Part III Computability and Logic:
24 Lectures in Michaelmas Term 2015

Thomas Forster

June 18, 2016

l*lﬁ "' lﬁ*l

Contents

11 Introduction and some History|

L.I__Definitions.
2 Recursive Dataypes|

2.1 Wellfounded Tnductionl
2.2 Inductively Defined Sets|o
2.3 Horn Clauses and the Uniqueness Problem|.
2.4 Structural Inductionl oo oL
2.5 Engendering Relations|o 0000
2.6 Rectypes and Least Fixed Points|
2.6.1 Fixed Point Theoremsl
[2.6.2 Rectypes as least fixed points|

2.7 Finite vs Bounded vs Unbounded Character|

Rectypes of Unbounded Character are Paradoxical|

2.7.2 Bounded Character.

B8 Ordinald
2.8.1 Rank functionsl

2.9 Restricted Quantifiers| 0oL
[2.10 Infinitary Languages|o oL
[2.10.1 “Wellfounded” is Infinitary Horn|
[2.10.2 Some Remarks on Infinitary Languages|

[B_Functions

8.1 __Primitive Recursion|
Some quite nasty functions are primitive recursive .

[3.1.2 Justifying Circular Definitions]

B2 Exercisedo
(3.2.1 Primitive Recursive Relations
[3.2.2 Simultaneous Recursionl

3.3 W-TECUrsion| Lo e e
3.3.1 The Ackermann functionl

10

11
11
14
15
17
18
20
20
23
24

27
28
28
29
31
32
32

[4_Machines|

4.3 Machines with infinitely many states|
4.4 p-recursive = register machine-computable]
4.4.1 A Universal Register Machine|.

4.5.1 Zigzagging Autoparallelism: Volcanoes|.
4.5.2 Decidable and Semidecidable Setsl
4.5.3 A Nice Illustration and a Digression|
4.5.4 “In finite time”—a warning|
4.6 Decidable and semidecidable sets of other things| . . .
4.6.1 Applications to Logic|
4.7 The Undecidablity of the Halting Problem|.
471 Rice’s Theoreml

[Representability by \-terms]

5.3 Representing the u operator in A-calculus|
5.4 Typed Lambda terms for computable functions|
4.1 Combinators??,

7 Incompleteness|

7.1 Proots of Totality].
[(.2 A Theorem of Godel’sl

CONTENTS

CONTENTS 5

8 WQO theory| 125
8.1 WQOs| 126
[8.1.1 The Minimal Bad Sequence construction|. 128

8.2 Kruskal’s theorem| L. 129
8.3 _Some bonnes bouched, 130
[8.3.1 How to get some large ordinals| 130

8.3.2 Friedman'’s Finite Form of Kruskal's Theorem|. 131

19 Elementary Degree Theory| 133
9.1 Computation relative to an oracle 135
9.2 Priority Methods| oo 136
[9.2.1 Friedberg-Muchnik| 138

[9.2.2 Omitting Types|. 140

[9.2.3 Baker-Gill-Solovay and ;P =NP? 142

10 Proofs and Ordinals| 145
[10.1 The Ordinal ¢y and the Consistency of Peano Arithmetic] 145
[[0.2 The Goodstein function] 148
|110.3 Hierarchies of fast-growing functions| 154
[10.3.1 Good behaviour of the F,,, and the Schmidt conditions|. . 157

[[0.3.2 Schmidt-coherencel 158

110.4 Preposterously Large Countable Ordinals| 163
(10.4.1 Cantor normal form using w T of 167

11 Constructive Mathematics| 169
I11.1 Diaconescu: the Axiom ot Choice implies Excluded Middle] . . . 171
(11.1.1 Least Number Principle Implies Excluded Middle|. 172

[11.1.2 Linton-Johnstone and Markov’s Principlel 173

[11.2 Proof theory, Curry-Howard and Realizability| 173
(11.2.1 Proof Theory| 173

(11.2.2 Curry-Howard| 174

[11.3 Realizability|. 175

[11.3.1 The Axiom ot Choice in Constructive Set Theory: notes
consequent to a lecture given by Sol Feferman on 10/1/2014,

written up partly to amuse Valeria Paival 181

[11.4 Recursive Analysis| L. 183
11.5 A constructive treatment of infinitesimalsl 184
|12 Notes and Appendices| 185
12.1 Chapter 2| 185
[(12.1.1 Horn clauses in rectype declarations| 185

[12.1.2 Infinitary Languages| 186

12.2 Chapter[3] 188
[12.2.1 A bit of pedantry|., 188

[2.2.2 The Ackermann functionl 189

6 CONTENTS

124 Chapters] o oo 191
12.5 apter §| 191
12.6 Chapter[9] 191
[12.7 Chapter[10] e 191
[13 Answers to selected questions| 199

Edition of March 31st 2016

The version of the notes you see before you will not be edited before the exam—
unless any of you detect typos that you would like me to correct. Perhaps
i should say there will be no spontaneous updates. You will notice that not
everything that i lectured is covered here. In particular the Curry-Howard stuff
is entirely absent. This is because it is available as one of the chapters (helpfully
entitled “Curry-Howard”!) in www.dpmms.cam.ac.uk/~tf/chchlectures.pdf.
I am not going to promise that all the questions awaiting you on the morning
of the 26th May will be bookwork (they won’t be: external examiners do not
like bookwork) but i can say that if you have digested all the above you will be
adequately prepared.

www.dpmms.cam.ac.uk/~tf/chchlectures.pdf

Chapter 1

Introduction and some
History

Start with Hilbert and diophantine equations. The key notion behind com-
putability is the slangy informal notion of finite object.

There is a surprisingly illuminating history to be found in [25].

To apply the theorems and insights of computation theory widely in math-
ematics we need the notion of a finite object or (perhaps better put): object of
finite character. Classic contrastive explanation: rationals are finite objects but
reals are not. (“Finite precision” vs “Infinite precision”). This matters to us
because any sensible concept of algorithm that we come up with is going to be
one that can cope with only a finite amount of information at any one time: its
inputs must be things that are finite-objects in the sense we are trying to get
straight.

Roughly, a finite object is an object that has a finite description in a count-
able language (and a countable language that has a finite description, at that).
Such objects may well be infinite in some other sense. The graph of an polyno-
mial function IR — IR certainly contains infinitely many points but it can still
be given a finite description and is a finite object in our sense (at least if it has
coefficients in Z). (The function-in-extension is literally infinite, thought of as
a set). Any countable language can be gnumberecﬂ and we can contemplate
which of the manipulations of the finite objects it characterises correspond to
the computable manipulations of the gumbers of the expressions of the language.

The concept of finite object has applications outside pure mathematics. Verte-
brates have skeletons made from bones that (from the point of view of the animal)
are rigid; movement only occurs at [a small finite number of] joints. Thus the hu-
man arm has only finitely many degrees of freedom so controlling its movements is a
tractable problem: we have a motor cortex! The octopus tentacle has no skeleton and
has infinitely many degrees of freedom, so controlling its movement is an intractable
problem. There is no detailed central control of movements of the octopus tentacle:

1Godel-numbering; the ‘g’ is silent.

update this reference

at some point have to explain ‘acceptable
enumeration’. If we are to deal with com-
putation out in the wide world as com-
puting with numerals then we have to be
sure that our encoding/gnumbering is un-
der control.

8 CHAPTER 1. INTRODUCTION AND SOME HISTORY

movements are controlled locally by a nextwork of ganglia, one for each sucker. The
octopus brain does not know the configuration of the tentacles.

Word problems for groups. Group presentations. Note that (old hands
might have encountered this in Part IT with Prof Leader’s question on Sheet 3
q 8 part (vi) about the theory of simple groups of order 60) a presentation of
a group does not straightforwardly give rise to a categorical first-order theory
that characterises it. You cannot compute the first-order theory of a group from
a presentation of it. Burnside groups?

r-process and s-process: an example from Physics

Physicists who study nucleosynthesis distinguish between s-process nuclei
and r-process nuclei (the ‘s’ and the ‘r’ connoting slow and rapid respectively)
One can think of the two sets of s-process and r-process nuclei as inductively
defined sets as followsP]

You are an s-process nucleus if you have very long (or infinite) half-life and
are the result of a neutron capture by an s-process nucleus or the result of a
[B-decay of a result of neutron capture by an s-process nucleus;

You are an r-process nucleus if you are stable to neutron-drip and you are
either (i) the result of a neutron capture by an r-process nucleus or (ii) the
result of a B-decay of an r-process nucleus.

But we’ll start with finite+bounded (not least because it enables us to mo-
tivate the (otherwise rather odd) move of taking nondeterminism seriously).

Hilbert’s 1900 address set a number of tasks whose successful completion
would inevitably involve more formalisation. It seems fairly clear that this
was deliberate: Hilbert certainly believed that if formalisation was pursued
thoroughly and done properly, then all the contradictions that were crawling
out of the woodwork at that time could be dealt with once and for all.

One of the tasks was to find a method for solving all diophantine equations.
What does this mean exactly? Let us review the pythagorean equation z2+y? =
22, to see what “solving” might mean. It is easy to check that, for any two
integers a and b,

(a2 _ b2>2 + (2ab)2 _ (a2 4 b2)2,

and so there are infinitely many integer solutions to z? + y? = z2. Indeed we

can even show that every solution to the pythagorean equation (at least every
solution where x, y and z have no common factor) arises in this way:

Notice that if 2 + y2 = 22, then z is odd and precisely one of z and y is
even. (We are assuming no common factors!) Let us take y to be the even one
and z the odd one.

Evidently 22 = (2 — y)(z + y), and let d be the highest common factor of
z—y and z + y. Then there are coprime a and b satisfying z + y = ad and

20ne could make a type-token point here: i think physicists sometimes refer to these
nucleus-types as species.

z —1y = bd. So x? = abd?. This can happen only if a and b are perfect squares,
say u? and v?, respectively. So z = uvd.

This gives us z = “2“2”}2 -dand y = "25”2 -d and in fact d turns out to be 2.
Thus we have a complete description of all solutions (in integers) to the
pythagorean equation.
You probably learnt in Part II how to use continued fractions to find all

solutions to Pell’s equation.

Hilbert’s question—and it is a natural one—was: can we clean up all diophan-
tine equations in the way we have just cleaned up this one?

If there is a general method for solving diophantine equations, then we have
the possibility of finding it. If we find it, we exhibit it, and we are done. To
be slightly more specific, we have a proof that says “Let E be a diophantine
equation, then ...”, using the rule of universal generalisation (UG).

On the other hand, if there is no such general method, what are we to do?
We would have to be able to say something like: let 2 be an arbitrary algorithm;
then we will show that there is a diophantine equation that 2l does not solve.
But clearly, in order to do this, we must have a formal concept of an algorithm.
Hilbert’s challenge was to find one.

There are various formal versions of computation. We shall see how the
set of strings recognised by a finite state machine gives rise to a concept of
computable set. However, we will also see a fatal drawback to any analysis of
computable set in terms of finite-state machines: the matching bracket language
is not recognised by any finite-state machine but is obviously computable in some
sense. The problem arises because each finite-state machine has a number of
states (or amount of memory, to put it another way) that is fixed permanently
in advance. Despite this, the concept of computablity by finite-state-machines
turns out to be mathematically interesting and nontrivial. However it is not
what we are primarily after. The most general kind of computation that we
can imagine that we would consider to be computation is deterministic, finite
in time and memory but unbounded: no predetermined limit on the amount of
time or memory used. There have been various attempts to capture this idea in
machinery rigorous enough for one to prove facts about it. The (historically) first
of the most general versions is Turing machines. There is also representability
by A-terms which we will see in chapter

Another attempt is u-recursion, which we will do in detail below. The other
approach we explore in some detail is an analysis in terms of register machines.
They do not have the historical cachet of Turing machines but are slightly easier
to exploit, since they look more like modern computers.

What became clear about 70 years ago is that all attempts to formalise
the maximal idea of a computable function result in the same class of func-
tions. This gives rise to Church’s thesis. Although not normally presented as
such, Church’s thesis is really just a claim that this endeavour to illuminate—by

This syntactic/semantic
distinction is not the
same as the function-
in-intension/function-in-
extension distinction of
course

10 CHAPTER 1. INTRODUCTION AND SOME HISTORY

formalisation—our intuitive idea of a computable function has now been com-
pleted: we will never need another notion of “computable”ﬂ

How can we be so confident? Well, we have a completeness theorem. All
completeness theorems have two legs: a semantic concept and a syntactic con-
cept. In Part II you saw an elementary and pleasing example of a completeness
theorem: the completeness of propositional logic. It states that two classes of
formulee are one and the same class. (i) The set of truth-table tautologies; and
(ii) the class of formulee deducible from axioms K, S and T by means of sub-
stitution and modus ponens. (ii) is a syntactic concept, and (i) is a semantic
concept.

The semantic concept in the computability case is Turing-computable or
register machine-computable. The syntactic concept is a bit harder. The first
attempt at it is primitive recursive; we will discover the correct syntactical
concept by examining what goes wrong with primitive recursive functions.

But before that we have to get all our definitions out of the way.

1.1 Definitions

Intension-extension (talk over this); graph of a function. We will use lambda
notation.

‘W signifies the end of a proof.
We use the pig classification for cuteness of theorems. (The pigs are made

of pink icing sugar). The more occurrences of S the tastier the theorem:;
the more occurrences of ‘&’ the nastier the construction.

IN is the set of natural numbers and N is its cardinality, Z is the set of
integers, Q is the set of rationals, and w is the first infinite ordinal.

Cardinality: ‘|X|” denotes the cardinal of the set X.
[X]™is {z C X : |z| = n}.
we write ordered pairs as (z,y)
range of a function: f“IN := {f(n):n € IN}
Dom(f) :={n e IN: f(n)l} (see p.
for consing—both ways round, for both cons and snoc

X — Y is the set of partial functions from X to Y

3Philosophically inclined readers may wish to reflect on the curious fact that Church’s
thesis is a metamathematical allegation of which no formal proof can be given. As soon as we
formalise “All attempts to formalise our informal notion of finite-but-unbounded computation
result in the same formal notion”, the reference to informal computation becomes a reference to
a formal notion and the sense is lost. You may wish to google ‘Church’s translation argument’
in this connection.

Chapter 2

Induction, Wellfoundedness

and Recursion in a General
Context

Induction can only be understood backwards, but it must be lived
forwards.

Kierkegaard

2.1 Wellfounded Induction

Suppose we have a carrier set with a binary relation R on it, and we want to
be able to infer

Vo ¢ (z)
from

(Vo) (Vy) (R(y,z) — () = ¢(x))

In words, we want to be able to infer that everything is ¢ from the news that
you are 9 as long as all your R-predecessors are 1. y is an R-predecessor of x
if R(y,x). Notice that there is no “case n = 0” clause in this more general form
of induction: the premiss we are going to use implies immediately that a thing
with no R-predecessors must have 1. The expression “(Vy)(R(y,z) — ¥(y))”
is called the induction hypothesis. The first line says that if the induction
hypothesis is satisfied, then x is ¥ too. Finally, the inference we are trying to
draw is this: if z has ¥ whenever the induction hypothesis is satisfied, then
everything has 1. When can we do this? We must try to identify some condition
on R that is equivalent to the assertion that this is a legitimate inference to draw
in general (i.e., for any predicate).

Why should anyone want to draw such an inference? The antecedent says
“r is 1 as long as all the immediate R-predecessors of x are v, and there are

11

12 CHAPTER 2. RECURSIVE DATAYPES

plenty of situations where we wish to be able to argue in this way. Take R(z,y)
to be “x is a parent of y”, and then the inference from “children of blue-eyed
parents have blue eyes” to “everyone has blue eyes” is an instance of the rule
schematised above. As it happens, this is a case where the relation R in question
does not satisfy the necessary condition, for it is in fact the case that children
of blue-eyed parents have blue eyes and yet not everyone is blue-eyed.

To find what the magic ingredient is, let us fix the relation R that we are
interested in and suppose that the inference

(Vy) (R(y, 2) = ¥(y)) — ¢(x)

V) (y(x

R-induction

has failed for some choice 1 of predicate. Then we will see what this tells us
about R. To say that R is well-founded all we have to do is stipulate that this
failure (whatever it is) cannot happen for any choice of .

Let ¢ be some predicate for which the inference fails.

Then the top line is true and the bottom line is false. So {z : —¢(z)} is
nonempty. Let us call this set A for short. Using the top line, let z be something
with no R-predecessors. Then all R-predecessors of = are v (vacuously!) and
therefore x is 1 too. This tells us that if y is something that is not v, then
there must be some y' such that R(y',y) and y' is not 1 either. If there were
not, y would be . This tells us that the collection A of things that are not 1
“has no R-least member” in the sense that everything in that collection has an
R-predecessor in that collection. That is to say

(Vo € A)(Fy € A)(R(y,x))

To ensure that R-induction can be trusted it will suffice to impose on R
the condition that (Vo € A)(Jy € A)(R(y,z)) never hold, for any nonempty
A C dom(R). Accordingly, we will attach great importance to the following
condition on R:

DEFINITION 1 R iswell-founded iff for every nonempty subset A of dom(R()
we have (3x € A)(Vy € A)(—R(y,x))
(x is an “R-minimal” element of A.)

This definition comes with a health warning: it is easy to misremember. The
only reliable way to remember it correctly is to rerun in your mind the discussion
we have gone through: well-foundedness is precisely the magic property one
needs a relation R to have if one is to be able to do induction over R. No more
and no less. The definition is not memorable, but it is reconstructible.

Wellfoundedness is a very important idea to be found all over Mathematics,
even in places where the word is not used. Noetherian rings are rings with
a certain wellfoundedness property. Hilbert’s basis Theorem is the news that
certain constructions preserve wellfoundedness.

You may be more familiar with a definition talking about “no infinite de-
scending chains”. These two definitions are not equivalent without DC, the
Axiom of Dependent Choices:

2.1. WELLFOUNDED INDUCTION 13

(Vo € X)(3y € X)(R(z,y))
(Ve e X)3f : IN = X)(f(0) = = A (Vr)(R(f(n), f(n+1))))
If DC fails we can let X be an infinite Dedekind-finite set (not the same size
as any of its proper subsets) and consider the tree of wellorderings of subsets of
X ordered by reverse end extension (so longer wellorderings come lower in the

tree). This tree is not wellfounded (it has subsets—such as the tree itself—with
no minimal elements) but has no infinite descending chain.

REMARK 1 Suppose R’ C R are wellfounded relations on a fixzed domain.
Then R'-induction is a weaker principle than R-induction.

Proof:

If R'(z,y) — R(z,y) then (Vy)(R(y, =) — ¢(y)) implies (Vy)(R'(y,z) — é(y))
and

(V?%(Vyﬁ(R’(% z) = ¢(y)) = o(x)) implies (Vz)((Vy)(R(y,z) = ¢(y)) = 6(x))
and finally

(V) ((Vy) (R(y, x) = ¢(y)) = o(x)) = (V2)((2))
implies
(V2)(Vy) (R (y,) = ¢(y)) = d(x)) = (V2)(6(2))
|

Reflect that if R’ is the empty relation then R-induction is trivial. For consider:
if R is the empty relation then

(Vo) (Vy) (R(y, ©) = ¢(y)) = ¢(x)) = (V2)(6(2))

(V) (V) (L = o(y)) = d(x)) = (V2)(d(2))
which is
(V2)((Vy)(T) = ¢(z)) = (V2)(9(2))
which is

(Va)(¢(x)) = (V2)(4(2)).

EXERCISE 1 (*E Provide a sequent calculus or natural deduction proof that

(Vo) (Vy) (R(y, z) = 6(y)) = ¢(x)) = (V2)(6(2)) and (Vay) (R (z,y) = R(z,y))
together imply

(V2)((Vy) (R (y, 2) = ¢(y)) = ¢(x)) = (V2)(6(2)).
If (Vy)(—R(y,x)) then we say z is a zero element.

EXERCISE 2 Let (A, R) and (B, S) be wellfounded binary structures.

Yes, i know, you haven’t been lectured natural deduction or sequent calculus at this stage.
This is for revision

14 CHAPTER 2. RECURSIVE DATAYPES

(i) Show that the pointwise product is also a wellfounded binary
structure.

Define a relationT on A — B by T(f, g) iff Va,a’ € A)(R(a,a’) = S(f(a),g(a’)).

(i) Give an example to show that T need not be wellfounded even if
R and S are.

(#ii) Show that in contrast the restriction of T to those elements of
A — B that take only finitely many nonzero values is wellfounded.

THEOREM 1 The Recursion Theorem
If (X, R) is a wellfounded structure and G : X x P(V) — V then there is a
unique f satisfying

(Ve € X)(f(2) = G(z, {f(y) : R(y,}))

[Aside: In earlier versions i had G : X x V' — V and various people picked
me up on it. The point is that you want G to be able to cope with any ordered
pair whose first component is in X and whose second component is a subset of
the range of f. Such a thing is at any rate a set, and so is in P(V), that being
the collection of all sets. If you are in the world of sets V and P(V) are the
same thing, so there doesn’t seem to be much point in distinguishing between
them—particularly if it makes the statemenmt of the theorem longer. But yes,
P(V) is better than V]

EXERCISE 3 Prove theorem /[

The proof is entirely straightforward once wellfoundedness is understood.
You need the concept of an attempt, and you prove by induction that every
element of the domain of R is in the domain of some attempt. You also show
that any two attempts agree on their intersection. Then you form the union of
all attempts. []

2.2 Inductively defined sets aka Recursive Datatypes
aka Rectypes

Rectypes: have founders and constructors.

Examples of rectypes:

The empty set is Kuratowski-finite (“Kfinite”); if X is Kfinite then X U {y}
is Kuratowski-finite.

The empty set is N-finite; if X is N-finite and y ¢ X then X U{y} is N-finite.

The empty set is hereditarily ﬁniteﬂ if x and gy are hereditarily finite so is
xzU{y}.

Classically Kfinite and N-finite are the same; constructively they are not. In
this context sets which are plain vanilla-finite (both K-finite and N-finite in the
way you know and love) are said to be inductively finite:

28et Theory and Logic 2012/3 sheet 3 q 6.

2.3. HORN CLAUSES AND THE UNIQUENESS PROBLEM 15

The empty set is inductively finite; if x is inductively finite so is
z U {y}.

[put somewhere a proof that Kfinite sets closed under binary union and | J X
is kfinite if X is a kfinite set of kfinite sets]
Further examples:

Natural numbers

Formulae (Backus-Naur Form),

Proofs

The family of words in a group presentation
primitive recursive functions (later!)

lists, trees.

Some of you may remember exercises 6 and 10 on PTJ’s Part IT Set Theory
and Logic sheet 3 2012/3. If you didn’t do them then you should consider doing
them now. (They are probably on the web somewhere) There is a discussion of
them in the materials on my Part II Materials page.

All these rectypes are of finite character: the operations that construct them
are finitary. [Is IN the terminal object in the category of rectypes of finite
character...? Only if the maps are parsimonious]

2.3 Horn Clauses and the Uniqueness Problem

An inductively defined set can always be thought of as The Least thing above
X satisfying F' and containing y. When can we do it? Sometimes obviously
possible sometimes obviously impossible. Interesting cases in the middle: forcing
and field extensions. There is an Existence Problem and a Uniqueness
Problem: is there a minimal thing above X satisfying F' and containing y? If
there is, is it unique? For example: if thing means total order then there is a
minimal thingﬂ but it’s not unique. There is a syntactic reason for this.

DEFINITION 2 .

A Horn clause 18 a disjunction of atomics and negatomics of which at
most one s atomic.

A Horn property is a property captured by a [closure of a] Horn expression;

A Horn theory s a theory all of whose axioms are universal closures of
(conjunctions of) Horn clauses.

If ‘least’ means ‘least with respect to C’ then there is a nice logical theorem:
it works iff F' is Horn. Intersection-closed. ‘f“X"™ C X’ is Horn. The easy

3That is the order extension principle, a consequence of Zorn’s lemma.

16 CHAPTER 2. RECURSIVE DATAYPES

direction i am leaving as an exercise; it will say: if F' is a Horn property, then
for every x the F-closure of z exists and is well-defined and unique
Observe that “is a total order” is not a Horn property.

The reason for the appearance of Horn clauses here is that a rectype decla-
ration is always a pile of Horn sentences. For example, we declare the natural
numbers by

IN(0); (V) (IN(z) — IN(S(x)))
We declare the datatype of «a-lists by

a-list(null); (VI)((a-list(l) A a(z)) — a-list(cons(z,1)))

The class of models of a Horn theory is closed under various constructions,
e.g. substructure, direct limits. This is a cute fact that you should remember
(and prove, too—it’s not difficult), but we won’t make any use of it in this
cours

Symmetric, irreflexive, antisymmetric, transitive, reflexive are Horn prop-
erties. If F' is a Horn property [of relations] then we have the notion of the
F-closure of a relation. The [graph of] the F-closure of a (binary) relation-|in-
extension] R is ({S 2 R: F(S)}.

The significance of these ideas for us here is that the [graph of the] F-closure
of a relation is a rectype. For example, the transitive closure of a relation—
thought of as a set of ordered pairs—is closed under a certain binary operation
on pairs. The assertion that a set of ordered pairs is so closed is a Horn sentence.
And, since it is a Horn sentence, the union of a C-directed family of transitive
relations is another transitive relation.

Being a group is a universal horn property [by which we mean that the
axioms of group theory are universally quantified Horn formula] and we have the
notion of closing a set of elements under an operation to obtain a group. Ditto
ring, integral domain ...but not field! [miniexercise: which of the field axioms
is not horn?] That is why the concept of “least field extending F containing
some given elements” is not completely straightforward. You can obtain the
least field extending F containing some given elements but you don’t do it by
taking the intersection of lots of fields.

Horn-ness of the declaration is not only sufficient for the closure to be legit-
imate, well-defined etc etc, but is necessary. See appendix [I2.1.1]

4You may recall from an earlier Part II Set Theory and Logic sheet that the collection of
transitive relations on a fixed set is a complete poset. If you didn’t prove it then, prove it
now. Observe that the only feature of the property transitive that you have used in the proof
is the fact that it is a Horn property.

5There is even a converse, something along the lines of: if the class of models of ¢ is closed
under substructure and direct limits [and certain other things which i forget] then ¢ is logically
equivalent to a Horn sentence. This might be proved in Dr Lowe’s Model Theory course in
Lent.

2.4. STRUCTURAL INDUCTION 17

2.4 Structural Induction

Recursive datatypes support Structural Induction (“ancestral induction” in
Russell-and-Whitehead. ‘ancestral’ is in Russell-and-Whitehead, the idea—if
not this particular terminology—goes back to Frege) and declaration of functions
by recursion. Observe that this justification is constructive.

The way to understand structural induction is as a simple-minded general-
isation from mathematical induction over IN: if one wants to show that every
member of a rectype has property F one first establishes that all the founders
are F' (as it were, prove F'(0)) and that F-ness is preserved by the constructors
(as it were: F(n) — F(n+ 1)) at which point one infers that everything has F.

This section is so short because—altho’ this idea is epoch-making—it’s ter-
ribly simple, and there’s actually not much to say. One could make the point
that lots of inductions that are represented as induction over IN are best un-
derstood as inductions over other rectypes. For example in Logic there are
various results about languages that one usually proves by mathematical in-
duction over the number of quantifiers and connectives. These proofs are all
(morally!) structural inductions over the rectype of the language that is being
reasoned about. There now follows a rather nice illustration from Part Ia of the
Computer Science Tripos.

EXERCISE 4

“We define the length of a propositional formula by recursion as follows:

la| =1,
ITI=1,
|J-| =1,

|AAB|=|A|+|B|+1,
|AV B| = |A| + |B| + 1,
-A] = Al + 1.

