation,
written infix.

Suppose f ∼F f ′ and g ∼F g′. Then f@g is i 7→ f(i)@g(i) and f ′@g′

is i 7→ f ′(i)@g′(i). Now {i ∈ I : f ′(i)@g′(i) = f(i)@g(i)} is (a superset of)
{i ∈ I : f(i) = f ′(i)} ∩ {i : g(i) = g′(i)} and both these sets are in the filter,
whence f@g ∼F f ′@g′ as desired.

This extends to operations of higher arity as long as the arity is finite.

The quotient is notated
∏
i∈I Ai/F .

Thus we have shown

REMARK 4 If @ is an operation defined at each factor Ai and thence defined
pointwise on the product, then ∼F is a congruence relation for it and it is defined
on the quotient.

Thus if all the factors have wombat-structure then the reduced product has
too.
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9 Lecture 9: First of Five Lectures on Proposi-
tional Logic

The propositional calculus. Semantic and syntactic entailment. The
deduction and completeness theorems. Applications: compactness
and decidability.

The letters point to things that evaluate to true and false. I am going to
try to remember to reserve the symbols ‘>’ and—even more important—‘⊥’ for
propositional constants NOT truth-values.

The language. Propositional letters (aka literals): p, q, r . . . or (better!) p,
p′, p′′ . . . , so that the set of literals forms a regular language. NB: the internal
structure of the literals given by the prime symbol is not going to be visible to
the semantics for the logic. ‘p′′′’ is a single symbol not a string of four.

We introduce ‘⊥’ as a constant symbol in propositional logic. Beware over-
loading.

Set of letters is a regular language.
Set of wffs is context-free

Truth-functionality. Valuations and truth-tables.
Interdefinability of connectives.
Intension and extension. Now we can talk about →.

9.1 if-then

(This section was lectured in only the most cursory manner, largely because it’s
arguably not examinable. I have included a longer treatment here beco’s it may
be of interest to some students.)

Lots of students dislike the truth-functional conditional as an account of
implication. The usual cause of this unease is that in some cases p→ q evaluates
to true for what seem to them to be spurious and thoroughly unsatisfactory
reasons, namely: that p is false, or that q is true. How can q follow from p
merely because q happens to be true? The meaning of p might have no bearing
on q whatever! Standard illustrations in the literature include

If Julius Cæsar is Emperor then sea water is salt.

These example seem odd because we feel that to decide whether or not p
implies q we need to know a lot more than the truth-values of p and q.

This unease shows that we have forgotten that we were supposed to be
examining a relation between extensions, and have carelessly returned to our
original endeavour of trying to understand implication between intensions. ∧
and ∨, too, are relations between intensions but they also make sense applied
to extensions.
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Now if p implies q, what does this tell us about what p and q evaluate to?
Well, at the very least, it tells us that p cannot evaluate to true when q evaluates
to false. That is to say that we require—at the very least— that the extension
corresponding to a conditional should satisfy modus ponens.

How many extensions are there that satisfy modus ponens? For a connective
C to satisfy modus ponens it suffices that in each of the two rows of the truth
table for C where p is true, if pC q is true in that row then q is true too.

p C q
1 ? 1
0 ? 1
1 0 0
0 ? 0

We cannot make pC q true in the third row, because that would cause C to
disobey modus ponens, but it doesn’t matter what we put in the centre column
in the three other rows. This leaves eight possibilities:

(1) :
p q

q
(2) :

p p←→ q

q
(3) :

p ¬p
q

(4) :
p p→ q

q

p C1 q

1 1 1
1 0 0
0 1 1
0 0 0

p C2 q

1 1 1
1 0 0
0 0 1
0 1 0

p C3 q

1 0 1
1 0 0
0 1 1
0 1 0

p C4 q

1 1 1
1 0 0
0 1 1
0 1 0

(5) :
p ⊥
q

(6) :
p p ∧ q

q
(7) :

p ¬p ∧ q
q

(8) :
p ¬p ∧ ¬q

q

p C5 q

1 0 1
1 0 0
0 0 1
0 0 0

p C6 q

1 1 1
1 0 0
0 0 1
0 0 0

p C7 q

1 0 1
1 0 0
0 1 1
0 0 0

p C8 q

1 0 1
1 0 0
0 0 1
0 1 0

obtained by replacing the major premiss ‘p→ q’ in the rule of modus ponens
by each of the eight extensional binary connectives that satisfy the rule.

(1) will never tell us anything we didn’t know before; we can never use (5)
because its major premiss is never true; (6) is a poor substitute for the rule of
∧-elimination; (3), (7) and (8) we will never be able to use if our premisses are
consistent.

(2), (4) and (6) are the only sensible rules left. (2) is not what we are after
because it is symmetrical in p and q whereas “if p then q” is not. The advantage
of (4) is that you can use it whenever you can use (2) or (6). So it’s more use!
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We had better check that we do not get into trouble with this policy of
adopting (4), and evaluating p → q to true unless there is a very good reason
not to. Fortunately, in cases where the conditional is evaluated to true merely
for spurious reasons, then no harm can be done by accepting that evaluation.
For consider: if it is evaluated to true merely because p evaluates to false,
then we are never going to be able to invoke it (as a major premiss at least), and
if it is evaluated to true merely because q evaluates to true, then if we invoke
it as a major premiss, the only thing we can conclude—namely q—is something
we knew anyway.

This last paragraph is not intended to be a justification of our policy of
using only the material conditional: it is merely intended to make it look less
unnatural than it otherwise might. The astute reader who spotted that nothing
was said there about conditionals as minor premisses to modus ponens should
not complain. They may wish to ponder the reason for this omission.

The idea is that we can use this strictly truth-functional stuff to codify
arguments that only involve and, or and not, and don’t involve all or some. The
following example is from Kalish and Montague. It’s a bit contrived but you
get the idea.

If God exists then He is omnipotent.
If God exists then He is omniscient.
If God exists then He is benevolent.
If God can prevent evil then—if He knows that evil exists—then He
is not benevolent if He does not prevent it.
If God is omnipotent, then He can prevent evil.
If God is omniscient then He knows that evil exists if it does indeed
exist.
Evil does not exist if God prevents it.
Evil exists.
God does not exist.

Here are the basic propositions and the letters we are going to abbreviate
them to.

God exists E
God is omnipotent P
God is omniscient O
God is benevolent B
God can prevent Evil D
God knows that Evil exists K
God prevents Evil J
Evil exists V
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If God exists then He is omnipotent. E → P (1)

If God exists then He is omniscient. E → O (2)

If God exists then He is benevolent. E → B (3)

If God can prevent Evil then—if He
knows that Evil exists—then He is not D → (K → (¬J → ¬B)) (4)
benevolent if He does not prevent it.

If God is omnipotent, He can prevent Evil. P → D (5)

If God is omniscient then He knows that
Evil exists if it does indeed exist. O → (V → K) (6)

Evil does not exist if God prevents it. J → ¬V (7)

Evil exists. V (8)

We want to persuade ourselves that God does not exist. Well, suppose he
does. Let’s deduce a contradiction

Assume E. Then (1), (2) and (3) give us

P (9),

O (10)

and

B (11)

Now that we know O, (7) tells us that

V → K (12)

But we know V (that was (8)) so we know

K (13)

We know P , so (5) tells us that

D (14)

We can feed D into (4) and infer

K → (¬J → ¬B) (15)

But we know K (that was line 13) so we get

¬J → ¬B (16)

(8) and (7) together tell us ¬J , so we get ¬B. But we got B at line 11.
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DEFINITION 20 Recursive definition of satisfaction
A valuation is a function from literals to truth-values. We define what it is

for a valuation to satisfy a compound formula by recursion on the subformula
relation which (you will have noticed) is wellfounded.

We introduce ⊥ as a constant symbol in propositional logic. Beware over-
loading.

v sat l [l a literal] iff v(l) = true;
v sat φ ∧ ψ iff (v sat ψ and v sat ψ )
v sat φ ∨ ψ iff (v sat ψ or v sat ψ )
v sat φ→ ψ iff (either not(v sat ψ) or v sat ψ )
v sat ¬φ iff not(v sat φ).
We say φ |= ψ iff every valuation that sat φ also sat ψ.

Semantic entailment and validity
“true under all valuations”; “tautology”

Logical equivalence: two formulæ are logically equivalent iff they are satisfied
by the same valuations.

DEFINITION 21
A theory is a set of sentences, closed under some notion of decidibility clear
from context.

A Logic is a theory closed under substitution. A Logic that contains (to take
a pertinant example) A → (B → A) must contain all substitution instances of
it, such as: p→ (p→ p), or (p ∨ q)→ ((q ∨ r)→ (p ∨ q))

Here is an example of a propositional theory. We might call it the theory of
adding two eight-bit words (with overflow). It has 24 propositional letters, p0
to p7, p8 to p15 and p16 to p23, and axioms to say that p16 to p23 represent the
output of an addition if p0 to p7 and p8 to p15 represent two words of input.
true is 1 and false is 0, so it contains things like ((p0 ∧ p8)→ ¬p16) (because
an odd plus an odd is an even!).

p7 p6 p5 p4 p3 p2 p1 p0
+ p15 p14 p13 p12 p11 p10 p9 p8
= p23 p22 p21 p20 p19 p18 p17 p16

Notice that this is a theory not a logic, co’s it’s not closed under substitution.
It contains (p0 ∧ p8) → ¬p16 but not (for example) (p1 ∧ p9) → ¬p17 which is
obtained from it by the substitution: p0 7→ p1, p8 7→ p9 and p16 7→ p17.

DEFINITION 22 Any set T (a theory or a Logic) of axioms-and-rules-of-
inference gives rise to a deducibility relation written ‘`’: “T ` φ” or (some-
times) ‘ψ `T φ” to mean that φ can be deduced from ψ using the T -machinery.

Theories and Logics usually (tho’ not always) arise from a set of axioms and
a set of rules of inference. Thus, considered as sets of formulæ they are what
we call recursively enumerable. We say they are axiomatised.
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The logic consisting of all valid formulæ of propositional logic (all tautolo-
gies) does not on the face of it arise in this way. It is a nontrivial fact that by
a judicious choice of theory (Logic) we can get |= and ` to coincide. Particular
set of axioms-and-rules doesn’t matter; what matters is that it can be done
. . . proof of concept

10 Lecture 10

We’ll have a (very brief, co’s it’s not really examinable) look at some alternative
rules of inference, so that we have some idea of the generality of a propositional
theory.

Natural deduction!

Brief chat about completeness theorems. Kuratowski’s theorem about planar
graphs.

Can you detect semantic validity just by looking at the syntax, without
looking at the models? Talk about the biconditional fragment.

REMARK 5 Completeness for the Biconditional Fragment
A formula in the language with only ←→ and ¬ is valid (satisfied by all

valuations) iff every literal that appears at all appears an even number of times.
These two conditions are equivalent to be derivable from the three axiom schemes
(all substitution instances of) A ←→ A; (A ←→ B) ←→ (B ←→ A) and
(A ←→ (B ←→ C)) ←→ ((A ←→ B) ←→ C). And your sole rule of inference
is modus ponens.

Whatever your axioms and rules of inference are, it’s going to be pretty
easy to show that Γ ` φ implies Γ |= φ; it’s the other direction that is hard.
In the biconditional logic case it’s easy to see that anything deduced from the
three axiom schemes by modus ponens has an even number blah. It’s the other
direction that is hard. [There is an extension of this to the logic with negation
as well, but i can’t remember what the axiom for ¬ is: it may be ¬(p←→ ¬p).
You may like to check.]

If we are going to prove that |= and ` coincide, we’d better have precise
mathematical definitions of them. We know what |= is. So we need to be clear
about `.

We also need to be crystal-clear about what a proof is.
Because we are short of time i am going to use an axiomatisation-with-

rule-of-inference kit that gives a slick proof of completeness. I have in fact
shamelessly lifted it from PTJ’s book ch 2.

Brief chat about Interdefinability of connectives classically (could’ve
been done earlier) We don’t exploit interdefinability in natural deduction.

We have three axiom schemes, K, S and T plus modus ponens. Or three
axioms plus a rule of substitution plus modus ponens.
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DEFINITION 23 K, S and T ; Hilbert-style proof

A singleton list containing an axiom is a proof. What about the empty list?

T is the characteristic axiom for classical Logic: double negation and law
of excluded middle. Not everybody likes these two axioms, so it’s nice to have
an axiomatisation which lists them separately so they can be dropped if we
want.

K and S enable us to prove the “deduction theorem”. . .

First, a notational innovation you will have to get used to: people often write
‘L,A’ for ‘L ∪ {A}’.

DEFINITION 24 The deduction theorem for a logic L is the assertion

if L,A ` B, then L ` A→ B.

The converse is trivial as long as L has modus ponens.

THEOREM 9 The deduction theorem holds for L iff L contains (all substitu-
tion instances of) K and S.

Proof:

L→ R The left-to-right direction is easy, for we can use the deduction theorem
to construct proofs of K and S. This we do as follows:

L ` (A→ (B → C))→ ((A→ B)→ (A→ C))

(which is what we want) holds iff (by the deduction theorem)

L ∪ {(A→ (B → C))} ` ((A→ B)→ (A→ C))

iff (by the deduction theorem)

L ∪ {(A→ (B → C)), (A→ B)} ` (A→ C)

iff (by the deduction theorem)

L ∪ {(A→ (B → C)), (A→ B), A} ` C.

But this last one we can certainly do, since

[(A→ (B → C)); (A→ B); A; (B → C); B; C]

is a Hilbert-proof of C from L ∪ {(A → (B → C)), (A → B), A} (and we
have already seen how to do this by natural deduction).

We also want L ` A→ (B → A). This holds (by the deduction theorem)
iff L∪{A} ` (B → A) iff (by the deduction theorem again) L∪{A,B} ` A.
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R→ L Suppose L,A ` B. That is to say, there is a (Hilbert) proof of B in which
A is allowed as an extra axiom. Let the ith member of this list be Bi. We
prove by induction on i that L ` A → Bi. Bi → (A → Bi) is always a
(substitution instance of) an axiom (because of K), so if Bi is an axiom,
we have L ` A → Bi by modus ponens. If Bi is A, this follows because
L ` A → A. If Bi is obtained by modus ponens from two earlier things
in the list, say Bj and Bj → Bi then, by induction hypothesis, we have
L ` A→ Bj and L ` A→ (Bj → Bi). But by S this second formula gives
us L ` (A→ Bj)→ (A→ Bi) and then L ` A→ Bi by modus ponens.

11 Lecture 11

From now on we are going to assume that our only rules of inference are modus
ponens and substitution. Thus when we write “Γ ` φ” we mean that if we add
to Γ all substitution-instances of K, S and T , and close under modus ponens
then we can find a Hilbert-style proof of φ.

THEOREM 10 The Adequacy Theorem
Let Γ be a set of expressions in a propositional language.
If Γ |= ⊥ then Γ ` ⊥.

Proof:
We prove the contrapositive. Suppose Γ 6` ⊥. We propose to infer Γ 6|= ⊥. “Contrapositive”?

Γ |= ⊥ says that any valuation that satisfies Γ satisfies ⊥, but of course no
valuation satisfies ⊥, so S |= ⊥ says that no valuation satisfies Γ. So the
challenge is to find a valuation that satisfies Γ, given that we cannot deduce ⊥
from Γ.

The idea is to construct a sequence Γ = Γ0,Γ1,Γ2 . . . s.t. Γi 6` ⊥ for each i,
and such that Γω =

⋃
i<ω Si “decides” every formula. . . by which we mean that,

for each formula φ, either Γω ` φ or Γω ` ¬φ. To do this we enumerate the
expressions of the language in order type ω as 〈ti : i ∈ IN〉.

(If you have done your 1a revision exercises you will be aware that the set
of expressions is countable. This is because the set of finite sequences from a
countable set is countable. You can prove this using the prime powers trick.)

Given Γi we obtain Γi+1 by asking whether or not Γi∪{ti} ` ⊥. If Γi∪{ti} 6`
⊥ then set Γi+1 = Γi ∪ {ti+1}, or Γi+1 = Γi ∪ {ti+1} o/w.

The valuation we want is now the valuation that sends every literal in the
deductive closure of

⋃
i∈IN Γi to true and sends all others to false.

We can now obtain the completeness theorem as a corollary. We prove only
the hard direction.

COROLLARY 8 The Completeness theorem for Propositional Logic.
If Γ |= φ then Γ ` φ.
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Proof:
Suppose Γ |= φ. Then we must have Γ ∪ {¬φ} |= ⊥. (No valuation can

satisfy both φ and ¬φ even if it tries with both hands). Then, by theorem 10,
the Adequacy Theorem, we have Γ ∪ {¬φ} ` ⊥.

Now, by the Deduction Theorem we have Γ ` ¬φ→ ⊥. Axiom T now allows
us to infer φ.

The combination of axioms and rule of inference used here was chosen pre-
cisely to expedite this particular proof of completeness: K and S give you the
deduction theorem, and axiom T provides the final step. Other combinations
will give different proofs. There are presentations of propositional logic that are
more natural but they make the completeness theorem much harder to prove.

We obtain as a corollary the compactness theorem.
Consider a propositional language with a countable infinity of literals. We

can topologise the set of all valuations by declaring, for each finite set x of pairs
〈l, t〉 where l is a literal and t is a truth value, that the set {v : x ⊂ v} (thinking
of valuations as sets of ordered pairs) is a basis element.

It turns out that this topology is compact: it’s the product of copies of the
two-point space (which is compact).

Clearly, proofs being finite objects, if there is a proof of φ from Γ, then there
is a proof that uses only finitely many formulæ in Γ. But, by corollary 8 (which
tells us that ` and |= are the same relation) it then follows that if Γ |= φ then
Γ′ |= φ for some finite subset Γ′ ⊆ Γ. We’d better give this a name and a
number:

COROLLARY 9 The Compactness Theorem (for propositional Logic)
If Γ |= φ then there is φ′ ⊆ Γ, Γ′ finite, with Γ′ |= φ.

One consequence of the completeness theorem for propositional logic is that
both “φ is a tautology” and “φ is not a tautology” become what one might call
existential sentences. “φ is a tautology” becomes “there is a p s.t. p is a proof
of φ” and “φ is not a tautology” becomes “there is a valuation that refutes φ”.

This two-pronged attack looks useful if we are looking for efficient engines
that answer whether or not a propositional formula is a tautology. Clearly we
have a deterministic algorithm that runs in time exponential in the number of
distinct propositional letters in φ: simply examine all valuations. Clearly any
valuation that refutes φ can be shown to do so in time linear in the length of
φ. Thus non-tautologousness is what they call nondeterministic polynomial.
What about tautologousness? φ is tautologous iff there is a proof of it. But
can a correct proof be verified in time polynomial in the length of φ? The
question is: “is there a system of rules and axioms with the feature that there
is a polynomial P in one variable such that every tautology of length n has a
proof in that system of length less than P (n)?”. Curiously this question seems
to be open.

It is still not known whether or not there is a polynomial-time test for tau-
tologousness.
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Can detect tautologousness by exhaustive search co’s only finitely many
cases. Spuriously easy. So consider the truth value algebra P(IN).

11.1 Boolean algebras detect propositional tautologies

What do we mean by this title? Suppose you try building truth tables using a
boolean algebra B instead of 22. Each row of such a truth-table corresponds to
what one might call a B-valuation—a thing like an ordinary valuation except
that it takes values in B. You’ll end up with |B|n rows (assuming your formula
has n distinct letters in it) instead of 2n rows, so it’s not the kind of thing you
would want to do unless you had a compelling reason! Let us say that a boolean
algebra B authenticates a propositional formula φ if every row of this truth
table puts true under the main connective of φ.

Here is the four-element boolean algebra.

0

Left Right

1

and a four-valued truth-table for p ∨ (¬p)

p ∨ (¬ p)
1 1 0 1
Left 1 Right Left
Right 1 Left Right
0 1 1 0

We know what ∧, ∨ and ¬ are in a boolean algebra, but we defined →
purely in terms of its two-valued truth-table. So let us say that p → q is short
for (¬p) ∨ q.

So s’pose i fill in a truth table for a formula φ using a boolean algebra B.
I have |B|n rows. 2n of those rows are rows in which the letters take only
values > and ⊥ (or true and false). So, if B authenticates φ, then 22 likewise
authenticates φ; in plain English, φ is a tautology.

So “authenticated by B” implies “authenticated by 22” (=tautology)
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Now suppose that B does not authenticate φ. Suppose there is a row of the
truth-table under which φ receives the value b, where b 6= >. Consider now any
maximal ideal that contains b and the homomorphism onto the quotient, which
is 22. This homomorphism kills b—sends it to ⊥. This gives us a 22-valuation that
makes φ false.

So “refuted by B” implies “refuted by 22” (= not a tautology)

Conclusion:
We defined a tautology to be anything authenticated by the two-element

boolean algebra 22, but we could, for any boolean algebra B, have defined a
tautology to be anything authenticated by B. Authenticated by one is the same
as authenticated by all. So it suffices to check authentication by 22.

Thus all boolean algebras detect the same set of tautologies. We’d better
minute this fact.

REMARK 6 We can define a propositional tautology as “authenticated by all
Boolean Algebras” or “authenticated by even one Boolean Algebra”; it makes no
difference.

[in fact we can characterise boolean algebras as those things with ∧, ∨, 0
and 1 etc that authenticate all propositional tautologies, but there is no space
to prove it, and i can’t really pretend it’s examinaable. But it’s something to
guide your thoughts.]

12 Lecture 12

12.1 Applications of Propositional Compactness

Other examples of propositional theories, and applications of propositional com-
pactness.

A group is (right)-orderable if it admits an order ≤ such that (∀a, b, c)(a ≤
b → a · c ≤ b · c). (Think . . . additive group of Q, multiplicative group of IR+

. . . ) They tend to be abelian so we write the group operation with a ‘+’.

REMARK 7 A group is right-orderable iff all its finitely generated subgroups
are right-orderable.

Proof:
One direction is easy: if G is right-orderable so are all its subgroups, in

particular all its finitely generated subgroups.
For the converse we set up a propositional language and exploit propositional

compactness. The language has, for each pair of distinct elements a, b ∈ G, a
propositional letter pa,b. (Secretly the meaning of pa,b is that a < b). The
propositional theory to which we are going to apply compactness has the axiom
schemes:
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pa,b → pac,bc for all a, b, c ∈ G
pa,b → (pb,c → pa,c) for all a, b, c ∈ G
pa,b XOR pb,a for all a, b ∈ G

The first states that the order respects group multiplication, and the second
and third assert that the order is total.

Any finite set T ′ of these axioms is consistent beco’s each finite subset men-
tions only finitely many elements of G. For each such T ′ consider the subgroup
G(T ′) of G generated by the elements mentioned in the subscripts of the propo-
sitional letters appearing in T ′. This is a finitely generated subgroup of G and
is accordingly orderable by hypothesis. Any ordering of G(T ′) gives a valuation
which satisfies T ′.

This is one of various standard applications of propositional compactness.
Others are . . .

(i) The order extension principle: every partial order on a set can
be refined to a total order;

(ii) If every finite subgraph of a graph is n-colourable then the graph
itself is n-colourable.

We will keep these up our sleeve for example-sheet questions. However there
are two that we will write out in detail.

12.1.1 The Interpolation Lemma

LEMMA 5 Let P,Q,R be three pairwise-disjoint sets of literals; for any set
Γ, let L(Γ) be the set of propositional formulæ built up from literals in Γ. Let
φ ∈ L(P ∪Q) and ψ ∈ L(Q ∪R) be formulæ such that (φ→ ψ) is a theorem of
the propositional calculus.

Then there is a formula θ ∈ L(Q) such that both (φ → θ) and (θ → ψ) are
theorems.

More of a remark than a lemma but it’s always called a lemma so i’ll go with
the flow.
Proof:

Consider the set Γ = {γ ∈ L(Q) : ` (φ → γ)} of Q-consequences of φ. The
idea is to show that this set entails ψ, and that therefore (by compactness) some
finite subset of it entails ψ, and the conjunction of that finite subset will be the
θ we seek.

If Γ is to entail ψ we want every valuation that satisfies Γ to satisfy ψ. Now
we do know that every valuation that satisfies φ also satisfies ψ, so it will be
sufficient to show that any Q-valuation that satisfies Γ can be extended to a
(P ∪Q)-valuation that satisifies φ.
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We argue by contradiction. Suppose there is a Q-valuation v that satisfies
Γ but cannot be extended to one that satisfies φ. Consider the set {p : v(p) =
true}∪{¬p : v(p) = false}. This set entails all Q-consequences of φ but refutes
φ itself. So some finite subset ∆ of it refutes φ. Contraposing we have4 φ→ ¬∆.
But ¬∆ is a Q-consequence of φ and is therefore satisfied by v . . . which is to
say is implied by {p : v(p) = true} ∪ {¬p : v(p) = false}. So there is no such
v.

Observe that this proof does not tell us how to find θ: it merely tells us
there is one such. The following question from example sheet 3 will guide you
through a more effective proof that enables you to actually compute θ from φ
and ψ.

“(a)+ Suppose A is a propositional formula and ‘p’ is a letter appear-
ing in A. Explain how to find formulæ A1 and A2 not containing ‘p’
such that A is logically equivalent to (A1 ∧ p) ∨ (A2 ∧ ¬p).
(b) Hence or otherwise establish that, for any two propositional for-
mulæ A and B with A ` B, there is a formula C, containing only
those propositional letters common to both A and B, such that
A ` C and C ` B. (Hint: for the base case of the induction on
the size of the common vocabulary you will need to think about
expressions over the empty vocabulary)”

Notice the way in which we wellorder the language in the proof of the com-
pleteness theorem. That’s all right if we have only countably many literals, but
it will require nontrivial choice assumptions if the set of literals is uncountable.
Can we recover any of the extra strength we have to put in to prove compactness
for uncountable propositional languages? Yes!

REMARK 8 Compactness for arbitrary propositional languages implies that
every boolean algebra has an ultrafilter.

Proof:
Let B be any Boolean Algebra. For each b ∈ B create a propositional letter

Ub whose meaning is secretly that b belongs to the ultrafilter whose existence
we are trying to prove. We set up a propositional theory UB . It contains U>,
¬U⊥; for each b ∈ B it contains Ub XOR U¬b; whenever a = b∨c then it contains
Ua → (Ub ∨ Uc) and if a ≤ b it contains Ua → Ub.

The cardinality of this theory is at least the cardinality of B. Any finite
subset is consistent, since any finite set of the Ub can mention only finitely
many elements, and every finite boolean algebra has an ultrafilter. [This is
because every finite boolean algebra has minimal nonzero elements5, and the

4I know i should write ‘
∧

∆’ since what i mean is the conjunction of all formulæ in ∆, but
. . . !

5called atoms
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principal filter generated by such an element is maximal]. So, by compactness,
UB is consistent. Any valuation v satisfying UB tells you which b ∈ B belong to
the ultrafilter corresponding to v.

13 Lecture 13

13.1 CNF and DNF

DEFINITION 25 A formula in a propositional language with only ∧, ∨ and ¬
is in conjunctive normal form (“CNF”) iff it is a conjunction of disjunctions
of atomics and negatomics (‘¬’ is attached only to propositional letters, and
there is no ‘∧’ inside a ‘∨’); it is in disjunctive normal form (“DNF”) iff it
is a disjunction of conjunctions of atomics and negatomics (‘¬’ is attached only
to propositional letters, and there is no ‘∨’ inside a ‘∧’).

REMARK 9 Every formula is logically equivalent to (is satisfied by the same
valuations as) both a formula in CNF and a formula in DNF. The CNF and DNF
representations are unique up to reordering of the conjunctions and disjunctions.

(We have to be careful how we state this last observation: we don’t mean
identical up to permutations of literals!)

I am not proposing to provide a full proof. The manipulations needed to
obtain a CNF or a DNF for a formula rely on the distributivity of ∧ over ∨ and
of ∨ over ∧, plus the de Morgan laws (ask Wikipædia) to “import” the ‘¬’s.

You will not be asked to prove this fact in an exam—it’s not interesting enuff
or difficult enuff. It may be worth remarking that it can take exponential time
to put a formula into CNF/DNF.

Miniexercise: What is the CNF of a tautology?

Now could be a good moment to tackle the following question from Sheet 3:

“Establish that the class of all propositional tautologies is the max-
imal propositional logic in the sense that any superset of it that
is a propositional logic (closed under |= and substitution) is trivial
(contains all well-formed formulæ).”

This maximal propositional logic is always called “classical”, and the salient
feature that distinguishes it from most subsystems of interest is axiom T , which
gives us the de Morgan laws, excluded middle (A ∨ ¬A) and Double Negation
(¬¬A→ A).

13.1.1 Resolution Theorem Proving

Worth a very brief mention: a proof system for Classical Propositional Logic.

Every formula is a clause: a disjunction of atomics and negatomics. The
sole rule of inference is “resolution”: from Γ ∨ p and Θ ∨ ¬p infer Γ ∨Θ.
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The method of proof is: Take your axioms, and turn them into CNF, and
thus turn each into a set of clauses. For example, if one of your axioms was
A ←→ B, this has CNF (¬A ∨ B) ∧ (¬B ∨ A) giving the two clauses ¬A ∨ B
and ¬B ∨ A. Thereafter, on being challenged to prove φ, you turn ¬φ into
CNF, which gives a set of clauses. You add these clauses to the clauses you
already have, and you attempt to obtain the empty clause by using the rule of
resolution. The empty clause is the false . . . so if you obtained it you have
deduced the false from ¬φ and thereby proved φ as desired.

This is the logical basis of the programming language PROLOG.

13.2 Predicate Logic begun

The predicate calculus with equality. Examples of first-order lan-
guages and theories. Statement of the completeness theorem; *sketch
of proof*. The compactness theorem and the Löwenheim-Skolem
theorems. Limitations of first-order logic [first-order arithmetic of
reals and naturals not categorical] . Model Theory.

No theorems in this first lecture, or two lectures. A few definitions and lots
of culture.

Explain the syntax before anything else

DEFINITION 26
Predicate/Relation symbol
‘=’ is a reserved word
arity
function symbol
constant symbol
atomic formula
quantifier

13.3 The Syntax of First-order Logic

All the apparatus for constructing formulæ in propositional logic works too in
this new context: If A and B are formulæ so are A ∨B, A ∧B, ¬A and so on. There is really

an abuse of
notation here:
we should use
quasi-quotes
. . .

However we now have new ways of creating formulæ, new gadgets which we had
better spell out:

13.3.1 Constants and variables

Constants tend to be lower-case letters at the start of the Roman alphabet (‘a’,
‘b’ . . . ) and variables tend to be lower-case letters at the end of the alphabet
(‘x’, ‘y’, ‘z’ . . . ). Since we tend to run out of letters we often enrich them with
subscripts to obtain a larger supply: ‘x1’ etc.

36



13.3.2 Predicate letters

These are upper-case letters from the Roman alphabet, usually from the early
part: ‘F ’ ‘G’ . . . . They are called predicate letters because they arise from a
programme of formalising reasoning about predicates and predication. ‘F (x, y)’
could have arisen from ‘x is fighting y’. Each predicate letter has a particular
number of terms that it expects; this is the arity of the letter. Unary predicates
have one argument, binary predicates have two; n-ary have n. ‘loves’ has arity
2 (it is binary) ‘sits-on’ is binary too. If we feed it the correct number of terms—
so we have an expression like F (x, y)—we call the result an atomic formula.

The equality symbol ‘=’ is a very special predicate letter: you are not
allowed to reinterpret it the way you can reinterpret other predicate letters. The
Information Technology fraternity say of strings that cannot be assigned mean-
ings by the user that they are reserved; elsewhere such strings are said to be
part of the logical vocabulary. The equality symbol ‘=’ is the only rela-
tion symbol that is reserved. In this respect it behaves like ‘∧’ and ‘∀’ and the
connectives, all of which are reserved in this sense.

Similarly arity of functions. [say a bit more about this]
Atomic formulæ can be treated the way we treated literals in propositional

logic: we can combine them together by using ‘∧’ ‘∨’ and the other connectives.

13.3.3 Quantifiers

Finally we can bind variables with quantifiers. There are two: ∃ and ∀. We
can write things like

(∀x)F (x): Everything is a frog;
(∀x)(∃y)L(x, y) Everybody loves someone

The syntax for quantifiers is variable-preceded-by quantifier enclosed in brack-
ets, followed by stuff inside brackets:

(∃x)(. . .) and (∀y)(. . .)

We sometimes omit the pair of brackets to the right of the quantifier when no
ambiguity is caused thereby.

The difference between variables and constants is that you can bind variables
with quantifiers, but you can’t bind constants. The meaning of a constant is
fixed. Beware! This does not mean that constants are reserved words! The
constant ‘a’ can denote anything the user wants it to denote, it doesn’t wander
around like the denotation of a variable such as ‘x’. Confusingly that’s not to say
that there are no reserved constants; there are plenty in formalised mathematics,
the numerals ‘0’, ‘1’ . . . for starters.

For example, in a formula like

(∀x)(F (x)→ G(x))
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the letter ‘x’ is a variable: you can tell because it is bound by the universal
quantifier. The letter ‘F ’ is not a variable, but a predicate letter. It is not
bound by a quantifier, and cannot be: the syntax forbids it. In a first-order
language you are not allowed to treat predicate letters as variables: you may not
bind them with quantifiers. Binding predicate letters with quantifiers (treating
them as variables) is the tell-tale sign of second-order Logic.

We also have

13.3.4 Function letters

These are lower-case Roman letters, typically ‘f ’, ‘g’, ‘h’ . . . . We apply them
to variables and constants, and this gives us terms: f(x), g(a, y) and suchlike.
In fact we can even apply them to terms: f(g(a, y)), g(f(g(a, y), x)) and so
on. So a term is either a variable or a constant or something built up from
variables-and-constants by means of function letters.

Quantifiers (mention cofinite quantifier for Analysis and “there is an odd
number of”—proof that there is no largest prime congruent to 3 mod 4). Men-
tion duality of ∃ and ∀ in the sense of question (v) on sheet 2.

Difference between 1st and 2nd order theories.

DEFINITION 27 In second-order languages you are allowed quantifiers over
function symbols and predicate letters.

Topology is a second-order concept.
Complete ordered fields is a 2nd order theory. Simple group.
Possibility of many-sorted theories—not the same!

14 Lecture 14

Bear in mind that, whatever your kit of relation symbols, function symbols
etc etc is, the subformula relation between the formulæ you get is going to be
wellfounded and you can perform inductions and recursions on it.

For people trying to get entirely straight in their minds what a first-order
formula is, examples like the following can be quite confusing. (It’s the answer
to a question on a 1B compsci example sheet)

(∃x1 . . . xn)(
∧

1≤i 6=j≤n

xi 6= xj) (H)

The example sheet question asked for a first-order sentence that is true only
in structures with at least n distinct inhabitants.

In a straightforward official sense this sentence (H) is not first-order, in that
the recursions that generate first-order formulæ do not output it. For one thing,
it exploits the fact that the variables have internal structure, and the ‘

∧
’ is a
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binder that—in some sense—quantifies over the subscripts on the variables. But
for all that it’s not second-order either.

My take on this is that (H) is (obviously) not literally a sentence in a first-
order language, tho’ one could perhaps think of it as a program that, when
provided with a numeral as input, outputs a genuine first-order sentence. Which
first-order sentence you get will of course depend on the numeral you gave it.
Alternatively you can think of it as a uniform parametrised description (in a
metalanguage) of an infinite family of first-order sentences. That’s probably
the simplest way to cope with this kind of slangy mathematical shorthand. It
is probably safe to think of formulæ like (H) as first-order, if only by courtesy:
trying to spice up the definition of first-order formula so that (H) becomes a
first-order formula would be a very messy exercise.

DEFINITION 28

Signature: a structure is a set (‘carrier set’ better than ‘domain’) with knobs
on. Languages have signatures too. A structure is a structure “for” a language
iff they have the same signature.

A substructure of the structure M is a subset of the carrier set of M equipped
with the same knobs and closed under the relevant operations.

Reducts/expansions

We need the concept of signature for basic sense-making reasons. It doesn’t
make sense to ask whether a formula φ is true in a structure M unless all the
gadgets in φ appear also in M.