We define a translation which eliminates disjunction from propositional formule
by the following recursion:

tr(a)=a, tr(T)=T, tr(L) =1,
tr(AA B) =tr(A) ANtr(B),
tr(AV B) = —(-tr(A) A —tr(B)),
tr(-A) = —tr(A).
Prove by structural induction on propositional formule that
tr(A)] < 3|A] -1,
for all Boolean propositions A.”

EXERCISE 5

kfiniteness exercises here. .. ?

18 CHAPTER 2. RECURSIVE DATAYPES

1. Declare the rectype of a-lists. (Observe that it is free.) Suppose the type o
has been equipped with a quasiorder <,. We say that an a-list [; stretches
into another a-list Iy if there is a 1-1 increasing map f from the addresses
of l1 to the addresses of la such that, for all addresses a, a <, f(a). That is
to say: think of an «a-list as a function defined on a proper initial segment
of IN. Give a definition of stretching by list-recursion.

2. Declare the rectype of a-trees, and observe that it is free. Define stretching
for a-trees, and give a recursive definition.

With IN we can prove things by induction and define things by recursion.
With other rectypes we can (as i have just illustrated) do (“structural”) in-
duction, and we can also define functions by recursion. Natural and important
examples of functions defined by recursion on other rectypes include recursive
semantics for languages (which of course are recursive datatypes). There are
communities who care a very great about the details of recursive semantics:
theoretical computer scientists (there is even a 1B CS course devoted to it) and
Linguists (the linguists speak of compositional semantics rather than recursive
semantics). Mostly (but see subsection we can take this kind of thing
for granted.

2.5 Engendering Relations

All rectypes—since they are generated by constructors—will have a sort of engen-
dering relatiorﬁ that is related to the constructors that generate the recursive
datatype rather in the way that <y is related to the successor function. The
engendering relation is that binary relation that holds between an object x in
the rectype and those objects “earlier” in the rectype out of which x was built.
Thus it holds between a formula and its subformulee, between a natural number
and its predecessors and so on. Put formally, the (graph of the) engendering
relation is the transitive closure of the union of the (graphs of the) constructorsm

Some examples: < is the engendering relation of IN; €* (the transitive
closure of the membership relation) is the engendering relation of the cumulative
hierarchy; the subformula relation is the engendering relation of the set of wifs
of a language.

The (graph of, extension of) the engendering relation is itself a rectype. For
example, <y is the smallest set of ordered pairs containing all pairs (0,n) with
n > 0 and closed under the function that applies S to both elements of a pair

(i.e., Ap.(S(fst p), S(snd p))).

The following triviality is important.

THEOREM 2 The engendering relation of a rectype is well-founded.

6This is not standard terminology.
7A joke from Allen Hazen: “is the transitive closure of” is the transitive closure of “is the
transitive closure of”.

2.5. ENGENDERING RELATIONS 19

Proof: Let X be a subset of the rectype that has no minimal element in the
sense of <, the engendering relation. We then prove by structural induction
(“on 2”) that (Vy)(y <z — y & X).]

HOLE Actually we have to be very careful how we state this (Thank you,
Julian Ziegler Hunts!) beco’s it’s not correct as stated. It’s certainly true
if the rectype is free, but we can make it fail for silly reasons. Suppose
we add to the constructors for the rectype IN the identically zero function
An.0. We must find a way of excluding perverse cases like that!

EXERCISE 6 (%)

(i) Prove by structural (“mathematical”) induction on n that every X C IN
such that n € X has an S-least member;

(ii) Prove by structural induction on n that
(Vm < n)(every set containing m has a minimal element).

So obuviously every nonempty subset of IN has an S-minimal element.

Related to this is the observation that if we can prove (Vn)F(n) by course-
of-values induction then we can prove (¥n)(¥m < n)F(m) by ordinary mathe-
matical (structural) induction.

And it is of course dead easy to prove by course-of-values induction that
(Vn)(¥m < n)(VX CIN)(m € X — X has a <-least member).

You have probably always been more-or-less happy that mathematical in-
duction over IN and “strong” induction (or whatever you called it) over IN are
equivalent. The time has come to make this explicit in your own mind so you
can explain it to your students when the time comes.

Does every wellfounded relation arise from a rectype?

In general, structural induction over a rectype is equivalent to wellfounded in-
duction over the engendering relation over that rectype. Wellfounded induction
is in principle more general because there is always the possibility (in princi-
ple) of a relation being wellfounded without being the engendering relation of
any rectype. Does this ever happen? It’s not quite clear how to frame this
question so as to launch an illuminating research project. For the moment you
might wish to contemplate the following amuse gueule which looks rather like a
counterexample.

REMARK 2 FEvery set of power sets has an €-minimal member.

Proof:

Let X be a set of power sets with no €-minimal element. We will show that
X is empty.

Suppose not; we will prove by induction that every wellfounded set belongs
to everything in X. Suppose A is a set such that, for all a € A, a belongs to

20 CHAPTER 2. RECURSIVE DATAYPES

everything in X. Let P(y) be an arbitrary member of X, and let X be a member
of X that is also a member of P(y). Then (Va € A)(a € X), which is to say,
A C X. But X € P(y) so all subsets of X are also in P(y), so in particular
A € P(y) as desired. But P(y) was an arbitrary member of X.

This proves by €-induction on the wellfounded sets that they all belong to
everything in X. But then (| X must be a proper class, which is impossible. So
X must have been empty.]

I am endebted to Tonny Hurkens for drawing my attention to this delightful
fact. Savour the extreme minimalism! Not only does this proof not use choice,
replacement or hardly any separation. ..it doesn’t use any foundation: the fact
that €] power sets is wellfounded is not a fact about the cumulative hierarchy.

2.6 Rectypes and Least Fixed Points

2.6.1 Fixed Point Theorems

We start with some old material from Part II, no longer examinable.

I assume you know the Tarski-Knaster theorem from Part II, so i shall not
recapitulate it here. You were told the Bourbaki-Witt theorem, but were not
shown a proof. So we’ll have one here.

We say f: X — X is inflationary if (Vz € X)(xz < f(z)).

THEOREM 3 Fvery inflationary function from a chain-complete poset into
itself has arbitrarily late fized points.

Proof: Let (X, <) be a chain-complete poset, f an inflationary function X — X
and z a member of X. We will show that f has a fixed point above z.

The key device is the inductively defined set of things obtainable from =z
by repeatedly applying f and taking sups of chains—the smallest subset of X
containing x and closed under f and sups of chains. Let us call this set C(x).
Our weapon will be induction.

We will show that C(z) is always a chain. Since it is closed under sups of
chains, it must therefore have a top element and that element will be a fixed
point.

Let us say y € C(z) is normal if (Vz € C(x))(z <y — f(2) <y). We prove
by induction that if y is normal, then (Vz € C(z))(z <y V f(y) < z). That is
to say, we show that—for all normal y—{z € C(z) : z <y V f(y) < z} contains
x and is closed under f and sups of chains and is therefore a superset of C(x).
Let us deal with each of these in turn.

1. (Contains z) z € {z € C(x) : z < yV f(y) < z} because x < y. (x <y
because z is the smallest thing in C'(z)-by induction!) The set of things
> x contains x, is closed under f and sups of chains and is therefore a
superset of C(z).

2.6. RECTYPES AND LEAST FIXED POINTS 21

2. (Closed under f) If z € {z € C(x): z <y V f(y) < z}, then either

(a) z < y, in which case f(z) < y by normality of y and f(z) € {z €
Clx):z<yV fly)<z}or

(b) z}: y, in which case f(y) < f(z)so f(z) € {z€ C(z) : 2 <yV f(y) <

(¢) f(y) < z, in which case f(y) < f(z) (f is inflationary) and f(z) €
{zeC@):z2<yV fly) <z}

3. (Closed under sups of chains) Let S C {z € C(z) : 2 <y V f(y) <z} be a
chain. If (Vz € S)(z < y), then sup(S) < y. On the other hand, if there is
z €8st z Ly, we have f(y) < z (by normality of y); so sup(S) > f(v)
and sup(S) e {ze€C(x): 2 <yV f(y) < z}.

Next we show that everything in C(z) is normal. Naturally we do this by
induction: the set of normal elements of C(x) will contain = and be closed under
f and sups of chains.

1. (Contains z) Vacuously!

2. (Closed under f) Suppose y € {w € C(z) : (Vz € C(x))(z < w — f(z) <
w}. We will show (Vz € C(z))(z < f(y) = f(2) < f(y)). So assume
z < f(y). This gives z < y by normality of y. If z =y, we certainly have
f(z) < f(y), as desired, and if z < y, we have f(z) <y < f(y).

3. (Closed under sups of chains) Suppose S C {w € C(x) : (Vz € C(x))(z <
w — f(z) <w)} is a chain. If z < sup(S), we cannot have (Vw € S)(z >
f(w)) for otherwise (Vw € S)(z > w) (by transitivity and inflationarity
of f), so for at least one w € S we have z < w. If z < w, we have
f(z) <w < sup(S) since w is normal. If z = w, then w is not the greatest
element of S, so in S there is w’ > w and then f(z) < w’ < sup(S) by
normality of w’.

If y and z are two things in C(x), we have z <y V f(y) < z by normality
of y, so the second disjunct implies y < z, whence z < yVy < z. So C(z) is
a chain as promised, and its sup is the fixed point above z whose coming was
foretold. [|

1 Exercises on fixed points

EXERCISE 7 Show that the fized point of the Tarski-Knaster theorem is <x-
minimal.

EXERCISE 8 Let (A, <) and (B, <) be total orderings with (A, <) isomorphic
to an initial segment of (B, <) and (B, <) isomorphic to a terminal segment of
(A, <). Show that (A, <) and (B, <) are isomorphic.

22 CHAPTER 2. RECURSIVE DATAYPES

You used an analogue of the function in the Tarski-Knaster proof of the
Cantor-Bernstein theorem (theorem ??). What can you say about the set of its
fixed points?

EXERCISE 9 Let R be a binary relation on a set X. Let F be a fuzzy on
X. Define a new fuzzy on X by zF'y iff (Va') (2’ Rz — (3y")(y' Ry A2’ Fy')) A
(Vy")(y' Ry — (32')(2' Rz A y'Fx')). Show that for all X, R and F there is a
fized point for the function taking F to F'. Naturally you have used the Tarski-
Knaster theorem. What is the lattice you are using? Now do the same with the
assumption that F' is an equivalence relation not a mere fuzzy. What lattice are
you using now? Prove that it is not distributive.

EXERCISE 10 (The Gale-Stewart theorem) A combinatorial game G of length
n is defined by a set A (the “arena”) from which players I and II pick elements
alternately, thereby building an element of A™ (a “play”). G is a subset of A™,
and I wins a play p of G iff p € G. Otherwise I1 wins.

Provide a formal notion of winning strategy for games of this sort, and
prove that one of the two players must have a winning strategy in your sense.

Now replace ‘n’ by ‘w’ in the above definition, so that plays are infinite
sequences. Give A the discrete topology and A“ the product topology.

Use Bourbaki- Witt to show that if G is open in the product topology then one
or the other player must have a winning strategy.

[This is not best possible. The game is determinate as long as G is Borel. . . but
that needs AC]

EXERCISE 11 What might the well-founded part of a binary relation be? Use
one of the fized point theorems to show that your definition is legitimate.

EXERCISE 12 An old examination question, principally for revision.
(i) State and prove the Tarski-Knaster fized point theorem for complete lat-
tices.

(ii) Let X andY be sets and f: X =Y and g : Y — X be injections. By
considering F : P(X) — P(X) defined by

F(A) = X \g“ (Y \ f*4)

or otherwise, show that there is a bijection h : X — Y.

(#ii) Suppose U is a set equipped with a group ¥ of permutations. We say
that a map s : X — Y is piecewise-X just when there is a finite partition
X=X)U...UuX, and oy ...0p, € X, so that s(x) = o;(x) for v € X;. Let X
andY be subsets of U, and f : X — Y andg:Y — X be piecewise-3 injections.
Show that there is a piecewise-X. bijection h: X = Y.

() If (P,<p) and (Q,<qg) are two posets with order-preserving injections
f:P—=Q and g: Q — P, must there be an isomorphism? Prove or give a
counterexample.

2.6. RECTYPES AND LEAST FIXED POINTS 23

EXERCISE 13 (Probably only for Group Theorists)

A group G is complete iff it is isomorphic to Aut(G), its automorphism
group. Show that every group embeds in a complete group. (You may assume
that for any G there is a set of groups containing G and closed under Aut and
unions of chains.)

Show also that if G has trivial centre so does Aut(G), and thence that every
group with trivial centre embeds in a complete group with trivial centre.

2.6.2 Rectypes as least fixed points

If you are a rectype it is because you are the lfp of a certain increasing function
from the complete poset (V, C) of all setsﬂ into itself. Here are some examples.

N = {X: ({0} US“X)C X}.
(which says that IN is the lfp for AX.({0} U S“X))
Hy, is the least fixed point for x — Py, ().

(Px, (x) is the set of countable subsets of x. See Q9 Sheet 4, PTJ Set Theory
and Logic 2012/3 for other examples, such as the set of hereditarily small sets).

It is possible to think of the way that rectypes support structural induction
as arising from their status as least fixed points for monotone operations. Explain this in more detail!!

EXERCISE 14 A D-finite set is a set without a countably infinite subset.

(i) Prove that every hereditarily D-finite set is inductively finite;

(ii) Provide a constructive proof that every hereditarily Kfinite set is
N-finite.

In (i) you are of course not allowed to use countable choice—that would
make it trivialPl

Do not attempt part (ii) unless/until you are fluent in constructive logic.

In both these case we mean ‘hereditarily’ in the sense of the least fixed poz’ntH

[Brief excursion into Set Theory. If we do not assume that € is wellfounded
then “hereditarily finite” could mean something other than V,,. It could be the
greatest fixed point for — Py, (z) (the set of finite subsets of x) which of
course will be (J{z : C Py, (x)}. This object might or might not be a set. All
bets are off.]

8 And don’t tell me that (V,C) isn’t a complete poset because it hasn’t got a top element.
Go And Sit In The Corner.

9 And you actually have to prove that ever hereditarily D-finite set is hereditarily finite.

10That is: the set of hereditarily D-finite sets is the C-least set identical to the set of its
D-finite subsets.

Explain these expressions

24 CHAPTER 2. RECURSIVE DATAYPES

2.7 Finite vs Bounded vs Unbounded Character

Restricting oneself to Horn Clauses in a datatype declaration solves the Unique-
ness Problem. There remains the Existence Problem. The first attempt at
cracking the Existence Problem represents the target object as a least fixed
point for some function from the complete poset of sets-under-inclusion into
itself. Such a fixed point is the intersection of a family. Can we be sure that the
family is nonempty? The intersection of the empty set is the universe, and that
is clearly not the answer one wants! This is one of the situations where the fact
that ZFC countenances only small sets makes for very unnatural developments.
This is the Empty Intersection Problem. It plays out differently depend-
ing on whether the datatype being declared is of finite, infinite-but-bounded or
absolutely infinite character.

We have seen examples of rectypes of finite character (IN, language of first-
order Logic, etc etc). Here are some of infinite character

(1) HN1 ;

(ii) The set of Borel sets in a topological space;
(iii) The family of Conway games;

(iv) The collection of all ordinals;

(v) The Cumulative Hierarchy.

Rectypes (i) and (ii) are of bounded (countable) character; (iii)—(v) are of
unbounded (“absolutely infinite”) character.
Miniexercise: provide recursive declarations of (ii)—(v). (We declared (i) in

section)

You have probably not worried at all about whether or not rectypes of finite
character (IN, language of first-order Logic, etc etc) exist as sets, having taken
it for granted all along that they do—as indeed they do. The existence-as-sets
of any and all rectypes of finite character is actually the precise content of the
axiom of infinity; that’s what it’s for. Another way of saying that these objects
can be taken to be sets is to say that they are not paradoxical objects.

2.7.1 Rectypes of Unbounded Character are Paradoxical

Let’s get out of the way the fact that rectypes of unbounded character are
practically guaranteed not to be sets: they are paradoxical. (Interestingly the
corresponding co-rectypes tend not to be paradoxical). The following are all
paradoxical:

(i) The class of hereditarily transitive sets (the lfp for
z—={y Ce:Uy Sy

(ii) The class of wellfounded sets (the lfp for z — P(x));

(ili) The class of hereditarily wellordered sets (the lfp for
x+— {y Cx:y is wellordered }).

2.7. FINITE VS BOUNDED VS UNBOUNDED CHARACTER 25

(i) corresponds to the Burali-Forti paradox via the von Neumann implemen-
tation of ordinals; (ii) is Mirimanoff’s paradox.

If you are planning to master Set Theory you may wish to work through (i)
and (ii). For (i) you want to show that the collection of hereditarily transitive
sets is a paradoxical object (cannot be a set), and you also want to show that
the collection of Von Neumann ordinals is precisely the collection of hereditarily
transitive sets.

(A word of warning: not all the paradoxical collections that you may know
are rectypes: the Russell class and its congeners—{z : © ¢™ x}—are paradoxical
but are not recursively defined.)

The contradictions associated with Least-fixed-points for constructors of Ab-
solutely Infinite Character tend to be very easy to prove. Typically one needs
only subscission:

x \ {y} exists for all x and y. Subscissiorﬂ

T’'m pretty sure that subscission suffices for (i)—(iii), and (i think) it suffices for
the following, which is the most general impossibility result in this direction
known to me. Be sure to use only subscission when answering exercise

EXERCISE 15 (%)
Suppose f is monotone and injective: (Vxy)(xz C y +— f(z) C f(y)).
Let A:=({z:P(f(x)) Cz}. Then A is not a set.

So let’s not worry too much about trying to prove the sethood of rectypes of
absolutely infinite character: it’s not to be expected, and indeed one can often
prove the non-sethood of a least fixed point with quite modest set-theoretic
assumptions (such as subscission, above).

The Empty Intersection Problem is a huge problem for rectypes of un-
bounded character (which in any case tend not to be sets). The problem is
not merely that the collection of things over which we are intersecting is not a
set, the problem is that the things we are intersecting over might not themselves
even be sets but merely proper classes, and that in turn means—prima facie at
least—that membership of the least fixed point is not first-order.

Wellfounded and “Regular” Sets in Set Theory

The cumulative hierarchy is a rectype of unbounded (absolutely infinite) char-
acter: the obvious inductive definition of wellfounded sets defines W F(z) as
(Vy)(P(y) Cy =z €y).

If we want to do this is ZF we have an Empty Intersection Problem, because
we can prove there are no such y.

There are various ways round this problem. We can say that x is wellfounded
iff it belongs to all classes that contain all their subsets (so that the ‘y’ ranges

1171 don’t think this is standard terminology; i learnt it from Allen Hazen and I think the
expression is his coinage.

26 CHAPTER 2. RECURSIVE DATAYPES

over all classes and not just those that happen to be sets). But of course that
would mean we are no longer in ZF but instead in Godel-Bernays).

So let’s assume that the variables range only over sets, and play a few tricks,
have some fun.

Suppose x satisfies (Vy)((V2)(z Cy — 2z € y) = z € y).
Substitute V' \ y for y getting

(V) ((V2)(zNy=0—>2¢y) > x y).
Contrapose getting

(Vy)(x cy = ~(V2)(zNy=0— 2 Zy)).

This is

(Vy)(zey— F)(zny=0Az€y))
... which says that x is regular. Regular set is a way of defining wellfounded set
without quantifying over classes. You will recall from Part II Set Theory and
Logic that regular sets obey €-induction. This tells you why they do!

In this piece of trickery we have used an axiom of complementation. You
probably find that alarming but actually it’s harmless. The real damage is done
by things you probably didn’t notice. We exploited the fact that any conditional
A — B is logically equivalent to its contrapositive =B — —A, and that =V is
equivalent to 3—. These two principles are not constructively valid. There is
a constructive theory of wellfounded sets, but it does not support proofs using
“c-minimal elements”. (Similarly constructive arithmetic does not support the
least-number principle).

Natural Numbers and Quine’s trick

IN is a rectype of finite character, and there is no problem about its sethood as
long as we have an axiom of infinity. However there are subtleties that remind
one of the definition of the cumulative hierarchy and which it is sensible to
consider in connection with it.

The “top-down” definition of IN involves quantifying over infinite sets. The
finite/infinite dichotomy feels a bit like the set/proper-class dichotomy so—
just as we wanted to be able to define well-founded set without talking about
classes—we would like to be able to define natural number without talking about
infinite sets.

We now give a definition of IN (due to Quine) that does not involve quan-
tification over infinite sets and prove that it is the same as the usual definition.

EXERCISE 16 (*)(Part III Logic and Combinatorics Exam 2006 q 12)

Let P(|z|) be |x\ {y}| if y € z and 0 if © is empty.
Define
gn) +— (VYY) ((neYA(PYCY)) —»0€Y)

Establish that q(n) iff n is a natural number according to the usual definition.

2.7. FINITE VS BOUNDED VS UNBOUNDED CHARACTER 27

For a more detailed discussion of the history of this idea see [52] pp. 75-6.

The critical fact about this definition of ¢(n) is that it makes sense even if
the Y we are quantifying over are all finite. One can check whether or not g(n)
without examining any infinite sets.

(Like the definition of regular set this definition is not constructive.)

We can also define finite as
Fin(z) +— (VX C P(x))((0 € XA(V2' € X)(Vy € x)(2'U{y} € X) = z € X)).

If n is, in fact, finite in this sense then the investigation that will establish this
fact will not commit us to examining any infinite sets. However if it is not then
the investigation will lead us into the infinite. So this definition is less clean
than the definition of g(n). Also it needs power set.

This definition is actually, literally, Kuratowski’s definition of “finite”, from
which our earlier definition of Kfinite was borrowed.

2.7.2 Bounded Character

In contrast the general idea is that recursive families of bounded character are
safe (i.e. not paradoxical) and can be proved to be sets if we try hard enough.
How does one try?

There are two ways.

“From Below”

This is the usual solution in the ZF world: define a function that enumerates
the “layers” of the rectype, and then use an instance of the axiom scheme of
replacement to form the set of all the layers. The |J axiom then gives you the
rectype. This works for rectypes of finite character because there are only w
layers, and we use replacement for a function defined on IN that enumerates the
layers. Rectypes of infinite but bounded character require a longer construction
but the idea is the same. (For example the construction of Hy, closes off within
wo steps, or in precisely w; steps if we have AC).

“From above”

This is the morally correct way, but if you define a rectype as the intersection of
all sets containing the founders and closed under the constructors you will be in
trouble unless there are some sets containing the founders and closed under the
constructors. In these circumstances one is in peril of the Empty Intersection
Problem that we mentioned earlier.

The Empty Intersection Problem is much more obviously a problem for rec-
types of infinite character than for rectypes of finite character (tho’ not for Borel
sets in a fixed topological space). HC (see Q9 Sheet 4, PTJ Set Theory and
Logic 2012/3) the set of hereditarily countable sets, is the C-least set contain-
ing all its countable subsets, so it’s the intersection of all the sets that contain

trim this para a bit

28 CHAPTER 2. RECURSIVE DATAYPES

all their countable subsets. How do we know there are such sets? If we have
countable choice then V,,, is such a set [miniexercise: why?] but we can actually
prove it without any use of choice.

One powerful argument in favour of adopting the axiom scheme of replace-
ment is that it enables us to prove the sethood of least fixed points for operations
of infinite (if bounded) character.

2.8 Ordinals

One particularly important rectype of infinite character is the ordinals. The
ordinals are a rectype of unbounded character. In this course—mostly—the
only ordinals we will be concerned with are the countable ordinals, and the
countable ordinals form a set, Cantor’s second number class. It’s a set because
it’s a surjective image of IR.

See my TMS talk [23] and my tutorial on countable ordinals [24].

We can declare the ordinals in the same way that we declare the naturals,
but we have to add another constructor, of sup that takes a set of ordinals and
returns an ordinal. This is not free, because {2n : n € IN} and {2n+1: n € IN}
give the same output when whacked with sup. This means that proving that
the engendering relation on ordinals (or, strictly, its restriction to the ordinals
themselves namely <o) is a wellorder is actually quite tricky. Look again at
the proof of theorem |3 You will now see that the bulk of the work goes into
showing that the family of all the iterated images of the bottom element under
the inflationary function form a total ordering. But this family has a recursive
declaration which is the same as the recursive declaration of the ordinals.

The engendering relation on On is simply <g,,. Transfinite induction and
recursion work because this relation is wellfounded.

2.8.1 Rank functions

Every wellfounded structure has a homomorphism into the ordinals, a rank
function, defined by recursion. And vice versa: every structure with a rank
function is wellfounded. = Rank functions are parsimonious in the following
sense. When (X, R) and (Y,S) are wellfounded structures a morphism f :
(X, R) — (Y, S) is parsimonious if for all x € X, f(z) is an S-minimal member
of {y: (Va' Rx)(f (") Sy)}-

If (X, R) be a wellfounded structure, then the rank function p: X — On is
the unique parsimonious morphism f : (X, R) — On.

I’'m no categorist so don’t take my word for it, but i think the following is
true. On is the terminal object in the category of wellfounded structures where
the morphisms are parsimonious maps; IN is the terminal object in the category
of rectypes of finite character and parsimonious maps.

2.9. RESTRICTED QUANTIFIERS 29

2.9 Restricted Quantifiers

Quantifiers in the style ‘(Vz Ry)(...)" and ‘(3z Ry)(...)" are said to be re-
stricted. The intended semantics treats them as ‘(Va)(z Ry — ...) and
‘(3z)(x Ry A...). In principle this syntax can be used whatever the relation R
is (and there is CS literature on this general situation, where this phenomenon
is called ‘guarded quantiﬁcation@ but the two loci classici of restricted quan-
tifiers are (i) [wellfounded] set theory, with the quantifiers ‘(Vz € y)(...)” and
‘(3z € y)(...) and (ii) arithmetic of IN, where the quantifiers are ‘(Va < y)(...)’
and ‘(Jz < y)(...)". In both these classical settings the binary relation doing
the guarding is the engendering relation of the rectypﬂ

Notion of end-extension (preserves formulae in which the only quantifiers are
restricted quantifiers)

DEFINITION 3

Let M C M be structures for a language with a binary relation symbol ‘R’.
We say M is an end-extension of M (with respect to ‘R’ understood) if
(Vm € M)(¥m' € M")(m' Rm — m' € M)[1]]

EXERCISE 17 (%)
Review exercise on the wellfounded part of a binary structure, and establish
that every [binary] structure is an end-extension of its wellfounded part.

Next we note without proof quantifier-pushing and quantifier-squashing for
<mn-restricted formulee. .. “Collection”.

REMARK 3

(Vo < v)(32)v(x,y, 2) is equivalent to

(Fw)(Vz <w) 3z <w w)P(z, y, w); (“quantifier pushing”)
(Fu)(Fv)p(u,v) is equivalent to

(Fw)(Fu <N w)(Fv <N w)p(u,v) (“quantifier-squashing”)

You learnt in Part II that quantifier-free formulae are preserved upward and
downward; formulae that have no unrestricted quantifiers are preserved upward
and downward where the extensions are end-extensions.

More formally:

12] don’t think this different terminology reflects a difference in motivation. My guess is
that the reason why CS people use a different word is simply that they didn’t know that
logicians had got there before them.

13Well, € is not the engendering relation of the cumulative hierarchy, but its transitive
closure is, and a binary relation is wellfounded iff its transitive closure is. This is an exercise
somewhere—or should be! Prove it

4 However, we will also use this expression in a setting where a string ¢ is a string s with
extra stuff on the end...we will say that ¢ is an end-extension of s.