Typically signatures tend to be finite. It is true that sometimes, for special
reasons, one expands a structure to one with infinitely many constant symbols.
In fact we do this in theorem 16.

I try to to use upper-case FRAKTUR font for variables ranging over struc-
tures, but it doesn’t come out very well on a blackboard! I will write the carrier
set of the structure M as M , the corresponding upper-case roman letter. et these in the

right orderL(T ), for T a theory.

14.1 Axioms

This section will be very short; since we are not going to spend much time
actually deducing theorems of LPC we are not going to be very concerned about
what the axioms are. In any case, the details of the proof of the completeness
theorem do not seem to be very sensitive to one’s choice of axioms.

I have copied the following from PTJ’s book, and i provide them only for
the sake of completeness.

We need the concept of a free variable. Brief chat.

((∀x)p)→ p[t/x])

where p is a formula with ‘x’ free in it, and t is any term with no free occurrences
of ‘x’
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(∀x)(p→ q)→ (p→ (∀x)q)

(‘x’ not free in p)

(∀x)(x = x)

(∀xy)(x = y → p→ p[y/x])

p any formula with x

My proof of the completeness theorem will also use the rules:
Universal Generalisation: if we have proved φ(x) with ‘x’ free, then we

have proved ∀xφ(x). (“Let x be arbitrary . . . ”)
and a rule that says: if we have a proof of F (a) for some ‘a’ and a proof of

(∃x)(F (x))→ p then we have a proof of p.

14.2 Semantics

In this section we develop the ideas of truth and validity (which we first saw in
the case of propositional logic) in the rather more complex setting of predicate
logic.

What we will give is—for each language L—a definition of what it is for a
formula of L to be true in a structure-for-L

The first thing we need is the concept of a signature from definition 28:
for a formula φ to have a prayer of being true in a structure M, the signature
of the language that φ belongs to must be the same as the signature of M.
It simply does not make sense to ask whether or not the transitivity axiom
(∀xyz)(x < y ∧ y < z. → x < z) is true in a structure that has no binary
relation in it.

First we need to decide what our carrier set is to be. Next we need the
concept of an interpretation. An interpretation is the thing that married up
the gadgets in the signature at the structure with the gadgets in the signature
in the language. More formally it is a function I assigning to each predicate
letter, function letter and constant in the language of φ a subset of Mn, or a
function Mk →M , or element of M mutatis mutandis. That is to say, to each
syntactic device in the language of φ, the interpretation assigns a component of
M of the appropriate arity.

For example, one can interpret the language of arithmetic by determining
that the “domain of discourse” (the carrier set) is to be IN, the set of natural
numbers, and that the interpretation of the symbol ‘≤’ will be the set of all
pairs 〈x, y〉 of natural numbers where x is less than or equal to y, and so on

We have now equipped the language with an interpretation so we know what
the symbols mean, but not what the values of the variables are. In other words,
settling on an interpretation has enabled us to reach the position from which
we started when doing propositional logic. It’s rather like the position we are
in when contemplating a computer program but not yet running it. When we
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run it we have a concept of instantaneous state of the program: these states
(snapshots) are allocations of values to the program variables. Let us formalise
a concept of state.

A finite assignment function is a finite (partial) function from variables
in L to M , the carrier set of M. These will play a rôle analogous to the rôle of
valuations in propositional calculus. I have (see above) carefully arranged that
all our variables are orthographically of the form xi for some index i, so we can
think of our assignment function f as being defined either on variables or on
indices, since they are identical up to 1-1 correspondence. It is probably better
practice to think of the assignment functions as assigning elements of M to
the indices and write “f(i) = . . . ”, since any notation that involved the actual
variables would invite confusion with the much more familiar “f(xi) = . . . ”,
where f would have to be a function defined on the things that the variables
range over.

Next we define what it is for a partial assignment function to satisfy a sen-
tence p (written “sat(f, p)”). We will do this by recursion on the set of formulæ
(which comes equipped with a wellfounded subformula relation that justifies
induction) so naturally we define sat first of all on atomic sentences.

Notice that in
sat(f, xi = xj)

we have a relation between a function and an expression, not a relation between
f and xi and xj . That is to say that we wish to mention the variables (talk
about them) rather than use them (to talk about what they point to). This
contrast is referred to as the use-mention distinction.6 This is usually made
clear by putting quotation marks of some kind round the expressions to make
it clear that we are mentioning them but not using them. Now precisely what
kind of quotation mark is a good question. Our first clause will be something
like

sat(f, ‘xi = xj ’) iffdf f(i) = f(j). (1)

But how much like? Notice that, as it stands, 1 contains a name of the
expression which follows the next colon: xi = xj . Once we have put quotation
marks round this, the i and j have ceased to behave like variables (they were
variables taking indices as values) because quotation is a referentially opaque
context.

A context is referentially opaque if two names for the same thing cannot
be swapped within it while preserving truth. Quotation is referentially opaque
because when we substitute one of the two names for Dr. Jekyll/Mr. Hyde for
the other in

‘Jekyll’ has six letters

we obtain the falsehood

‘Hyde’ has six letters

6It has been said that the difference between logicians and mathematicians is that logicians
understand the use-mention distinction.
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even though Jekyll and Hyde are the same person. The intuition behind the ter-
minology is that one cannot “see through” the quotation marks to the thing(s)
pointed to by the words ‘Jekyll’ and ‘Hyde’, so one cannot tell that they are
the same. There are other important contexts that are referentially opaque:
belief, for example. I might have different beliefs about a single object when it
is identified by different names, and these beliefs might conflict.

But we still want the ‘i’ and ‘j’ to be variables, because we want the content
of clause 1 to read, in English, something like: “for any variables i and j, we
will say that f satisfies the expression whose first and fourth letters are ‘x’,
whose third and fifth are i and j, respectively and whose middle letter is ‘=’,
iff f(i) = f(j)”. It is absolutely crucial that in the piece of quoted English
text ‘x’ and ‘=’ appear with single quotation marks round them while ‘i’ and
‘j’ do not. Formula (1) does not capture this feature. To correct this Quine
invented a new notational device in (1962), which he called “corners” and which
are nowadays known as “Quine quotes” (or “quasi-quotes”), which operate as
follows: the expression after the next colon:

pxi = xjq

being an occurrence of ‘xi = xj ’ enclosed in Quine quotes is an expression that
does not, as it stands, name anything. However, i and j are variables taking
natural numbers as values, so that whenever we put constants (numerals) in
place of i and j it turns into an expression that will name the result of deleting
the quasi-quotes. This could also be put by calling it a variable name.

A good way to think of quasi-quotes is not as a funny kind of quotation
mark—for quotation is referentially opaque and quasi-quotation is referentially
transparent—but rather as a kind of diacritic, not unlike the LATEX commands
I am using to write these notes. Within a body of text enclosed by a pair of
quasi-quotes, the symbols ‘∧’, ‘∨’ and so on, do not have their normal function
of composing expressions but instead compose names of expressions. This also
means that Greek letters within the scope of quasi-quotes are not dummies for
expressions or abbreviations of expressions but are variables that range over
expressions (not sets, or natural numbers). Otherwise, if we think of them as a
kind of funny quotation mark, it is a bit disconcerting to find that—as Quine
points out—pµq is just µ (if µ is an expression with no internal structure). The
interested reader is advised to read pages 33-37 of Quine’s Mathematical Logic,
where this device is introduced.

It might have been easier to have a new suite of operators that combine
names of formulæ to get names of new formulæ so that, as it might be, putting
‘&’ between the names of two formulæ gave us a name of the conjunction of the
two formulæ named. However, that uses up a whole font of characters, and it
is certainly more economical, if not actually clearer, to use corners instead.

Once we have got that straight we can declare the following recursion, where
‘α’ and ‘β’ are variables taking expressions as values.

DEFINITION 29 First the base cases, for atomic fomulæ
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sat(f, pxi = xjq) iff f(i) = f(j);
sat(f, pxi ∈ xjq) iff f(i) ∈ f(j).

Then the inductive steps
if sat(f, α) and sat(f, β), then sat(f, pα ∧ βq);
if sat(f, α) or sat(f, β), then sat(f, pα ∨ βq);
if for no g ⊇ f does sat(g, α) hold, then sat(f, p¬αq);
if there is some g ⊇ f such that sat(g, pF (xi)q), then sat(f, p(∃xi)(F (xi))q);
if for every g ⊇ f with i ∈ dom(g), sat(g, pF (xi)q), then sat(f, p(∀xi)(F (xi))q);

Then we say that φ is true in M, written M |= φ iff sat(⊥, φ), where ⊥ is
the empty partial assignment function. Finally, a formula is valid iff it is true
in every interpretation.

14.3 Completeness theorem for LPC: the set of valid sen-
tences is semidecidable

14.3.1 ∈-terms

Suppose T ` (∃x)(F (x)). There is nothing to stop us adding to L(T ) a new
constant symbol ‘a’ and adding to T an axiom F (a). Clearly the new theory
will be consistent if T was. Why is this? Suppose it weren’t, then we would
have a deduction of ⊥ from F (a). But T also proves (∃x)(F (x)), so we can do
a ∃-elimination to have a proof of ⊥ in T . But T was consistent.

Notice that nothing about the letter ‘a’ that we are using as this constant
tells us that a is a thing which is F . We could have written the constant ‘aF ’
or something suggestive like that. Strictly it shouldn’t matter: variables and
constant symbols do not have any internal structure that is visible to the lan-
guage, and the ‘F ’ subscript provides a kind of spy-window available to anyone
mentioning the language, but not to anyone merely using it. The possibility of
writing out novel constants in suggestive ways like this will be useful later.

Check for yourself that (∃x)(∀y)(F (y) → F (x)) is always true. It tells us
that for any F with one free variable we can invent a constant whose job it is
to denote an object which has property F as long as anything does. If there is
indeed a thing which has F then this constant can denote one of them, and as
long as it does we are all right. If there isn’t such a thing then it doesn’t matter
what the constant denotes.

This constant is often written (εx)F (x). Since it points to something that
has F as long as there is something that has F , we can see that

(∃x)(F (x)) and F ((εx)F (x))

are logically equivalent (true in the same structures). So we have two rules

(∃x)(F (x)) and F ((εx)F (x))
F ((εx)F (x)) (∃x)(F (x))
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15 Lecture 15

THEOREM 11 Every consistent theory in a countable language has a model.

Proof:
Let T0 be a consistent theory in a countable language L(T1).
We do the following things

1. Add axioms to T0 to obtain a complete extension; Explain Com-
plete Exten-
sion2. Add ε terms to the language.

We execute the task in (1) the way we proved theorem 10—The Adequacy
Theorem,

Notice that when we add ε-terms to the language we add new formulæ: if
‘(εx)F (x))’ is a new ε-term we have just added then ‘G((εx)F (x)))’ is a new
formula, and T0 doesn’t tell us whether it is to be true or to be false. That
is to say L(T0) doesn’t contain ‘(εx)F (x)’ or ‘G((εx)F (x)))’. Let L(T1) be
the language obtained by adding to L(T1) the expressions like ‘(εx)F (x)’ and
‘G((εx)F (x)))’.

We extend T0 to a new theory in L(T1) that decides all these new formulæ
we have added. This gives us a new theory, which we will—of course—call T1.
Repeat and take the union of all the theories Ti we obtain in this way: call it
T∞. (Easy to see that all the Ti are consistent—we prove this by induction).

It’s worth thinking about what sort of formulæ we generate. We added terms
like (εx)(F (x)) to the language of T1. Notice that if H is a two-place predicate
in L(T ) then we will find ourselves inventing the term (εy)H(y, (εx)F (x)) which
is a term of—one might say—depth 2. And there will be terms of depth 3, 4
and so on as we persist with this process. All atomic questions about ε terms
of depth n are answered in Tn+1.

T∞ is a theory in a language L∞, and it will be complete. The model M for
T∞ will be the structure whose carrier set is the set of ε terms we have generated
en route7. All questions about relations between the terms in the domain are
answered by T∞. The interpretation of an n-ary relation symbol ‘R’ from L(T )
will be the set of all tuple 〈t1 . . . tn〉 such that T−∞ ` R(t1 . . . tn) andf functions
symbols similarly.

Does this make M into a model of T? We will establish the following:

LEMMA 6 M |= φ(t1, . . . tn) iff T∞ ` φ(t1, . . . tn)

Proof: We do this by induction on the complexity of φ. When φ is atomic this
is achieved by stipulation. The induction step for propositional connectives is
straightforward. (Tho’ for one direction of the ‘∨’ case we need to exploit the
fact that T∞ is complete, so that if it proves A∨B then it proves A or it proves
B.)

7And we really do mean the set of epsilon terms, not the denotations of those terms. . . Our
models really are created entirely out of syntax.
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The remaining step is the induction step for the quantifiers. They are dual,
so we need consider only ∀. We consider only the hard direction (L→ R).

Suppose M |= (∀x)φ(x, t1, . . . tn). Then M |= φ(t0, t1, . . . tn) for all terms t0.
In particular it must satisfy it even when t0 = (εx)(¬φ(x, t1, . . . tn)), which is
to say

M |= φ((εx)(¬φ(x, t1, . . . tn)), t1, . . . tn)

So, by induction hypothesis we must have

T∞ ` φ((εx)(¬φ(x, t1, . . . tn)), t1, . . . tn)

whence of course T∞ ` (∀x)φ(x, t1, . . . tn).

This completes the proof of theorem 11. Observe the essential rôle played
by the ε terms.

This is a result of fundamental importance. Any theory that is not actually
self-contradictory is a description of something. It’s important that this holds
only for first-order logic. It does not work for second-order logic, and this fact
is often overlooked. See below, section 16.2.1.

COROLLARY 10 Compactness for first-order logic.
If T is a first-order theory all of whose finite fragments have models then T

has a model.

Proof:
Such a T is obviously consistent (proves no contradictions) so, by theorem

11 it has a model.

This theorem looks cute and it has many, many, consequences, but most of
them are unattractive, and say things like “first-order logic cannot capture this
concept”. The most striking of them is that there is no first-order way of saying
what a natural number is.

THEOREM 12 There are “nonstandard” models of arithmetic.

Proof:
What does that mean? Let T be a first-order theory of arithemtic of IN,

with +, ×, =, anything you like, really. Then it has a model which is not the
“standard” model. Add a constant symbol—‘*’ (I don’t want to use anything
standard and suggestive like ‘ω’ or ‘∞’.) Then we add axioms for ‘*’ to say
∗ 6= 0, ∗ 6= 1, ∗ 6= 1 + 1 . . . . Clearly any finite subset of T with these new
axioms is consistent as long as T was, and so has a model.

To be specific (and this might help you get your thoughts about interpreta-
tions in order), the first n of these new axioms will tell you only that * must be
at least n + 1. That is to say, for each n, there is an interpretation In of the
language of arithmetic which interprets that language into the standard model
and In(‘*’) = n+ 1. I treats ‘0’, ‘1’ etc as usual.
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This technique is used on an industrial scale to show that certain theories
are not axiomatisable, by which we mean (as in this case). . .

“There is no first-order theory whose models are precisely the standard
model of Arithmetic.”

In general we prove things like
“There is no first order theory the class of whose models is the class K”
where K is something natural like (for example) the singleton of the standard

model of arithmetic, or the class of all simple groups, or the class of all fields of
finite characteristic.

This train of thought is a rich source of example sheet questions and old
Tripos questions.

15.1 Decidability

Propositional logic is decidable: there is an algorithm that tells us whether or
not a candidate formula is a tautology. First-order Logic is not decidable in
this sense. It’s semidecidable because it is axiomatisable: every valid sentence
is spat out by our axiomatisation, so if a sentence is valid we learn this fact in
finite time. What about if it isn’t valid? We would learn that—too—in finite
time if every falsifiable first-order formula had a finite countermodel (there are
only countably many possible such countermodels and we can wellorder them in
order type ω and examine them one by one) but that is not true (consider the
negation of the theory DLO of dense linear orders, which we encounter below.
It is falsifiable, but the only structures that falsify it are infinite!) We have no
time to prove that in this course, but a special case is tractable. A question on
sheet 3 invites the reader to show that the monadic fragment of first-order logic
(one-place predicate letters only, no function symbols) is decidable.

16 Lecture 16

16.1 The Skolem-Löwenheim Theorems

Notice that the proof of theorem 11 gives us something slightly more than I have
claimed. If the consistent theory T we started with was a theory in a countable
language then the model we obtain by the above method is also countable. It’s
worth recording this fact:

COROLLARY 11
Every consistent theory in a countable (first-order) language has a countable
model.

We can actually prove something more general. Think about what happens
to the construction in the proof of theorem 11 if our language has uncountably
many constant symbols or function symbols or predicate letters. The proof will
procede as before by wellordering the language, and we will build uncountably
many ε-terms. Clearly the set of terms we generate will be no bigger than the
size of the language. This is the
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THEOREM 13 Downward Skolem-Löwenheim
A consistent theory in a language L has a model of size |L| at most.

THEOREM 14 Upward Skolem-Löwenheim
Any theory with infinite models has arbitrarily large models.

Proof: Add lots of constants and appeal to compactness.

Actually—tho’ i didn’t mention this in lectures and I should’ve done—we
can do significantly better. The point is that theorem 13 tells us that if we add
enough constants to ensure that the model is of size at least κ, then the model
will be no bigger than κ.

This will be amended in next year’s edition!

16.2 Categoricity

DEFINITION 30

A theory is categorical iff it has only one model up to isomorphism;
A theory is categorical-in-κ if it has precisely one model of size κ up to

isomorphism.

No interesting examples of categorical first-order theories: they all have only
finite models (indeed only one finite model!)

Plenty of examples of first-order theories categorical-in-ℵ0. Such theories are
always called countably categorical. Here’s the standard example, the theory of
dense linear order without endpoints. Insert DLO

axioms here;
supply back-
and-forth
proof of cat-
egoricity of
DLO. This
was done in
lectures but
not written
up.

Now might be a good moment to look at question (vi) on sheet 3.

“Write down axioms for a first-order theory T with = plus a single one-place
function symbol f that says that f is bijective and that for no n and no x do we have
fn(x) = x.

(a) Is T finitely axiomatisable?
(b) How many countable models does T have (up to isomorphism)?

(c) How many models of cardinality 2ℵ0 does it have (up to isomorphism)?

(You may assume that the continuum is not the union of fewer than 2ℵ0

countable sets, a fact whose proof—were you to attempt it—would need AC.)
(d) Let κ be an uncountable aleph. How many models does T have of size κ?”

16.2.1 Failure of Completeness of Second-order Logic

It is a truth universally acknowledged among mathematicians—tho’ not actually
widely articulated—that freedom from contradiction guarantees existence. The
completeness theorem ensures that for first-order theories. Sadly it is not true
for second-order theories. We will exhibit a consistent second-order theory with
no models.
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We start with second-order arithmetic. It is a standard example of a cate-
gorical theory.

The fact that second-order arithmetic is categorical is often bandied about
but rarely proved in detail, so i thought i’d do it here, so we can get our thoughts
in order on this troublesome matter. In any case it is an essential lemma for
the proof of remark 11.

First we need a few words about the difference between semantics for second-
order theories and first-order theories. A second order theory looks syntactically
exactly like a two-sorted first-order theory with a domain of (as it might be)
wombats and another domain of set-of-wombats. The point about a second-
order theory is that the second domain has to be exactly the power set of the
first: it must contain all subsets of the first domain.

REMARK 10 The second-order arithmetic of IN is categorical.

Proof:
Formally we have a two-sorted language, with lower-case variables to range

over natural numbers and upper-case variables to range over sets of natural
numbers. It has the usual axioms about addition and multiplication being com-
mutative associative etc, how they distribute, how everything except 0 has a
unique predecessor and so on. It will have a set existence axiom saying, for
any expression φ(~Y , ~y, n) in this language, that (∀~Y )(∀~y)(∃X)(∀n)(n ∈ X ←→
φ(~Y , ~y, n)). To capture induction we have an axiom for the least number prin-
ciple: (∀X)(X 6= ∅ → (∃n ∈ X)(∀y ∈ X)(n ≤ y)).

That should do the trick.

This theory is two-sorted: any interpretation I for this theory must supply
two domains, one for the lower case (first-order) variables to range over, and
the other for the higher-order variables to range over. The fact that this is to
be a second-order theory means that, for any interpretation I for this theory,
the range of the upper case variables is precisely the power set of the range
of the lower case variables. For a two-sorted first-order theory we do not have
this restriction. This means that there are fewer interpretations of this theory
thought of as second-order rather than two-sorted first-order and makes it less
surprising that it should be categorical.

So let us place ourselves within some theory that is equipped to discuss
models of this theory. The aim is to show that any two are isomorphic. Suppose
we have two such models, A and B with carrier sets A-with-P(A) and B-with-
P(B). We want to define a bijection between A and B. Once we have that
it will lift to a bijection between P(A) and P(B) which will (in fact) be an
isomorphism.

Clearly we match up the two zeros—0A and 0B—and we want to continue
by means of a recursion in the metalanguage. The bijection we want is going to
be

⋂
{R ⊆ A×B : 〈0A, 0B〉 ∈ R∧(∀a ∈ A)(∀b ∈ B)(R“{a′ ∈ A : a′ <A a} = {b′ ∈ B : b′ <B b} → 〈a, b〉 ∈ R}
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We want this to be defined on the whole of A and to cover the whole of
B. Suppose not, and consider the subset X ⊆ A consisting of those things not
covered by R. Crucially we now need the range of the upper case variables in
A to the the set of all subsets of the range of the lower case variables, so this
set X really is an element of the model A and therefore it it must have a least
element by the least number principle. But then this least element will have
been married off to a member of B by the recursion.

Similarly we argue that the whole of B must be covered.

We are now in a position to exhibit a consistent second-order theory with
no model.

REMARK 11 There is a consistent extension of second-order arithmetic with
no model.

Proof: Add a new constant symbol—‘*’—to the language for second-order arith-
metic, just as we did in the proof of theorem 12. Then we add to second order
arithmetic axioms for ‘*’ to say ∗ 6= 0, ∗ 6= 1, ∗ 6= 1 + 1 . . . . Clearly any finite
subset of T with these new axioms is consistent as long as T was. However any
model of this new theory must have an element denoted by ‘*’, and it can’t.

16.3 Results related to completeness, exploiting complete-
ness

16.3.1 Prenex Normal Form and quantifier-counting

DEFINITION 31 A formula is in prenex normal form if it is of the form
string-of-quantifers followed by stuff containing no quantifiers. All quantifiers
hae been “pulled to the front” or “exported”.

THEOREM 15 Every formula is equivalent to one in PNF.

Sketch of proof:
Quantifiers can be “pulled to the front”. (∀x)(A(x)) ∧ (∀y)(B(y)) is clearly

equivalent to (∀x)(∀y)(A(x)∧B(y)), and there is an analogous equation for ‘∃’.
Less obvious that
(∃x)(A(x))→ p is equivalent to (∀x)(A(x)→ p).

The significance of this is that it gives us a nice measure of the logical
complexity of a formula: count the length of the quantifier prefix once it’s in
PNF. Better, count the number of quantifier blocks in the prefix. There are
theorems connecting the quantifier prefixes that you find in the axioms of a
theory T with the operations that the class of models of T is closed under. We
shall prove the simplest of them to give a flavour.
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DEFINITION 32 A sentence is “universal” iff it is in PNF and its quantifier
prefix consists entirely of universal quantifiers. By a natural extension we say a
theory is “universal” iff, once you put its axioms into PNF, their quantifier pre-
fixes consist entirely of universal quantifiers. We define “universal-existential”
sentences and theories8 similarly as theories all of whose axioms, when in PNF
have a block of universal quantifiers followed by a block of existential quantifiers,
and so on.

DEFINITION 33 The diagram DM of a structure M is the theory obtained
by expanding M by giving names to every m ∈M , and collecting all true atomic
assertions about them.

17 Lecture 17: The Same Continued

LEMMA 7 For any consistent theory T and any model M of T∀, the set of
universal consequences of T , the theory T ∪DM is consistent.

Proof:
Let M be a model of T∀, with carrier set M . Add to L(T ) names for every

member of M . Add to T all the (quantifier-free) assertions about the new
constants that M believes to be true. This theory is T ∪ DM. We want this
theory to be consistent. How might it not be? Well, if it isn’t, there must be an
inconsistency to be deduced from a conjunction ψ of finitely many of the new
axioms. This rogue ψ mentions finitely many of the new constants. We have a
proof of ¬ψ from T . T knows nothing about these new constants, so clearly we
must have a UG proof of (∀~x)¬ψ. But this would contradict the fact that M
satisfies every universal consequence of T .

THEOREM 16
T is universal iff every substructure of a model of T is a model of T .

Proof:
L → R is easy. We prove only the hard direction.

Suppose that T is a theory such that every substructure of a model of T is
also a model of T . Let M be an arbitrary model of T∀. We will show that it
must be a model of T . We know already from the foregoing that the theory
T ∪DM is consistent, and so it must have a model—M∗, say. M∗ is a model of
T , and M is a submodel of M∗ and therefore (by assumption on T ) a model of
T—as desired.

But all we knew about M was that it was a model of the universal conse-
quences of T . So any old M that was a model of the universal consequences of
T is a model of T . So T is axiomatised by its universal consequences.

8PTJ calls such theories “inductive” in his lectures.
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There are lots of theorems with this flavour: “The class of models of T is
closed under operation burble iff T has an axiomatisation satisfying syntactic
condition blah”

But wait! If we have the axiom of choice then, whenever we have an axiom
that says (∀y)(∃x)(F (x, y)) then we can invent a function symbol and an axiom
that says (∀x)(F (x, f(x))). In fact we don’t even need the axiom of choice. [you
might like to think about why, and have a look at question (xi) on Sheet 3] If we
do this often enough we can invent enough function symbols to turn any theory
we like into a universal theory, and then all its substructures are also models of
it!

Yes you can, but when you add new function symbols you change your notion
of substructure! See question (iv) on Sheet 3.

The next theorem after theorem 16 will say that a theory if universal-
existential iff the class of its models, partially ordered by isomorphic embed-
dability, is directed complete. One direction is easy—you might even like to
prove it—but the converse (The Chang- Loś-Suszko lemma) is hard. Indeed i
don’t know how to pronounce it!

17.1 Omitting Types

You were set up for this topic by question (xiii) on sheet 3. That concerned
types for propositional logic, which is a reasonable exercise tho’ not actually
examinable. There is an analogous result for predicate logic but it much harder
and of course is not examinable. However we do need to engage with the ideas.

A type in a first-order language L is a (usually) infinite set of formulæ. A
type Σ is an n-type if the formulæ in it all have n free variables.

A model M realises a type Σ if M |= every σ ∈ Σ. Otherwise v omits Σ.
We say a theory T locally omits an n-type Σ if, whenever φ is a formula with
n free variables such that T proves (∀~x)(φ(~x) → σ(~x)) for every σ ∈ Σ, then
T ` (∀~x)(¬φ(~x)).

The omitting types theorem says that if T locally omits a type Σ, then it
has a model omitting Σ. I mention this only to put the standard model of
arithmetic into context. The standard model omits the type

{x 6= 0; x 6= 1; x 6= 1 + 1; x 6= 1 + 1 + 1 . . .}

17.2 Some Set Theory

“Set theory as a first-order theory; the axioms of ZF set theory.
Transitive closures, epsilon-induction and epsilon-recursion. Well-
founded relations. Mostowski’s collapsing theorem. The rank func-
tion and the von Neumann hierarchy.”

We give a historically motivated introduction.

51



Points at infinity are concretised as pencils of lines; imaginary divisors con-
cretised as ideals (= sets). Here is the standard example: Z[

√
−5] is sold to us

as the substructure of C generated by Z and
√
−5.

In Z[
√
−5] we can factorise 6 as 2 · 3 and also as (1 +

√
−5) · (1−

√
−5) (we

can compute these products in C) and all these four factors are irreducible in
Z[
√
−5].

So we invent “lower” factors—four of them in fact. One to be a common
factor of 2 and 1 +

√
−5, a second to be a common factor of 2 and 1 −

√
−5,

the third to be a common factor of 3 and 1 +
√
−5, and finally the fourth to be

a common factor of 3 and 1 −
√
−5. How are we to concretise these ficticious

factors? The key observation is that, although we (think) we do not know what
these new roots are, we know exactly what their nontrivial multiples are, and
that gives us a way in.

Different ideal divisors will correspond to different sets, so we concretise the
ideal divisor of 3 and 1 +

√
−5 as that set: {a · 3 + b · (1 +

√
−5) : a, b ∈ Z}.

Integers and rationals similarly.
Also equivalence classes of Cauchy sequences as reals.
We need this beco’s—as TWK sez—prima facie there seems to be a question

about whether or not it is consistent to assume that natural numbers have
additive inverses, that integers have multiplicative inverses and that all holes in
the rationals can be simultaneously filled.

OK, so the set of multiples of the ideal divisor exists as a comprehended
object, some suitably concrete object-in-extension. Ditto the pencil-of-lines. So ‘extension”?
there is an unproblematic object-in-extension corresponding to the two intension
(ideal divisor, point at infinity). Does this always work? Does every set-in-
intension have a corresponding set-in-extension? No! Russell was able to show
this, using very old ideas going back at least to the Greeks. Russell’s paradox.
It’s an interesting object proof-theoretically but for us it’s just a pain. We are
going to have to come up with some subset of the set of axioms of näıve set
theory plus a good story.

There are various subsets one can use, but—altho’ I am an expert on one
particular one, due to Quine—i am not going to tell you about that subset,
but talk only about the mainstream version which everyone uses. It’s known as
Zermelo-Fraenkel Set theory or ‘ZF’ for short.

A guiding principle in trying to suss out the most suitable subset to use is
the recurring thought that set theory started off (as outlined above) as a way
of concretising abstract mathematical objects. Thus the axioms of set theory
arose largely out of a desire to manipulate sets and prove the existence of such
sets as might serve as simulacra for mathematical objects. Thus the axioms
largely consist of assertions that sets can be manipulated in certain ways, and
that the world of sets is closed under certain operations.

Most set theories do not have axioms giving us sets that are interesting in
their own right—such as the set of all sets, or the set of all cardinals. . . largely
because the existence of such sets is not compatible with axioms saying that

52



sets can be manipulated freely. In particular they tend not to be compatible
with separation...

But first we deal with the most fundamental axiom: extensionality.
(∀x, y)(x = y ←→ (∀z)(z ∈ x←→ z ∈ y)).

It’s called ‘extensionality’ because a binary relation R is called ‘extensional’
as long as (∀xy)(x = y ←→ (∀z)(R(z, y)←→ R(z, x))).

(Do not confuse this use of ‘extensional’ with ‘extensional’ meaning ‘truth-
functional’, contrasted with intensional.) The thought behind the axiom of
extensionality is that sets are the datatype with absolutely minimal internal
structure: sets without knobs on. You don’t do anything to their members so
the only way of telling two sets apart is by seeing if they have different members.

Let pursue this idea of concretisation and see what axioms it leads us to.
We concretise functions as sets of ordered pairs so let’s concretise ordered pairs.
We want a total [binary] function pair and two [unary] partial functions fst

and snd (or π1 and π2 if you prefer) s.t.
(∀xy)(fst(pair(x, y)) = x) and
(∀xy)(snd(pair(x, y)) = y).

18 Lecture 18

One that works is

DEFINITION 34 The Wiener-Kuratowski pair
pair(x, y) = {{x}, {x, y}}.
fst(p) =

⋂⋂
p and

snd(p) = the unique member of
⋃
p belonging to exactly one member of p.

x = snd(p)←→ (∃!z)(z ∈ p ∧ x ∈ z).

If ordered pairs are concretised as above, what axioms do we need if we are
to construct and deconstruct them?

Pairing: (∀xy)(∃z)(∀w)(w ∈ z ←→ (w = x ∨ w = y))

Sumset: (∀x)(∃y)(∀z)(z ∈ y ←→ (∃w)(z ∈ w ∧ w ∈ x))

Power set: (∀x)(∃y)(∀z)(z ∈ y ←→ (∀w)(w ∈ z → w ∈ x))

Separation: (∀~y)(∀x)(∃z)(∀w)(w ∈ z ←→ w ∈ x ∧ φ(w, ~y))

I have written these out in primitive notation as far as possible. Set theory
is a first-order theory in the language with just ‘∈’ and ‘=’.

(Think a bit here about our recent proof—remark 10—that second-order
arithmetic is categorical. Go back and check: which axioms did we use?)

Separation implies that there is no universal set, lest we get Russell’s para-
dox.

53



What other axioms are there. . . ? Well, it shouldn’t matter how we concretise
ordered pairs. Let’s try to prove the existence of X × Y (which is a set, after
all, even if it’s not a set of sets) without knowing what an ordered pair is.

For any x ∈ X we consider the function fx : y 7→ 〈x, y〉. Then fx“Y is
just {x} × Y . Consider now the function Fx : x 7→ {x} × Y . Then Fx“X is
{{x} × Y : x ∈ X} and

⋃
of this is just X × Y .

Notice that we have not made any assumptions about what particular object
〈x, y〉 might be for x ∈ X and y ∈ Y . However we have assumed (twice) that
the image of a set in a function is a set. This assumption is the axiom scheme
of replacement.

(If you want to prove the existence of X × Y in the special case where your
ordered pairs are Wiener-Kuratowski you don’t need replacement, tho’ you do
need power set. This is an old example sheet question, and you might like the
try it—it’ll help you to get a feel for set-theoretic manipulation.)

The formulation of the replacement scheme in the language of set theory is
slightly fiddly, because we do not want variables ranging over functions:

(∀y)(∃!x)(φ(y, x))→ (∀Y )(∃X)(∀x)(x ∈ X ←→ (∃y ∈ Y )(φ(y, x)))

Of course this can be done with parameters, but stating that makes it even
harder to read.

The upper case ‘X’ and ‘Y ’ are not second-order variables; i’m using upper
case to make it easier to read. [There is actually a converse to this: if X × Y The image of a

set in a class is
a set

always exists however you implement pairing and unpairing then the axiom
scheme of replacement follows. It’s an exercise on Sheet 4.]

Now that we have replacement various things become possible. We can give
a proper definition of transitive closure and we can construct the cumulative
hierarchy.

Let us take these in turn.

18.1 Transitive Closures and Transitive Sets

The justification I gave of R-induction on the assumption that R is wellfounded
was an informal one. Now that we are doing set theory formally the time has
come to formally deduceR-induction from the assumption thatR is wellfounded.

Suppose (∀x)(((∀y)(R(y, x) → F (y)) → F (x)). Suppose (with a view to
obtaining a contradiction) that ¬F (a) for some a. Naturally we want a to give
rise to a set with no R-minimal element, thereby contradicting wellfoundedness
of R. The obvious candidate is the set {z : R∗(z, a) ∧ ¬F (z)} which is a subset
(so we use separation) of the set {z : R∗(z, a)} of things related to a by R∗ the
transitive closure of R. How are we going to prove that this is a set? If we are
to do it with the axioms we have seen so far we are clearly going to have to use
replacement, as follows. Use the function n 7→ Rn“{a} and take the image of
IN in it; then do

⋃
to the result. The trouble with this is that the ‘n’ is not a

variable in the language. We need a relation φ that relates n to Rn“{a}. We do
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this by saying φ(n,X) if every set that contains 〈n,X〉 and contains 〈m− 1, Y 〉
whenever it contains 〈m,R“Y 〉 also contains 〈0, X〉.

Φ(n,X)←→ (∀A)(〈n,X〉 ∈ A∧(∀m,Y )(〈m,R“Y 〉 ∈ A→ 〈m− 1, Y 〉 ∈ A)→ 〈0, a〉 ∈ A)

It takes a while to get your head round this definition9! This is Quine’s trick.

DEFINITION 35 Transitive closure
The collection

TC(x) =
⋃
n∈IN

(
⋃

nx)

is a set. This set is the Transitive closure of x.
We also say: x is transitive if x ⊆ P(x).

By Quine’s trick we prove that TC(x) is always a set.
Beware overloading of this terminology! (We have “transitive closures” of

relations too!) Evidently TC(x) is the ⊆-least transitive superset of x.