Explain axiom scheme of col-
lection here

Explain axiom scheme of col-
lection at this point

30 CHAPTER 2. RECURSIVE DATAYPES

If 91 is a substructure of 91 and ¢ is quantifier-free then M = ¢ iff
N =

If 91 is a substructure of N is an end-extension of M and ¢ has no
unrestricted quantifiers then 9 = ¢ iff N = ¢.

Quantifier hierarchies for restricted quantifiers. (Not sensible without a well-
foundedness condition. If there is a universal set then every expression in the
language of set theory is in IIs N ¥s. Miniexercise: how so?)

In the theory of the cumulative hierarchy there is a normal form theorem
for restricted quantifiers proved using collection/replacement.

A Ap-formula in the language of set theory is a formula built up from atomics
by means of boolean connectives and restricted quantifiers. Thereafter a ¥, 41
(respectively IT,,41) formula is the result of binding variables in a IT,, (repectively
¥,) formula with existential (respectively universal) quantifiers. We immedi-
ately extend the 3J,, and II,, classes by closing them under interdeducibility-in-
a-theory-T', and signal this by having ‘T” as a superscript so our classes are $2
and TIZ.

This linear hierarchy of complexity for formulse will be very useful to us in
understanding 7' if we can be sure that every formula belongs to one of these
Classeﬂ it is standard that we can give a II"*! truth-definition for ¥,, formulee.
That is to say, we desire a normal form theorem for T.

It is easy to check that if T is not ludicrously weak we can show that ITZ
and 37 are closed under conjunction and disjunction. To complete the proof of
the normal form theorem we would need to show that these classes are closed
under restricted quantification. After all, if ¢ is a IIZ formula what kind of
a formula is (Jz € y)¢? It would be very simple if it, too, were II1. Tt’s
plausible that it should be ITZ (it has the same number of blocks of unrestricted
quantifiers after all) but it is not at all obvious. Nevertheless there are sound
philosophical reasons why we might expect it to be—at least if V.= WF. The
point is that W F' is a recursive datatype, and recursive datatypes always have
a sensible notion of restricted quantifier, and typically one can prove results
of this kind for the notion of restricted quantifier that is in play. In general,
when dealing with a recursive datatype, we can define Ay formulee—as above—
as those with no unrestricted quantifiers, where we take restricted quantifiers
to be ‘(3z)(R(z,y) A...) and ‘(Vx)(R(x,y) — ...)’, and R is the engendering
relation. We find that Ag formulse behave in many ways as if they contained no
quantifiers at all. An unrestricted quantifier is an injunction to scour the whole
universe in a search for a witness or a counterexample; a restricted quantifier
invites us only to scour that part of the universe that lies in some sense “inside”
something already given. The search is therefore “local” and should behave quite
differently: that is to say, restricted universal quantification ought to behave like
a finite conjunction and ought to distribute over disjunction in the approved de
Morgan way. (And restricted existential quantification too, of course).

15You proved this in Part II.
well, lots of these classes: after all if ¢ is in X7 it is also in TIZ ;.

2.10. INFINITARY LANGUAGES 31

The Prenex Normal Form Theorem states that every expression in LPC
is logically equivalent to a formula in Prenex Normal Form, which is to say a
formula wherein all the propositional connectives lie within the scope of all the
quantifiers. You were not told this at Part II, but you might like to prove it
now.

What we will now see is that, if we have the axiom scheme of collection,
then we can prove an analogue of the Prenex Normal Form Theorem:

THEOREM 4 Given a theory T, which proves collection, for every expression
¢ of the language of set theory there is an expression ¢’ s.t. T F ¢ +— ¢’ and
every restricted quantifier and every atomic formula occurs within the scope of
all the unrestricted quantifiers.

Proof: It is simple to check that (Vz)(Vy € z)¢ is the same as (Vy € z)(Vx)o
(and similarly 3), so the only hard work involved in the proof is in showing that

(Vy € 2)(Fx)¢

xis equivalent to something that has its existential quantifier out at the front.
(This case is known in logicians’ slang as “quantifier pushing”.) By collection
we now infer

(3X)(Vy € 2)(3z € X)o,

and the implication in the other direction is immediate.

This shows that X, is closed under restricted universal quantification. Dually
we infer that II,, is closed under restricted existential quantification. It is of
course immediate that ¥, is closed under restricted existental quantification
and that II,, is closed under restricted universal quantification.

collection follows

trivially

Now have the analogue of the prenex normal form theorem we can complete from the existence of a uni-

the proof that every formula belongs to one of the classes 11X or X7

2.10 Infinitary Languages

DEFINITION 4 The language Ly is (like first-order Logic) a recursive datatype
but differs from it in being closed under conjunctions and disjunctions of lists

of expressions of length < k and allows us to bind < X\ variables with ¥V at one
hit.

(All the quantifiers in an infinite block have to be of the same flavour)

Thus ordinary predicate calculus is L, .,. There are various other languages
we can notate in this way, some of which we will consider. On the whole these
other languages are quite nasty: compactness fails, for example. L, ., is often
considered, and it admits a kind of compactness theorem. L, , is well-behaved
if k¥ has some nice large cardinal properties of the kind you may learn about if
you are doing Part III Topics in Set Theory. Our immediate use is for Ly, ., -

(Don’t be spooked by the infinitary nature of the constructors into thinking
that the subformula relation for these languages is illfounded.)

versal set

32 CHAPTER 2. RECURSIVE DATAYPES

2.10.1 “Wellfounded” is Infinitary Horn

Exercise[18]is a simple exercise in the style of Sheet 3 of last year’s Part II Logic
and Set Theory. (It’s actually part (iv) of Part IT Paper 3 q 16H in 2011.)

EXERCISE 18 Show that there is no first-order theory of a wellfounded rela-
tion.

However wellfoundedness is first-order in L, ., -

(le)(ng) . \/ ﬁR(Z‘j,xi)

1<j<w
This is a formula of L, «,. Indeed it is even Horn!

Given that wellfoundedness is infinitary Horn we should not be surprised to
find that the class of wellfounded structures is closed under products, quotients,
substructures and directed unions under end-extension (recall p . Question
2009-3-16G from http://www.maths.cam.ac.uk/undergrad/pastpapers/2009/
Part_2/index.html makes you think about why the directed unions have to be
ordered by end-extension ...and mere inclusion is not enough.

The following non-obvious fact will come in useful later, and the reader is is
invited to prove it if they have not already done so.

EXERCISE 19 (*)
The lexicographic product of two wellfounded strict partial orders is well-
founded.

The pointwise product of two wellfounded strict posets is wellfounded by
horn-ness, and every subset of a wellfounded relation is wellfounded because
‘wellfounded’ is V in L, 4, -

2.10.2 Some Remarks on Infinitary Languages

Some of the infinitary expressions to which we are accustomed are illfounded.
And semantics for them can depend sensitively on things that it would seem
shouldn’t matter. There are ways of putting brackets into an infinite sum so
that the result is no longer an infinite sum but an illfounded expression:

a0+(a1+(a2+...))

Some are straight-out illfounded:

\/2+\/2+\/2+\/ﬁ.

Since the subformula relation on these expressions is not wellfounded there is no
way of defining a recursive semantics for them. Indeed it is a condign lesson of
first-year Analysis that semantics for these infinitary expressions is not a trivial
exercise, and (pace the remarks on p. one spends a lot of the early stages of
Analysis learning that a lot of things that oughtn’t to matter, do, indeed, not
matter. See the footnote on page [70}

http://www.maths.cam.ac.uk/undergrad/pastpapers/2009/Part_2/index.html
http://www.maths.cam.ac.uk/undergrad/pastpapers/2009/Part_2/index.html

Chapter 3

Functions: Primitive
Recursive and p-recursive

“Can you do addition?” the White Queen asked. “What’s one and one
and one and one and one and one and one and one and one and one?”

“I don’t know,” said Alice “I lost count.”

“She can’t do addition” the Red Queen interrupted.

see [I1], available online.

3.1 Primitive Recursion
We consider primitive recursion over IN in the first instance.

DEFINITION 5 The rectype of primitive recursive functions is the C-least
class of functions containing the initial functions, which are

the successor function: n — n+ 1, written S;

the projection functions: proj," is an m-ary function which returns
the nth of its arguments;

the constantly zero function: the function that always returns 0.

...and closed under

(i) composition (see below) and
(ii) primitive recursion:

[(Z&,0):=g(@); f(@Sy) = h(Zy, f(Z,y)). (3.1)
In[3.1) we say f is declared by primitive recursion over g and h.

We recurse on the variable y’. The ‘¥’ variables are the snail
variables—those you just carry around and do not recurse on.

33

34 CHAPTER 3. FUNCTIONS

What might primitive recursion on other rectypes be?

EXERCISE 20 (%)
Need a discussion answer

1. Consider for example the rectype of a-lists from p. [16, What is primitive
recursion on a-lists?

If « is equipped with an order <, we say that an «-list l; (thought of
as a function ly : [I,n] — «, for some n) stretches into an «-list Iy
(thought of as a function ls : [1,m] — «, for some m > n) if there is an
order-preserving injection g : [1,n] < [1,m] such that (Vi < n)(l1(1) <a

l2(9(4)))-

Give a definition of stretching by primitive recursion on «-lists.

2. Next consider the rectype of a-trees, where the set of children of each node
(a litter) is a list of a-trees.

Give a rectype declaration for rectype of a-trees.
What is primitive recursion on a-trees?

Define stretching for a-trees, both directly as above (for lists), and by
primitive Tecursion.

EXERCISE 21
INxIN is a rectype, with a founder (0,0) and two constructors S-left and S-right.
What is primitive recursion on this datatype?
— +1\ _
We define (3) by (5) =1 end (1) = (11) + (})-
Is this a primitive recursive declaration in your sense?

Some observations

Cpn?

e Make a mental note, for use later, that we will write ‘n’ for the string

n times

—~~
S(S(S...0...)).) ‘n’ is thus a constant term not a Variable

e This rectype of functions is a rectype of function declarations, pieces
of syntax. To be strictly correct one should think of them not as functions
at all, but as notations for functions. If you want to think of them as
functions (and people do, he acknowledges wearily) one has to think of
them as functions-in-intension. We will consider a function(-in-extension)
to be primitive recursive if it has a primitive recursive declaration (as a
function-in-intension).

ISyntax buffs might wish to think about the precise status of formulse containing such
terms. I suspect they may have the same status as expressions like (31 ... 2n) ;2 <, (Ti #
x;). See the discussion on page m

3.1. PRIMITIVE RECURSION 35

e In the recursion step for primitive recursion we find the line:
f(@y+1):=h(Z,y, f(T,y))

One might wonder what the ‘y’ is doing in the deﬁniendurrﬂ One of my
students thought it was there to tell you how often you had been through
the loop. It does do that, true, but that’s not all it does. For consider:
if, for any primitive recursive function f, the value of f(y + 1) depended
only on f(y) and not also on y, then if f ever took the same value twic
it would be forced to be eventually periodic.

e Observe that in our projection functions (“pick the i¢th thing from these
k things”) the ‘i’ and ‘k’ are concrete numerals. We have countably many
functions not one. If the positions occupied by these numerals could be
occupied by variables then the rule of substitution would allow us to write
things like: “take the f(i)th thing from this g(n)-tuple” and for suitable
choices of primitive recursive f and g this would be a primitive recursive
function that might not be total. Worse still [for all i know] it could even
be unsolvable whether functions declared in this way are total. Don’t go
there.

e The composition operation under which the rectype of primitive recursive
function declarations is closed is slightly more complicated than the fa-
miliar composition of functions of one argument, simply because we are
allowing functions of many variables. It is fiddly but it’s obvious in the
sense that it is what you think it is. In some of the literature it is called
substitution and it is worth noting though that, if x,y — f(z,y) is a prim-
itive recursive function of two variables, then x — f(z,z) is a primitive
recursive function of one variable.

e For any numeral n, the function with constant value n is primitive recursive—
compose x — 0 with successor n times.

e Notice that, although there is no limit on the number of variables we can
compute with, we recurse on only one. On the face of it this declaration
looks very restrictive: “only allowed one call”, but it turns out to be
surprisingly fertile.

e Note at the outset that this datatype of function declarations is countably
presented (see section ??) and so has only countably many elements.

e The basic functions are in some obscure but uncontroversial sense com-
putable; clearly the composition of two computable functions is com-
putable, and if g and A are in some sense computable, then f declared

2Latin: definiendum = the thing being defined; definiens = the thing doing the defining.
Probably neo-latin not classical latin.

3Well, not quite, because if it’s only twice or k times for some concrete k that it takes the
same value, then that fact can be hard-coded with lots of if then else commands but if it
took the same value infinitely often. ..

36 CHAPTER 3. FUNCTIONS

over them by primitive recursion is going to be computable in the same
sense. That is why this definition is prima facie at least a halfway sensible
stab at a definition of computable function.

Here are some declarations:

DEFINITION 6

(i) Predecessor: P(0) :=0; ((z)) :=

(i) Bounded subtraction: x = 0:=x; x = S(y) = P(a: ~y).
(iii) Addition: x+0:=uz; z+ S(y) =Sz +vy).
(iv) Multiplication: x-0:=0; z-(Sy) =z -y) +a.

In (iii) we find the significance of the White Queen’s claim that Alice can’t
do addition.

Consider the following sequence of binary functions IN? — IN:

DEFINITION 7

fo(m, k) :==m +k;

fS(n) (m’ 0) =my

fS(n)(O?m) = fn(ma 1);

fn+1(5(m)7 S(k)) = f’n(m’ fS(n)(S(m)’ k))

EXERCISE 22 (*) Check that all the f; with i € IN are primitive recursive.

This is from Doner-Tarski [19], who actually define this hierarchy of functions
on all ordinals, not just finite ordinals, tho’ of course they need some clauses to
deal with limit ordinals. In fact one clause suffices:

DEFINITION 8

S Rl (), a).
n<pB,{<y
[Observe that, for v > w, all values of f, are infinite ordinals]
[Check this: i think the Doner-Tarski functions of finite subscript all restrict
to total functions IN x IN — IN, whereas any D-T function with an infinite
subscript sends at least some pairs of naturals to infinite ordinals.]

EXERCISE 23 What is the next function in the Doner-Tarski hierarchy after
exponentiation? And the one after that?

EXERCISE 24 (%)
Show that, if f is primitive recursive, so are

1. the function Zf Z f(z) that returns the sum of the first n values
0<z<n
of f; and
2. the function Hf H f(x) that returns the product of the first n
0<z<n

values of f.

3.1. PRIMITIVE RECURSION 37

3.1.1 Some quite nasty functions are primitive recursive

EXERCISE 25 (For those who did Graph Theory in Part II)

You saw a proof of the finite version of Ramsey’s theorem. FEzxamine this
proof and characterise the bounds it gives. Are these bounds described by a
primitive recursive function?

3.1.2 Justifying Circular Definitions

Recursive definitions are prima facie circular and therefore prima facie illegit-
imate. (Chapter 8 of [65] contains a beautiful discussion of the criteria a def-
inition must meet if it is to be legitimate. It inspired an entire generation of
logicians.) In section we proved that, for example, every primitive recursive
function is total, but in no case did we prove that there actually was a function
answering to the circular definition. Not only do we have to do that, we also
have to show, for any constraint (co’s at this stage it is only a constraint not a
definition) that any two functions answering to that constraint have the same
graph.

So we have to prove existence and uniqueness. There are several ways to do
it.

Consider everybody’s favourite example of a recursively defined function:

fact(n) = if n =0 then 1 else n- fact(n—1)

It is circular, since the definiendum appears inside the definiens.

One thing we can do immediately is define each restriction fact|[0, k]. That’s
easy. The hard part is to glue them together. For each k we can define a function
fact-k which is fact [[0, k]. We show that any two functions in {fact-k : k € IN}
agree wherever they are both defined, so there is a good notion of limit of the
family—and that limit is what we want. There is no problem in showing that
the limit is unique, and the obvious strategy for doing this merely writes out
in detail the proof of a particular instance of a fixed-point theorem. We could
even spell out the fixed-point theorem. The connections between fixed point
theorems as recursive datatypes was set out in the previous chapter. We will
return to this theme in chapter

The other thing we can do is outline a general strategy for transforming
a circular recursive definition into a direct non-recursive definition. There is
some heavy machinery to hand that will do the work for us immediately: the
graph of any primitive recursive function is an inductively defined set, so we
can define—for example—the graph of the factorial function as:

(MY SINxIN:(0,1) € Y A (Vu,0)((u,0) €Y = (u+ 1, (u+1)-v) €Y)}

This is noncircular (at least it will be once we have a noncircular definition
for multiplication(!)) but it is logically expensive, since it uses a higher-order
quantifier, which makes it V2. And we can do much better than that.

Rewrite this section
define |

38 CHAPTER 3. FUNCTIONS

Eliminating the circularities in a first-order way

We will need the concept of a certificate or proof from section ?7?.

Suppose we have defined f by primitive recursion:

f(0,8) := g(5);
f(5(n),5) := h(f(n,5),n,5).

This declaration can be thought of as a definition of a rectype of tuples, to
wit: the graph of f. The founders of this rectype are the tuples (0, 3, g(3));
the constructor is the operation that takes a tuple (n,3,k) and returns the
tuple (n+ 1,8, h(k,n,8)). Thus y = f(x, §) iff the tuple (z, §,y) belongs to the
rectype of the preceding paragraph, and if it does there will be a certificate to
that effect. It turns out that we can assert the existence of such a certificate in
a noncircular way.

What are these certificates? Actually it won’t matter much precisely how we
think of them. A certificate that f(S(n), §) = x could be the ordered pair of a-
certificate-that- f(S(n), §) = y-for-some-y with a-certificate-that-h(y,n, 3) = «,
but in practice we can get away with taking the certificate that f(S(n),s) = x
to be the list of all pairs (i, 3, f(i,§)) with 0 < i < n, and that is what we will
in fact do.

Now that we have decided that a certificate is a list, we have to explain how
to code up lists (as well as the things listed) as numbers, so that the existence
of a certificate turns out to be assertable in the language of arithmetic.

We can encode sequences of natural numbers as natural numbers using the
prime powers trick, which we see on page

The prime powers trick enables us to prove the following:

REMARK 4 If f is a function N* — IN declared by primitive recursion then
there is a formula ¢(y, 1 ... zx, Z) in the language with 0, 1, 4+, X, exponentia-
tion and = containing no unrestricted quantifiers such that y = f(x1...xx) iff
(Fz1...zn)0(y, x1 ... 2k, 2)

This works because by means of the prime powers trick we can encode finite
sequences from IN as naturals, so we can encode certificates. We observed that
y = f(x,5) holds iff there is a certificate to that effect. So we need to be able
to express “C is a certificate that y = f(z,5)”. To do that we need to be able
to code up lists of ordered pairs as natural numbers, and it is for this that we
can use the prime powers trick. I won’t go into the details because we are going
to prove something rather stronger, namely that we can achieve the results of
remark [4] even with the extra restriction of not using exponentiation.

THEOREM 5 If f is a function IN* — IN declared by primitive recursion then
there is a formula ¢(y,z1...xk, Z) in the language with 0, 1, +, X, < and =
(“the language of ordered rings”) containing no unrestricted quantifiers such
that y = f(x1...2x) iff (32)é(y, T, 2)

3.1. PRIMITIVE RECURSION 39

(In fact—and this is a famous theorem of Davis, Putnam, Robinson and
MatiyasievickEFwe can even find a ¢ that contains no quantifiers at all, not
even restricted quantifiers. T doubt if i will get round to proving it.)

Proof:

We will be using base-p representations of arbitrary numbers, and we will
need to know that there are arbitrarily large primes. Well, there just are arbi-
trarily large primes, and we appeal to their existence when we want to establish
the correctness of the recursive definition. The theorem we are trying to prove—
that a function defined by primitive recursion can be captured by an 3; formula
in the language of ring theory—is a metatheorem about the language of ring
theory, not a theorem of ring theory. So we don’t need to worry about whether
or not we can prove the infinitude of primes in ring theory.

Anyway, fix values for ‘a’ (‘a’ is the variable on which we are recursing) §
(the § are the snail variables) and ‘y’.

It is clear that the ring language can express “p is a prime” and “z is a power
of p” and these will give us all the freedom in manipulating base-p representa-
tions that we need.

There is going to be a large number I and another large number O (“inputs”
and “outputs”), encoding somehow the inputs (the list of naturals less than x)
and a list of outputs (the corresponding values of f), and we are going to think
of these two numbers as being written in base p where p is going to be a prime
larger than any number that appears anywhere in the certificate. Thus our
formula will begin with three existential quantifiers: ‘(3I)(30)(3p)(...)’. The
prime p will be chosen big enough so that the following picture makes sense.

P ot P

2 1 0 [T
@) f0) o

We have to be very careful in talking about base-p representations of num-
bers in this context where we have neither exponentiation nor order information.
(The display above is potentially very misleading!) One way of describing our
predicament is that we normally think of the addresses in the base-p represen-
tation of a number as indexed by an ordered set that is a proper initial segment
of (IN, <)—but we cannot use that index set here. Our places are indexed by a
set X of numbers about which we know only that all its members are powers of
p and that X contains all factors of its members. It is true that we can define
an order relation on X and we do have an adjacency relation on X, since we
can divide by p or multiply by p. However we do not have access to any bijec-
tion between X and any initial segment of IN. In particular, although we can
identify a column in the above display by reference to a z-that-is-a-power-of-p,
we cannot recover the exponent and thereby enumerate the columns.

Let’s get some definitions out of the way.

41 would like to lecture it but it involves a bit tooo much number theory—for me at least.

40 CHAPTER 3. FUNCTIONS

Some Local Definitions
“r divides into y” is x =y V (Jw < y)(z - w = y). Let’s write this as x|y.

check this dfn x DIV y is the largest integer z s.t. y-2 <z <y-(z2+1) and
x rem y is the remainder when x is divided by y.
Strictly speakingﬂ this is naughty, because introducing new terms like this
expands the language and takes us out of the language of ordered rings; we
should say instead

“2=x DIVyifz-2<y<z-(2+1)” and
“w=g rem yiff (V2 <z)(z=(x DIV y) = z-y+w=2x)".
Then, when we want to say ¢(x DIV y) we can write either
()2 <y < o (1) = 6(:)
or
)@z <y <z (24+1) A ¢(2))

...depending on whether we want the quantifier to be ‘3’ or ‘v’ (which will in
turn depend on whether the occurrence of ¢(x DIV y) is negative or positive).

We can say “p is a prime” since that is (Vz < p)(Vy < p)(z -y # p).

We can capture “z is a power of p” by (Vw < z)(w|z — plw)—at least when
p is prime. (And the task in hand will not require us to capture “z is a power
of p” when p is not prime.)

We can express in the ring language what it is for a natural number O to
have the entry o, at the place in its base-p representation corresponding to z
(where z is a power-of-p). We say:

“If we divide O by z and look at the remainder¥] then divide that
remainder by (z/p), we find that the quotient is o,.”

In symbols:
(O rem z) DIV (z/p) = o,. (R)

Jack Webster says . ..

I might be wrong here, but I think there is a small mistake in a
formula there (not that the actual formula is important):

That is, (O rem 2) div (z/p) = 0.. Say O = a + bp + cp? + dp3
and we take z = p?. Then (O rem p?) div p= (a+bp)/p = b, but
we want c.

I think (O div z) rem p works though. (O div p?) rem p= (c+
dp) rem p = c. Alternatively (O rem pz) div z does it too I think.

5Thank you, David Edey!
Swhich of course is just the truncation of O, the places remaining to the right of the place
corresponding to z.

3.1.

PRIMITIVE RECURSION 41

Let us abbreviate (R) to ‘R(O, z,0,)’, and let us write

and

‘4.’ for the I-entry at the place corresponding to z (i.e., the unique
i such that R(I,z,4), namely I rem z) DIV (z/p);

‘0, for the O-entry at the place corresponding to z (i.e., the unique
o such that R(O, z,0), namely (O rem z) DIV (z/p)).

How do we tie together I and O? We have to say several things:

(1) For any z < I that is a power-of-p, (i,,0,) is related-by-the-recursion-for-
f to (i(z/p),0(z/p)). We declared f by f(n 4+ 1,5) = g(f(n),n,3) so this is

[

9(0(z/p)> i(2/p): 5);

(2) Initialising: we have to say i, = 0 and o1 = f(0, §);
(3) The nth place of I is n, thus: i, = i¢, /) + 1;
(4) And of course we have to say (3z)(z =i, Ay = 0,).

So our first order formula will be

(ar

p is prime
(Fz<I)((zisapowerof p A y=o0: Az =1)
)30)@p) A\ | i1 =0A01 = f(0,3) (A)

(Vz < I)(z is a power of p — i, = i@, p) + 1)
(Vz < I)(z is a power of p = 0. = g(0(z/p)s%(z/p)s 5)))

Some clarifying observations

e How many powers of p are we interested in? Well, obviously the first = of

them. Clearly if we take p to be the least prime bigger than any f(n, 3)
for n < z (the § are fixed, remember) then the powers of p that are of
interest (the “columns”) are precisely those powers of p that are less than
I=1-p+ 2-p?> + This explains the bound “< I” whevever we
quantify over powers of p.

Why does the base for the representation of I and O have to be a prime?
Base-ten representations have served us well enough. The answer is that
we need to be able to identify powers of the base, and (as we saw above)
it is easy to express “z is a power of p” in the ring language if p is a prime;
not so easy if p is composite ...but then we don’t need to!

The last line in formula (A) above contains the function letter ‘g’ which
is assumed to call a primitive recursive function. This is the clause that
requires us to do some work in the proof by structural induction that
‘y = f(z,8) can be captured by a J; expression when f is primitive
recursive. By induction hypothesis ‘0. = g(o(./p),%(z/p),5)" is equivalent
to an d; expression—because g is primitive recursive. We can pull the
existential quantifiers to the front by appeal to remark

42 CHAPTER 3. FUNCTIONS

e We have considered only the induction step concerning the constructor
of primitive recursion, not composition. And we haven’t considered the
founder functions. But all that is easy.

Justification of Recursion, and Beth’s theorem

We have considered the question of the existence and uniqueness of solutions to
recursions; there is also the question of whether or not these solutions can be
defined in the original language.

There is a theorem of Beth’s here which seems to be relevant.

THEOREM 6 (quoted from [31] p 301.)
Let L C L™ be first-order languages; let T be a theory in L™ and ¢(Z) a
formula of L*. Then the following are equivalent:

1. If A and B are models of T and A[L = B[L then, for all tuples @ in X,
A (@) iff B = o(a@);

2. ¢(Z) is equivalent modulo T to a formula ¥ (Z) of L.

Why can we not just use theorem |§| to say that (for example) the + function
is explicitly definable in the language with 0 and S since it is implicitly definable?
We will show that + cannot be explicitly defined in the language with just 0
and S.

Consider the theory T of zero and successor, plus a scheme of induction.
We can define + by recursion, and we can prove in the theory in the expanded
language (with ‘+’ and ‘+"’) that if + and +' both obey the recursive definition
then they are coextensive. We do this by induction, of course. (This sexed-up
theory is known as Presburger Arithmetic) This does not imply that we can
define + in the language of 0 and S—and in fact it’s known that we cannot.
(why? How?)

However we cannot obtain a contradiction by applying Beth definability,
because the theory of 0 and S does not implicitly define + within the meaning
of the act. For the theory T of 0 and S to implicitly define + it would have
to be the case that, for any model 9t of that theory, there is precisely one
way of decorating it with a ternary predicate to obtain a model of Presburger
arithmetic, and we shall now show that this is not so.