18.2 The Cumulative Hierarchy

DEFINITION 36 The Cumulative Hierarchy
is defined by recursion on the ordinals:

Vα =:
⋃
β<α

P(Vβ).

We need, perhaps, to say a little bit about why this definition is legitimate.
Prima facie there is a worry because we are doing a recursion over all the ordinals
(which is not a set—see corollary 3) rather than merely over an initial segment
of it (which is). It’s OK because the functions we define by recursion on those
initial segments all agree.

We want to be sure that Vα exists for all α. Obviously we want to do an
induction over the ordinals. No problem at successor ordinals, co’s we use Power
set. The justification at limit ordinals needs replacement. We need to take the
image of the collection of ordinals below α in the function γ 7→ Vγ .

Can do no harm to take some time out to think about what the various Vαs
look like. V0 is empty; V1 = {∅}; V2 = {∅, {∅}} . . . . (How big is Vn?). What
does Vω consist of?

We now define a rank function on members of the cumulative hierarchy:

DEFINITION 37 ρ(x) is the least ordinal α such that x ⊆ Vα.

Conway used to say of the rank of a set that it was the set’s birthday.
The alert and suspicious reader will notice that i am using the same letter

‘ρ’ here as in definition 13, and will wonder whether or not this is legitimate. It
is, and i think it is safe to bounce this back to the reader.

9And thanks to Mr Irving of Churchill for spotting the typo.
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(i) We prove by induction on the ordinals that 〈Vα,∈�Vα〉 is a wellfounded
binary structure, so it has a rank function.

(ii) Then we prove that all the rank functions we obtain, for all α, agree.
(iii) Finally we prove that they agree with the other (novel) rank function that

we have just defined in definition 37.

Now is as good a place as any to record the fact that every Vα is transitive. So
every set in the cumulative hierarchy has a transitive closure in the cumulative
hierarchy.

LEMMA 8 (∀α)(Vα ⊆ P(Vα))

Proof:
Of course you do this by induction. I think i can safely leave the details to

the reader.

There is an intimate connection between the cumulative hierarchy and the
concretisation project, to which we now return . . .

We cannot straightforwardly concretise/implement cardinals as equivalence
classes if we have separation beco’s

⋃
α = V whenever α is an equipollence

class, so separation will give us Russell’s paradox.

REMARK 12 If α is an equipollence class (other than {∅}) then
⋃
α = V .

Proof:
Suppose not. Then there is b s.t (∀A ∈ α)(b 6∈ A). Let A be a member of α

(any will do). For any a ∈ A, the set (A ∪ {b}) \ {a} is in bijection with A and
is therefore in α. But then b ∈

⋃
α after all.

COROLLARY 12 The only equipollence class that is a set is {∅}.

In fact something analogous happens for any any equivalence relation ∼ with
a natural global definition: if [X]∼ is an equivalence class then

⋃n
[X]∼ = V for

some small concrete n depending only on ∼. However the details of the proof
depend very sensitively on the definition of the equivalence relation, so we don’t
bother with the details, but just draw the moral: equivalence classes are not
the way to concretise mathematical objects arising from equivalence relations.

However, now that we have the cumulative hierarchy, we are in a position to
solve the problem of implementing objects that arise from equivalence relations.

18.3 Scott’s Trick

DEFINITION 38 Scott’s trick
When trying to concretise/implement a mathematical entity that arises nat-

urally from equivalence classes for an equivalence relation, then instead of [x]∼
the ∼-equivalence class of a set x, we use the collection of things ∼ to x that
are in the cumulative hierarchy and are of minimal rank with that property.
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Thus, if ∼ is an equivalence relation we instantiate the (as it might be,
cardinal) not as the true equivalence class—which might not be available—but
instead as [x]∼ ∩ Vα where α is the least ordinal α s.t. [x]∼ ∩ Vα is nonempty.
Observe that x might not be a member of its (as-it-might-be) cardinal thus
construed!

For this to work we need to be sure that, for all x and all equivalence relations
∼, there is some y in the cumulative hierarchy with y ∼ x. There are various
axioms that deliver this (one of them is the antifoundation axiom of Forti and
Honsell, which you may have heard of: “every set picture is a picture of a unique
set”10) but the simplest way to ensure it is to brutally assume that every set is
in the cumulative hierarchy.

This is one of the various forms of the axiom of foundation.

19 Lecture 19

19.1 The Axiom of Foundation

This axiom takes various forms, and it’s worth taking some time to straighten
them out.

One form is the assertion that every set is wellfounded. What do we mean by
a wellfounded set? We know what a wellfounded relation is, but a wellfounded
set? The most intuitively appealing way to characterise wellfounded sets is to
say that x is a wellfounded set iff there is no ω-sequence 〈xi : i ∈ IN〉 with x = x0
and (∀n ∈ IN)(xi+1 ∈ xi), but this is equivalent to the correct definition only if
we have dependent choice. The correct definition is that x is a wellfounded set
iff ∈�TC({x}) is a wellfounded relation.

So we want an axiom that says that all sets are wellfounded. We can do this
by saying that ∈ is a wellfounded relation, but that’s a bit suspect because the
universe is not a set if foundation holds, so we are cutting off the branch we are
sitting on.

We can adopt a scheme of ∈-induction.

We can say that every set is wellfounded, as above.

There is also the axiom of restriction . . .

The axiom of restriction says (∀x)(∀y)(x ∈ y → (∃z ∈ y)(z ∩ y = ∅)).
“(∃z ∈ y)(z ∩ y = ∅)” sounds a bit more like foundation if you read it as “y has
an ∈-minimal element”. But what about the “(∀x)(∀y)(x ∈ y →” bit? This
harks back to the proof by mathematical induction that every nonempty set of
natural numbers has a <IN-least element. You prove by induction on n that
every subset of IN containing n has a <IN-minimal element.

10A set picture is a digraph (set of ordered pairs) that looks as if it could be the graph of
∈ restricted to a transitive set.
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The axiom of restriction is an attempt to say that every nonempty set has
an ∈-minimal element:

(∀y)(y 6= ∅ → (∃z ∈ y)(z ∩ y = ∅)).

(∀y)((∃x)(x ∈ y)→ (∃z ∈ y)(z ∩ y = ∅)).

By standard manipulation of first-order formulæ this becomes

(∀y)(∀x)(x ∈ y → (∃z ∈ y)(z ∩ y = ∅)).

and then you permuste the quantifiers

(∀x)(∀y)(x ∈ y → (∃z ∈ y)(z ∩ y = ∅)).

and then it appears to say that every x has a certain property, which we call
‘regular’.

This is why the axiom of restriction/foundation is important: by unleashing
Scott’s trick it enables us to always concretise any mathematical entity arising
from an equivalence relation. If we do not have the axiom of foundation then
models can be found in which there are illfounded sets that are not the same
size as any wellfounded set. That would mean, at the very least, that we cannot
use Scott’s trick to implement cardinals.

Thus Scott’s trick in conjunction with the axiom of foundation has
solved the concretisation problem for objects arising from equivalence
relations.

There are still two axioms we haven’t mentioned, at least not in this connec-
tion. One is the axiom of choice, which we saw earlier. The other arises from
the need to implement IN and IR. It’s clear than any set that implements IN
must be infinite, and we have not so far had an axiom that tells us there are
infinite sets and we can no longer postpone postulating them. The axiom of
infinity will tell us that there is an infinite set. It comes in various forms, and if
we have the axiom scheme of replacement and foundation and AC then all the
forms you might think of turn out to be equivalent. One specially fiddly version
that is often seen in the literature is

Axiom of Infinity: (∃x)(∅ ∈ x ∧ (∀y)(y ∈ x→ y ∪ {y} ∈ x))

Quite why it should take this form has something to do with the implemen-
tation of ordinals, to which we now turn.

We can of course use Scott’s trick to implement ordinals but with ordinals
we have an extra trick up our sleeve. Every equivalence class (= abstract or-
dinal) contains a wellordering whose order relation is set membership, and this
wellordering is unique. We prove this using . . .
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19.2 Mostowski Collapse

LEMMA 9 (Mostowski’s collapse lemma)
If 〈X,R〉 is a well-founded structure, then there is a transitive set Y and a

homomorphism f :〈X,R〉 → 〈Y,∈〉.

Proof: We use the theorem about wellfounded induction and recursion, the-
orem 1. Set π(x) := {π(y) : R(y, x)}. The definiens (The RHS) is a set by
replacement.

The desired Y is simply the range of π. Y is transitive because nothing ever
gets put into Y unless all its members have been put in first.

Mostowski collapse shows that every wellfounded structure 〈X,R〉 has a
homomorphism π onto a structure 〈π“X,∈〉 where π“X is a transitive set.

[Explain homomorphism?]
In general there is no reason to expect that the homomorphism π is injective.

It’s simple to give illustrations where it is and also illustrations where it isn’t.
If {y : R(y, x1)} = {y : R(y, x2)} then clearly π(x1) = π(x2). Clearly if there
is no such pair x1 and x2 then π will be injective. Recall from page 52 that in
these circumstances we say that R is extensional. Reflect that the axiom of
extensionality says that ∈ is extensional.

If R is extensional, then no two things in X have the same set of R-
predecessors and so no two things ever get sent to the same thing by π. This
give us the special case:

If 〈X,R〉 is a well-founded extensional structure, then there is a unique
transitive set Y and a unique isomorphism between 〈X,R〉 and 〈Y,∈〉.

Mostowski collapse is a crucial lemma in the study of wellfounded sets, and
it gets used all the time, but we mustn’t lose track of the fact that we are
encountering it in the context of a story about how to implement ordinals. So we
ask: What happens in the cases where 〈X,R〉 is a wellordering? Wellorders are
total orders so distinct things have distinct predecessors so the homomorphism
is an isomorphism.

Thus every wellordering is isomorphic to a wellordering whose order relation
is ∈! And this wellordering is of course unique. [Why?] We then take this
canonical representative to be our ordinal.

DEFINITION 39
Every wellordering is isomorphic to a unique wellordering 〈X,∈〉 where X is a
transitive set. Such a wellordering is a von Neumann ordinal.

(often just called plain ‘ordinals’ [which is naughty]).

REMARK 13
The order relation <On on von Neumann ordinals is ∈;
Each ordinal is identical to the set of its predecessors;
α+ 1 = α ∪ {α}.
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Notice that in showing that every wellordering is isomorphic to a unique von
Neumann ordinal we have used replacement but have not used foundation.

The fact that every von Neumann ordinal coincides with the set of the ordi-
nals below it fits very cutely with theorem 4 that says that every ordinal counts
the set of ordinals below it in their natural order.

Notice also that although we have shown that every wellordering is isomor-
phic to a special one (which we can use as its ordinal) namely the wellordering
whose order relation is ∈, there doesn’t seem to be a similar move available
for cardinals. Given a set x is there an obvious special set in bijection with x,
something that we can use as its cardinal? Not clear. We will return to this
later.

Now is the moment to observe that the peculiarly specific form of the axiom
of infinity we saw on p. 58 has a purpose. It precisely gives us a set containing
0 and closed under successor, and we can obtain the ⊆-least such set from it by
separation, as follows:

Let A be a set given by the fancy version of the axiom of infinity. Then the
set we want is

{x : x ∈ A ∧ (∀y)(∅ ∈ y ∧ (∀w)(w ∈ y → w ∪ {w} ∈ y)→ x ∈ y)}

which is a set by separation. That set is of course the set of finite von
Neumann ordinals, which will do for our implementation of IN.

Once we’ve implemented ordinals we can implement integers, rationals, reals
and complexes. In lots of different ways, in fact.

Naturals can be von Neumann naturals or Zermelo naturals or Scott’s
trick naturals;

Integers can be signed naturals or equivalence classes of ordered pairs
of naturals;

Rationals can be signed ordered pairs of naturals or equivalence
classes of ordered pairs of integers;

Reals can be Dedekind cuts in rationals or equivalence classes of
Cauchy sequences of rationals;

Complex numbers typically are thought of as ordered pairs of reals.

And in every case where you are using equivalence classes to implement
something there is the possibility of using Scott’s trick to cut the class down to
something smaller.

It would be a very helpful exercise to crunch out the ranks of the
sets that implement these various mathematical objects under the
assorted possible implementations. A question on sheet 4 invites you to
do that...

The answers themselves do not matter in the slightest—the ordinals ob-
tained are properties of the implementing sets, not of the mathematical entities

60



themselves11—but the exercise will give you experience in manipulating some
purely set theoretic quantities, and prepare you for doing some more idiomatic
set theory in the days to come—something you will not have done before.

19.3 Ordinals again

We now pick up the thread dropped on page 4.

DEFINITION 40
(i) An aleph is the cardinality of a (usually infinite) wellordered set;
(ii) ℵ(α), for α a cardinal, is the least aleph 6≤ α.

(I think we first saw this aleph-without-a-subscript notation in lecture 4 on
p 14).

Look again at the proof of lemma 5, Hartogs’ lemma, which told us that ℵ(α)
is always defined. The proof i gave there used replacement (tho’ we didn’t bring
out the use of replacement!) It is possible to give a proof without replacement
(as Hartogs in fact originally did, the axiom scheme of replacement not having
been formulated at that stage) as follows.

Given X we seek a wellordered set Y with |Y | 6≤ |X|.
Consider P(X×X) (use Wiener-Kuratowski ordered pairs if you want to be

specific); throw away every subset that isn’t a wellordering; quotient out what’s
left under isomorphism. The result is (a concretisation) of the set of ordinals of
wellorderings of subsets of X—as it were equivalence-classes-local-to-X—and is
the Y we desire.

This argument gives us an upper bound for ℵ(|X|): ℵ(α) ≤ 22
α2

. By modify-

ing the construction you can obtain better bounds (such as ℵ(α) ≤∗ 2α
2

—where
the asterisk means surjection) but we don’t need them.

19.3.1 Initial ordinals

For the moment write ‘card(α)’ for |{β : β <On α}|. (This ‘card’ notation is in
the literature, but it is not in common use, and you do not need to know it).
Then

DEFINITION 41
An ordinal α is initial if (∀β <On α)(card(β) <card card(α)).
We enumerate the initial ordinals as ω0, ω1, . . .ωα . . . , and
We define ℵα to be card(ωα) which of course was |{β : β <On ωα}|.

The following should be evident:

ℵα is also the αth aleph;

ℵα+1 is ℵ(ℵα);

The alephs are wellordered by <card.

11In PTJ’s book p.87 he uses the phrase “essential rank” of a mathematical entity. It’s a
nice phrase, and it should be standard, but it isn’t.
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We can use initial ordinals to implement alephs as sets. Every aleph cor-
responds to a unique initial ordinal, so we can implement an aleph as the cor-
responding (von Neumann) initial ordinal. If we are willing to adopt AC then
every cardinal is an aleph, and we have in fact implemented all cardinals. Could
we not have implemented cardinals by Scott’s trick? Yes, if we have founda-
tion, or even if we have the (weaker) assertion that every set is the same size
as a wellfounded set. This route via von Neumann initial ordinals doesn’t need
either of these assumptions, but it does use AC.

However it is blindingly cute, and has become the industry standard.

20 Lecture 20

REMARK 14 Every regular ordinal is initial.

Proof:
It’s not a particularly deep or important fact but it’s basic and will help you

orient yourself. And the proof is idiomatic. Actually we prove the contraposi-
tive.

We need a factoid. Suppose 〈A,<A〉 and 〈B,<B〉 are (strict) total orders,
with <A a wellorder, and there is a bijection f : A →→ B. (We probably want
B to not have a last element; must check what else we might need). We are
not assuming that f is order-preserving! Nevertheless f does have a maximal
order-preserving restriction, a rather special one: there is A′ ⊆ A s.t f �A′ is
order-preserving, and f“A′ is cofinal (unbounded) in 〈B,<B〉.

We obtain A′ by recursion on 〈A,<A〉. The first member of A′ is the bottom
element of 〈A,<A〉. Thereafter the next member is always the <A-least element
a of A. s.t. f(a) >B f(a′) for all a′ <A a that we have already put into A′.
Suppose f“A′ were bounded in 〈B,<B〉. Consider the subset B′ ⊆ B consisting
of things not dominated by any f(a) for a ∈ A′, and consider the b ∈ B′ s.t.
f−1(b) is <A-minimal. f−1(b) should have been put into A′.

End of factoid:

Now suppose β is not an initial ordinal. (As I said, we are proving the
contrapositive). Then there is α < β s.t. α has as many predecessors as β.
Let 〈A,<A〉 and 〈B,<B〉 (as in the factoid) be the ordinals below α and the
ordinals below β respectively. The factoid gives us a set of ordinals cofinal in β
whose order type ≤ α < β. So β is not regular.

Here is an illustration of a particular case.

????1 17 23 129 257 1001

The picture shows why every countable limit ordinal has cofinality ω. The
long right-pointing arrow represents a countable ordinal manifested as a wellorder-
ing of naturals (IN in a funny order). The (unbounded!) increasing sequence
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of natural numbers reading from the left are the numbers chosen as in the re-
cursion . . . 1001 is the least natural number > 257 that is above 257 in both
orders. The semicircle represesents where this increasing sequence of naturals
comes to a halt, closes off. Are there any natural numbers in the region flagged
by the question marks? Suppose there were—347, say. OK, so what were doing
declaring 1001 to be the 6th member of the sequence? We should have used
347!

Thus every countable limit ordinal λ is the sup of an ω-sequence 〈λi : i < ω〉
of smaller ordinals.

DEFINITION 42
Such a sequence of smaller ordinals is a fundamental sequence for λ.

Fundamental sequences give you a way of using ordinals to measure how
rapidly growing a function f : IN → IN is. One can define a sequence fα over
countable ordinals α by something like f0(n) = n+ 1; fα+1(n) = (fα)n(n) and
(and this is the clever bit) if λ is the sup of 〈λn : n < ω〉 set fλ(n) = fλn(n).

[Something to think about . . . every regular ordinal is initial . . . is every initial
ordinal regular. . . ? ω is initial and is regular; you saw in an example sheet
question that ω1 (which is obviously initial) is regular . . . ]

20.1 ℵ2 = ℵ
(Using the letter ‘ℵ’ as a variable to range over alephs. . . )

We start by noting that ℵ = ℵ + ℵ. (Well, what we will actually need is
ℵ+ ℵ+ ℵ = ℵ, but never mind). Beginners might like to have this spelled out,
and it holds because 2 ·ωα = ωα. How so? Any order of limit order-type consists
of lots of concatenated copies of IN, each of length ω. You can interleave two
(or indeed three) worders of length ω to get a worder of length ω so you can do
this for all the copies simultaneously.

We start by defining a function S : On → On. Given an ordinal α, take a
wellordering 〈A,<A〉 of order type α, make disjoint copies of all its proper initial
segments, and then concatenate the copies . . . with longer things appended after
shorter things.

The result is a wellordering and its order type is defined to be S(α). [This
notation is not standard, and I am not going to use it outside this proof so i’m
not numbering it]. Thus—for example—S(ω) = 1 + 2 + 3 + 4 + . . . = ω

LEMMA 10

(i) S : On→ On is a normal function;
(ii) Every initial ordinal is a value of S.

Proof:
(i) S : On→ On evidently also has a recursive definition:

63



S(α+ 1) = S(α) + α and
S(λ) = Sup{S(α) : α < λ} for λ limit.

. . . from which it is clear that S is a normal function.

(ii)
Use the division algorithm for normal functions to show that there is a β s.t

S(β) ≤ ωα < S(β + 1). If S(β) < ωα then we have ωα ≤ S(β + 1) = S(β) + β
which is impossible, since S(β) and β both have cardinality below ℵα.

We want to show that (ℵα)2 = ℵα. ℵα is defined as the cardinal {β : β <
ωα}, which means that the canonical set of size (ℵα)2 is the cartesian product
{β : β < ωα} × {β : β < ωα}. We partition this last set into three pieces:

(i) the [graph of] the identity relation restricted to {β : β < α}, and

(ii), (iii)

the two triangles above-and-to-the-left, and below-and-to-the-right
of the diagonal.

To be slightly more formal about it, we partition the cartesian product
{β : β < α} × {β : β < α} into the three pieces {〈β, γ〉 : β < γ < α},
{〈β, γ〉 : β = γ < α} and {〈β, γ〉 : γ < β < α}.

It is clear that the third piece is of order type S(α) in the lexicographic
order.

The idea is to show that these three pieces all have cardinality ℵα. That’s
obvious for the second piece, the identity relation. Also there is an obvious
bijection between the first and third piece (“flip your ordered pairs”) so it will
suffice to prove that the third piece (“the bottom-right triangle”) has cardinality
ℵα.

Now we can prove

THEOREM 17 (∀α)(ℵα = (ℵα)2).

Proof:
By induction on α. The fact that it holds for α = 0 you learnt in 1a.12

Assume true for all alephs < ℵα. By lemma 10, ωα is a value of S; we
want to show that it is actually a fixed point. Now ωα is an initial ordinal,
which is to say that for any β < ωα, the cardinal |{γ : γ < β}| is less than
ℵα, and (by induction hypthesis) is equal to its own square. Suppose ωα were
S(β) for some β < ωα. This would entail that the size of the cartesian product
{γ : γ < β} × {γ : γ < β} is at least ℵα, contradicting the induction. So ωα
is a fixed point of S. This means that the lower-right triangle of the cartesian
product {γ : γ < ωα} × {γ : γ < ωα}—which can be wellordered to length
S(ωα) = ωα—is of cardinality ℵα. It’s clearly naturally isomorphic to the

12Thank you Mr Rogers, for pointing out that i had not supplied the base case!!
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upper-left triangle (as remarked earlier) so the cartesian product is now a union
of three sets each of size ℵα, giving (ℵα)2 = ℵα + ℵα + ℵα = ℵα as desired.

Thus if the axiom of choice holds (so every infinite cardinal is an aleph) then
α = α2 for all infinite cardinals. There is a converse!

COROLLARY 13 If α = α2 for all infinite cardinals, then AC follows.

Proof: Let α be an arbitrary infinite cardinal, and suppose β2 = β for all infinite
cardinals β. Then we have

α+ ℵ(α) = (α+ ℵ(α))2

= α2 + 2 · α · ℵ(α) + (ℵ(α))2

= α+ 2 · α · ℵ(α) + ℵ(α)
= α+ α · ℵ(α) + ℵ(α)
= α(1 + ℵ(α)) + ℵ(α)
= (α · ℵ(α)) + ℵ(α)
= (α+ 1) · ℵ(α)
= α · ℵ(α)

Now we use Bernstein’s lemma which i put in my initial handout but which
of course you haven’t read, so i’ll include it here.

21 Lecture 21

REMARK 15 Bernstein’s lemma

γ + δ = α · β → α ≤∗ γ ∨ β ≤ δ

Here ‘α ≤∗ γ’ means that there is a surjection from a set of size γ to a set
of size13 α.
Proof:

13Or α = 0, yes.
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A

B

C

D

Proof: Suppose A and B are two sets (of size α and β). Suppose further that
we have split A×B (represented by the square figure above) into two pieces, C
and D (of size γ and δ), so that C∩D = ∅ and C∪D = A×B. Now project the
C region onto the A axis. Does it cover the whole of the A-axis? (I’ve tried to
draw the picture so that it’s not clear whether it does or not!) If it does, then
|A| ≤∗ |C|. If it doesn’t, then there is a line through D parallel to the B axis,
whence |B| ≤ |D|.

Returning to the proof of corollary 13. We can apply Bernstein’s lemma in
two ways. We can infer ℵ(α) ≤∗ α ∨ α ≤ ℵ(α). The second disjunct is the one
we want so we would like to exclude the first disjunct: ℵ(α) ≤∗ α. For all we
know this could happen if α is not an aleph, so we have to use Bernstein the
other way round:

ℵ(α) ≤ α ∨ α ≤∗ ℵ(α)

The first disjunct is of course impossible—by definition of ℵ(α)—so we infer the
second, which tells us that any set of size α is a surjective image of a wellordered
set. But any such surjective image can be wellordered, and this gives us our
result.

We can also use theorem 17 to show that a lot of initial ordinals are regular.

THEOREM 18 (uses AC)
Every ordinal ωα+1 is regular.

Proof:
If ωα+1 is the sup of fewer than ℵα+1—which is to say the sup of no more

than ℵα smaller ordinals—then the set of ordinals below it (which is of size
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ℵα+1) is a union of at most ℵα things each of size ℵα at most. We saw in
an example sheet question how to use AC to show that such a union is of size
(ℵα)2 at most, and theorem 17 now tells us it is of size ℵα at most, which is
impossible.

The obvious follow-up question is: if λ is limit can ωλ be regular? It is if
λ = 0. . . . The conttext in which to consider this question is the context of
independence proofs, to which we now turn.

21.1 Independence of the Axioms from each other

We’ve spent quite a lot of time and energy rolling out set theory as a platform
on which to do mathematics; it can do no harm to do something a bit more
idiomatic; set theory does, after all, have a life of its own. The schedules require
me to cover problems of consistency and independence of the axioms, so let’s
do that.

We prove independence results by exhibiting models. We emphasise that
for philosophical reasons we are interested only in transitive models. The idea
is that if i give you a set x i must also give you all its members—since a set,
after all, is nothing more than the set of all its members. So any sensible model
with an element x must contain everything in the transitive closure of x as well.
Hence our restriction to transitive models only.

That is one reason why Mostowski collapse is so important.

21.1.1 ∆0 formulae and the Lévy Hierarchy

First we define ∆0 formulæ and a quantifier hierarchy associated with them

DEFINITION 43 A ∆0-formula in the language of set theory is a formula built
up from atomics by means of boolean connectives and restricted quantifiers. A
restricted quantifier in the language of set theory is ‘(∀x)(x ∈ y → . . .)’ or
‘(∃x)(x ∈ y∧. . .)’. Thereafter a Σn+1 (respectively Πn+1) formula is the result of
binding variables in a Πn (repectively Σn) formula with existential (respectively
universal) quantifiers.

We immediately extend the Σn and Πn classes by closing them under interdeducibility-
in-a-theory-T , and signal this by having ‘T ’ as a superscript so our classes are
ΣTn and ΠT

n . As usual, we omit the superscripts when they are clear from con-
text.

We find that ∆0 formulæ behave in many ways as if they contained no
quantifiers at all. An unrestricted quantifier is an injunction to scour the whole
universe in a search for a witness or a counterexample; a restricted quantifier
invites us only to scour that part of the universe that lies in some sense “inside”
something already given. The search is therefore “local” and should behave quite
differently: that is to say, restricted universal quantification ought to behave like
a finite conjunction and ought to distribute over disjunction in the approved de
Morgan way. (And restricted existential quantification too, of course).
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One effect of this is that ∆0 predicates are absolute between transitive
models. This merits a short discussion. If φ(x) is a formula with one free
variable and no quantifiers, and M believes there is an x such that φ(x), then
any M′ ⊇ M will believe the same. This much is obvious. The dual of this is
similarly obvious: If φ(x) is a formula with one free variable and no quantifiers,
and M believes that φ(x) holds for every x, then any M′ ⊆ M will believe
the same. We say that existential formulæ generalise upwards and universal
formulæ generalise downwards. Something analogous holds for Σ1 formulæ
and Π1 formulæ. They generalise upwards and downwards in the same way as
long as M and M′ are both transitive models. ∆0 formulæ of course generalise
both upward and downward and are therefore absolute.

We need this gadgetry if we are to cope with what is usually the first problem
students have with finding models for fragments of ZF. The first thing to note is
that if M = 〈M,∈〉 is a model of set theory then ‘M |= φ’ is actually a formula of
set theory. Which formula? The formula we obtain from ‘φ’ by replacing every
quantifier ‘(∀x)(. . .)’ by ‘(∀x)(x ∈ M → . . .)’ and replacing every quantifier
‘(∃x)(. . .)’ by ‘(∃x)(x ∈M ∧ . . .)’.

The problem i have just spoken of is this: most of the axioms of ZF take the
form of an assertion that the universe is closed under some operation or other.
If we are to get straight which sets (or classes) are models of which axioms we
will need to be absolutely clear about the difference between being closed under
an operation and being a model for the axiom that says you are closed under
that operation. You might think that for a set to be a model of the axiom that
says the world of sets is closed under operation blah it is necessary and sufficient
for that set to be closed under operation blah. But you’d be wrong!

M |= the axiom of pairing iff

(∀x ∈M)(∀y ∈M)(∃z ∈M)(∀w ∈M)(w ∈ z ←→ w ∈ x ∨ w ∈ y)

M is closed under the pair set operation iff (∀x, y ∈M)({x, y} ∈M).

In contrast M |= the axiom of power set iff

(∀x ∈M)(∃y ∈M)(∀z ∈M)(z ∈ y ←→ (∀w ∈M)(w ∈ z → w ∈ x))

Now, since M is transitive, the last bit—(∀w ∈ M)(w ∈ z → w ∈ x)—is
equivalent to z ⊆ x, so the displayed formula simplifies slightly to

(∀x ∈M)(∃y ∈M)(∀z ∈M)(z ∈ y ←→ z ⊆ x)

M is closed under the power set operation iff

(∀x ∈M)(P(x) ∈M)

Are these two equivalent? Clearly not. Reflect that, by Downward Skolem-
Löwenheim (theorem 13) and Mostowski collapse (lemma 9) ZF has a countable
transitive model M. In a countable transitive model every set must be countable.
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So the thing in M that M believes to be power set of IN will be a countable set
and cannot possibly be the true power set of the naturals.

The point is that “x = {y, z}” is just “y ∈ x ∧ z ∈ x ∧ (∀w ∈ x)(w =
y ∨ w = z)” which is ∆0 and is absolute;

In contrast x = P(y) is
(∀w ∈ x)(∀z ∈ w)(z ∈ y) ∧ (∀w)((∀u)(u ∈ w → u ∈ y) → y ∈ x) which is

not ∆0!

We are now in a position to look at some actual independence results.

21.1.2 Some actual independence results

Let’s start with the simplest possible example. It exploits Vω, a set i talked
about earlier, and whose existence i proved in lectures. For which axioms φ can
we establish that 〈Vω,∈〉 |= φ?

Well, it’s transitive so it’s a model for extensionality. It’s a model for pairing
and power set, and is actually closed under pairing and under power set. It’s
a model of separation because any subset of a member of Vω is also a member
of Vω. What about replacement? Is the image of a set in Vω in some function
also a set in Vω? Well, obviously not, beco’s such a function could send its
arguments from Vω into the wide blue yonder, but it doesn’t have to! For Vω
to be a model of replacement all that is necessary is that if we have a function
from Vω to Vω which is definable with all its parameters in Vω and all its bound
variables constrained to range over things in Vω then the image of an element
of Vω in such a function is also in Vω. And that is clearly true—we don’t even
need the italicised condition.

Reflect that M 6|= ⊥, for all M, so no inconsistent theory can have a model.
Therefore the fact that Vω is a set means that we have proved the consistency
of something, that something being whatever the set of things is that are all
true in 〈Vω,∈〉.

To cut a long story short it’s pretty clear that it is a model of all the axioms
except infinity: Vω not only does not contain any infinite set, it doesn’t even
contain any set that it mistakenly believes to be infinite. However it satisfies all
the other axioms. In fact it’s even a model of the Axiom of choice, and it’s a
model of the axiom of choice even if the theory in which we are conducting this
discussion does not assume AC.

This shows that the axiom of infinity does not follow from the other axioms
of ZFC

Another structure to consider is Vω+ω. This is transitive, so it’s a model of
extensionality. It’s obviously a model of pairing, sumset and power set. Also
separation (Put them all on the board and tick them off one by one). This
time it’s clearly a model of infinity. Not only does it contain an infinite set, it
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contains an infinite set which is infinite in the sense of the model. (“x is infinite”
is not ∆0 so we have to be careful.)14

It’s going to be a model of sumset because something gets into Vω+ω as long
as its rank is less than ω + ω . . . and

⋃
decreases rank. (and y =

⋃
x is ∆0).

It will be a model of the AC as long as the theory in which we are conducting
the analysis has AC as an axiom. As long as our ordered pairs are Wiener-
Kuratowski any wellordering of a member of Vω+ω will also be a member of
Vω+ω, a couple of layers higher up. (W-K pairs increase rank by 2).

So: which axiom or axiom scheme is left? Replacement!

You want to say . . . “it can’t be a model of replacement, beco’s—if it were—
it would then be a model of the whole of ZF, and so we would have proved the
consistency of ZF inside ZF” and you read somewhere about the Incompleteness
theorem of Gödel that says that can’t happen. And you’d be right of course.
However it would be nice to have an actual instance of replacement that fails.
Ideally i’d let you think about it but time is short. Consider the function that
sends n to Vω+n. You will need Quine’s trick to define it properly

Both the models we have considered so far are Vαs. However there are other
structures we can use.

22 Lecture 22 (Independence results continued)

DEFINITION 44

Pφ(x) = {y ⊆ x : φ(y)};
Hφ is the least fixed point for x 7→ Pφ(x);
Alternatively Hφ = {x : (∀y ∈ TC({x}))φ(y)}.
We also write ‘Pκ(x)’ (where κ is a cardinal) for {y ⊆ x : |y| < κ}, and Hκ

for the least fixed point of this function, so that Hκ = {x : (∀y ∈ TC({x}))(|y| <
κ)}

The ‘H’ means ‘hereditarily’.

Observe that Vω = Hℵ0 . Vω+ω is not Hα for any cardinal α.
The next H after Hℵ0 is Hℵ1 , the set of hereditarily countable sets, com-

monly notated ‘HC’.
It’s perhaps not blindingly obvious that HC is a set. However if you have

countable choice (so that ω1 is regular) then every hereditarily countable set is
in Vω1 and then HC is a set by separation.

However we can prove the existence by the natural device of set pictures

14There is a subtlety here, because the specially sexed-up version of the axiom of infinity
(∃x)(∅ ∈ x∧ (∀y)(y ∈ x→ y∪{y} ∈ x)) that we saw on page 58 asserts that there is an x with
a special property, and that special property is ∆0. The point is that you have to do a bit of
work to show that if ∅ ∈ x ∧ (∀y)(y ∈ x→ y ∪ {y} ∈ x) then x really is Dedekind-infinite.
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DEFINITION 45 Set Pictures
A (wellfounded) set picture (also known as an accessible pointed (di)graph

or APG) is a special kind of decorated digraph, a (wellfounded) extensional bi-
nary structure 〈X,R, topR〉 with a designated (“top”) element topR s.t. X =
(R∗)−1“{topR}. I.e., it’s a binary structure that looks as if it might be the graph
of ∈∗ restricted to the transitive closure of a singleton.

Here are some graphics for APGs:

A

∅

E

∅

{∅}

∅

{∅}

{{∅}, ∅}

∅

{∅}

{{∅}, ∅}

{{∅}, {{∅}, ∅}}

This second graphic shows the embedding relation which we define below.

topX

X
topY

Y

G

This diagram15 depicts the obvious embedding relation between set pictures:
X = 〈X,R, topR〉 embeds into Y = 〈Y, S, topS〉 if there is y ∈ Y with S(y, topS)
and 〈X,R, topR〉 ' 〈S−1“{y}, S, topS〉.

Clearly isomorphism is a congruence relation for this embedding relation and
we write ‘E’ for the relation between the isomorphism classes.

If you forget this definition you can reconstruct it if you remember that it’s

15I have to confess that the binary relation in the picture isn’t extensional. With any luck
the reader won’t notice. What matters is the isomorphism between the two smaller ellipses.
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trying to say that the set that 〈X,R, topR〉 is a picture of is a member of the
set that 〈Y, S, topS〉 is a picture of.

Now to prove the existence of HC we consider Vω+1 and wellfounded set
pictures, and Scott’s-trick isomorphism classes thereof. Evidently the family of
(Scott’s-Trick) equivalence classes is a wellfounded binary structure, so we can
take the Mostowski collapse. The Mostowski collapse is HC.

Which axioms are true in HC?
I’m hoping that by now you can be trusted, Dear Reader, to calculate which

axioms are true in HC. We need countable choice to show that a union of
countably many countable sets iss countable (and we’ll need that if we are to
verify sumset). We can verify all of them except power set. Why is power set
not true in HC? Well, everything in HC is countable, and the power set of a
countably infinite set is uncountable. But life is not that simple. Remember that
by downward Skolem-Löwenheim ZF must have a countable model and indeed
(by Mostowski collapse) a countable transitive model. In any such model every
set is countable! However not all the inhabitants of such a model are countable
in the sense of the model: the model contains some (externally) countable sets
for which it does not supply a bijection to the naturals of the model. In HC, in
contrast, every set is internally countable, so the axiom of power set really does
fail.