We have a model for the theory T of 0 and S plus induction that looks like
IN plus lots of copies of Z. It’s totally ordered. Our model of Th(0, S)-plus-
induction which looks like N+ Z x Q. (Question 11 of Sheet 3, Part II Set
Theory and Logic 2015). Think of elements of your model as either naturals
(we ignore them) or ordered pairs (g, z) of a rational and an integer. Now if
@ is a binary operation on Q that obeys the axioms for + we can define a +
operation on our model by (g1, 21) + (g2, 22) =: {(q1 D g2), 21 + 22). S({(g,2)) is

3.2. EXERCISES 43

of course (g, z +1). So all we have to do is show how to define more than one
+ operation on Q. Easy: move the origin! Let ¢ an arbitrary rational; define
x@y as (x—q) + (y — q). This is clearly commutative and associative.

3.2 [Exercises
(Both from a Part II sheet of PTJ’s years ago)

EXERCISE 26 (*)
For each of the following functions ® : (IN — IN) — (IN — IN), determine
(a) whether ® is order-preserving, and (b) whether or not it has a fived point:

(i) ®(f)(n) = f(n)+ 1 if f(n) is defined, undefined otherwise.
(i) (f)(n) = f(n) + 1 if f(n) is defined, (f)(n) =0 otherwise.
(i1i) ©(f)(n) = f(n—1)+ 1 if f(n—1) is defined, ®(f)(n) =0 otherwise.

EXERCISE 27 (%)

(i) For partial functions f,g : N — IN, define d(f,g) = 27" if n is the
least number such that f(n) # g(n), and d(f,g) = 0 if f = g. [The inequality
f(n) # g(n) is understood to include the case where one side is defined and
the other is not.] Show that d is a metric, and that it makes [IN — IN] into a
complete metric space.

(ii) Show that the function ® which corresponds to the recursive definition
of the factorial function is a contraction mapping for the metric d, and hence
obtain another proof that it has a unique fixed point.

(1) [if you know what a contraction mapping is] Which (if any) of the
functions defined in[26] are contraction mappings?

3.2.1 Primitive Recursive Relations

A relation is primitive recursive if the characteristic function of its graph is
primitive recursiveﬂ [we haven’t defined characteristic function yet]

A relation-in-extension R(Z) is a primitive recursive relation (or predi-
cate, the words are used interchangeably) iff there is a primitive recursive func-
tion 7 : IN” — {0, 1} (p is the arity of R) such that r(¥) =0 <— R(Z). That
is to say, an n-ary relation is primitive recursive iff the characteristic function
of its graph is primitive recursive. Of course we can also talk of subsets of IN¥
as being primitive recursive.

In the above setting we say that r represents R. We can take 1 to be true
and 0 to be false, or vice versa, or 0 to be true and all other values to be
false—it does not matter which way one jumps as long as one is consistent. In
what follows true is 0, and false is 1. Other naturals don’t get used for this
purpose.

Strictly: there is a primitive recursive function with the same graph as the characteristic
function

44 CHAPTER 3. FUNCTIONS

EXERCISE 28 (%)

Show that < is a primitive recursive relation;
Show that <\ is a primitive recursive relation;
Show that = is a primitive recursive relation.

The family of primitive recursive relations is closed under lots of operations.

Boolean Operations

We observe that () and IN* have primitive recursive characteristic functions (as
do all finite and cofinite subsets of IN¥).

If R and S are primitive recursive predicates represented by r and s, then

RV S is represented by 7 - s;
R A S is represented by r + s;
—R isrepresented by 1 —r;

so boolean combinations of primitive recursive relations are primitive recursive.

Relational Algebra

Converse of a primitive recursive relation is primitive recursive.

What about composition of primitive recursive relations? We will see later
(exercise that relational composition (as in: nephew-of is sibling-of com-
posed with son-of) of primitive recursive relations might not preserve primitive
recursiveness.

Transitive closures? Presumably not

Substitution

If R(Z) is a primitive recursive relation then we can substitute terms g(%) for the

” 3

xs as long as the g are primrec. (use composition/substitution). So “x = f(¥)” is
a primitive recursive relation if f is primitive recursive. [substitution performed
on ‘a=1">.
Bounded Quantification
If R(z,) is represented by r(z, %) then (3x < z)(R(z, %)) is represented by
IT r@o.
0<z<z

We can capture bounded universal quantification by exploiting duality of the
quantifiers, so (Vz < z)(R(x,¥)) is represented by

1= I @ =@@a)

0<z<z

3.2. EXERCISES 45

If-then-else

The set of primitive recursive functions is also closed under if then else, in
the sense that if r is a primitive recursive predicate, then if R then x else y
is also primitive recursive. Here’s why. Declare:

if-then-else(0,z,y) := x; if-then-else(S(n),z,y) =yv.

if-then-else is evidently primitive recursive (and in fact it’s so primitive
that it doesn’t actually involve any recursion at all!) and it is mechanical to
check that

if-then-else(proj(r, z,y)3, proj(r, =, y)3, proj(r, z,y)3)

evaluates to x if r =1 and to y if r = 0.

Putting this together with the fact that bounded quantification is primitive
recursive tells us that

THEOREM 7 Functions declared in the style
if (3z <y)R(z,Z) then f(y,Z2) else g(y,Z).

are primitive recursive, as long as R, f and g are. []

This is bounded search. Hofstader [32] memorably calls this “BLOOP”.

We will use the string ‘pair’ to represent a primitive recursive bijection
IN? — IN. The following is a standard example:

. (z+y) (z+y+1)
pair(z,y)="5 —

and fst and snd are the corresponding primitive recursive unpairing functions,
so that

fst(pair(m,n)) = m,
snd(pair(m,n)) = n and
pair(fst(r),snd(r)) =r.

EXERCISE 29 (*) Check that pair is a bijection between IN X IN and IN, and
show that it and the unpairing functions £st and snd are all primitive recursive.

In future when we write ‘pair(zx,y)’ without comment we shall assume it is
this function we are using. ‘(n,m)’ will denote a primitive (anonymous) pairing
function.

We observe without proof that the graph of a primitive recursive function is
a rectype; so too is the graph of a primitive recursive relation. For example, the
graph of the primitive recursive relation <y has all the pairs (0,n) (for n € IN)
as founders, and has the single constructor (n,m) — (S(n), S(m)).

Except perhaps when we are
doing A-calculus. Check.

46 CHAPTER 3. FUNCTIONS

We shall see in section how evaluation sequences, where the value y
of a recursive function f at some argument x is computed by unravelling the
recursion, correspond pretty exactly to a certificate that the pair (y, z) belongs
to the rectype that is the graph of f.

EXERCISE 30 (*) Euler’s totient function ¢ is defined by
¢(n) :=={m <n: HCF(m,n) = 1}|.
Prove that ¢ is primitive recursive.

EXERCISE 31
Show that, if R is a primitive recursive predicate, then the function sending n
to the least y < k such that R(n,y,Z) is also primitive recursive.

We will see later that we really do need the bound if we wish to secure primitive
recursiveness. See exercise [59] p [02}

EXERCISE 32 (%)

1. The declaration:

Fib(0) := 1;
Fib(1) :=1;
Fib(n 4 2) := Fib(n + 1) + Fib(n);

s not primitive recursive. Find a declaration of this function-in-extension
that is primitive recursive.

2. The iterate It(f) of f is defined by: It(f)(m,n) = f™(n). Notice that,
even if f is a primitive recursive function of one argument, this function
of two arguments is not prima facie primitive recursive. Show that it is
primitive recursive nevertheless.

Take T to be the inductively defined class of functions containing the suc-
cessor function S(n) = n + 1, the functions pair, fst, snd and closed
under composition and iteration. Show that if a € N and G(z,y) is in T
and H(z) is defined by H(0) = a, H(n+ 1) = G(H(n),n), then H(z) is
in Z. [Hint: Consider pair(H (y),y).]

EXERCISE 33 Show that all primitive recursive functions are total by struc-
tural induction on the rectype. The induction step for primitive recursion uses
induction over IN.

This means that functions like the one that returns n when given 2n and
fails on odd numbers are not primitive recursive. Nevertheless, you will often
hear people say—as I say to you now—that you would be extremely unlucky to
encounter computable functions that are not primitive recursive unless you are
a logician and go out of your way to look for trouble. The Ramsey functions

3.2. EXERCISES 47

(some of them, at least) are primitive recursive. (That was exercise on
page . Waring’s g and G are not—at least they aren’t defined that way
as functions-in-intension—but it turns out after all that they are too...in the
sense that the graphs of G and g are also the graphs of primitive recursive
functions-in-intension.

The resolution of this apparent contradiction is that the function n +—
(if n = 2k then k else fail) is in some sense coded by the primitive re-
cursive function that sends 2n + 1 to 0 (meaning fail) and sends 2n to n + 1
(meaning n), and this function is primitive recursive.

So there is a way of thinking of the Md&bius function as primitive recursive.

EXERCISE 34 The Mdbius function p is defined by

p(n) := if n is not square-free then 0 else (—1)*
where k is the number of distinct prime factors of nﬁ

Prove that p is primitive recursive. (You will somehow have to code up the
negative integer —1.)

3.2.2 Simultaneous Recursion

A simultaneous recursion or mutual recursion is where two or more func-
tions are declared by recursions in which each calls some of the others as well
as possibly itself.

The usual example is the odd and even functions, which represent the set
{2n : n € IN} of even naturals and the set of odd naturals respectively. (Miniex-
ercise: supply this definition.) Here is another example—from a la Computer
Science exam of some years ago.

f(n):=1if n =0 then 0 else g(f(n—1)+1,1) — 1;
g(n,m)=f(f(n—1))+m+1.
(It turns out that f(n) =n and g(m,n) = m+n.)

EXERCISE 35 On the face of it a simultaneous declaration like that of even
and odd is not primitive recursive. Use the pipelining technique above to show
how, nevertheless, any function that is declared in such a bundle can be given a
declaration as a primitive recursive function.

Enthusiasts might like to try to prove the following theorem of Rozsa Péter
which I found in [53] p 12.

EXERCISE 36 Suppose functions g, h, and the j; for 0 < i < k are primitive
recursive, with (Vx)(j;(x) < x) for every i < k, and that f is defined by
f(0,y) :==g(y)

8Be warned that we will later use the letter ‘i’ for the function that returns the least object
in a set (“pinimum” not pobius”)

Where do we prove this?

48 CHAPTER 3. FUNCTIONS

fl@+ Ly) = hx,y, f((G1(), 9)), - f((Gr(@),9)))-

Show that f is primitive recursive too.

We will later need the fact that that the function enumerating the primes
in increasing order is primitive recursive. For this we need that a search
(3z < f(n))(...) is primitive recursive if f and the dots are primitive recur-
sive. Bertrand’s postulate might come in handy.

EXERCISE 37 Show that the function w(n) = the nth prime is primitive re-
cursive

3.3 p-recursion

Does the rectype of primitive recursive functions exhaust the class of (total)
functions that reasonable people would consider computable?

There are some functions that are clearly not everywhere defined but are
equally clearly in some sense computable: n — n/2 if n is even and fail other-
wise. We know that every primitive recursive function is everywhere defined, so
does it follow that not every computable function is primitive recursive? Well
no, not really, because we can encode this partial function by the total function
n — (n/2) + 1 if n is even and 0 otherwise. If we want to demonstrate that
there are computable functions that are not primitive recursive we have to do
a bit more work, and that is where the Ackermann function comes in.

3.3.1 The Ackermann function

The following function:

A(0,n) = S(n)
A((S(m)),0) = A(m,1)
A(S(m), S(n)):= A(m, A(S(m), n))

is the Ackermann function. Brief inspection will reveal that this declaration is
not primitive recursive. This function—unlike the Fibonacci function and the
simultaneous recursion cases we saw—doesn’t seem to have a primitive recursive
declaration at all. We shall in due course establish that this is, indeed, the
case. That is where the significance of the Ackermann function lies: it is a
kosher recursive function—provably defined everywhere—that nevertheless has
no primitive recursive declaration. As such it torpedoes the project to capture all
computable functions by means of primitive recursion. So we have to establish
that (i) it is total and (ii) has no primitive recursive declaration.

THEOREM 8 A(n,m) is defined for all n,m € IN.

3.3. u-RECURSION 49

Proof:

By induction on the lexicographic order of INxIN. (You proved in exercise
that a lexicographic product of finitely many wellfounded strict partial orderings
is a wellfounded strict partial ordering).

Assume A(x,y) is defined for all pairs (z,y) that precede (n,m) in the lexi-
cographic ordering. One of the three possibilities below must happen:

1. n = 0. In this case A(n,m) = m + 1;

2. m = 0. Then A(n,m) = A(n—1,1) which is defined by induction hypoth-
esis, since (n — 1,1) <jer (n, m);

3. n,m # 0. Then A(n,m) is A(n — 1, A(n,m —1)). Now (n—1,2) <jex
(n,m) for all z. So A(n,m) is defined as long as A(n,m — 1) is defined,
because this enables us to take z to be A(n,m —1). But (n,m — 1) <jey
(n,m), so by induction hypothesis A(n,m — 1) is defined and can be taken
to be one such z.

Here is another proof of theorem [§ this time by a double induction.

We prove by induction on n that (Vm)(A(n, m) is defined), and the induction
step requires an induction on m.

Base case: n = 0. A(0,m) :==m + 1.
Induction step:
Now assume A(n,m) is defined for all m. We will prove that A(n +1,m) is

defined for all m, and we will do this by induction on ‘m’.
Base case:

m =0. A(n+1,0) := A(n, 1) by stipulation, and A(n, 1) is defined
by induction hypothesis.

Induction step:

So assume A(n+ 1, m) defined. We wish to be reassured that A(n +
1,m + 1) is defined as well. The definition stipulates that A(n +
1,m+1):= A(n, A(n+1,m)), and by induction hypothesis (on ‘m’,
in the inner loop) A(n+1,m) is defined, and by induction hypothesis
(on ‘n’, in the outer loop) A(n, A(n + 1,m)) is defined.

The more jaded among you may feel that these two proofs are the same
proof underneath. Perhaps they are. At any rate what we are seeing here is the
simplest possible illustration that a total function might be proved total by an
induction over a lexicographic product of length w® for some «, or by induction

50 CHAPTER 3. FUNCTIONS

over IN using nested loops.If we need to do an induction over a wellorder of
length w? we need (look at the exponent) two nested inductions.

Perhaps the best way to emphasise this point is to prove that the Ackermann
function dominates all primitive recursive functions.

We need some technical details. They are not hard enough to justify being
lectured, but they do matter enough to be worth doing as an exercise. (Do the
various parts of the exercise in the order indicated). This exercise has something
of the nature of writing machine code for register machines. You don’t want to
spend time doing it, but it’s a good thing to have done once.

EXERCISE 38 (*) Prove the following:

(1) (Ym,n)(A(m,n) > n);

(2) A is strictly monotone increasing in its second argument;
(3) A(m +1,n) > A(m,n +1);

(4) A is monotone increasing in its first argument;

(5) A(m,2n) < A(m +2,n).

EXERCISE 39 (For those who did Number Theory in Part II)
Is the class number function h primitive recursive?
Justify your answer in general terms.

Now that you are familiar with the concept of primitive recursive function
and with at least one function that isn’t primitive recursive it can do you no
harm to get into the habit of asking questions along the lines of exercise [39]
May as well put the concept to good use!

DEFINITION 9
f:IN — IN dominates g : IN — IN if (In € IN)(Vm > n)(f(m) > g(m)).

Actually, what we are about to prove does not use this definition exactly,
but it has the same flavour.

THEOREM 9 For every primitive recursive function f there is a constant cs
such that
(V) (F(F) < Aley, max 7)),

(We say cy is suitable for f.)

Proof: We prove this by structural induction on primitive recursive functions.
It’s easy to see that the theorem holds for f = S (the successor function), f
the 0 function, and f a projection.

Composition.

Suppose that the hypothesis is true for primitive recursive functions fi, ..., fn,
g and that g is (post-)composable with (fi,..., fn). We will show that the hy-
pothesis holds for g(fi(—),..., fu(=)).

Write cy,,...,cy,,cq for the constants suitable for fq,..., fn,g. Defining
mmax{cy,,...,cy,,Cq}, we will show that m+2 is suitable for g(f1(—),. .., fn(—))-

3.3. u-RECURSION 51

Let & be a member of the domain common to the f;. Renumbering if neces-
sary, we may assume that f1(#) = max; f;(Z#). We have the following inequali-
ties:

9(f1(Z), ..., fa(Z)) < A(cy, [1(Z)) definition of ¢,
< Aleg, A(cy, , max T)) definition of ¢y,
< A(m, A(m, max %)) definition of m
< A(m, A(m + 1, max)) mono in both args
< A(m, A(m + 2, max ¥ — 1)) Ex |38 part (iii)
<A(m+1,A(m+2,maxZ — 1)) mono in first arg
= A(m + 2, max Z).

Therefore m + 2 is suitable for g(fi(—),..., fu(—)).

You might be worried, Dear Reader, by the thought that the renumbering that
ensures that it is fi that gives the biggest input to g depends on the choice of Z. It
does, but this affects only the second argument to the Ackermann function in what
follows, whereas it is the first argument that matters.

Primitive Recursion.
Suppose our hypothesis holds for ¢ and h and that f is declared by primitive
recursion over g and h; that is, f is defined by:

f(Z,0) = g(Z)
@y +1) =Wy, [(Z,y)).
Let ¢4 and ¢, be constants suitable for g and h; put m = max{cg,cp} + 1.

We will show by induction on y that, for every &, f(Z,y) < A(m, maxZ+y).
This is clearly true for y = 0:

f(&,0) = g(&) < A(cg, maxz) < A(m, max x).

Suppose that the assertion holds for y > 0. For every & we have, using the
induction hypothesis and basic properties of A,

@y +1) =hiy f(Z,y))
< A(ch,max{max Z,y, f(Z,9)})
A(cp, A(m,max @ + y))
A(m — 1, A(m, max Z + y))
A(m,max T +y + 1).

This completes the induction. Writing = for max #, we have the inequality
f(@y) < A(m,z +y) < A(m,2max{z,y}) < A(m + 2, max{z,y}).

(The final inequality follows from part (5) of exercise Therefore m + 2 is
suitable for f. This completes the proof. []

52 CHAPTER 3. FUNCTIONS

What this is telling us is that the ‘slices’ of the Ackermann function—that
is to say the functions An.A(m,n)—form an increasing w-sequence of elements
of the poset IN — IN ordered by dominance and that this sequence is cofinal in
the primitive recursive functions.

COROLLARY 1 The Ackermann function A is not primitive recursive.

Proof: Suppose A is primitive recursive. Then a : n — A(n,n) is also primitive
recursive, so there is a constant ¢, such that A(c,,n) > a(n) for every n. But
this is definitely false for n = ¢, + 1:

Alcg,n) = Alcg,ca +1) < A(ca + 1,¢4 + 1) = a(n).

You might think, Dear Reader, that this means there is a quantifier-pushing
theorem along the lines of

(Vz < y)(3Fn)o(n,z,y, W) «— (Fa)(a = A(cy, maz(y, z, W))A(Vz < y)(3n < a)p(n, z,y, D))

where ¢ is a primitive recursive predicate. Observe that the RHS is 3!
because the stuff after the existential quantifier is a primitive recursive predicate:
“a = A(cg, maz(y, z,w))” is a primitive recursive predicate.

If we are to prove this, we would need a lemma to the effect that: for every
primitive recursive relation ¢(y, Z), there is a ¢4 s.t., for all Z,

(Fy)(o(y, 7)) «— By < A(cg, max(T)))(¢(y, T))

However, as we shall see later (exercise [49)) the desired lemma is false. Prim-
itive recursive relations and primitive recursive functions do not behave in the
same way!

For a good readable discussion of the significance of the Ackermann function
have a look at [60].

Why do we not simply gnumber the primitive recursive functions and diag-
onalise out of them? That would give us a total computable function that is
demonstrably not primitive recursive—and at less effort. It would indeed, but
this route to the result, via the Ackermann function, is more informative and
more fun.

EXERCISE 40 (%) (1991:5:10 (CS) [

Define the terms primitive recursive function, partial recursive function, and
total computable function.

Ackermann’s function is defined as follows:

A(0,y) ==y +1; Az +1,0) := A(z,1); A(z+ 1,y +1):= Az, A(z + 1,y)).

9This was question 10 on paper 5 of the Cambridge Computer Science tripos 1991.

3.3. u-RECURSION 53

For each n define f,(y) := A(n,y). Show that for all n > 0, fni11(y) =
fyr1(1), and deduce that each f, is primitive recursive. Why does this mean
that the Ackermann function is total computable?

EXERCISE 41 (%)

1. Write out a definition of a constructor of double recursion so that you
now have a rectype of doubly recursive functions. (Do not worry unduly
about how comprehensive your definition is.)

2. What would a ternary Ackermann function be? Sketch a proof that the
ternary Ackermann function you have defined dominates all doubly recur-
sive functions.

8. Outline how to do the same for higher degrees.

The Ackermann function involves recursion on two variables in a way that
cannot be disentangled. The point of exercise is that there is also treble
recursion and so on. A function is n-recursive if it is declared by a recursion
involving n entangled variables. Exercise [{1]invites you to prove analogues—for
each n—of the facts we have proved about the Ackermann function: namely, for
every n there are functions that are n recursive but not (n—1)-recursive, and one
can prove their totality by a well-founded induction over the lexicographic prod-
uct ordering on IN". Is every total computable function n-recursive for some n?
Sadly, no, but I shall not give a proof. [we will see later an example of a man-
ifestly computable total function that is not n-recursive for any n]lﬂ It turns
out that the correct response to the news brought by the Ackermann function to
the effect that not every total computable function is primitive recursive is not
to pursue 2-recursive, 3-recursive and so on but rather to abandon altogether
the idea that computable functions have to be total in order to be computable.
For a sensible general theory we need to consider partial functionsE This is
because we want unbounded searc}PEI to be allowed. The new gadget we need
is p-recursion, which corresponds to unbounded search. This is a sensible new
constructor to reach for because any strategy for computing g will give rise to
a strategy for computing g~!: simply try g with successively increasing inputs
starting at 0 and continue until you get the answer you want—if you ever do.
The point is that, if we have a deterministic procedure for getting values of g,
we will have a deterministic procedure for getting values of g—!. That is to
say, it appears that the class of functions that are plausibly computable (in an
intuitive sense of ‘computable’) is closed under inverse.

10The multiply recursive (n-recursive for any n) functions are all provably total in the S
inductive fragment of PA.

110n page we encountered a naturally occurring computable partial function that was
not really strictly partial because there was a computable total function that in some sense
encoded the same information. When I write that we must embrace partial functions I mean
we must embrace even those partial functions that cannot be coded as total function in the
way division by 2 can.

12Fans of [32] might be helped by a reminder that Hofstader calls unbounded search FLOOP
(as opposed to BLOOP, bounded search, which we saw on page .

54 CHAPTER 3. FUNCTIONS

So we augment the constructors of the rectype of primi-
tive recursive functions by allowing ourselves to declare f
by f(n,Z) := (ny)(9(y, %) = n), once given g. Then py.® is
the least y such that & (if there is one) and is undefined
otherwise.

Notice that, even with this new constructor, the rectype of u-recursive func-
tions is still countably presented.

But there is a catch. The unbounded search constructor preserves com-
putability as long as its argument is a total function, but the inverse function
that it gives us is not guaranteed to be total itself! Think about inverting
n +— 2n. The result is a function that divides even numbers by 2 and fails on
odd numbers. No problem there. For the moment let f be that function. The
problem comes when we try to invert f: how do we ever discover what f~1(3)
is? Tt ought to be 6 of course, but if we approach it by computing f(0), f(1)
and so on, we get stuck because the endeavour to compute f(1) launches us on
a wild goose chase. We could guess that the way to compute f~1(3) is to try
computing f(6), but we do not want to even think about nondeterminism, be-
cause this severs our chain to the anchor of tangibility that was the motivation
for thinking about computability in the first place.

The upshot is that we cannot rely on being able to iterate inversion, so we
cannot just close the set of primitive recursive functions under both the old
constructors and this new one and expect to get a sensible answer. As the
n +— 2n example shows, FLOOP might output a function that you cannot then
FLOOP. Nor can we escape by doctoring the datatype declaration so that we
are allowed to apply inversion only to functions satisfying conditions that—like
totality—are ascertainable solely at run-time. That would not be SensibleE

Fortunately it will turn out that any function that we can define by more than
one inversion can always be defined using only oneE I am going to leave the
precise definition of u-recursive up in the air for the moment. We will discover
what it is by attempting to prove the theorem that a function is p-recursive iff
it is computable by a machine.

At first blush it seems odd to formalise computability in such a way that
a function can be computable but undefined, but this liberalisation is the key
that unlocks computation theory. Perhaps on reflection it isn’t so odd after all:
all of us who have ever written any code at all know perfectly well that the
everywhere-undefined function is computable-since we have all inadvertently
written code that computes it!

131t is true that one can obtain a declaration of the p-recursive functions as a rectype by
simply adding to the constructors for the primitive recursive functions the declaration:

If ¢(Z,y) is a total p-recursive predicate, then f(Z) := (uy)(¢(Z,y) = 0) is a
p-recursive function.

and some writers do this, but this is philosophically distasteful for the reasons given: it makes
for a less abstract definition.

4 Unfortunately (as we shall see) this is not proved by exhibiting an algorithm for eliminating
extra inversions: it’s less direct than that.

3.3. u-RECURSION 55

Specifically, this enables us to connect syntactic concepts of computability—
namely, function declarations—to semantic concepts—namely, computability by
machines . ..to which we now turn.

56

CHAPTER 3. FUNCTIONS

Chapter 4

Machines

There are various flavours of machines you may have heard of: Finite state
machines both deterministic and nondeterministic, pushdown automata, linear
bounded automata, Minsky machines, Turing machines and no doubt others.
Each flavour of machine gives rise to a concept of computable function, and of
course that is why they crop up here. Howerver there are in fact only two kinds
of machine we will be concerned with here (life is short) and they are Finite
State machine and Turing Machine (or Register Machine). They correspond
somehow to a minimal concept and a maximal concept of finite computation.

4.1 Finite State Machines

Let’s start off with a nice picture that is just complicated enuff to show all the
features of interest and yet still simple enuff for one still to be able to see what
it’s doing.

0

You start at the state indicated by the finger, and move from one state to
another by following the labelled arrows—the labels on the arrows are letters
from the input alphabet. If you land on a state (in this case there is only one)
decorated with a smiley you accept the string. (And ‘accept’ is a term of art)

57

58 CHAPTER 4. MACHINES

If you think about this machine for a bit you will see that it accepts precisely
those strings that contain an odd number of 0s and an odd number of 1s. We
express this by saying that it recognises the set

{s : s contains an odd number of 0s and an odd number of 1s}.

Thatb is to say: a machine accepts a string, but recognises a set of strings.
Do not confuse these two verbs.

It’s worth saying a little bit about finite state machines because nondeter-
minism arises naturally in this context.

Look at the Regular languages and Finite Machines notes on [51]. You might
also derive some entertainment from the embarrassingly elementary http://
www.dpmms . cam.ac.uk/~tf/cam_only/laCSmaterials.html (designed for first-
year computer science students!)

Pumping Lemma; nonexistence of a universal machine
Equivalence of deterministic and nondeterministic machines
Kleene’s theorem

Th pumping lemma says that the language recognised by a FSA is closed
under a certain [“pumping”] operation.

For any two natural numbers a and b, the set of all base-a representations of
natural-numbers-divisible-by-b is a regular language. However it is much easier
to test whether a number is divisible by 7 if it is presented to us in octal than if
it is presented to us in decimal. This reminds us that we are never computing
with numbers but always with representations of numbers. See the remark of
Enderton quoted on p 77.