We still have to prove the independence of extensionality, AC, pairing, sum-
set and foundation. Let’s press on.

22.0.3 Independence of Sumset

Let iω be the cardinal sup{ℵ0, 2ℵ0 , 22
ℵ0
, 22

2ℵ0
. . .}. (We can define i numbers

with arbitrary subscripts but we don’t need to)
To prove the independence of sumset we consider Hiω . This is a set for the

same reason that HC is. This time we consider the set of all wellfounded set
pictures in Vω+ω and consider the set of Scott’s-trick equivalence classes of them.
The embedding just described is inherited by the quotient, and we write the
inherited embedding as ‘E ’. Evidently the family of (Scott’s-Trick) equivalence
classes is a wellfounded binary structure, so we can take the Mostowski collapse.
The Mostowski collapse is Hiω .

Hiω 6|= sumset because {Vω+n : n < ω} is in Hiω but
⋃
{Vω+n : n < ω} =

Vω+ω is not.
It is a model of all the other axioms for familiar reasons. It satisfies AC as

long as the universe within which we constructed it satisfies AC.

22.1 Independence of the Axiom of Foundation

Let σ be the transposition (∅, {∅}). Equip the universe with a new membership
relation x ∈σ (y) defined as x ∈ σ(y). Observe that ∅ ∈π ∅, so foundation
does not hold in 〈V,∈σ〉. What about the other axioms? The first thing to
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note is that all the axioms of ZFC (except foundation) are preserved whatever
permutation you use.

DEFINITION 46 φσ is the result of replacing ‘∈’ in φ throughout by ‘∈σ’.

Then (〈V,∈σ〉 |= φ) ←→ φσ. You want to prove ` (∀σ)(φ ←→ φσ) where φ
is an axiom other than foundation.

OK, so you look at φσ, and you notice that prima facie distinct occurrences
of a given variable have different prefixes. Variables that never appear to the
right of an ‘∈’ you say are of level 0, and you don’t have a problem with them.
Variables that appear to the right of an ‘∈’ only when the variable to the left of
the ∈ are of level 1 and you don’t have a problem with them—unless they also
appear to the left of an ∈. Let ‘y’ be such a variable. Then we have subformulæ
like x ∈ σ(y) and y ∈ σ(z).

We make the elementary observation that ‘x ∈ σ(y)’ is equivalent to ‘σ(x) ∈
σ“(σ(y))’ and so can be replaced by it in φ where appropriate. σ“z is {σ(w) :
w ∈ z} and the function z 7→ σ“z is of course just yet another permutation.
We might find that we have to “lift” σ in this way more than once . . . . So the
notation ‘j(σ)’ for this new permutation might come in handy.

The key is to manipulate the formulæ you are dealing with so as to ensure
that, for every variable, every occurrence of that variable has the same prefix
. . . the point being that (∀x)(. . . σ(x) . . .) is equivalent to (∀x)(. . . x . . .) beco’s
σ is a permutation.

This is a description of the recursive step in an algorithm for rewriting atomic
formulæ in such a way that, for each variable, all its occurrences end up with
the same prefix, so we can reletter. The second step? We now find that some
occurrences of ‘z’ have no prefix, whereas some have.

The definition of stratifiable for a formula is simply that this algorithm
succeeds.

It’s now simple to verify that φσ is equivalent to φ as long as φ is stratifiable.
Not all instances of replacement are stratifiable but it turns out not to matter.

(∀x∃!y)φ(x, y) → (∀X)(∃y)(∀z)(z ∈ Y ←→ (∃w)(w ∈ X) ∧ φ(w, z))

becomes

(∀x∃!y)φσ(x, y) → (∀X)(∃y)(∀z)(z ∈ σ(Y )←→ (∃w)(w ∈ σ(X)) ∧ φσ(w, z))

We can drop the σs preceding ‘X’ and ‘Y ’ to obtain

(∀x∃!y)φσ(x, y) → (∀X)(∃y)(∀z)(z ∈ Y ←→ (∃w)(w ∈ X) ∧ φσ(w, z))

which is merely another instance of replacement (as long as σ is a function class).
Thus the map (on the syntax) sending each φ to φσ sends every stratifiable
formula φ to (something logically equivalent to) φ, and sends every instance of
replacement to something logically equivalent to another instance.

We now check that every axiom other than foundation is either stratifiable
or interdeducible with a stratifiable formula, and accordingly remains true in
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the new model. Observe that in the new model ∅ has become an object equal
to its own singleton. Such objects are called Quine atoms. We added only
one Quine atom, but if (say) we had swapped every natural number with its
singleton we would have added countably many. We will need this when we
come to prove the independence of AC.

22.2 Independence of the Axiom of Choice

Proving the independence of the axiom of choice from ZF is hard work, and
was finally cracked by Cohen in 1963 with the advent of forcing. Forcing is
too demanding for a course like this, but there are other ideas that go into the
independence proof, and some of them can be profitably covered here.

One useful thought is that the axiom of choice says that the universe contains
some highly asymmetrical objects. After all, as we saw in theorem 2 on page 9,
any wellordering is rigid. If we can arrange matters so that everything in the
universe has some symmetries then we will break AC. I’ve made it sound easier
than it is, but that’s the idea.

We start with a model of ZF + foundation, and use the permutation meth-
ods seen above to obtain a permutation model with a countable set A of Quine
atoms. The permutation we use to achieve this is the product of all transposi-
tions (n, {n}) for n ∈ IN+.

A will be a basis for the illfounded sets in the sense that any class X
lacking an ∈-minimal element contains a member of A. Since the elements of
A are Quine atoms every permutation of A is an ∈-automorphism of A, and
since they form a basis we can extend any permutation σ of A to a unique
∈-automorphism of V in the obvious way: declare σ(x) := σ“x. Notice that the
collection of sets that this definition does not reach has no ∈-minimal member if
nonempty, and so it must contain a Quine atom. But σ by hypothesis is defined
on Quine atoms.

Any permutation σ of the atoms can be extended to an ∈-automorphism of
the universe (also written σ) by declaring σ(x) = σ“x. Now (a, b) is of course
the transposition swapping a and b, and we will write ‘(a, b)’ also for the unique
automorphism to which the transposition (a, b) extends. Every set x gives rise
to an equivalence relation on atoms. Say a ∼x b if (a, b) fixes x. We say x is
of (or has) finite support if ∼x has a cofinite equivalence class. (At most one
equivalence class can be cofinite).

The union of the (finitely many) remaining (finite) equivalence classes is the
support of x. Does that mean that x is of finite support iff the transitive closure
TC(x) contains finitely many atoms? Well, if TC(x) contains only finitely many
atoms then x is of finite support (x clearly can’t tell apart the cofinitely many
atoms not in TC(x)) but the converse is not true: x can be of finite support if
TC(x) contains cofinitely many atoms. (Though that isn’t a sufficient condition
for x to be of finite support!!)16

16A counterexample: wellorder cofinitely many atoms. The graph of the wellorder has
cofinitely many atoms in its transitive closure, but they are all inequivalent.
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It would be nice if the class of sets of finite support gave us a model of
something sensible, but extensionality fails: if X is of finite support then P(X)
and the set {Y ⊆ X : Y is of finite support} are both of finite support and
have the same members with finite support. We have to consider the class of
elements hereditarily of finite support. Let’s call it HF . This time we do get a
model of ZF.

LEMMA 11 The class of sets of finite support is closed under all the definable
operations that the universe is closed under.

Proof:
When x is of finite support let us write ‘A(x)’ for the cofinite equivalence

class of atoms under ∼x. For any two atoms a and b the transposition (a, b)
induces an ∈-automorphism which for the moment we will write (a, b), too.

Now suppose that x1 . . .xn are all of finite support, and that f is a definable
function of n arguments. x1 . . .xn are of finite support, and any intersection
of finitely many cofinite sets is cofinite, so the intersection A(x1) ∩ . . . A(xn) is
cofinite. For any a, b we have

(a, b)(f(x1 . . . xn)) = f((a, b)(x1) . . . (a, b)(xn))

since (a, b) is an automorphism. In particular, if a, b ∈ A(x1) ∩ . . . A(xn) we
know in addition that (a, b) fixes all the x1 . . . xn so

(a, b)(f(x1 . . . xn)) = f(x1 . . . xn).

So the equivalence relation ∼f(x1...xn) induced on atoms by f(x1 . . . xn) has
an equivalence class which is a superset of the intersection A(x1) ∩ . . . A(xn),
which is cofinite, so f(x1 . . . xn) is of finite support.

This takes care of the axioms of empty set, pairing, sumset and power set. To
verify the axiom scheme of replacement we have to check that the image of a set
hereditarily of finite support in a definable function (with parameters among
the sets hereditarily of finite support and all its internal variables restricted
to sets hereditarily of finite support) is hereditarily of finite support too. The
operation of translating a set under a definable function (with parameters among
the sets hereditarily of finite support and all its internal variables restricted to
sets hereditarily of finite support) is definable and will (by lemma 11) take sets
of finite support to sets of finite support.

So if X is in HF and f is a definable operation as above, f“X is of finite
support. And since we are interpreting this in HF , all members of f“X are in
HF , so f“X is in HF too, as desired.

To verify the axiom of infinity we reason as follows. Every wellfounded set
x is fixed under all automorphisms, and is therefore of finite support. Since all
members of x are wellfounded they will all be of finite support as well, so x
is hereditarily of finite support. So HF will contain all wellfounded sets that
were present in the model we started with. In particular it will contain the von
Neumann ω.
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It remains only to show that AC fails in HF . Consider the set of (unordered)
pairs of atoms. This set is in HF . However no selection function for it can be.
Suppose f is a selection function. It picks a (say) from {a, b}. Then f is not
fixed by (a, b). Since f picks one element from every pair {a, b} of atoms, it must
be able to tell all atoms apart; so the equivalence classes of ∼f are going to be
singletons, ∼f is going to be of infinite index, and f is not of finite support.

So the axiom of choice for countable sets of pairs fails. Since this axiom is
about the weakest version of AC known to man, this is pretty good. The slight
drawback is that we have had to drop foundation to achieve it. On the other
hand the failure of foundation is not terribly grave: the only illfounded sets are
those with a Quine atom in their transitive closures, so there are no sets that
are gratuitously illfounded: there is a basis of countably many Quine atoms.
On the other hand it is only the illfounded sets that violate choice!

23 Lecture 23

24 Lecture 24: Independence

Internalising: Deduction theorem. Gödelisation. There are at least four clever
ideas in Gödel’s paper:
(i) p.r. functions;
(ii) arithmetisation of syntax;
(iii) the β-function and
(iv) diagonalisation.
(iv) was not his, and (iii) is not essential (tho’ it is clever). The key is the
combination of (ii) and (iv).
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25 Example Sheets

Questions marked with a ‘+’ are brief reality-checks; questions marked with a
‘*’ are for enthusiasts/masochists only; ☠ means what you think it means, and

particularly tasty questions are decorated with a pink marzipan pig:

Sheet 0: Numbers and Sets Revision

1A Numbers and Sets is the only prerequisite for this course, and it can do you
no harm to give a quick going-over to your notes for that course. You might
like to have a quick glance at my supervision/lecture notes for Discrete maths
for Computer Scientists, linked from my 1a teaching page. It’s Sets rather than
Numbers but that’s OK beco’s there is no number theory in Part II ST&L.

Countability

“uncountably many” wasn’t ever a complete answer to the question “How many
wombats are there?” It just may (sometimes) still be an adequate answer but—
now that you are doing Part II you should always be prepared to give more
detail. Read www.dpmms.cam.ac.uk/~tf/countability.pdf and do the exer-
cises therein; it won’t take you long.

(i)

Explain briefly why the diagonal argument that shows that P(IN) is uncountable
doesn’t show that there are uncountably many finite sets of naturals.
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Set Theory and Logic, Michaelmas 2016, Sheet 1:
Ordinals and Induction

Questions marked with a ‘*’ may be skipped by the nervous.

(i)

Write down subsets of IR of order types ω + ω, ω2 and ω3 in the inherited order.

(ii)

Which of the following are true?

(a) α+ β is a limit ordinal iff β is a limit ordinal;
(b) α · β is a limit ordinal iff α or β is a limit ordinal;
(c) Every limit ordinal is of the form α · ω;
(d) Every limit ordinal is of the form ω · α.

For these purposes 0 is a limit ordinal.

(iii)

Consider the two functions On→ On: α 7→ 2α and α 7→ α2. Are they normal?

(iv)

Prove the converse to lemma 2: if 〈X,<X〉 is a total order satisfying “every subordering
is isomorphic to an initial segment” then it is a wellordering.

(v)

What is the smallest ordinal you can not embed in the reals in the style of question
(i)?

(vi)

Prove that every [nonzero] countable limit ordinal has cofinality ω. What about ω1?

(vii)∗

Recall the recursive definition of ordinal exponentiation:

α0 = 1; αβ+1 = αβ · α, and αsup(B) = sup({αβ : β ∈ B}).

Ordinal addition corresponds to disjoint union [of wellorderings], ordinal multiplication
correponds to lexicographic product, and ordinal exponentiation corresponds to . . . ?
Give a definition of a suitable operation on wellorderings and show that your definition
conforms to the spec: αβ+γ = αβ · αγ .
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(viii)

Let {Xi : i ∈ I} be a family of sets, and Y a set. For each i ∈ I there is an injection
Xi ↪→ Y . Give an example to show that there need not be an injection (

⋃
i∈I Xi) ↪→ Y .

But what if the Xi are nested? [That is, (∀i, j ∈ I)(Xi ⊆ Xj ∨Xj ⊆ Xi).]

(ix)

Prove that every ordinal of the form ωα is indecomposible: γ + β = ωα → γ =
ωα ∨ β = ωα.

(x)

Show that an arbitrary intersection of transitive relations is transitive. The transitive
closure R∗ (sometimes written ‘tr(R)’) is the ⊆-least transitive relation ⊇ R.

Let 〈X,R〉 be a wellfounded binary structure, with rank function ρ. Prove that
(∀x ∈ X)(∀α < ρ(x))(∃y)(ρ(y) = α).

[A later—perhaps preferable—version of this question. . .
Let 〈X,R〉 be a wellfounded binary structure, with rank function ρ. Prove that

(∀x ∈ X)(∀α < ρ(x))(∃y ∈ X)(ρ(y) = α).]

(xi)

Let {Xi : i ∈ IN} be a nested family of sets of ordinals.

(a) Give an example to show that the order type of
⋃
i∈INXi need

not be the sup of the order types of the Xi.
(b) What condition do you need to put on the inclusion relation

between the Xi to ensure that the order type of
⋃
i∈INXi

is the sup of the order types of the Xi?
(c) Show that the ordered set of the rationals can be obtained as the

union of a suitably chosen ω-chain of some of its finite subsets.

(xii)

Using the uniqueness of subtraction for ordinals, and the division algorithm for normal
functions, show that every ordinal can be expressed uniquely as a sum

ωα1 · a1 + ωα2 · a2 + · · ·ωαn · an
where all the ai are finite, and where the αi are strictly decreasing.

(xiii)

Let f be a function from countable [nonzero] limit ordinals to countable ordinals
satisfying f(α) < α for all (countable limit) α. (f is “pressing-down”.) Can f be
injective?
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Set Theory and Logic, Michaelmas 2016, Sheet 2: Posets

‘+’ signifies a question you shouldn’t have trouble with; ‘☠’ means what you think it
means.

(i)

(a) For n ∈ IN, how many antisymmetrical binary relations are there on a set of
cardinality n? How many binary relations satisfying trichotomy: (∀xy)(R(x, y) ∨
R(y, x) ∨ x = y)? How are your two answers related?

(b) How many symmetric relations and how many antisymmetric trichotomous
relations are there on a set of cardinality n? How are your two answers related?

(c) Contrast (a) and (b)

(ii)

Consider the set of equivalence relations on a fixed set, partially ordered by ⊆. Show
that it is a lattice. Must it be distributive? Is it complete?

(iii)

Cardinals: Recall that α · β is |A×B| where |A| = α and |B| = β. Show that a union
of α disjoint sets each of size β has size α · β. Explain your use of AC.

(iv)

Let 〈A,≤〉 and 〈B,≤〉 be total orderings with 〈A,≤〉 isomorphic to an initial segment
of 〈B,≤〉 and 〈B,≤〉 isomorphic to a terminal segment of 〈A,≤〉. Show that 〈A,≤〉
and 〈B,≤〉 are isomorphic.

(v)

(Mathematics Tripos Part II 2001:B2:11b, modified).
Let U be an arbitrary set and P(U) be the power set of U . For X a subset of

P(U), the dual X∨ of X is the set {y ⊆ U : (∀x ∈ X)(y ∩ x 6= ∅)}.
1. Is the function X 7→ X∨ monotone? Comment.

2. By considering the poset of those subsets of P(U) that are subsets of their duals,
or otherwise, show that there are sets X ⊆ P(U) with X = X∨.

3. X∨∨ is clearly a superset ofX, in that it contains every superset of every member
of X. What about the reverse inclusion? That is, do we have Y ∈ X∨∨ → (∃Z ∈
X)(Z ⊆ Y )?

4. Is A∨∨∨ always equal to A∨?

(vi)

Use Zorn’s Lemma to prove that

(i) every partial ordering on a set X can be extended to a total ordering of X;

(ii) for any two sets A and B, there exists either an injection A ↪→ B or an injection
B ↪→ A.
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(vii)

(Tripos IIA 1998 p 10 q 7)
Let 〈P,≤P 〉 be a chain-complete poset with a least element, and f : P → P an

order-preserving map. Show that the set of fixed points of f has a least element and
is chain-complete in the ordering it inherits from P . Deduce that if f1, f2, . . . , fn are
order-preserving maps P → P which commute with each other (i.e. fi ◦ fj = fj ◦ fi
for all i, j), then they have a common fixed point. Show by an example that two
order-preserving maps P → P which do not commute with each other need not have
a common fixed point.

(viii)

IN ⇁ IN is the set of partial functions from IN to IN, thought of as sets of ordered pairs
and partially ordered by ⊆.

Is it complete? Directed-complete? Separative? Which fixed point theorems are
applicable?

For each of the following functions Φ : (IN ⇁ IN) → (IN ⇁ IN), determine (a)
whether Φ is order-preserving, and (b) whether it has a fixed point:

(i) Φ(f)(n) = f(n) + 1 if f(n) is defined, undefined otherwise.
(ii) Φ(f)(n) = f(n) + 1 if f(n) is defined, Φ(f)(n) = 0 otherwise.
(iii) Φ(f)(n) = f(n− 1) + 1 if f(n− 1) is defined, Φ(f)(n) = 0 otherwise.

(ix)

Players I and II alternately pick elements (I plays first) from a set A (repetitions
allowed: A does not get used up) thereby jointly constructing an element s of Aω, the
set of ω-sequences from A. Every subset X ⊆ Aω defines a game G(X) which is won
by player I if s ∈ X and by II otherwise. Give A the discrete topology and Aω the
product topology.

By considering the poset of partial functions A<ω → {I} (A<ω is the set of finite
sequences from A) or otherwise prove that if X is open then one of the two players
must have a winning strategy.

(x)

IR = 〈0, 1,+×,≤〉 is a field. Consider the product IRIN of countably many copies
thereof, with operations defined pointwise. Let U be an ultrafilter ⊆ P(IN) and con-
sider IRIN/U . Prove that it is a field. Is it archimedean?

(xi)

(i)+ How many order-preserving injections IR→ IR are there?
(ii)☠ Let 〈X,≤X〉 be a total order with no nontrivial order-preserving injection X → X.

Must X be finite?
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Set Theory and Logic, Michaelmas 2016,
Sheet 3: Propositional and Predicate Logic

(i)

Show how ∧, ∨ and ¬ can each be defined in terms of → and ⊥. Why can you not
define ∧ in terms of ∨? Can you define ∨ in terms of →? Can you define ∧ in terms
of → and ∨?

(ii)

(a) Show that for every countable set A of propositions there is an independent
set B of propositions with the same deductive consequences.

(b) If A is finite show that we can find such a B with B ⊆ A.

(c) Give an example to show that we should not expect B ⊆ A if A is infinite.

(d) Show that if A is an infinite independent set of propositions then there is
no finite set with the same deductive consequences.

(iii)

Explain briefly the relation between truth-tables and Disjunctive Normal Form.

Explain briefly why every propositional formula is equivalent both to a formula in
CNF and to a formula in DNF.

Establish that the class of all propositional tautologies is the maximal propositional
logic in the sense that any superset of it that is a propositional logic (closed under |=
and substitution) is trivial (contains all well-formed formulæ).

(iv)

A formula (of first-order Logic) is in Prenex Normal Form if the quantifiers have
been “pulled to the front”—every propositional connective and every atomic subfor-
mula is within the scope of every quantifier.

Explain briefly why every first-order formula is equivalent to one in PNF.

Axiomatise the theory of groups in a signature with ‘=’ and a single three-
place relation “x times y is z”. Put your axioms into PNF. What are the
quantifier prefixes?

Find a signature for Group Theory which ensures that every substructure
of a group is a semigroup-with-11.

(v)

Show that the theory of equality plus one wellfounded relation is not axiomatisable.
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(vi)

Write down axioms for a first-order theory T with equality plus a single one-place
function symbol f that says that f is bijective and that for no n and no x do we have
fn(x) = x.

(a) Is T finitely axiomatisable?

(b) How many countable models does T have (up to isomorphism)?

(c) How many models of cardinality of the continuum does it have (up to isomorphism)?

(You may assume that the continuum is not the union of fewer than 2ℵ0

countable sets, a fact whose proof—were you to attempt it—would need AC.)

(d) Let κ be an uncountable aleph. How many models does T have of size κ?

(e) Is T complete?

(vii)

Show that monadic predicate logic (one place predicate letters only, without equality
and no function symbols) is decidable.

(viii)

(a)+ Suppose A is a propositional formula and ‘p’ is a letter appearing in A.
Explain how to find formulæ A1 and A2 not containing ‘p’ such that A is logically
equivalent to (A1 ∧ p) ∨ (A2 ∧ ¬p).

(b) Hence or otherwise establish that, for any two propositional formulæ A and B with
A |= B, there is a formula C, containing only those propositional letters common
to both A and B, such that A |= C and C |= B. (Hint: for the base case of the
induction on the size of the common vocabulary you will need to think about
expressions over the empty vocabulary).

(ix)

Why does T not follow from K and S?
Show that Peirce’s Law: ((A→ B)→ A)→ A cannot be deduced from K and S.

(x+)

Look up monophyletic. Using only the auxiliary relation “is descended from” give a
definition in first-order logic of what it is for a set of lifeforms to be monophyletic.

(xi)

Is

(∀x)(∃y)(F (x, y))→ (∀x)(∃y)(∀x′)(∃y′)[F (x, y) ∧ F (x′, y′) ∧ (x = x′ → y = y′)]

valid?
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(xii)

(a) Show that the theory of fields of characteristic zero is (first-order)
axiomatisable but not finitely axiomatisable. Show that the theory of fields
of finite characteristic is not first-order axiomatisable.

(b) Recall that a simple group is one with no nontrivial normal subgroup.
Is the theory of simple groups first order?

(c) A local ring is a ring with a unique maximal ideal. Is the theory of local
rings first-order? [Hint: what might the unique maximal ideal be?]

(d) Is the theory of posets in which every element belongs to a unique maximal
antichain first-order?

(e) A theory T is equational iff every axiom of T is of the form (∀~x)Φ where
φ is a conjunction of equations between T -terms.

Prove that, if T is equational, then a pointwise product of models of T
is another model of T , and substructures and homomorphic images of
models of T are models of T .

Which of the theories in (a)–(d) are equational?

(xiii)

A type in a propositional language L is a countably infinite set of formulæ.
For T an L-theory a T -valuation is an L-valuation that satisfies T . A valuation v

realises a type Σ if v satisfies every σ ∈ Σ. Otherwise v omits Σ. We say a theory T
locally omits a type Σ if, whenever φ is a formula such that T proves φ→ σ for every
σ ∈ Σ, then T ` ¬φ.

(a) Prove the following:
Let T be a propositional theory, and Σ ⊆ L(T ) a type. If T locally omits Σ then

there is a T -valuation omitting Σ.

(b) Prove the following
Let T be a propositional theory and, for each i ∈ IN, let Σi ⊆ L(T ) be a type. If

T locally omits every Σi then there is a T -valuation omitting all of the Σi.

(xiv)

Prove that, for every formula φ in CNF, there is a formula φ′ which
(i) is satisfiable iff φ is;
(ii) is in CNF where every conjunct contains at most three disjuncts.
(Hint: there is no assumption that L(φ′) = L(φ).)
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Set Theory and Logic, Michaelmas 2016,
Sheet 4: More Predicate Logic and Some Set Theory

(i)+

Show that if x is a transitive set, then so are
⋃
x and P(x). Are the converses true?

(ii)+

Show that the Pair-set axiom is deducible from the axioms of empty set, power set,
and replacement.

(iii)+

Show that {z : ¬(∃u1, . . . , un)((z ∈ u1) ∧ (u1 ∈ u2) ∧ · · · ∧ (un ∈ z))} is not a set for
any n. What assumptions have you made?

(iv)

Write down sentences in the language of set theory to express the assertions that, for
any two sets x and y, the product x × y and the set yx of all functions from x to y
exist. You may assume that your pairs are Wiener-Kuratowski.

Which axioms of set theory are you going to have to assume if these assertions are
to be provable?

(v)

(a) Prove that every normal function On→ On has a fixed point.
(b) Prove that the function enumerating the fixed points of a normal

function On→ On is itself normal.
(c) If α is a regular ordinal and f is a normal function show that f has a

fixed point of cofinality α.
(d) Are any of your fixed points regular?

(vi)

Show that the axiom of choice follows from the assumption that cardinals are totally
ordered by ≤card.

(vii)

Explain briefly the equivalence of the four versions of the axiom of foundation given
in lectures: (i) The axiom scheme of ∈-induction; (ii) The assertion that every set
is wellfounded; (iii) Axiom of Regularity; (iv) Every set belongs to the cumulative
hierarchy.
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(viii)

f is an ∈-automorphism if f is a permutation of V that preserves ∈: x ∈ y ←→ f(x) ∈
f(y). Show that a model of ZF (with foundation of course) can have no nontrivial
∈-automorphisms.

Give an example to show that the surjectivity condition on f is necessary; that is
to say, there are non-trivial injective ∈-homomorphisms.

(ix)

For the Wiener-Kuratowski ordered pair ρ(〈x, y〉) = max(ρ(x), ρ(y)) + 2. (ρ is set-
theoretic rank.)

(a) Can you define a ordered pair such that ρ(〈x, y〉) = max(ρ(x), ρ(y))− 1?
(b) Can you define a ordered pair such that ρ(〈x, y〉) = max(ρ(x), ρ(y)) + 1?
(c)∗ Can you define a ordered pair such that ρ(〈x, y〉) = max(ρ(x), ρ(y)) for all

but finitely many x and y?

(x)

There are various ways of constructing implementations (as sets) of Q, Z, IR and
C from an implementation (as sets) of the naturals. For one of these constructions
compute the ranks of the sets that have the rôles of Q, Z, IR and C.

Different implementations will almost certainly give you different answers. Are
there any lower or upper bounds on the answers you might get?

(xi)

Consider the binary relation E on IN defined by: nEm iff the nth bit (counting from
the right, starting at 0) in the binary expansion of m is 1. What can you say about
the structure 〈IN, E〉?

(xii)

Prove that, for each n ∈ IN, there is a set of size ℵn. Is there a set of size ℵω?

(xiii)

Assume that the cartesian product x×y always exists however you implement ordered
pairs. Infer the axiom scheme of replacement.

(xiv)

Assume that every normal function On → On has a regular fixed point. Consider
the function that enumerates the initial ordinals and deduce that there is a “weak
inaccessible” κ. Which axioms of ZF hold in Vκ?

(xv)

Suppose {Ai : i ∈ I} and {Bi : i ∈ I} are families of sets such that for no i ∈ I is

there is a surjection Ai →→ Bi. Show that there is no surjection
⋃
i∈I

Ai →→
∏
i∈I

Bi.

You will need the axiom of choice. Is there a converse?
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Using these ideas you can show that ℵω 6= 2ℵ0 without using AC.
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Sheets from here on are still under
construction!!

Set Theory and Logic, Michaelmas 2016, Sheet 5

Sheet 5 is for Part II enthusiasts who want to take this stuff further; it’s a
mixture of revision, consolidation and looking-ahead. It is also for Part III
students who want something to get them used to what they are going to be
doing later in the year. (Part III Logic is lectured in Lent.)

(i)

Explain to your supervision partner (or to anyone listening who might be con-
fused) the difference between

(i) Nonstandard naturals
(ii) Countable ordinals
(iii) Infinite Dedekind-finite cardinals

(ii)

For P a poset, let P ∗ be the poset of chains-in-P partially ordered by end-
extension. (Chains are allowed to be empty). Show that there is no injective
homomorphism P ∗ ↪→ P .

(iii)

Any two countable dense linear orders without endpoints are isomorphic. Give
an illustration to show how your back-and-forth construction might not work
for dense linear orders of size ℵ1. How do you have to spice up the denseness
condition to prove an analogous result for linear orders of size ℵ1?

(iv)

(For those of you who did Languages and Automata)
A wellordering of IN is recursive iff its graph (subset of IN× IN) is decidable

(“recursive”); an ordinal is recursive iff it is the order type of a decidable (“re-
cursive”) wellordering of IN. Which of the countable ordinals you have learned
to know and love are recursive? Come to think of it, are all countable ordinals
recursive?

(v)∗

(For those of you who did Languages and Automata)
Prove Trakhtenbrot’s theorem that if S is a signature with equality and at

least one binary relation symbol then the set of S-sentences true in all finite
structures is not semidecidable (“r.e.”).
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(vi)

(A taster for forcing)
A poset 〈P,≤P 〉 is [upwards] separative if (∀x, y ∈ P )(x 6≤ y → (∃z ≥

y)(∀w)(w 6≥ z ∨ w 6≥ x))
For each of the following posets say whether or not it is (i) separative (ii)

directed (iii) chain-complete.
The set of finite sequences of countable ordinals (thought of as sets of ordered

pairs) partially ordered by ⊆.
The set {f : f is an injection from some set of countable ordinals ↪→ IR}

ordered by ⊆. Think of f as a set of ordered pairs.

(vii)

(For those of you who did some graph theory in Lent term)
Using propositional logic only, show that a(n undirected) graph and its com-

plement cannot both be disconnected. (Hint: propositional letters will corre-
spond to edges)

(viii)

A poset 〈P,≤〉 is called downwards separative if for all x 6≤ y there is z ≤ x
with z incompatible with y. (“incompatible” means “have no lower bound”).
We say that a poset is downwards splitting if for every x there are y and z such
that y, z ≤ x, and y and z are incompatible.

(a) Show that not every downwards separative poset is downwards splitting.
(b) Show that if a poset has no minimal elements and is downwards separa-

tive, then it is downwards splitting.
A set D ⊆ P is called downwards dense if for every p in P there is a d in D

such that d ≤ p.
Suppose XX is a collection of subsets of P . We say that G ⊆ P is XX-

generic if G has nonempty intersection with every downwards dense element of
XX.

We say that G is a filter if

1. for any x, y in G there is z in G such that z ≤ x and z ≤ y, and

2. for any x in G and x ≤ y, we have y in G.

(c) If XX is countable, show that there is an XX-generic
filter.

(d) Let 〈P,≤〉 be a downwards separative poset with no
minimal elements and let XX be a collection of subsets of
P closed under complementation (i.e., if X ∈ XX, then
also P \X ∈ XX). Show that if G is an XX-generic filter,
then G 6∈ XX.
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(e) Let 〈P,≤〉 be the set of finite sequences of zeros and
ones, ordered by reverse inclusion. Show that this is a
downwards separative poset without minimal elements.

(f) Let XX be the collection of recursive sets of finite
sequences of zeros and ones. Show, using (c), (d), and (e),
that there is a non-recursive such set.

(ix)

(Concrete constructions of limits in ZF)

Let 〈I,≤I〉 be a directed poset and, for each i ∈ I, let Ai be a set and, for
all i ≤I j, let σi,j : Ai ↪→ Aj be an injection, and let the injections commute.

Show that there is a set AI with, for each i ∈ I, an injection σi : Ai ↪→ AI
and the σi,j commute with the σi.

Show also that AI is minimal in the sense that if B is any set such that for
each i ∈ I there is an injection τi : Ai ↪→ B and the τi commute with the σi,j ,
then there is a map AI ↪→ B.

Let 〈I,≤I〉 be a directed poset and, for each i ∈ I, let Ai be a set and, for
all i ≤I j, let σj,i : Aj →→ Ai be a surjection, and let the surjections commute.

Show that there is a set AI with, for each i ∈ I, a surjection πi : AI →→ Ai.

Show also that AI is minimal in the sense that, if B is any set such that for
each i ∈ I there is a surjection τi : B →→ Ai and the τi commute with the σi,j ,
then there is a map B →→ AI .

(x)☠

Let G be the alternating group of permutations of Vω. For each n ∈ IN its
members can move x by permuting those elements of

⋃n
x that are of finite

rank and fixing the remainder. A set that is fixed by everything in G under
the nth action of G is said to be n-symmetric; if it is n-symmetric for all
sufficiently large n it is just plain symmetric.

Consider the collection of sets that are hereditarily symmetric. Which ax-
ioms of ZFC are true in this structure?

(xi)∗ (A taster for Large Cardinals)

Prove  Loś’s theorem :

THEOREM 19 Let U be an ultrafilter ⊆ P(I). For all first-order expressions
φ,

(
∏
i∈I
Ai)/U |= φ iff {i : Ai |= φ} ∈ U .
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(You may assume AC)
Suppose there is a set K with a nonprincipal ultrafilter U ⊆ P(K) that

is closed under countable intersections. By using Scott’s trick concretise the
elements of the ultrapower V K/U . Prove that it is wellfounded. What can you
say about the Mostowski collapse?

(xii)∗

I = 〈I,≤I〉 is a set of indiscernibles for a model M for a language L iff ≤I
is a total order, and for all φ ∈ L, if φ is a formula with n free variables in it
then for all distinct n-tuples ~x and ~y from I taken in ≤I-increasing order
we have M |= φ(~x)←→ φ(~y).

Now let I be a total order, T a theory with infinite models and a formula P ()
with one free variable s.t. T thinks that the extension of P is an infinite total
order. Then T has a model M in which I is embedded in (the interpretation
of) P as a set of indiscernibles.

(Notice that there is no suggestion that the copy of I in M is a set of M, or
is in any way definable.)

It is comparatively straightforward, given I and T and P (), to find M as in
the theorem if we do not ask that I should be embedded as a set of indiscernibles:
compactness does the trick. To get the set of indiscernibles you need to use
Ramsey’s theorem from Graph theory.

(xiii)

(GRM revision from a logical point of view). Wikipædia says:

Commutative Rings ⊇ Integral Domains ⊇ Integrally Closed Do-
mains⊇GCD domains⊇ Unique Factorization Domains⊇ Principal
Ideal Domains ⊇ Euclidean Domains ⊇ Fields

All these families-of-structures can be thought of as belonging to the one
signature: 0, 11, +, · and −. Which of them are first-order axiomatisable? In
each case provide axiomatisations or explain why there are none. Identify the
quantifier complexity of the axiomatisations you find.

(xiv)(☠)

How many countable [linear] order types are there whose automorphism group
is transitive on singletons?

(xv)

How many transitive subsets of Vω are there?
How many transitive sets are there all of whose members are countable?
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(xvi)

Recall the difference between a wellorderable set and a wellordered set.
Prove without using AC or foundation or ordinals that every set of wellorder-

able sets has a member that injects into all the others.
Is this the same as saying that the collection of alephs is wellordered by the

order relation on cardinals?

(xvii)

A directed limit of wellfounded structures under end-extension is wellfounded.
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