No, that’s not true, but something like it is, and can be used to make the
same point.

EXERCISE 42 Show that, for any base b, the set of base-b notations for natural
numbers is a regular language.

4.1.1 Kleene’s theorem

Kleene’s theorem states that a language is regular if it can be notated by a
regular expression. One direction of this is fairly easy: showing that if there is
a regular expression for a language L then there is a machine that recognises L.
This breaks down into several steps, one for each constructor: slash, concate-
nation and Kleene star. We’ve seen how to do slash—after all L(K;|K>) is just
L(K1) U L(K2)—but to do the other two involves nondeterministic machines
and we don’t encounter those until later.

The hard part is the other direction: showing how to find a regular expression
for the language recognised by a given machine.

http://www.dpmms.cam.ac.uk/~tf/cam_only/1aCSmaterials.html
http://www.dpmms.cam.ac.uk/~tf/cam_only/1aCSmaterials.html

4.1. FINITE STATE MACHINES 59

What we prove is something apparently much stronger:

For every machine 901, for any two states ¢; and g2 of 9, and for any set
Q of states, there is a regular expression ¢(q1, g2, Q) which notates the set of
strings that take us from state ¢ to state go with all intermediate states lying
within the set Q.

Of course all we are after is the regular expression formed by putting slashes
between all the expression ¢(¢1,g2,Q) where g1 is the initial state, g2 is an
accepting state, and @ is the set of all states. But it turns out that the only
way to prove this special case is to prove the much more general assertion.

We prove this general assertion by induction. The only way to have a hope of
understanding this proof is to be quite clear about what it is we are proving by
induction. You are probably accustomed to having ‘n’ as the induction variable
in your proofs by induction so let’s do that here.

“For all machines 9, and for all subsets @ of the set of 9’s states
with |Q| = n, and for any two states ¢; and go of 9, there is a
regular expression ¢(qi, g2, Q) which notates the set of strings that
take us from state ¢; to state go while only ever moving between
states in the set QQ”

We fix 9 once for all (so that we are doing a ‘V-introduction rule, or “uni-
versal generalisation” on the variable ‘O0V) and we prove by induction on ‘n’
that this is true for all n.

At the risk of tempting fate, I am inclined to say at this point that if you
are happy with what has gone so far in this section (and that is quite a big if!)
then you have done all the hard work. The proof by induction is not very hard.
The hard part lay in seeing that you had to prove the more general assertion
first and then derive Kleene’s theorem as a consequence.

Proofs by induction all have two parts. (i) A base case, and (ii) induction
step. 1 submit, ladies and gentlemen, that the base case—with n = 1—is
obvious. Whatever 91, s and ¢ are, you can either get from ¢; to g2 in one
hop by means of—character ¢, say (in which case the regular expression is ¢)—
or you can’t, in which case the regular expression is €.

Now let’s think about the induction step. Suppose our assertion true for n.
We want to prove it true for n + 1.

We are given a machine 91, and two states g; and g2 of 9. We want to show
that for any set @ of states of M, with |Q] = n+ 1, there is a regular expression
that captures the strings that take the machine from ¢; to ¢o without leaving
Q.

What are we allowed to assume? The induction hypothesis tells us that for
any two states s’ and ¢’ and any set @’ of states with |Q’| = n, there is a regular
expression that captures the strings that take the machine from ¢; to ¢} without
leaving @'. (I have written ‘q}’ and ‘g}’ and @’ because I don’t want to reuse
the same variables!)

For any state r in @), we can reason as follows: “Every string that takes 9t
from g1 to g2 without leaving @ either goes through r or it doesn’t.

60 CHAPTER 4. MACHINES

The strings that take 9t from ¢; to g2 without either going through r or
leaving) are captured by a regular expression because |Q \ {r}| = n. Let w;
be this regular expression.

The strings that take 9t from ¢; to g2 via r are slightly more complicated.
By induction hypothesis we have a regular expression for the set of strings that
take 9 from ¢; to r without going through g (while remaining in Q)—because
|Q\ {g2}]| = n—=s0 let’s call that regular expression wq. Similarly by induction
hypothesis we have a regular expression for the set of strings that take 9t from r
to go without going through ¢; (while remaining in Q)—because |Q\{q1}| = n—
so let’s call that regular expression ws. Finally by induction hypothesis we have
a regular expression for the set of strings that take 9 from r back to r without
going through ¢; or ¢z (while remaining in Q)—because |Q\{q1,¢2}| = n—1—so
let’s call that regular expression wy.

Now a string that takes 91 from ¢; to g2 via r will consist of a segment that
takes 9 from g1 to r (captured by ws) followed by a bit that takes it from r
back to r any number of times (captured by w}) followed by a bit that takes 9
from r to g2 (captured by ws).

So the regular expression we want is wy |wa(w4)*ws.

This concludes the proof.

If you are a confident and fluent programmer in a language that handles
strings naturally then you should try to program the algorithm on which this
proof relies. It will give you good exercise in programming and will help you
understand the algorithm.

4.1.2 The Thought-experiment and Myhill-Nerode

I am in a darkened room, whose sole feature of interest (since it has neither
drinks cabinet nor coffee-making facilities) is a wee hatch through which some-
body every now and then throws at me a character from the alphabet . My
only task is to say “yes” if the string of characters that I have had thrown at
me so far is a member of L and “no” if it isn’t (and these answers have to be
correct!)

After a while the lack of coffee and a drinks cabinet becomes a bit much for
me so I request a drinks break. At this point I need an understudy, and it is
going to be you. Your task is to take over where I left off: that is, to continue
to answer correctly “yes” or “no” depending on whether or not the string of
characters that we (first I and then you) have been monitoring all morning is a
member of L.

What information do you want me to hand on to you when
I go off for my drinks break? Can we devise in advance a
form that I fill in and hand on to you when I go off duty?
That is to say, what are the parameters whose values I need
to track? How many values can each parameter take? How
much space do I require in order to store those values?

4.1. FINITE STATE MACHINES 61

The thought-experiment encourages us to think about what distinctions we
need to make between strings from >* if we are to be able to tell members of
L C ¥* from members of ¥*\ L. We can give a more formal, more mathematical
account, due essentially to Myhill and Nerode.

The definition we have given of regular language can be rephrased by saying
that if we start with a machine 901, and think of it as a digraph with edges
decorated with characters from Y, and some vertices decorated with smilies
(and one with a pointy finger thingy) then we can think of the corresponding
regular language as a kind of unfolding of 91, the set of paths thru’ 91 that start
at the pointy finger and end on a smilie—or rather the sequence of decorations
of the edges along such a path. That’s how a machine gives rise to a regular
language, by an unfolding. Can we sensibly describe an inverse to this process?
In the course of the unfolding we make lots of copies of the various states of the
machine; the challenge is, on being given something that might have arisen by
an unfolding of this kind, to recover what the machine was that was unfolded.
We have to discover which things in the unfolding are copies of a single thing
(state) in the machine. In other words we are looking for an equivalence relation
on X* whose quotient will turn out to be 9.

Accordingly let L C ¥*, be a language not assumed to be regular. We will
define an w-sequence (~,:n € IN) of equivalence relations on X*. ~q is the
equivalence relation of index 2 whose two equivalence classes are L and ¥* \ L.

Thereafter we say

W W w e~y w A (Vo€ D) (wiz ~p, w'inx)

The equivalence relations in this sequence are of monotonically increasing
strictness, so if we iterate long enough we will reach a fixed point. Observe that
the ~,, are all of finite index [might be an idea to prove this in some detail].
The recursion is of finite character, so we know that we will reach a fixed point
at stage w (with (), cy ~n) if not before. Let ~ (without the subscript) be
the fixed point. Evidently we can think of the equivalence classes in ¥*/ ~ as
the states of a machine: the initial state is the equivalence class of the empty
string and the accepting states are those equivalence classes that meet L. If the
machine is finite then clearly L is a regular language.

And vice versa: equally clearly, if L is regular, then there will be a fixed
point of finite index: every machine that recognises L embodies a fixed point.
Observe that we can prove by induction on n that ~,, is a superset of any fixed
point, so the fixed point supplied by this construction must be the least fixed
point. Accordingly we can conclude that, for any regular language L, there is a
unique minimal machine that recognises it.

This is the Myhill-Nerode theorem.

What if L is not regular? The construction we have just seen is a sensible
construction and may well give us a sensible answer—as it does for example
when L is the matching brackets language. The machine we get for the match-
ing brackets language will have, as it were, 1 + w states. The start state (which
is also the sole accepting state) is 0, —1 is the fail state, and n is the state where

62 CHAPTER 4. MACHINES

there are n outstanding left brackets. [a picture would help] This machine has
infinitely many states, but is a finite object in the sense that it admits (as we
have just shown!) a finite description. Our determination to think of math-
ematical objects as finite objects (wherever possible) leads us to invent other
machine architectures which will enable us to think of these sensible (infinite)
quotients as explicitly finite objectsﬂ by somehow turning the finite description
of the infinite machine into a specification of a finite machine of the new archi-
tecture. One such architecture is pushdown automaton. However we probably
won’t get round to them, and we will occupy ourselves with finite state machines
only, while allowing them to be nondeterministic.

4.1.3 Nondeterministic Machines

A nondeterministic machine is just like a deterministic machine except that its
transition behaviour isn’t deterministic. If you know the state a deterministic
machine 91 is in then you know what state it will go to when you give it character
a (or b or whatever). With a nondeterministic machine you only know the set of
states that it might go to next. Notice that a deterministic machine is simply a
nondeterministic machine where this set-of-states-that-it-might-go-to is always
a singleton.

Nondeterministic machines (hereafter NFAs—“nondeterministic finite au-
tomata”) are a conceptual nightmare. The fact that they are nondeterministic
makes for a crucial difference between them and deterministic machines. In
the deterministic case you don’t have to distinguish in your mind between its
behaviour in principle and its behaviour in practice, since its behaviour in prac-
tice is perfectly reproducible. That means that you can think of a deterministic
machine either as an abstract machine—a drawing perhaps—or as a physical
machine, according to taste. With NFAs there is a much stronger temptation
to think of them as actual physical devices whose behaviour is uncertain, rather
than as abstract objects. And the difficulty then is that NFAs are not physically
realisable in the way one would like.

If NFAs are so nasty, why do we study them? The answer is that they
tie up some loose ends and enable us to give a smooth theoretical treatment
that improves our understanding and appreciation. So let us get straight what
they are for. We started this chapter with a connection between machines and
languages. A machine accepts strings and recognises a language. A (physical)
nondeterministic machine can accept strings in exactly the same way that a
(physical) deterministic one does: you power it up, and feed in the characters
one-by-one and when it’s finished reading the string its either in an accepting
state or it isn’t. The subtlety is that a nondeterministic machine, on having read
a string, might be in any of several states, perhaps some of which are accepting
and perhaps some not. The only sensible definition we can give of an (abstract)
nondeterministic machine recognising a language is this:

I'We will see later something of the same flavour: every theory with an (infinite but)
decidable axiomatisation has a conservative extension in a new language that is finitely ax-
iomatisable. See remark@

4.1. FINITE STATE MACHINES 63

The language recognised by a nondeterministic machine 9t
is the set of strings that one of its physical realisations might
accept.

The task of remembering and understanding this definition is made much
easier for you once you notice that the definition for recognition of languages
by deterministic machines is simply a special case of this.

Nondeterministic machines are useful to us because of the combination of
two facts.

(i) If L is a language recognised by a nondeterministic ma-
chine 91 then there is a deterministic machine 9 which can
be obtained in a systematic way from 9 that also recognises
L.

(ii) There are circumstances in which it is very easy to pro-
duce a nondeterministic machine that recognises a language
but no obvious easy way to produce a deterministic one.

Let us now prove (i) and illustrate (ii).

(i): Finding a DFA that emulates an NFA

Suppose I have a nondeterministic machine 9, presented to me in its start state.
I have a handful of characters {c, ca,c3...} that I feed to the machine one by
one. Initially I know the machine is in the start state. But after I've given it
c1 I know only that it is in one of the states that it can go to from the start
state on being given ¢;. And after I've given it ¢o I know only that it is one of
those states it can reach from the start state in two hops if given ¢; followed
by ¢ ...and so on. We seem to be losing information all the time. But all is
not lost. Although I do not have certain knowledge of the state 9 is in, I do
nevertheless have certain knowledge of the set of states that it might be in. And
this is something I can keep track of, in the following sense. I can say “If it’s in
one of the states s or s’ or s” and I give it character ¢ then either it was in s in
which case it’s now in s’ or s or it was in s’ in which case it’s now in ...”.
In other words

If I know the set of states that it might be in now
(and know that it must be in one of them)
and I know the character it is being given

then I know the set of states that it might be in next
(and I know that it must be in one of them)

Now comes the trick. Think of the set-of-states-that-it-might-be-in as a
state of a new machine! One way of seeing this is to think of the states of
the new deterministic machine as the states of uncertainty you might be in
concerning the state of the nondeterministic machine. We have seen something

64 CHAPTER 4. MACHINES

like this before: in the discussion of the thought-experiment we were viewing
states of the machine as states of knowledge of the string-so-far; this time we are
thinking of states of the new (deterministic) machine as states-of-knowledge-of-
what-state-the-nondeterministic-machine-might-be-in.

Observe that this “power set construction” supplies us, free, with the empty
set of states. Clearly there can be no arrow to it! This empty set of states can
thus correspond to a fail state, and we can now make sense of the convention
that missing arrows take you to a fail state. If you “cannot go anywhere” from
state s when you receive character ¢, then in the power set construction of a
DFA any (meta)state that contains s must have an arrow labelled ‘¢’ to the
empty set of states.

(ii) An Application of NFAs

I mentioned earlier that the concatenation of two regular languages is regular.
Suppose I have a deterministic machine 9t; that recognises L and a deterministic
machine 9, that recognises K. The idea is to somehow “stick 9%, on the end
of ml” .

The difficulty is that if w is a string in LK, it might be in LK for more
than one reason, since it might be decomposible into a string-from-K followed
by a string-from-L in more than one way. So one can’t design a machine for
recognising LK by saying “I’ll look for a string in K and then—when I find one—
swap to looking for a string in L”. You have to start off imagining that you
are in 2My; that much is true. However when you reach an accepting state you
have to choose between (i) staying in 9t; and (ii) making an instantaneous hop
through a trap-door to the start-state of 91,. That is where the nondeterminism
comes in. These instantaneous hops are called “e-transitions”. You do them
between the clock ticks at which you receive new characters. I don’t like e-
transitions and I prefer theoretical treatments that don’t use them. However,
they do appear in the literature and you may wish to read up about them.

For those who do like e-transitions, here is a description of a nondeterministic
machine that recognises LK. It looks like the disjoint union 9t; LI Mo of Ny
and IM,. Transitions between the states of My are as in M and transitions
between the states of Mo are as in My. In addition for each accepting state of
MM, there is a e-transition to the start state of Mis.

For those of you who—Ilike me—do not like e-transitions, here is a different
nondeterministic machine that recognises LK. Like the last one, it looks like
the disjoint union 9%y LI Mo of My and M. Transitions between the states of
My, are as in My and transitions between the states of My are as in M. In
addition, whenever s is a state of 9%, and ¢ a character such that d(s,c) is an
accepting state of 911, we put in an extra arrow from s to the start state of My,
and label this new arrow with a ‘¢’ too. The effect of this is that when you are
in s and you receive a ¢, you have to guess whether to stay in 9t (by going to
an accepting state in 91;) or make the career move of deciding that the future
of the string lies with K, in which case you move to the start state of 9s.

4.2. STUFF TO FIT IN 65

The manner in which we got rid of e-transitions in this case is perfectly
general. You can always get rid of them by introducing a bit of nondeterminism
in the way we have just done.

4.2 Stuff to fit in

If w sends 9 thru’ a loop and M accepts uw?v then one tends to assume that
hd(w) # hd(v). Should make a fuss about this. It can confuse people.

We ideally need the concept of a stream, so we can explain how we start the
machine in the designated start state, and then give it a *stream™* of characters.
Ever thereafter, at each stage, when it has has been given an initial segment of
a stream, it must be in an accepting state iff that initial segment belongs to the
language in question. And it must be able to do this for all streams.

Of course we should say something here about how, in the natural realistic
motivation for this stuff—parsers—the machines do in fact sit and field streams
of stuff in precisely this way. Of course in that realistic setting there is a sort
of RESET command which we might want to say something illuminating about.

Say something about string search engines. They use regular expressions

4.2.1 Exercises

From the Computer Science Tripos, some old exam questions.

1987 p6 q3; 1988:2:3; 1988:2:11; 1989:6:12*; 1989:4:11; 1991 p4 q6; 1991 pll
q6; 1992 p4 q9*; 1992 pll q9; 1993 p5 ql12*; 1993 p6 ql12; 1994 pl0 q4; 1994
p4 g3 (not for 1a); 1994 p3 q3 1993 p5 ql12; 1993 p6 ql12; 1994:3:3; 1994:4:2;
1995:2:8; 1995 p3 q3; 1995:4:3; 1996:2:8; 1997:2:7. 1998:2:7

1. Prove that L((r|s)*) = L((r*s*)*) (Use induction on word length)

2. Prove that L((rs*)*) C L((r*s*)*) but that the reverse inclusion does not
hold.

3. DescribeE| deterministic automata to recognise the following subsets of

{0,1}*:

(a) The set of all strings with three consecutive 0’s; provide a regular
expression corresponding to this set as well;

(b) The set of all strings w such that every set of five consecutive char-
acters in w contains at least two 0’s;

(¢) The set of all strings such that the 10th character from the right
end is a ‘0’; provide a regular expression corresponding to this set as
well. For pedants: This could mean one of two things. Answer both
of them.

2This word is very carefully chosen!

And you can go in the other
direction too.

66 CHAPTER 4. MACHINES

4. Let L be a regular language over an alphabet 3. Which of the following
are regular languages?

(a) {weXZ: (FueX*)(wu g L)}
(b) {w e L: (Vu € Z*)((length(u) > 0) - wu ¢ L)}
(¢) {w € L: (Vu,v € ¥*)((w = uv Alength(u) > 0) - u ¢ L)}
(d) The preceding question has a typo in it. Find it.
)
)

(e) S, an arbitrary subset of L.
(f) {we Z*: (Fu,v € ¥*)(w=wv A vu € L)} (hint: needs a different
approach .. .)

5. A combination lock has three 1-bit inputs and opens just when it receives
the input sequence 101, 111, 011, 010. Design a finite deterministic au-
tomaton with this behaviour (with accepting state(s) corresponding to the
lock being open).

6. Let ¥ be an alphabet and let B and C' be subsets of ¥* such that the
empty string is not in B. Let X C ¥* and show that if X satisfies the
equation X = BX U, then B*C' C X and X C B*C, i.e. the unique
solution is X = B*C. [Hint: use induction on number of “blocks”.]

7. Show that if in the previous question we allow € € B, then X = B*D is a
solution for any D D C.

8. Let A = {b,c}, B = {b}, C = {c}. Find the solutions X;, Xy C A*
of the following pairs of simultaneous equations: (i) X; = BX; U CXy;
X2 = (BUC)Xl UCXQU{G} (11) X1 = (BXl U{E}); X2 = BC(Xl U{G})

9. There is an alphabet ¥ with six letters a, b, ¢, d, e and f that represent
the six rotations through m/2 radians of each face of the Rubik cube.
Everything you can do to the Rubik cube can be represented as a word in
this language. Let L be the set of words in ¥* that take the cube from its
initial state back to its initial state. Is L regular?

you have had a sleepless night over this you may consult the footnote for
a hint P

10. Construct an FDA to recognise binary representations of multiples of 3.
You may assume the machine starts reading the most significant bit first.
Provide a regular expression for this language.

11. For which primes p can you build a FDA to recognise decimal representa-
tions of multiples of p? How many states do your machines have?

3Tf this is to be a regular language, there must be a FDA that recognises it. What might
this FDA be?

4.2. STUFF TO FIT IN 67

12.

13.

14.

15.

16.

17.

Let ¢ be a number between 0 and 1. Let L be the set of sequences s €
{0,1}* such that the binary number between 0 and 1 represented by s is
less than or equal to g. Show that L is a regular language iff ¢ is rational.
What difference would it have made if we had defined L to be be the set
of sequences s € {0,1}* such that the binary number between 0 and 1
represented by s is less than q.

Give regular grammars for the two following regular expressions over the
alphabet ¥ = {a, b} and construct finite non-deterministic automata ac-
cepting the regular language denoted by them:

(a) bal(albb)a*b

(b) ((a[b)(alb))*|((alb)(alb)(alb))*
For each of the following languages either show that the language is regular
(for example by showing how it would be possible to construct a finite state
machine to recognise it) or use the pumping lemma to show that it is not.

(a) The set of all words not in a given regular language L.

(b) The set of all palindromes over the alphabet a, b, c.

(¢c) If L is a regular language, the language which consists of reversals of
the words in L; thus if L contains the word abed, then the reversed
language LT contains dcba.

(d) Given regular languages L and M, the set of strings that contain
within them first a substring that is part of language L, then a sub-
string from M; arbitrary characters from the alphabet a,b, ¢ are al-
lowed before, between and after these strings.

(e) Given regular languages L and M, the set of strings that contain
within them some substring which is part of both L and M.

What is the language of boolean (propositional) logic? Is it regular? What
about the version without infixes (“Polish notation”) What about reverse
Polish notation?

Give context-free grammars generating the following languages:
(a) {aPbic" :p#qVq#r}

(b) {w € {a,b}* : w contains exactly twice as many as as bs}

Let M be a finite deterministic automaton with n states. Prove that
L(M) is an infinite set if and only if it contains a string of length | with
n <l <2n.

EXERCISE 43 (Part III Computability and Logic 2014, modified).
An interleaving of two words wy and we is a word obtained by inserting the
characters from wy into wsy in the order in which they appear in wy. Thus, for

68 CHAPTER 4. MACHINES

example, both the strings b0alc and baOlc are interleavings of the two strings
bac and 01.

Now let Ly and Lo be reqular languages over alphabets X1 and Yo respectively.
Let the interleaving L1 & Lo of two languages L1 and Lo be the set of words that
can be obtained by interleaving words from L1 with words from Lo. Prove that

1. The interleaving of two regular languages is reqular
2. The interleaving of a reqular and a context free language is context free

3. The interleaving of two context free languages is not always context—freeﬁ

Does the set of strings in {a,b,c}* which have as many as as bs and cs put
together make a regular language?

Let K, L and M be regular languages. Is {u € L : (v € K)(uv € M)} a regular
language?

Is the language of Roman numerals regular?

Stuff to fit in

[this stuff is messages to myself: do not read!!l]

How are we to think of a nondeterministic machine? If it’s in state s and we
give it character ¢ (‘c’ here is a variable!) then it goes into another state, but
we just don’t know what that state is?

Must make a big fuss about the recovery of a DFA from an NFA. This is
interesting because this is a DFA arising abstractly.

Have to explain this business of maintaining more info than you actually
need to answer questions on.

Prima facie every string has its own state, in the sense that a state is simply
a state-of-knowledge about the string you have seen so far. You can think of
the string as a history. Some states are alike in the sense that the differences
between them have no bearing on the questions you have to answer.

It’s a PROLOG program

The presence on the scene of nondeterministic machines rubs in the impor-
tance of distinguishing between accepting and recognising. A deterministic ma-
chine recognises the set of those strings which it accepts. A nondeterministic
machine recognises the set of those strings that it might accept.

LAC students wonder: what happens if you give the machine a character
that doesn’t belong to its input alphabet? The answer is that this is absurd: you
can’t! It’s a bit like saying what happens if the batsman’s response to a googly
is to play the ace of spades. The answer is; there is no action the batsman can
make which constitutes playing the ace of spades. ..

4 There is a pumping lemma for context-free languages which is not in the course. With
the hint that a™b™c™d™ is not context-free it all becomes terribly easy!

4.3. MACHINES WITH INFINITELY MANY STATES 69

Sometimes we need to think abstractly. Sometimes we need to think con-
cretely. (The Rubik cube question)

Remember to distinguish between states and bits. If the machine needs to
remember the truth-value of n propositions, then it will need 2™ states.

How you need the three characterisations at different times. You need regular
expressions to explain why the reverse of a regular language is regular; you need
machines to explain why the complement of a regular language is regular. (Still
need examples to illustrate why you need NFAs and grammars)

We ideally need the concept of a stream, so we can explain how we start the
machine in the designated start state, and then give it a *stream* of characters.
Ever thereafter, at each stage, when it has has been given an initial segment of
a stream, it must be in an accepting state iff that initial segment belongs to the
language in question. And it must be able to do this for all streams.

Of course we should say something here about how, in the natural realistic
motivation for this stuff—parsers—the machines do in fact sit and field streams
of stuff in precisely this way.

There is a sort of reset command which we might want to say something
illuminating about.

We can glue the streams together to get a tree if we like.
Make a point about the pigeonhole principle and the pumping lemma.

How to get a machine from a language. Ask yourself: “I am a machine:
when i power myself up and look at the first character, what do i want to know?
And depending on what answer i get, what might i want to know next?”

Fit in somewhere: overloading of juxtaposition: abc uvw and ABC. 1 think
this is something to do with quasiquotation ...

4.3 Machines with infinitely many states

Finite state machines are the most impoverished conception of computing ma-
chine. Rather than progress through gradually richer architectures we are going
to jump straight to the maximal concept of [finite!] computing machine. It does
not matter what kind of architecture our machines have as long as they have
unbounded memory and can run arbitrarily long. The paradigm we use for the
sake of illustration is the register machine.

If you want to see a Turing machine at work go to

http://robotzeitgeist.com/2010/03/model-turing-machine.html

I don’t know about you, but I for one am very struck by the fact that the Turing
machine in this video has a camera to look at the tape. I suppose it ought to be obvious
that—from the machine’s point of view—the tape is part of the external world, so it
has to use its exteroceptors (not its proprioceptors) to examine it.

A register machine has

(i) finitely many registers Ry ... R, each of which holds a natural
number; and

http://robotzeitgeist.com/2010/03/model-turing-machine.html

70 CHAPTER 4. MACHINES

(ii) A program that is a finite list of instructions each of which
consists of a label and a body. Labels are natural numbers, and a
body has one of the three forms:

1. R — L: add 1 to contents of register R and jump to instruc-
tion with label L.

2. R~ — L', L": if contents of R is nonzero, subtract 1 from it
and jump to the instruction with label L’; otherwise jump to
the instruction with label L”.

3. HALT!

We can represent instructions of flavour (1.) as triples (j, +, k) and instruc-
tions of flavour (2.) as quadruples (j, —, k,1). Then a register machine program
is a finite sequence of triples-or-quadruples, where the nth member of the se-
quence is the instruction to be executed when in state nE|

The output of the register machine is the contents of register 1 (say) when
the machine executes a HALT command. Notice that we don’t really specify the
number of registers by stipulation but only indirectly by mentioning registers
in the instructions in the program. If the program has only ten lines, it cannot
mention more than ten registers, and so the machine can be taken to have only
ten registers.

We say that a register machine 9t computes a function f iff, for all n € IN,
f(n) is defined iff whenever we run 9 starting with n in register 1 (and 0—
say—in every other register) it halts with f(n) in register 1 and does not halt
otherwise.

For functions of arity greater than 1 we use more registers. Details could be
provided, but they don’t really matter.

It is very important that the register machines can be effectively enumerated,
but deeply unimportant how we do it, though one can collect a few hintsﬂ

We need to think about how to encode machines ...

51 lifted this from PTJ’s book, but I won’t make much use of it. There are some exercises
in the body of this text which come from his Part II lectures of long ago. Pursue them at
your own risk.

6Indeed it is deeply important that it is unimportant, for this is another invariance point:

“That’s very important,” the King said, turning to the jury. They were just
beginning to write this down on their slates, when the White Rabbit interrupted:
“Unimportant, your Majesty means, of course,” he said in a very respectful tone,
but frowning and making faces at him as he spoke.

“Unimportant, of course, I meant,” the King hastily said, and went on to himself
in an undertone, “important—unimportant—unimportant—important—" as if he
were trying which word sounded best.

Some of the jury wrote it down “important,” and some “unimportant”. Alice
could see this, as she was near enough to look over their slates; “but it does not
matter a bit,” she thought to herself.

see [I1], available online.

4.3. MACHINES WITH INFINITELY MANY STATES 71

The sequence of length k whose nth entry is e, is sent to H pplten.

0<n<k
(pn is of course the nth prime@ Thus—for example-the sequence
(1,8,7,3) is sent to 211 . 38+1 . 57+1 . 73+1

The prime powers trick lets us code lists of numbers as numbers. If we do this,
the usual list-processing functions head, tail and cons will be primitive recur-
sive. Although it is simultaneously very important that the register machines
can be effectively enumerated yet deeply unimportant how we do it, there is
one fact about how we do it that we will need, and that is that the map from
numbers to machines should be computable in some sense. We can describe a
machine completely in a specification language of some kind, because a machine
is after all a finite object, and it will have a finite description, and we can have
a standardised uniform way of presenting these descriptions.

The specification language can be written in an alphabet with perhaps 256
characters (alphanumerics and punctuation; ASCII codes are numbers below
256!), so we can assign to each formula in the specification language a Gddel
number which is a number to base 256. Thus if we identify a machine with its
description in the language, it can be thought of as a numeral to base 256. This
numeral will not be a mere name of the machine, but an actual description of
it.

IN is a rectype, and so is the set of machine descriptions in the specification
language. The gnumbering function given is nice in the sense that it is a rectype
homomorphism. (It’s an acceptable enumeration).

If a formula is a list of symbols, we can define a Gddel enumeration of
formulee by list-recursion as shown in the following ML pseudocode.

ASCII of h
256*gnumber (t) + ASCII of h;

gnumber h::[]
| h:: t

DEFINITION 10 Hartley Rogers [£9] says a system of indices 1) is acceptable
if, for every n, there are total computable f and g such that

Ve > Phey N b =Py

Here’s what i think is going on. The obvious way to enumerate functions-in-
intension is by gnumbering the syntax, or the machines. That way, if i give you
a number, you can examine it and see which function it is the gnumber of. If i
do things that way it turns out that, for example, the set {n : {n}(0)} is indeed
semidecidable in the operational sense—i can indeed verify membership in it of
any actual member in finite time. Now suppose I compose that gnumbering with
some extremely nasty incomputable permutation—you can see what happens.

7Observe that this encoding is not surjective: for example the number 14 does not encode
any sequence. I don’t know if this matters.

We don’t yet know what
“computable” means.

72 CHAPTER 4. MACHINES

So an enumeration is going to be acceptable if it respects the structure of the
syntax or of the family of machines (the two constraints will presumably turn
out to be equivalent). If one tries to make this rigorous one will presumably find
oneself exploiting the idea of a function from machines/syntax to IN defined by
recursion on the recursive structure of the counted set of machines/wffs. Finally
one will discover that any two enumerations defined in this way are mutually
conjugate via some computable permutation of IN. And I think that is what
the dfn of Rogers is saying.

From now on we are going to assume we have fixed an enumeration of register
machines in this style, so that the mth machine is the machine with gnumber
m. There is a convention of writing ‘{e}’ for the function computed by the eth
machine/eth program (we do not distinguish between machines and programs),
and also writing

DEFINITION 11

“e}(n)=k” to mean that the eth machine halts with input n and outputs
k;

“le}(n)t” means that the eth machine does not halt with input n. In these
circumstances we say {e}(n) diverges.

“e}.(n)” to mean that the eth machine halts with input n in < z steps.

“e}.(n)l= x” to mean that the eth machine halts with input n in < z
steps and will output x.

I am writing ‘{e}’ for the function computed by the program with gnumber
e (or the machine with modeﬂ number e). But since there is a correspondence
between machines and programs we will sometimes write ‘{p}’ for the function-
in-intension (program) with gnumber p.

The following notation is standard: ‘W.’ for {n € IN : {e}(n)l}. (The ‘W’
comes from the German Wertebereich, meaning range of values.)

One of the delights of the theory of computable functions is that we can
equivocate over our data objects: it is of central importance that an object can
be a number at one time and a computable function at another. Indeed, it can
be both at the same time. This permanent possibility of equivocation makes for
notational quicksand, so some explanation is in order.

When we equivocate on ‘n’ between a number and a function it is always
between a number and a function-in-intension, not between a number and a
function-in-extension. If we write ‘n’ simpliciter then we are thinking of n
as a number. The point of the braces is that when we write ‘{n}’ it is in

8In earlier draughts I had “chassis number” here. That is of course wrong. Two cars of
the same model (which do the same thing) have different chassis number but the same model
number. The chassis number belongs to the token of the machine, whereas the part that
matters to us pertains to the type.

4.4. pu-RECURSIVE = REGISTER MACHINE-COMPUTABLE 73

order to disambiguate the equivocation, and to make it clear that it is the
function that is meant. Further, if we want to make it crystal-clear that it is
the function-in-extension that we mean not the function-in-intension then we
can write ‘Graph({n})’. We do this (for example) in the proof of theorem
In the spirit of this equivocation I should record that I shall sometimes write
‘M’ to denote the machine with gnumber m: thus 9t computes the function

{m}.
DEFINITION 12

n is always a natural number;

{n} is the nth program;

Graph({n}) is the function-in-extension computed by {n};
n is the machine that computes {n}.

4.4 The p-recursive functions are precisely those
computed by register machines

An essential gadget is

DEFINITION 13 (Kleene’s T function)

Input m and i and t, then output a list of t states of the mth machine started
with input i, one for each time t' < t. (The state of a register machine is the
tuple of contents of the registers and the current instruction.)

The output, T(m,i,t), of Kleene’s T-function is commonly called a com-
plete course of computation. It is entirely plausible that 7" is computable
since, as long as (1) the gnumbering is sensible in the sense that the gnumber of
a machine is a description of it, and (2) the machines have standard architecture
then, on being given a gnumber m, one can go away and build the machine de-
scribed by m and then feed it input ¢ and observe it for ¢ steps. This is plausible
because the machines have finite descriptions and are deterministic. Not only
are they deterministic, but the answer to the question, “What state will it go
to next?” can be found by looking merely at the machine and its present state,
without consulting the positions of the planets or anything else that—however
deterministic-is not internal to the machine. It is a lot less obvious that T is
primitive recursive, but—as it so happens—it is. The proof is extremely laborious,
but it relies merely on checking that all the functions involved in encoding and
decoding are primitive recursive: nothing worse than exponentiation is required.
(In fact, because of theorem [5|on p. [38 we can get by without even using expo-
nentiation.) Observe, too, that the only searches we make are bounded searches,
and bounded search is primitive recursive, as we saw earlier. (see theorem |z| p-
)

There is something to think about here. Kleene’s T-function, properly under-
stood, is really a hyperintensional object, something even more intensional than a
function declaration. Really it has a secret extra parameter, which is the enumeration

74 CHAPTER 4. MACHINES

of machines: it’s not a primitive recursive declaration in the same sense in which
mult O n = 0; mult (succ m) n = plus (n (mult (m, n))) is a primitive recur-
sive declaration of mult. The point is that the code for Kleene’s T-function will
not be what the CompScis call self-validating: that is to say that you can’t tell of a
primitive recursive declaration that it is a declaration of T merely by looking at it.
There is a notion of acceptable enumeration lurking in the background.

Mind you, as Ben Millwood says, is this any more than the fact that all low level
languages are (his word) inscrutable?

Another thought...the predicate “o = T(m,i,t)” is primitive recursive. This
will eventually give us an easy proof that the composition of two primitive recursive
relations might not be primitive recursive.

This shows that

THEOREM 10 The function {m} computed by M, the mth machine, is u-
recursive.

In other words, the machine with gnumber m computes the p-recursive func-
tion: ¢ +— the least k such that m started with ¢ halts with output k.

Now for the converse.

THEOREM 11 FEwvery u-recursive function can be computed by a register ma-
chine.

Sketch of proof:

Consider the rectype of functions built up from the initial functions (as
in the declaration of primitive recursive functions) by means of composition,
primitive recursion and p-recursion. This class contains all sorts of functions
that are undefined in nasty ways because it allows us to invert the results of
inversions, and the result of inverting a function might not be total—as we have
seen. Nevertheless, we can prove by induction on this datatype that for every
declared function in it there is a register machine that computes it. That is,
in the sense that whenever these declarations do not fall foul of common sense
by attempting to invert functions that are not total, the machine that we build
does indeed compute the function.

The details of how to glue together register machines for computing f and g
into one that computes fog will be omitted, as will the details of how to compose
register machines to cope with the primitive recursion constructor, and how to
front-end something onto a register machine that computes f(z,y,Z) to get
something that computes px.(f(z,y, 2) = k). |

This completes the proof of the completeness theorem for computable func-

tions.

4.4.1 A Universal Register Machine

Kleene’s T-function is primitive recursive, so there is a machine that computes
it. Any such machine can be tweakedEI into a universal or all-purpose machine:

9By a process the computer scientists call wrapping.

4.5. DECIDABLE AND SEMIDECIDABLE SETS 75

one that can simulate all others.
We need three auxilliary functions on memory-dumps:

current_instruction(d) and register_0(d), which return respec-
tively the current instruction and the contents of register 0;

last returns the last element of a list.

It is mechanical to check they are all primitive recursive. Once we have got
those, we can build a machine that, on being given m and ¢, outputs:
register_0(last(T(m,i, (ut)(current_instruction(last(7T'(m,i,t))) = HALT))))
which is what the mth machine does on being given 3.

This machine is a Universal Register Machine.

4.5 Decidable and Semidecidable Sets

4.5.1 Zigzagging Autoparallelism: Volcanoes

Suppose X is the range of a computable function f and 9 is a machine that
computes f. The idea of autoparallelism is that at stage n we run 9t with input
fst(n) for snd(n) steps. When we do this with a machine the effect is that we
keep trying the machine with all inputs, continually breaking off and revisiting
old inputs—and continually starting computations on new, later inputs—so that
every computation is given infinitely many chances to halt. Of course once a
computation with input k& has halted, we do not revisit it: we emit the answer
and carry on with the zigzag. (Therefore, at stage n, if £st n is an input that
has already halted, we procede at once to stage n + 1.)

5015 ...
pN
4110 16
N N
3|6 11 17
p pN N
213 7 12 18
pN N pN pN
1)1 4 8 13 19
pN N pN N N
00 2 5 9 14 20
1 2 3 4 5 6

The y axis is inputs, the x axis is the number of steps you run. Thus, at
stage 18, you run 9% on input 2 for 4 Stepsm

10The reader might be wondering whether or not the volcano, when (for example) it revisits
the computation of f(2) for 4 steps, is supposed to be able to remember the results of the

76 CHAPTER 4. MACHINES

We need a nice snappy name for engines that do this. I like to call them
volcanoes. The idea is that volcanoes emit things unprompted—they don’t
need input; all you have to do is power them up. Any machine can give rise
to a volcano, since all we need is a computable implementation of pairing-and-
unpairing. It is true that the volcanoes we can get from a machine 9t will differ
in the order in which they emit their emissions, this order depending on our
choice of implementation of pairing-and-unpairing, but this won’t matter. We
can plump for one such implementation and have done with it. Given time, 9t’s
volcano will emit every number that is a value of the function {m} computed
by 9. It is not guaranteed to emit the value for input 4 before it emits the
value for input 3 (even if they both halt). Exercise addresses this question
and might merit a pit stop.

Volcanoes can come in more than one architecture. The crude architecture
causes a volcano to keep revisiting computations that have already finished;
there are more subtle volcano architectures that do not fall into this trap. Yet
another (yet more subtle) style of volcano keeps track of the numbers it has
emitted, and never emits the same number twice: if one of its computations
halts giving a value the volcano has already reported it passes over this event
in tactful silence.

Volcanoes (of whatever architecture) can always be thought of as functions
from time to IN. [might be a good idea to use the letter ‘¢’ for inputs to
volcanoes.]

EXERCISE 44 FEzplain to your flatmate why, if we think of a volcano as a
function IN — IN then that function is p-recursive.

Next explain why the cost function of a computable function-(in-intension)
is computable. “Cost function”? A function-in-intension f is wlog a machine
2 and we define its cost function F' by F(n) = number of steps used by 9t on
input n if M(n)| and 1 o/w. Then show that every total computable function
is (= has the same graph as) a volcano for a computable partial (in fact total)
function. Suppose f is a total computable function IN — IN; and F its cost
function. Consider now the volcano for the function-in-intension f* that, on
being given input n, twiddles its thumbs for), . F'(k) clock ticks, and then
starts computing f(n). The volcano for f* will emit the values of f in the
sequence f(0), f(1), f(2) ... (miniexercise) [each step that the volcano does in
the computation of f*(1) is immediately after it does a step in the computation
of f*(0) and—in computing f*(1)—it twiddles its thumbs until the computation
of f(0) has finished.]

computation of f(2) it did earlier for 3 steps. That would mean that it only ever had to do one
step of computation at each stage, and thereby speed things up a bit. To be able to do that
it would have to have available to it an ever-increasing amount of memory. Ever-increasing,
but always finite. It’s a natural thing to wonder about, but reflection will show that it makes
no difference one way or the other.

4.5. DECIDABLE AND SEMIDECIDABLE SETS 7

4.5.2 Decidable and Semidecidable Sets

One of the intentions behind the invention of computable functions was to cap-
ture the idea of a decidable set. One exploits along the lines of something like
“a set is decidable iff it is the range of a computable function” It turns out
that that does not straightforwardly give us what we want. Suppose we want to
know whether or not n is a member of a putatively decidable set, presented as
f“IN, for some computable function f. If we use f’s volcano then, if n is indeed
a value of f, we will learn this sooner or later; but if it isn’t, this process will
never tell us. However, this does at least give us a verification procedure:
we can detect membership of f“IN in these circumstances even though we are
not promised an exclusion procedure. Thus the natural idea seems to be that of
a semidecidable set: one for which membership can be confirmed in finite time.
Perhaps nowadays one would be more likely to use words like ‘authenticate’ and
‘authentification’.

But is this the only way we can exploit computable functions to get a concept
of semidecidable set? Being the range of a computable function seems a pretty
good explication of the concept of a semidecidable set, but then being the set
of arguments on which a computable function halts—{n : f(n)]}—seems pretty
good too. After all, if f(n)], then we will certainly learn this in finite time.
Fortunately for us, all obvious attempts to capture the concept of semidecidable
set using these ideas give the same result.

REMARK 5 The following conditions on a nonempth set X C IN are equiv-
alent:

(i) X is the range of a p-recursive function;
(1) X is the set of naturals on which a p-recursive function is defined;
(iii) X is the range of a p-recursive function that happens to be total.

Proof:

(i) — (iii). Use volcanoes.

(The converse is obvious since (iii) is a special case of (i).)

Let g be the function that sends an input n to the nth thing emitted by 9t’s
volcano. g is total, and clearly it outputs all and only the members of X. (I am
ignoring the case where X is finite: it is a miniexercise to check for yourselves
that it is in fact safe to ignore it!)

(i) — (i)

Given a machine 9 that outputs members of X, we can build a machine 2V
that, on being given a number n, runs 9’s volcano until it produces the output
n: M then outputs 0, say (it does not matter). M is then a machine that halts
on members of X and on nothing else.

(i) — (i)

Given a machine 9 that halts on members of X, we can build a machine that

1 The empty set is obviously decidable!

develop the parallels with
the graph of a p.r. function
being a p.r. set

78 CHAPTER 4. MACHINES

outputs members of X by simply trapping the output of 9t and outputting the
input instead of the output.]

EXERCISE 45 Show that every computable partial function has a computable
(partial) right inverse.

EXERCISE 46 Show how to modify the volcano in part (iii) of remark @ S0
that the total computable function that enumerates its emissions is one-to-one.
(So it emits each member of X precisely once.)

Incurable optimists might hope that volcanoes might give us a cure to the
problem discussed on page in section [3.3] After all, there is always the
possibility of running ¢ in parallel with itself. Will this help? Although that
will turn up an input y to g s.t. g(y,Z) = n if there is one, there is no reason
to suppose it will turn up the smallest such y.

EXERCISE 47 Cook up an example to show that sometimes it won't.

Indeed, quite which one it turns up will depend on how we have implemented
volcanoes, so even which functions turn out to be computable would depend on
how we implement the algorithm! This is clearly intolerable.

We can now give a formal definition of ‘semidecidable’.

DEFINITION 14
(1) A set satisfying the conditions in remark@ is semi-decidableIE
(2) A set X is decidable if X and IN\ X are both semidecidable.

The original definition of decidable set as a set that is both semidecidable
and the complement of a semidecidable set looks cumbersome and long-winded,
and it might be felt that it would be more natural to define a set X to be
decidable iff there is a total computable function f : IN — {0,1} such that
X = f~1“{1}. However if one starts with that definition it is much harder to
motivate the concept of semidecidable set and the connection between the two
ideas is less clear.

Observe that the graph of a computable function IN* — IN is a semidecidable
subset of IN¥*1 and the graph of a total computable function N - N is a
decidable subset, of INF+1,

Just as “computable function” is better than “recursive function” (because
recursion is not always prominent in the declaration of a computable function)
so “decidable set” is better than “recursive set” (the old terminology), since
“recursive set” would suggest that there also ought to be “primitive recursive
set”—you are one if you are the range of a primitive recursive function. But in
fact

12The old terminology is ‘recursively enumerable’, which is gradually giving way (particu-
larly across the pond) to ‘computably enumerable’ abbreviated to “c.e.”. That notation arises
because any set of natural numbers can be enumerated (and enumerable or denumerable are
old words for ‘countable’), but not necessarily by a computable function. If the set is enumer-
ated by a recursive (or computable) function, it is recursively (or computably) enumerable.
Bear in mind too that in some of the literature ‘semidecidable’ is used to mean ‘semidecidable
and not decidable’.

4.5. DECIDABLE AND SEMIDECIDABLE SETS 79

EXERCISE 48 (%)

(1) Every nonempty semidecidable set is the range of a primitive recursive
function. (Hint: Modify volcanoes by using Kleene’s T-function.)

(2) Show that condition (i) of remark@ is equivalent to “X is f“Y for some
computable f and semidecidable Y C IN”.

EXERCISE 49 (*)

Give a primitive recursive relation ¢ for which the following fails:
There is cg $.t., for all T,

(Fy)(0(y, 7)) «— By < Aley, maz(1)))(6(y, T))-

OPEN QUESTION 1]

Suppose f: IN — IN total computable with no odd cycles. Then there is d : IN —
{0,1} with (Yn € N)(d(f(n)) =1 —d(n)). Such a d is a discriminator for f. If
f is computable must it have a computable discriminator?

EXERCISE 50 (%)
Check that, for all A,B C IN, the set {2n : n € A}U{2n+ 1 : n € B} is
semidecidable iff both A and B are semidecidable.

DEFINITION 15 A infinite subset of IN set is immune if it has no infinite
semidecidable subset.

‘Immune’ is a computable analogue of ‘infinite Dedekind-finite’.

EXERCISE 51 (Part IIT 2012 Paper 24 q 8—slightly modified)(*)
Prove that there is a semidecidable set X C IN with IN \ X infinite such

that X meets every infinite semidecidable set. What is the asymptotic density
of your X ?

See also exercise [T5 in section [4.91

Note the parallel between the idea of a regular language, which is the set of
strings accepted by a finite-state machine, and the idea of a semidecidable set,
which is the set of natural numbers on which a Turing machine will halt.

If X is semidecidable, it is f“IN for some total computable f, so whenever
n € X there is k € IN and a finite computation verifying that f(k) = n, so that
n € X. This finite computation should be thought of as a proof or certificate
in the sense of the discussion on page so a semidecidable set of naturals
can be thought of as a subset of IN that happens to be a rectype in its own

13This question was put to me years ago by my Ph.D. supervisor, Maurice Boffa. I don’t
know if it is still open.

80 CHAPTER 4. MACHINES

right. Indeed, we can take this further: by means of gnumbering, every finitely
presented rectype can be thought of as a semidecidable set.

The following observation comes under the heading of soothing triviality.
Not difficult but it makes you feel better. Actually we will need it later, in the
proof of remark

REMARK 6 Let X be a subset of N1, Then X is the projection of a decid-
able subset of IN* iff it is semidecidable.

Proof:
left-to-right

Suppose X is {# : (3n)(Z::n € Y)} where Y is a decidable subset of IN*,
Then to check, for any candidate (k — 1)-tuple &, whether or not it is in X it
suffices to find an n such that the k-tuple Z::n is in Y. For each k-tuple & the
question “Z:n € Y77 can be answered mechanically in finite time, so if there is
such an n we will find it in finite time by trying n := 0, n := 1 and so on. (No
need for volcanoes.) But this is just to say that X is semidecidable.

right-to-left

Suppose X is semidecidable, so that X = dom({m}) for some computable
function {m}. Then

reXx iff
{m}(@)\ iff
(Fy)({m}y(@N) iff
(F)((Z,y) € {(Z,y) - {m}y(2)})

Observe that {(Z,y) : {m},(Z)} is clearly decidable, and that X is a projection
of it[™]

Observe that

e The left-to-right implication, above, is best possible. The projection of a
decidable set is not always decidable: {(n,m, k) : {n}r(m)}} is a decidable
set, but the halting set—{(n,m) : (3k)({n}r(m))}—is a projection of it.
We will see below (theorem that the halting set is not decidable.

e The projection of a semidecidable subset of IN* is likewise a semidecidable
subset of INF~1, (This is because we can use pair to squash like quanti-
fiers). This means that if X is the projection of a semidecidable set then
it is the projection of a decidable set. Remark 8] below, of Craig is related
to this.

4 Thanks to Philipp Kleppmann for this improvement on my original.

4.5. DECIDABLE AND SEMIDECIDABLE SETS 81

So it’s definitely all right to think of semidecidable sets as projections of
decidable sets.

From now on we say “computable” instead of “uy-recursive”. You may also
hear people saying “general recursive” or “partial recursive”, which mean the
same thing. Confusingly, you will also hear people talk about functions being
partial recursive in contrast to being total recursive. (We would say ‘total
computable’). A set is decidable if its characteristic functiorﬁ is total
computable.

DEFINITION 16 The characteristic function x4 of A CIN is
Ax. if x € A then 1 else 0.

(The Greek letter “x’ is the first letter of the Greek word for ‘character’.)

4.5.3 A Nice Illustration and a Digression

There is a natural example of an immune set, and it arises in a context of some
independent interest.

It is natural to feel that the string 0™ (of n zeroes) is simple, in the sense
that one can capture it by a description that has fewer than n characters.

What one wants to say is that a string o is simple if there is a short string 7
and a program f which outputs ¢ on being given 7. Well, of course there is: we
can simply hardcode ¢ into f. We need to work a little harder. What we want
is a universal Turing machine U, which—for any computable f—will compute
f(7), by the following contrivance. U will associate—to each such f—a string
py such that, for any 7, f(7) is obtained as U(ps::7). (I think the idea is that
we compute p; from f before we fire up U). It is true that f can cheat, but he
has to tell U how he did it, and that takes up bits.

We now say that C(o) is || where p is the shortest inpuﬂ on which
U gives out 0. Wesay o € {0,1}<% is incompressible if C(a) > |o|/2.

REMARK 7 {0 €{0,1}<%:C(0) > |o|/2} is immune

Proof:

[First we have to show that it’s infinite! I assumed this was so obvious that
i forgot to establish it!!]

Suppose this set had an infinite semidecidable subset, B, say. B is infinite
and so must contain strings of arbitrary length. Since it is semidecidable there
is a total function f whose range it is. Let h, be the first string of length
> n that f puts into B. Then, by assumption, C(hy,) > |h,|/2 > n/2. But
manifestly the string h,, can be computed from n—by computing f. So this
gives us C(h,) < C(n)+ the (constant) length |cs| of the string c; that U uses

151n other traditions they are sometimes called indicator functions.
16part of u is of course the string py for the function f that U is calculating.

sy

82 CHAPTER 4. MACHINES

to compute fm C(n) = logz(n) of course. This gives n/2 < loga(n) + |cy|, and
for n sufficiently large this is impossible; now B is infinite so we can take n as
large as we like and obtain our contradiction. [|

4.5.4 “In finite time”—a warning

“In finite time” is a nice snappy expression, and it encapsulates a useful in-
tuition. However one has to use it with care, since it can mislead. There are
circumstances in which one is trying to construct a set X of natural numbers,
by a process of length w. At each stage one puts some stuff in and takes some
other stuff out. So far so general. Suppose further that it is true of each n € IN
that it only gets added or removed finitely often, so that it is determined “in
finite time” whether or not n will be in X at close of play. This sounds as if X
ought to be semidecidable or even decidable, but of course nothing of the sort
can be guaranteed merely by the conditions outlined, since one might be unable
to compute, for a number n, the stage f(n) such that the final status of ‘n € X’
has been determined by stage f(n). Of course, if there is such a computable f
then X is decidable, but the “in finite time” thought does not guarantee that
there should be.

I got into a tangle over this “in finite time” stuff, Dear Reader, and you
might do too.

Consider the following example [which I only sketch here, co’s it’s best done
at a board, and I will in fact do it at the board]. Suppose R and S are two
decidable subsets of IN? which are wellorderings of IN of order type w. They are
isomorphic, of course. Is the isomorphism a semidecidable set of ordered pairs?

Put (IN, R) on the left of the board and (IN,.S) on the right. Clearly we can
discover the isomorphism by the following deterministic process, of progressive
refinements of finite approximations.

We start off by pairing 0 on the left with 0 on the right. Thereafter, at stage
n we have paired off {0,1...n — 1} on the left somehow with {0,1...n—1} on
the right. After all, the ordering {0,1...n — 1} equipped with R is isomorphic
to {0,1...n — 1} equipped with S! Then we add the extra element n to both
sides. We know where n stands in relation to the numbers 0...n — 1 in the
R ordering because by assumption R was a decidable set of pairs. S similarly.
Sticking n into both sides might involve some rearranging! We aren’t going to
reorder the things on the left (or on the right) but we might insert n in the
middle, and therefore be compelled to redirect some arrows. How long can this
faffing about go on, for heavan’s sake? Well, if 0 is the 23rd element according
to R and the 17th element according to S then we will have finally paired off
0 on the left with its destined partner on the right and 0 on the right with its
destined partner on the left by...by when? By the time we have seen all the
numbers that R-precede 23 and all the numbers that S-precede 17. There are
only finitely many such numbers, so there does come a point after which 0 lives

17As Ben Millwood says, the overhead is not literally cys, but it’s at least a constant.

4.6. DECIDABLE AND SEMIDECIDABLE SETS OF OTHER THINGS 83

happily ever after. The trouble is, we have no idea when that is, so this analysis
does not give a proof that the bijection is decidable.

[It might be worth giving an example of such R and S to show that the
bijection need not be decidable. I'm guessing there is such a pair, i don’t know!
For the moment, the point is that this example presses the ‘in finite time’ button
but not in a way that guarantees computability of the result.]

Another realistic case in point is the task of mentally reconstructing the
proof of Friedberg-Muchnik, (this is theorem still to come) once you have
forgotten the details ...and, believe me, you will forget the details.

The following exercise might help/amuse you.

EXERCISE 52 (%)
A question from James Cranch, a real live Part IIT student in 2012/3. 1
can’t remember what he needed it for. (Nor, it seems, can he)

Suppose g : NxIN — IN is total computable, and (Vx)(3y)(Vz > y)(g(z, z) =
9(z,y)).

Then we can define f : IN — IN by f(n) = the eventually constant value of
g(n,z) as z = .

There is of course no reason to suppose that f is going to be computable.
What can we say about the graph of {2 (Vu,v)({u,v) € f +— (Fy)(Vz > y)(v =
g(u, 2))). In other words, the graph of f is an IV set.

Cranch’s question is: if we are given a total function f : IN — IN and told
that its graph is an 3V set, can we find g : IN x IN — IN, total computable, such
that (Vx)(Jy)(Vz > y)(g9(z,2) = g(x,y)), and f : IN — N is defined by f(n) =

the eventually constant value of g(n,z) as z — 00 ?

4.6 Decidable and semidecidable sets of other
things

You will sometimes hear people talk about recursive or r.e. (or, as we say here,
decidable and semidecidable) sets of—for example—computable functions, or
formulee. What they mean, of course, is a (semi-)decidable set of indices or
gnumbers (of functions, or formulee). You will even hear people say things like
“A union of an r.e. set of r.e. sets is r.e.” [sic]. This is true, and so are some
other things with the same kind of sound-bite.

EXERCISE 53

(i) A union of a semidecidable set of semidecidable sets is semidecidable;
(i) A union of a semidecidable set of decidable sets is decidable;

(iii) A union of a semidecidable set of semidecidable sets is decidable;

(iv) A union of a decidable set of decidable sets is decidable.

rewrite this section...S-m-n
theorem

84 CHAPTER 4. MACHINES

In each case provide a proof or a counterexample.

In set theory we have the notion of a setlike function. If f“z is always
a set whenever x is we say is l-setlike. Only “17-setlike? If, additionally,
{f“y : y € z} is a set whenever z is a seﬂ we say f is 2-setlike. Similarly
3-setlike. A function that is n-setlike for every n is just plain setlike. In ZF we
have the axiom scheme of replacement, and it tells us that every function-class
is setlike, so one’s attention is liable not to be drawn to this useful concept if
one studies too much ZF.

There is a notion of “setlike” applicable also to theories that are not explicitly
theories of sets. We can interpret a certain amount of second-order (and third-
order and so on) arithmetic in the first-order theory of computable functions by
encoding a semidecidable set of natural numbers as the gnumber of a function
whose range it is. Thus in this context an externally visible set of things is a
set from the point of view of computable function theory as long as its members
are coded somehow as naturals, and the set itself is the range of a computable
function defined on those naturals. Then we can repeat the trick, to represent
(some!) sets of sets of naturals, and so on up.

In this setting it is natural to ask which functions IN* — IN are setlike.
Of course all computable functions are setlike. For example the nice primitive
recursive pairing-and-unpairing gadget for natural numbers is setlike in the sense
that if X and Y are (semi-)decidable subsets of IN, then so too are X XY, fst“X

Because of the natural bijection between (A x B) — C and A — (B — C)
one can think of a natural-number—valued function of two (natural number)
variables either as a function IN* — IN or as a function IN — (IN — IN). We
have a notion of primitive recursive function IN> — IN or as a function and
a notion of a primitive recursive function IN — (IN — IN). One would hope
that these are in some sense the same. What the primitive recursiveness of
pairing/unpairing shows is that changing the way you think of a particular
function of two natural-number variables from one of these ways to the other
won’t alter its primrec/non-primrec status.

4.6.1 Applications to Logic

We are now in a position to give a definition of axiomatisable theory. An axioma-
tisable theory is one with a set of axioms whose gnumbers form a semidecidable
set. (It is assumed that the theory only has finitely many rules of inference.
Without that condition, every theory in a countable language would be axioma-
tisable: take an empty set of axioms, and for each theorem have a nullary rule
of inference whose conclusion is that theorem.) Take a moment to reflect on the
significance of this notation: “axiomatisable” for “recursively axiomatisable”.
If the set of axioms is not at least semidecidable then it fails of its purpose as
an axiomatisation.

18PTJ would have me write this as ‘f“z’!

4.6. DECIDABLE AND SEMIDECIDABLE SETS OF OTHER THINGS 85

Have a look at all the theories you have met so far. Those with finitely
many axioms are recursively axiomatisable; if you check you will see that all
those with infinitely many axioms are recursively axiomatisable, too. Indeed
most (but not all) of them have the stronger property that their axioms form a
regular language. We will return to this in section [6.1]

There are theories whose obvious axiomatisation is semidecidable without
being decidable, but all the cases known to me are of the one same flavour. Here
is one.

RC Ay is a second-order theory of arithmetic. Two-sorted. It has AY com-
prehension (which says that {n € IN : ¢} exists as long as ¢ has no bound set
variables) Y induction (which is the axiom scheme of mathematical induction
for predicates that...errm ... Parameters are allowed.

A formula is AY if it is equivalent to both a XY formula and a I1Y formula.
So we want our axiom scheme of A{ comprehension to be

If

E (Vz)(0(z) «— (Fy)(¢(z,y))) and
= (Vz)(0(z) «— (Vy) (¢ (2, y))) then
(Fy)(Va)(z € y «— 0(x))

is an axiom.

This axiomatisation is clearly semidecidable and pretty clearly not decidable.

EXERCISE 54 (%)
Find a decidable axiomatisation of RC'Ag.

It turns out that the functions whose totality this theory can prove are
precisely the primitive recursive functions.

REMARK 8 (Craig)
If T has a semidecidable set of axioms, then a decidable set of axioms can
be found for it (in the same language).

Proof: Let 9t be a volcano that emits axioms of 7', and notate the nth axiom
emitted by 9 as ¢,,. Then we obtain a decidable axiomatisation for 1" as

{C \ ¢i) = ¢n:necN}

0<i<n
|

Thank you, M Reynaud!

Miniexercise: Is this axiomatisation independent? [See exercise 9 on sheet 2
of PTJ’s set theory and Logic course in 2011-12]

If a theory has a semidecidable set of axioms then in some sense it has
finite character, and remark [8] captures part of this sense by telling us it will
have a decidable set of axioms. In both these descriptions the finite character
is expressed in a metalanguage. The following remark tells us that this finite
character can be expressed in a language for 7'

get the defintion straight

update this reference

They don’t know what a conservative ex-

tension is, so you’'ll have to tell them.

Might it be casier to prove Kleene’s the-
orem for automatic theories than for ar-
bitrary recursively axiomatisable theo-

ries...?

86 CHAPTER 4. MACHINES

REMARK 9 (Kleene, [38])

If T is a recursively axiomatisable theory in a language L with only infinite
models, then there is a language L' O L and a theory T' in L' and T' is finitely
axiomatisable and is a conservative extension of T.

Proof: Omitted. L

(We can uniformly expand any L-structure that is a model of T into a L'-
structure that is a model of T".)

(The idea in the proof is to formalize the inductive clauses of the truth
definition for 7. The basic references are [38] and [14]. There is a very clear
review of both papers by Makkai [41] that also provides a sketch of the proof.)
You will have seen some examples of this phenomenon in Part II Logic and
Set Theory last year. Bipartite graphs, algebraically closed fields... Another
illustration of this process is afforded by the way in which the (pure) set theory
ZF (which cannot be finitely axiomatised) corresponds to the class theory NBG,
which can be finitely axiomatised. Why would one expect this to be true in
general? A theory that is recursively axiomatisable is underpinned by a finite
engine that generates all the axioms. It ought to be possible to hard-code this
engine into the syntax, if necessary by enlarging the language. I have the feeling
that it should be possible to do this without invoking truth-definitions.

EXERCISE 55 Since propositional logic is decidable, the set of falsifiable propo-
sitional formule over an alphabet is semidecidable, so it is a rectype. Give a
presentationm

EXERCISE 56

Suppose f: IN — IN is computable.
Show that there a computable partial function g s.t (Vn € IN)(f(n)l—

fomy(n)).

Suppose further that {n : f(n)l} is semidecidable but not decidable.
Show that there is no computable total function g such that (VYn € IN)(f(n)l—

4.7 The Undecidablity of the Halting Problem

The set of register machine programs is countable because of the prime powers
trick. The set of all subsets of IN is not, because of Cantor’s theorem. There
simply are not enough register machine programs to go round: inevitably some
subsets of IN are going to be undecidable. In fact, almost all of them are, in the

197 am omitting the proof since i cannot find a proof that doesn’t use truth-definitions, and
i haven’t got time or space to go into them.

20T have to confess that i have no model answer to this! I thought I had a reference in
the literature but that was to a paper which shows that the set of negations of tautologies is
axiomatisable. But that’s obvious!

4.7. THE UNDECIDABLITY OF THE HALTING PROBLEM 87

sense that there is the same number of subsets of IN as there are undecidable
subsets. This argument is nonconstructive and does not actually exhibit a subset
of IN that is not decidable, but we can do that too.

Suppose we had a machine 9t that, on being given a natural number n,
decoded it (using the primitive recursive unpairing functions alluded to on page
into fst n and snd n (ny and ng for short), and then,= 0 if the n;th machine
halts when given input no and|= 1 otherwise.

We can tweak this machine (by using something to trap the output) to get
a machine MM ¥ with the following behaviour: on being given n, it decodes it
into n; and ny (fst and snd of n) and then|= 1 if the nith machine diverges
on input ny (just as before) but diverges if the nith machine halts when given
input ns.

Front-end onto this machine a machine that accepts an input x and outputs
pair(x,x). We now have a machine M=% with the following behaviour.

On being given n, it tests to see whether or not the nth machine
halts with input n. If it does, it goes into an infinite loop (diverges);
if not, it halts with output 1.

This machine is the ngth, say. What happens if we give it ng as input? Does
it halt? Well, it halts iff the noth machine loops when given input ng. But it is
the ngth machine itself!

Formally we can write {ng}(ng)| iff (by definition of {ng}) {no}(no). Notice
the similarity with the proof of Cantor’s theorem (and, later, the incompleteness
theorem, theorem

What assumption can we discard to escape from this contradiction? Clearly
we cannot discard the two steps that involve just trapping output and front-
ending something innocent onto the hypothesised initial machine. The culprit
can only be that hypothesised machine itself!

So we have proved
THEOREM 12 The set of numbers {pair(p,d) : {p}(d)}} Z@ not decidable.

Though it is obviously semidecidable!]

Observe how absolutely critical it is in this proof that we can equivocate
over the nature of natural numbers. A natural number can be an input to a
program and it can be a code for a program...and it can be both at the same
time. If you want to type your language so that every number variable ranges
only over inputs to programs or only over codes for programs then you can’t
run this proof.

There is an aspect of this that often bothers beginners. We assumed that 9t
solved the Halting problem and we then exhibited—on that assumption—one
(only one!) instance of the halting problem that 9t couldn’t solve. One might
think that all one had to do was modify 9t so that the first thing it did was check

217 trust the overloading of the curly brackets does not wrong-foot the reader ... (!)

wrapping again

Sy

Sra)

88 CHAPTER 4. MACHINES

for that one case. That doesn’t work—because that modification changes 9t’s
gnumber: the target is not stationary! In fact any 97 that aspires to solve the
halting problem must give infinitely many wrong answers. Any finite amount of
tweaking can be hard-coded so if per impossibile we got our hands on a machine
that made only finitely many mistakes we could (by wrapping) obtain one that
made no mistakes at all. And that, as we have just shown, we can not have.

We saw earlier that many non-total functions can be encoded by primitive
recursive functions, leaving open the possibility that all computable functions
(even those that are not total) are in some sense primitive recursive. We saw
that not every total computable function is primitive recursive. But might
it still be the case that every computable partial function can be analogously
encoded by a total computable function? No. The partial “evaluation” function
(x,y) = {z}(y) cannot be encoded by any total computable function. If it were
so encoded we would be able to solve the halting problem. The “evaluation”
function is irreducibly and inescapably non-total.

It might be an idea to say a bit more about this fact ...

4.7.1 Rice’s Theorem

Theorems and are manifestations of a general phenomenon, and in this
section we examine that phenomenon. Its canonical expression is Rice’s theo-
rem. (Though theorem is not exactly a special case of Rice’s theorem but
something a little bit more.) We prove a number of results en route to Rice’s
theorem.

THEOREM 13 (The “S-m-n theorem”)
There is a computable total function S of two variables such that, for all e,
b and a,

{e}(b,a) = {S(e, 0)}(a),

and so on for higher degrees (more parameters).

(That is to say: currying, thought of as a function from gnumbers of func-
tions to gnumber of functions, is computable.)

This is a corollary of the equality between u-recursiveness and computability
by register machines: one can easily tweak a machine for computing Aab.{e}(a,)
into a machine that, on being given a, outputs a description of a machine to
compute \b.{e}(a,b).

It’s called the “S-m-n theorem” because in the general case the b could be
an m-tuple and the a could be an m-tuple; the ‘S’ comes from the function in
the statement. It probably has an official name but I have never known i@

In turn we get a corollary:

COROLLARY 2 (The fized point theorem).

22Wikipaedia sez it’s called the parametrisation theorem and was proved by Kleene.

4.7. THE UNDECIDABLITY OF THE HALTING PROBLEM 89

Let h : IN — IN be a total computable function. Then there is n such that
{n} = {(n(m)}]

Proof: Consider the map

pair(e,) = {h(S(e, e))}(2).

This is computable and is therefore computed by the ath machine, for some
a. Set n = S(a,a). Then

{n}(@) =" {S(a,a)}(z) =* {a}(a,2) =* {A(S(a,a))}(z) =* {h(n)}(z)

(1) holds because n = S(a, a);
(2) holds by definition of S;

(3) holds by definition of a and
(4) holds by definition of n.

On Sun, 29 Apr 2012, Zhen Lin Low wrote:

Dear Dr Forster,
If I’'m not mistaken, the proof of corollary[2]is almost exactly the recursion-theoretic
translation of the Y combinator. To be precise, it corresponds to the combinator

Y’ = M [Azy.h(zz)y][Aoy-h(zz)y]]
which n-reduces to the usual Y combinator.
Best wishes,
Zhen Lin

There is a powerful corollary of this that is a sort of omnibus undecidability
theorem.

THEOREM 14 (Rice’s theorem)
Let A be a nonempty proper subset of the set of graphs of all computable func- RN

tions of one variable. That is to say: A is a set of functions-in-extension. Then

{n :Graph({n}) € A} is not decidable.

Proof: Suppose , the characteristic function of {n :Graph({n}) € A} is com-
putable; we will deduce a contradiction.

Find naturals a and b so that Graph({a}) € A and Graph({b}) ¢ A. If x is
computable the following function will also be computable:

g(n):= if Graph({n}) € A then b else a

(“wrong way round”!). By corollary [2 there must now be a number n such that
{n} = {g(n)}. We also need to minute the fact that g swaps a and b.

Is Graph({n}) in A? Let’s assume it is, and derive a contradiction.

23In case you are wondering, we of course mean the graphs of these two functions are equal

90 CHAPTER 4. MACHINES

Graph({n}) € A 1)

Graph({g(n)}) € A 2) because {n} = {g(n)}

gln) =10 3) from (1) and definition of g
glg(n)) =10 4) from (2) and definition of g¢
gb)=1»b 5) from (4), substituting

b for g(n) (by (3)).

...contradicting the fact that g swaps a and b.

But Graph({n}) ¢ A also leads to contradiction:

Graph({n}) ¢ A 6)
Graph({g(n)}) ¢ A 7) because {n} = {g(n)}
g(n)=a 8) from (6) and definition of g
glgn)) =a 9) from (7) and definition of g
gla) =a 10) from (9), substituting
a for g(n) (by (8)).
...again contradicting the fact that g swaps a and b. [|

(We can probably leave out ‘Graph’ beco’s ‘{n} = {m}’ means that the two
functions-in-intension have the same graph, but i think it helps to leave it in.
Rams the point home.)

This theorem is very deep and very important, but the moral it brings is very
easy to grasp. It tells us that we can never find algorithms to answer questions
about the behaviour of programs (“Does it halt on this input?”; “Does it always
emit even numbers when it does halt?”) on the basis of information purely about
the syntax of programs (“Every variable occurs an even number of times”). In
general, if you want to know anything about the behaviour of a program, you
may be lucky and succeed in the short term and in a small number of cases, but
in the long run you cannot do better than by just running it.

In particular it has the consequence that it is not decidable whether or
not two programs compute the same function(-in-extension). This makes it
particularly important to bear in mind that the theory of computable functions
is in the first instance a study of function declarations (functions-in-intension)
rather than function graphs.

One can also express this insight by saying: syntax is intensional, behaviour
is extensional. And extensions are undecidable. (which sounds the wrong way
round ...)

EXERCISE 57 Suppose that f is a p-recursive function of two variables.

(i) Show that there is a p-recursive function g of one variable such that for
each m, if (3n)(f(m,n) =0), then f(m,g(m)) =0.

(ii) Show that it is not always possible to choose g so that g(m) is the least
n with f(m,n) = 0.

4.8. RECURSIVE INSEPARABILITY 91

4.8 Recursive Inseparability

Two disjoint sets X and Y are said to be recursively inseparable if there is no
decidable set Z with X C Z and ZNY = . (The idea of separable/inseparable
comes from descriptive set theory).

REMARK 10 The two sets

A={e:{e}(e)l> 0} and
B = {e: {e}(e)l= 0}

are recursively inseparable. That is to say, if f is a total function with
f“A={0} and f“B = {1}, then f is not computable.

Proof:
Consider any n € IN; we will show that {n} is not an f as in the statement
of the remark.

If {n}(n)t then clearly {n} # f, because f is total

If {n}(n)l= 0 then n € B so we must have f(n) = 1. But {n}(n) =0
so clearly {n} # f.

If {n}(n),> 0 then n € A so we must have f(n) = 0. But {n}(n) >0
so, again, {n} # f.

And here is another result with wider ramifications.

DEFINITION 17 If ~ is an equivalence relation on a set A we say f is a
classifier for ~ iff (Vz,y € A)(f(z) = f(y) +— x ~y).

EXERCISE 58 Show that if ~ is a decidable equivalence relation on IN, then
there is a computable classifier for it.

You might have expected that further if ~ is a decidable equivalence relation
on a subset of IN (so that there is a computable two-valued function g defined
on pairs from that subset such that if x and y are both in that subset then
g(x,y) = 0iff & ~ y) then there is a computable partial function f that classifies
~. Remarkably this is not true.

THEOREM 15 There is a decidable equivalence relation on a subset of IN that
has no computable classifier.

Proof:

sy

Consider the relation R that is the reflexive symmetric closure of {(3n,3n + 1) :

n € N}U{(3n,3n+2) : n € IN}. Its graph looks like lots of isolated paths of
length 2. It’s not transitive, but whenever A is a subset of IN s.t |[AN{3n,3n +

92 CHAPTER 4. MACHINES

1,3n + 2}| < 3 for all n, then the restriction R[A is transitive, and is therefore
an equivalence relation. We will cook up such an infinite set A.

For each n € IN, A, will be a one-or-two-membered subset of {3n,3n +
1,3n +2}. A will be the union of the A,,, which we define as follows.

If the function {n} on any of {3n,3n + 1,3n + 2} set A4, to be the
singleton of the smallest such. Otherwise. ..

If {n}(3n) # {n}(Bn+1) set 4,, := {3n,3n + 1};
If {n}(3n) ={n}(Bn+1) # {n}(3n+ 2) set A, := {3n,3n + 2};
If {n}(3n) ={n}Bn+1) ={n}(Bn+2) set 4, := {3n+1,3n+ 2}.

Evidently the restriction of R to A is an equivalence relation, and it’s easy
to see that this equivalence relation is decidable. However the construction of
the A, is a diagonal construction that ensures, for each n, that the function {n}
does not classify R.

Observe that A is not (apparently) semidecidable. What about IN \ A?

See [66], section 3.2.32. (pages 153-154).

Contrast this with the 2013 tripos question exercise [60] which follows.

4.9 Exercises

EXERCISE 59
The relational product (see p. of two primitive recursive relations might not
be a primitive recursive relation.

EXERCISE 60 (Part IIT Paper 20 2013)(*)

A transversal for a family X of pairwise disjoint subsets of a set X is a
subset X' of X s.t. | X' Nz|=1 foralxeX.

Let ~ be an equivalence relation on IN, of infinite index, whose complement
is semidecidable (considered as a subset of INx IN). Show that there is a semide-
cidable transversal on the set of ~-equivalence classes.

EXERCISE 61 (*)

Suppose f : IN* — IN is total computable and increasing: f(Z) > max(Z).
Show that there is a decidable A C IN satisfying f“A¥ = 1IN\ A.

EXERCISE 62 (%)

Show that for any corruptible operating system there can be no program
IS-SAFE that, when given program p and data d, says “yes” if p applied to
d does not corrupt the operating system and “no” otherwise.

EXERCISE 63 (Mathematics Tripos ITA 1997 Paper 3 Question 8)(*)

Does there exist a computable function f such that, for all m and n, if the
mth register machine program halts with input n, then it does so in at most
f(m,n) steps? Does the answer change if f is required to be total?

4.9. EXERCISES 93

EXERCISE 64

This is an old example sheet question from Professor Johnstone. I know
nothing about it: use at your own risk. You may like to read the Wikipedia
article on this subject.

The “programming language” FRACTRAN, invented by J. H. Conway, has
“programs” which are finite lists (q1,4q2,...,qK) of positive rational numbers.
Such a program accepts as input a positive integer n: a single step of the pro-
gram replaces n by q; - n for the least i such that q; - n is an integer, if this is
possible; if no q; - n is an integer, the program terminates. [Thus, for example,
the program (%, %,2) means ‘replace n by 2n/3 if it’s a multiple of 3, by 3n/4
if it’s a multiple of 4 but not of 3, and by 2n otherwise’; note that in this case,
since the last number in the list is an integer, the program will run for ever.]

Show that, for any (unary) recursive function f, there is a FRACTRAN program
which, given an input of the form 2™, will reach 27 (if f(n) is defined) before
it reaches any other power of 2, and will never reach a power of 2 if f(n) is
undefined.

[Hint: show that the action of a register machine program can be simulated by a
FRACTRAN program; you will need to use powers of distinct primes to represent not
only the contents of the registers, but also the numbers of the states in the register
machine program.]

Describe the behaviour of the FRACTRAN program

5 5677817297727 637 9 6 3

[Ezplicitly, if the register machine program uses r registers and has s + 1 states
including the terminal state, represent the situation when it is in state j and
has n; in R; for each i <1 by the number pi*p5? - - - pr"pr4;, where p; is the tth
prime number. The instruction (i,+, k) corresponds to the fraction p;pr+i/Prtj,
and (i, —, k1) to the pair of fractions prik/PiPr+j, Pr+1/Pr+; (in that order),
with slight modifications to cope with initial and terminal states. The given
example uses a different coding, in which powers of the two primes 3 and 5 are
used to represent the state numbers; it computes the function n — 2".]

EXERCISE 65 (*) For which of the following functions-in-intension are there
computable functions-in-intension with the same extension?

1. Mx. if there is somewhere in the decimal expansion of w a string of exactly
x 7’s, then 0, else 1;

2. Ax. if there is somewhere in the decimal expansion of m a string of at least
x 7’s, then 0, else 1;

8. Ak. the least n such that all but finitely many natural numbers are the sum
of at most n kth powers.

94 CHAPTER 4. MACHINES

EXERCISE 66
Show that the graph of a total computable function f : IN" — IN is a decidable
subset of IN" 1. Is the graph of a partial computable function decidable?

EXERCISE 67

1. Let 1 be the partial computable function defined by (x) = py.{z},(z)].
Show that for any total computable function f there is an n with f(n) <
(n). Deduce that 1) cannot be extended to a total computable function.
You may assume that a coding of tuples is in use according to which any
number coding a tuple is bigger than all of the numbers in the tuple that
it codes.

2. Show directly in the manner of the proof of the undecidability of the Halting
Problem that the following sets are not decidable:
(i) {e: {e} “IN[= No};
(ii) {e: {e} “IN strictly contains Dom({e})}.

EXERCISE 68 (%)

A box of tiles is a set of rectangular tiles, all of the same size. The tiles
have an orientation (top and bottom, left and right) and the edges have colours.
The idea is to use the tiles in the box to tile the plane, subject to rules about
which colours can be placed adjacent to which, and each box comes with such a
set of rules. (Naturally every set of rules includes all the obvious things, like,
a bottom edge can only go next to a top edge, and so on.) So of course the box
has infinitely many tiles in it. Nevertheless, the tiles in each box come in only
finitely many varieties. (It is a bit like a scrabble set: only 27 letters but many
tokens of each.)

With some boxes one can tile the plane; with some one cannot. Sketch how
to gnumber boxes and explain why the set of gnumbers of boxes that cannot tile
the plane is a semidecidable set.

Hint: you will need Kénig’s Infinity Lemma.

EXERCISE 69
Let f : IN — IN be a strictly order-preserving total computable function. Con-
struct a semidecidable subset A of IN such that

(i) for all e, if the domain Dom({e}) of the eth partial computable function
is infinite, then Dom({e}) N A # () and

(ii) there are at most e elements less than f(e).

Deduce that there is a semidecidable set B such that IN \ B is infinite and
contains no infinite semidecidable subset.

EXERCISE 70
Is it possible to decide, given that {e} is total, whether or not

L. (vn)({e}(n) = 0)?

4.9. EXERCISES 95

2. (An)({e}(n) <{e}(n+1))?
3. (An)({e}(n) = {e}(n+1))?

EXERCISE 71 (“A couple of weird applications of the fixed point or second
recursion thorem” says Prof Hyland, the author of this question.)

Show that there is an e € IN such that Dom({e}) = {z : x > e}.
Show that there is an e € IN such that Dom({e}) = {z : {z}(e)l} PT] Any natural
substitution function S will have S(e,n) > e and S(e,n) > n for all e and n.
Deduce that, for any (partial) computable f, there are infinitely many e with

{e} =7
EXERCISE 72 Show that the following sets are not decidable.
(i) {e : {e} everywhere undefined }. (i) {e : {e}is total}.
(111) {e : Vi<e. ({e}(i))}. (iv) {e:Vi.({e}(i)l— i <e)}.
Which of the above sets R and their complements IN\ R are semidecidable?
EXERCISE 73

Show that there is an e € IN such that dom({e}) = {z : z > e}.
Show that there is an e € IN such that dom({e}) = {z : {z}(e)l}.

In each case can one decide whether or not an index e is of the given kind?

EXERCISE 74 Suppose that f,g : IN> — IN are total computable. Show that
there exist i, j with {i} = {f(i,7)} and {j} = {g(i,4)}. [Hint: Show first that
there is a total computable h with {h(i)} = {g(i,h(:))}.] (Hard)

EXERCISE 75 (%)

1. Show that the range of an increasing total function f : IN — IN is a
decidable set, and

2. conversely, that every decidable subset of IN is the range of an increasing
total computable function IN — IN.

3. What if f is merely nondecreasing (but still total)?

4. What if f is increasing but perhaps not everywhere defined? (i.e., (Vn)(¥Vm)(((n <
m) A f()l Af(m)) — f(n) < f(m))?)

5. What is the notion of “increasing function IN — IN™” that one would need
were one to prove that every decidable subset of IN" is the range of an
increasing computable function IN — IN™ ¢

EXERCISE 76 (*)
Show that every infinite semidecidable set has an infinite decidable subset.

24 My 2011/2 cohort tell me that this isn’t a straightforward application of Rice’s theorem,
and neither they nor I know how to do it.

96 CHAPTER 4. MACHINES

EXERCISE 77 (*) (Part III Computability and Logic examination 2014)

Let <1 and <3 be recursive (decidable sets of ordered pairs) dense linear or-
derings of IN without endpoints. There are isomorphisms between (IN,<1) and
(N, <3). Are any of them recursive?

EXERCISE 78 (%)

Show that, for any partial computable function ¥ not everywhere undefined,
there is an index e with {e} = and such that, for some n < e, {e}.(n).

Deduce that there is a recursive enumeration . of the partial computable
functions such that ¥y = L and such that for all n > 0, ¢, # L. Why is this
certainly not an acceptable enumemtz’onﬁ

By considering enumerations of the partial computable functions, find a par-
tial computable function that cannot be extended to a total computable function.

EXERCISE 79 (%)

For a finite family (Ao, A1,...,A,) of subsets of IN, show that the following
conditions are equivalent:

(i) There exists a partial recursive function [of two wvariables such that
f(z,y) = 0 whenever x and y belong to the same set A;, but f(z,y) = 1 if
x €Ay andy € Aj for some i # j.

(i) There exists a partial recursive function g of one variable, which takes
distinct constant values on each of the A;.

Such a family of sets is called recursively separated. Give an example of a
recursively separated pair of sets (Ag, A1) which cannot be separated (in either
of the above senses) by a total recursive function (equivalently, such that there
is no recursive set containing Ao and disjoint from Aj).

EXERCISE 80 [marked by PTJ as HARD]

A set A C IN is called Diophantine if there exists a polynomial p(x,y1, ..., Yn)
with integer coefficients such that x € A if and only if there exist y1,...,yn such
that p(x,y1,...,yn) = 0. Show that any Diophantine set is semi-recursive. [A
famous result due to Yu. Matiyasevich asserts that the converse is true.] Show
also that a set is Diophantine if and only if it is the set of non-negative values
taken by some polynomial with integer coefficients.

EXERCISE 81 (%)

Ezxplain what a model of a sentence is. If ® is a sentence the spectrum
of ® is the set of n € IN such that ® has a model of size n. Is every spectrum
decidable? Use a diagonal argument to find a decidable set that is not a spectrum.

(I’'ve mislaid my answer to this one!l!)

25Gee p for definition of “acceptable”.

Chapter 5

Representability by A-terms

Best local thing to read is [46]. I'm going to cover only as much A-calculus as is
needed to show the principal connections to computability. This is not a course
on the A calculus.

5.1 Some \-calculus

Must say a bit about the Curry-Howard correspondence here. And typing.

[B-reduction, a-conversion, n-reduction. An expression is in normal form
if there are no B-redexes—a [-redex being something to which you can do a
[B-reduction.

The only uniformly definable function A — A is the identity 14. Any de-
finable function A — A must commute with all permutations of A, and we all
know that the centre of a symmetric group S is {lg}!

What about uniformly definable functions (A — A) — (A — A)?

Well, there’s obviously K14, 4 and 14—, 4)—s(a—a). Then, for each n, there
is the function that takes f : A — A and returns f™. We need to explain why
that’s the lot [T

EXERCISE 82

By using Curry-Howard on a two-membered set B with a five membered superset
A of it, or otherwise, show that Peirce’s Law: ((A — B) — A) — A is not a
constructive thesis.

LAs Julian Ziegler Hunt points out, there must be more to being a A-term than having a
denotation that is invariant under permutation of the base sets. After all, the function that
asks whether f : A — A is invertible and returns its inverse if it has one, and returns f
otherwise has no A-term pointing to it, but it commutes with all permutations of A. The idea
is to use invariance-under-permutations as a kind of first check. If we can show that

97

Don’t ask

98 CHAPTER 5. REPRESENTABILITY BY A-TERMS

5.2 Arithmetic with Church Numerals

K and S. I know they sound like spymasters but they aren’t. (Karla and
Smiley. .. 7)
0 is K of the identity. Iterators. They are all typed.

suc AnAf Az f(nfz)
plus AndmAf A z.mf(nfz)

times An. dmAf \x.m(nf)x
which n-reduces to

AnAmAf.m(nf)

exp AnmAf A r.mnfx
which n-reduces first to
AndmAf.mnf
and then to
An.Am.mn

(Brief reality check: succ n is S-equivalent to plus n 1. mult similarly).
Wikipeedia supplies: pred= An.Af. x.n (Ag.A\h.h (g f)) (Au.z) (Au.u)

In lambda-talk the Church numerals are often written with underlinings: n.
This overloads the notation on p. [34 but doesn’t actually violate its spirit.

In this development we will trade heavily on the apercu that a function
IN* — IN defined by recursion can always be thought of as a fixed point for a
function (IN* — IN) — (IN* — IN).

Fixed point combinators.

Y A f.(Az. f(zz)) (M. f(zx)).
Az f(zx)) Az f(zx)) = f((Ax.f(z2)) (M. f(21)))).

Somewhat to my surprise I learnt recently (from [28]) that the set of [gnum-
bers of] A-terms that are fixed-point operators is semidecidable. I find this fact
so striking that I supply a proof. [How can one possibly detect in finite time
that, for all ¢, ¢t and t(¢t) have a common § — n reduct??] The point is that
¢ is a fixed-point combinator iff ¢ and A\x.z(dz) have a common S — 7 reduct,
and that fact can be detected in finite time. Presumably the set is not actually
decidable, but I know no proof.

(Zhen Lin has pointed out to me that Y is lurking inside the proof of corollary
The moral of this is presumably that there are as many proofs of corollary
as there are fixed-point combinators.)

5.2. ARITHMETIC WITH CHURCH NUMERALS 99

Talk a bit about the A term for (A - B) - A. - (A — B) — B.

Recall that the class of primitive recursive functions is closed under if-then-else,
so we’d better have a lambda version of this construct.

Azy.x works like true and

Azy.y works like false.

EXERCISE 83 (*)

true is of type A — (B — A) and false is of type A — (B — B), so they
are both of type A — (A — A).

Show that they are the only definable functions of this type.

Now we can set: if b then z else y is Abxy.bzy.
The point being that if b is a boolean it must have a normal form that is
one of {true, false}...that is to say, one of {\zy.x, \xy.y}.

iszero:= An.n(Az.false)true

iszero z evaluates to true or to false depending on whether or not x
evaluates to (church numeral) 0:

On this subject Wikipaedia sez:

IsZero = An.n (Az.false) true

The following predicate tests whether the first argument is less-than-or-
equal-to the second:

LEQ = Am.An.IsZero (minus m n),

Because of the identity ¢ = y = (z < y Ay < x), the test for equality may
be implemented as

EQ = Am.An. AND (LEQ m n) (LEQ n m)

Once we have pred (which is primitive recursive as we saw earlier) we can
test for equality with other numerals.

We also need pairing and unpairing:
pair:= Axyf.fzy
fst:= A\p.p true

snd:= Ap.p false
nil:= Az.true

Check that £st (pair = y) = = and that snd (pair = y) = y:

fst (pair z y) =
(Ap.p true)(Af.fzy)
(Mf.fzy)true =
truexr y =

T

Write out the calculation

100 CHAPTER 5. REPRESENTABILITY BY A-TERMS

We obtain snd (pair z y) = y similarly.
EXERCISE 84 What are the types of these expressions? Discuss.

Lists can be tho’rt of as ordered pair of head and tail, so fst and snd double
up as hd and t1; pair = y doubles up as x::y, and nil is the empty list.

NULL := Ap.p(Azy.false)

NULL tests for the empty list. There is probably an EOF (end-of-file) character
but we won’t need it: it will be quite useful to us to have lists that are of infinite
length. Compscis call things of this data type streams.

Another way of doing lists
Here is another way of thinking of [finite] lists. If T have

(i) an «-list I,

(ii) a § and

(iii) a function f:ax g — 3
then I can take the pair of the head of [and the 8, and whack it with f to
obtain another S—which I then pair with the second member of [, whack that
with f to obtain a third 8 and so on until I exhaust the a-list. Thus anything

that takes a (ii) and a (iii) and gives back a 8 can be thought of as an a-list.
So a-list is of type

(VB)(B = (ax B = B) = B)
The empty list is thus Azg.Af(axs—p)-¢ which is to say: K.

EXERCISE 85 On this way of thinking about lists, what are cons and hd and
t1?

A message from Toby Miller . ..

A naive approach to choosing a type for lists in the Polymorphic Lambda
Calculus (hereafter PLC) would be to consider an « list as being an ordered
pair « * («list). This doesn’t work because Nil cannot be encoded like this,
and also because we have just defined a recursive type, which isn’t allowed in
PLC.

Ordered pairs can be encoded in PLC thus:

a* B =4t VY (@ = B =) =)
makePair =qef A, B (At o, 2’ i B(Ay(Af :a— B =y (fzx'))))
ﬁT’St =def AOZ,B ()‘p ok 5 (p (A(L’ : a,x' : B (1')))
second =qot Ao, B(Ap:a x B (p(A\z:a, 2" : B ()

5.2. ARITHMETIC WITH CHURCH NUMERALS 101

This demonstrates how one can have a PLC term capable of returning mul-
tiple, differently typed, values by using a polymorphic return type (here v), and
passing in a function that chooses which value to return.

To make something that works for lists we need to address the two issues
described earlier. First we need some way to encode Nil using the same type
as a cons cell. Secondly we cannot use the type «list in its own definition,
as PLC has no support for recursive types. We address these by re-imagining
the concept of a list as, rather than a head and a tail, an object on which an
iteration can be performed. The functions head and tail become secondary to
the principal operation performed on lists: listlter. This function accepts a
cumulative function, which is performed recursively on the elements of the list.
If we pass the function Aa : int,b: int (a + b) then we get the sum of all the
elements of the list. This is similar to the ML fold functions. Functions to get
the head and tail of a list can be built on top of this fold, although as we shall
see, tadl is far from elegant.

The list object itself is a polymorphic function which takes a base case, and
a fold function, returning the result of running the fold on each list item in turn.
Nil simply returns the base case, while Cons recurses on the next item in the
list, and then returns the result of applying the fold function to the result, and
its own list item. The listlter function essentially just wraps a call to the list
itself.

alist =4t VB8 (B — (a = B — B) = B)
Nil =get A, B(Az: B, f :a— = B (x))
Cons =get Ao (A : o, alist (AB(\' B, f:a— B—= B (fz(B2'f)))))
listlter =gt A, B(Ax: B, f:a— B — B (N :alist [z f)))

In PLC, traversing a list using head and tail is not very easy, or useful.
Most often one would want to pass a cumulative function over the entire list.
An example for summing a list of integers is presented below. I assume that 0,
+ and int are defined. In practice one would use Church Numerals.

sum =gef Al : int list (listIter int int 0 (Az : int,x" : int (z +2))1)

Although we have established that head and tail are not easy to use in PLC,
we can define them anyway. The main problem we face is how to deal with the
base case. Nil has neither a head nor a tail, but by the type we have assigned
it, it must return something of the correct type in both cases. We can allow the
user to provide a ‘null’ value, which is returned in the case of Nil, and leave it
to them to deal with the difficulties this presents. Therefore both head and tail
will take a ‘null’ value and a list.

The tail function presents something of a challenge, because we are required
to submit for iteration a function which reassembles the list as it goes. We could

102 CHAPTER 5. REPRESENTABILITY BY A-TERMS

submit Nil as the base case, and Cons as the cumulative function, but then we
would get the entire list back, rather than just the tail. The method I use here
instead returns an ordered pair of two lists, the first being the complete list up
to the point in question, and the second being the list from one iteration prior.
The base case returns (Nil * z) (where z is the ‘null’). Subsequent cases shift
the first value into the second, and uses a cons cell of the new head with the
previous list for the first. The tail function itself just returns the second item
in the pair. The pair is used as a delay mechanism, so that the list can be
assembled normally, but with the previous version of the list still available.

head =qef Ax (A = o, L2 alist (listIter aavx (A2’ @ o, 2" o (2))) 1))
taillter =qef M@ : o, 1" : (alist * «list) (makePair (Cons x’ (firstl')) (first1'))
tail =ger Aav (A\x : alist, 1 : v list (second (listlter o (v list * « list) (makeList Nil x) taillter 1)))

end of message from Toby

5.3 Representing the i operator in A-calculus

Must prove Church-Rosser
So far we have pairing and unpairing, if-then-else, and fixed point combinators

to give us recursion, so clearly we can capture all of primitive recursion. Lists
will enable us to describe certificates. In fact we can even do partial computable
functions as well, because lists enable us to present Kleene’s T-function.

[I wrote this section as an exercise from first principles, for my own improvement—
without looking it up—so you may well find in the literature a better way of
doing it. On the other hand you might—as did I—find that reinventing the
wheel turns out to be a character-forming experience.]

THEOREM 16 Fvery p-recursive function can be represented by a \-term.

Proof:

We need a lambda term to do what ML calls ‘map’: when [is a list and f a
function defined on I’s entries then map f [returns the list whose nth entry is
the f of the nth entry of the list [. It has the recursive definition

map f # =if null(x)then nil else (f(fst(x))):(map f(snd(x)))
so it will be a fixed point for
Amfl.(if null(l) then nil else (f(fst(l)))::(m f (snd(1)))),

namely

Y (Amfl.(if null(l) then nil else (f(fst(l)))::(m f snd(1))))

5.4. TYPED LAMBDA TERMS FOR COMPUTABLE FUNCTIONS 103

Next we need the stream of naturals—which we may as well call ‘IN'—and which
is a fixed point for Al.(0::(map suc !)). Then the stream of values of f is just
nap f IN.

To finally obtain u all we need is a way (on being given n) of searching
through the stream of values of f until we find one that is n. How do we
do that? Well, I wouldn’t start from here, I’d start instead from over there,
where—rather than having the stream of values of f—we have the stream of
values of the function n — pair(n, f(n)) instead. (That is to say, the graph of
f tho’rt of as a list of pairs). We then do miaow to itE|

miaown x =if (snd(hd z) =n)then (fst (hd z)) else miaow n (tl z).

If we apply miaow n to the stream of pairs pair(m, f(m)) it returns the least m
such that f(m) = n. Pleasingly, if there is no pair in the stream whose second
component is n then the computation does not halt.

The above declaration of miaow is recursive, so we can obtain a A-term for
it by using a fixpoint combinator as usual. [|

Thus: every p-recursive function can be represented by a A-term. To com-
plete the picture we need to prove the converse to theorem that is to say,
that every function that can be A-represented is computable. A rigorous proof
would be extremely laborious but the idea is very simple. If f is represented by
a A-term L then L applied to the Church numeral n will S-reduce to the Church
numeral for f(n). But this S-reduction is a deterministic process and can be
captured by a Turing or Minsky machine.]

It’s worth thinking a bit about this because our lambda terms are nasty
things arising from Y and it is possible to S-reduce them in such a way that
they do not terminate. However it so happens that if you S-reduce from the top
level down (so that, when confronted with Az.M N, you turn it into M[N/x]
rather than S-reducing M or N) then if there is a normal form you will find it.

5.4 Typed Lambda terms for computable func-
tions

This presentation of computable functions in A-calculus exploits fixpoint combi-
nators and gives us A-terms that are not typed. The list gadgetry that we relied
on (for example) is not well-typed. However, initially (for addition, multipli-
cation and exponentiation) we had A-terms that were typed. If we work a lot
harder we can get typed A-terms for a lot more functions. Paulson [46] supplies
this A-term for the Ackermann function:

amm(Afn.nf(f1l))suc

2Joke! Jokel!

Does any enthusiast feel like
providing me with A-terms
for any of the Péter functions
from exercise EII?

104

CHAPTER 5. REPRESENTABILITY BY A-TERMS

There is some interesting mathematics tied up in the question of how much of
computable function theory can be reproduced in typed fragments of A-calculus.
The answer can depend sensitively on the small print of the definition of ‘typed’.

Here is system-T as presented in [27]:

datatype num = 0O
| S of num
datatype bit = T | F

fun

fun

fun
fun
fun

fun
fun
fun
fun
fun

fun

fun
fun

val

fun

fun

val
val
val
val
val
val

Ruv0=nu
Ruv (S8n) =v (Ruvn)n

Du_T=nu
D_vF=yvw
NOT u=DFTu

ANDuv=DvVvFu
ORuv=DTvu

ADD x y =R x (fn z => fn 2z’ => S z2) y

PRED n = R 0 (fn x => fn x’ => x’) n
SUBxy=Rzx (fn z => fn 2z’ => PRED 2z) y

MUL x y =R O (fn z => fn z’ => ADD x 2z) §y
EXPx y=R (80) (fn z => fn 2z’ => MUL x z) y

ISZERO x =R T (fn z => fn z’ => F) x
ITER fn =R (f (S0)) (fnz => fn z’ => f z) n
ACKm =R S (fn x => fn z’ => ITER x) m

r = ADD (S(S(s 0))) (8(s 0))

o
]

0
S(num (n-1))

num
num n

mun 0 = O
mun (S n) = (mun n) + 1

= mun (ADD (num 3) (num 3))
= mun (MUL (num 3) (num 3))
= mun (EXP (num 3) (num 3))
mun (ACK (num 3) (num 3))
= ISZERO (num 3)

= ISZERO O

H O &0 T e
1]

5.4. TYPED LAMBDA TERMS FOR COMPUTABLE FUNCTIONS 105

5.4.1 Combinators??

EXERCISE 86 Prove that every A term s equivalent to a combinator word in
K and S.

106 CHAPTER 5. REPRESENTABILITY BY A-TERMS

Chapter 6

Recursive and Automatic
Structures

I assume you know what a structure is from Part II. Any notion of computability
gives rise to a corresponding notion of a computable structure. A computable
structure will be one the graphs of whose decorations (predicates, functions etc)
are computable in the sense of that notion.

We have considered two computability paradigms in this course: finite state
machines and Turing machines. There are others of course (linear bounded
automata, pushdown automata) but only those two in any detail, and the two
notions of computable structure that they give rise to are the only kinds of
computable structure we will consider.

Structures that are computable in the finite state machine sense are auto-
mati(ﬂ and those that are computable in the wider Turing-machine sense are
recursive. The concept of computable structure arising from Turing-machine
computability has been around much longer, and the automatic structures of
the immediately following section are very recent.

We deal with these two notions in the following two sections, the stricter
one first.

6.1 Automatic Structures

You might think that this notion of computability is too restrictive to be useful
but you’d be wrong ...tho’ admittedly it is only relatively recently that struc-
tures computable in the regular-language sense have attracted interest. [36]
surveys the possibilities of applying this kind of analysis more generally, but we
will concern ourself primarily with its use in group theory, since that is where
all the action seems to be currently.

Tt might seem natural to say that the structure is regular but automatic is the word that
seems to be used.

107

108 CHAPTER 6. RECURSIVE AND AUTOMATIC STRUCTURES

First, a connection with Turing machines and complexity classes. Everything
solvable in linear time and constant space is automatic. Ashley Montanaro
tells me: “Yes, the languages decidable in constant space are just the regular
languages. Interestingly, apparently even the class of languages decidable in
o(log log n) space is still just the regular languages! see [63].”

The nicest application currently known to me of ideas of computable-by-
finite-state-machine is the application to Group theory.

An automatic group is a finitely generated group equipped with several finite-
state automata that represent the Cayley graph of the group, i. e. they can tell
if a given word representation of a group element is in a “canonical form” and
can tell if two elements given in canonical words differ by a generator. More
precisely. . .

DEFINITION 18

Let G be a group and A be a finite set of generators. Then an automatic
structure of G with respect to A is a set of finite-state automata:

e the word-acceptor, which accepts, for every element of G, at least one word
in A* representing it;

e multipliers, one for each a € AU {lg}, which accept a pair (w1, ws), for
words w; accepted by the word-acceptor, precisely when wia = wy € G.

The property of being automatic does not depend on the set of generators.

It turns out that many natural classes of groups are automatic. Braid groups
for example, and [word] hyperbolic groups. “Hyperbolic”?

The reader is assumed to know what a Cayley graph of a group is.

We can put a metric on a Cayley graph by deeming every edge to have length
1, and by this means we can give lengths to paths in the graph. The distance
d(x,y) between two vertices is the least number that is the length of a path
between x and y. A path between x and y of length d(z,y) is a geodesic. A
triangle (of paths) is a geodesic triangle if its three sides are geodesics. A
(geodesic) triangle is §-thin as long as, for all « on the triangle, there is y on an
edge of the triangle other than that containing x s.t. d(z,y) <.

DEFINITION 19
A geodesic space is said to be 6-hyperbolic (in the sense of Gromov) if § is
a positive real and, given any geodesic triangle and any point on any side, the
[least] distance from that point to [any point in] the union of the other two sides
is bounded by 6 P

It is just plain hyperbolic if there is a 0 such that it is 6-hyperbolic.

A group G is said to be word hyperbolic if the Cayley graph T'(G, A) is
hyperbolic.

2This is known in Group Theorists’ slang as The Skinny Triangle Property as in: a space
is hyperbolic if there is § s.t. every geodesic triangle is J-skinny.

6.1. AUTOMATIC STRUCTURES 109

(It can be shown that if X and Y are geodesic spaces and f : X — Y is a
pseudoisometry, X is hyperbolic iff Y is. So whether or not a group is hyperbolic
does not depend on a choice of generators. So definition [19]is legitimate.)

Clearly for any finite Cayley graph there is § such that it is §-thin: this idea
is interesting only for infinite groups.

It turns out that, for every group G, if the Cayley graph for G under some
presentation is hyperbolic, then the Cayley graph for any other presentation is
also hyperbolic. This means that hyperbolicity is a property of the group not
of any particular presentation.

EXERCISE 87 Show that if the Cayley graph for G under some presentation is
hyperbolic, then the Cayley graph for any other presentation is also hyperbolic.

A good place to start reading about automatic groups would be Baumslag’s
review [5] of [2I]. There is also a Wikipeedia article.

EXERCISE 88 Show that if G under some presentation is automatic, then it
18 automatic under any presentation.

Free groups of finite rank are hyperbolic.

6.1.1 Two Guest lectures from Maurice Chiodo

Chiodoguestlecturel.pdf

Chiodoguestlecture2.pdf

6.1.2 Automatic ordinals

Delhommé [I7] has proved that w® is the least ordinal not the length of an
automatic wellorder of IN. (What does this mean, exactly?). Mathias [43] p 5
wonders whether this is anything to do with the fact that w® is not “suitable”
for the set theory Sy. My guess is: not, but one never knows.

110 CHAPTER 6. RECURSIVE AND AUTOMATIC STRUCTURES

6.1.3 Automatic theories
The language of propositional logic is not regular.

A theory is automatic if it has an axiomatisation that is automatic. The
question always is: “Is this axiom scheme a regular language?”

Is any theory synonymous with an automatic theory synonymous? Or do
we need a notion of automatic synonymy?

An automatic version of Kleene’s theorem on finitely axiomatisable conser-
vative extensions?

How on earth do we prove that the theory of algebraically closed fields is
not automatic?

Which theories have automatic models?

Every decidable theory has a countable model for which the satisfaction
predicate is decidable: given a formula with n free variables and an n-tuple
from the structure can say whether or not that tuple bears that predicate.

Th({IN,-)) is decidable but not automatic and has no automatic model.

“You deal with the existential quantifier by the same trick that gives you a
FDA from an FNA’
[what did I have in mind there?]

The canonical random graph is not automatic but it does have a decidable
(and countably categorical!) theory.

For example the theory of fields of characteristic 0 is clearly automatic.
Careful! Khoussainov says that it isn’t automatic because you have to put
in the brackets. Clearly the situation is complicated. What if you use the
LISP convention that you can close any number of ‘(” with a single |’? The
set of [unary notations for] primes is not a regular language, but we take our
characteristic-0 scheme to be the scheme nx # 1 over all n not just prime n.
(Exercise asked the reader to show that, for any base b, the set of base-
b notations for natural numbers is a regular language.) Algebraically closed
fields? The algebraically closed scheme seems to me to need a PDA.

These could give us lots of exercises

EXERCISE 89 (*) Show that the intersection of two automatic theories is au-
tomatic.

6.2 Recursive structures

The definition of recursive structure is to be interpreted liberally, in various
ways. . .

e A recursive ordinal is going to be the ordinal of a wellordering (IN, <)
where < is a wellordering of IN whose graph is decidable.

6.2. RECURSIVE STRUCTURES 111

e We will have a good notion of a recursive partition of the set [IN]* of
unordered k-tuples of natural numbers, since a partition of a set can be
canonically identified with an equivalence relation on that same set, and
we have a good notion of decidable equivalence relation.

e The carrier set does not have to be literally IN, but it must at least be a
set that can be gnumbered.

A countable ordinal is an ordinal that is the length of a wellordering of IN
or of a subset of IN—it makes no difference. Cantor called the set of countable
ordinals the Second Number Class (the first number class is IN). A recursive
ordinal is an ordinal that is the length of a recursive [= decidable] wellordering
of IN or of a recursive [decidable] wellordering of a decidable subset of IN—it
makes no difference: either way it’s a wellordering whose graph (set of ordered
pairs of natural numbers) is a recursive (= decidable) set. A decidable relation
on a decidable infinite subset of IN is isomorphic to a decidable relation on
the whole of IN because the function enumerating the decidable subset is itself
decidable. (This was exercise [48 on p. [79])

There is a simple cardinality argument to the effect that not every countable
ordinal is recursive. Rosser’s extended axiom of counting (explain) tells us that
the length of the wellordering of all the countable ordinals has uncountable
length, so there are uncountably many (in fact ;) countable ordinals. However
the set of recursive ordinals is a surjective image of the set of all machines, and
that set is countable. Clearly every recursive ordinal is countable, so there must
be countable ordinals that are not recursive.

DEFINITION 20
The sup of the recursive ordinals is the Church-Kleene wy, aka w{'¥.

A standard application of countable choice tells us that every countable set
of countable ordinals is bounded below w1, so we know that w{'¥ is actually a
countable ordinal. But we can do much better than that, and without using the
axiom of choice.

REMARK 11 The family of recursive ordinals is a proper initial segment of
the second number class.

Proof:

Suppose <pr is a wellordering of IN whose graph is a decidable subset of
IN x IN. That is to say that the length of <g is a recursive ordinal. Now
consider any ordinal « less than the length of R. This is the length of a proper
initial segment of <g—the length of <g[{m € IN: m <z n} for some n, say—
and this initial segment of <p is a decidable subset of IN x IN (it has the number
n as a parameter) and its length is therefore a recursive ordinal.]

This means that w{’'X is not merely the sup of the recursive ordinals but the

least nonrecursive ordinal—and this is indeed how it is usually defined.

112 CHAPTER 6. RECURSIVE AND AUTOMATIC STRUCTURES

REMARK 12 FEvery recursive limit ordinal has cofinality w—recursively. That
18 to say: whenever R is a decidable binary relation on IN that wellorders IN to
a length that is a limit ordinal there is a decidable X C N s.t. otp(R]X) = w.

Proof: Recycle the usual proof that countable limit ordinals have cofinality w.
It works in this contextEI We enumerate the members of X in increasing order
9,1 We set xg := 0. Thereafter x,,41 is the least natural number = such
that (x,,z) € R. There is always such an z and it is always decidable for
any candidate whether or not the candidate passes. This ensures that X is a
semidecidable set which can be enumerated in increasing order, and this makes
it decidable (by exercise [7H). |

Observe that this proof is effective: there is a computable function which,
on being given the gnumber of a characteristic function of a wellordering of IN,
returns the gnumber of the characteristic function of an unbounded subset of
length w.

EXERCISE 90

The class of recursive ordinals is closed under the Doner-Tarski function fo
(see deﬁnition@ p. @) for every recursive ordinal aE|

Thus w{¥ is huge. This is contrast to the corresponding ordinal for auto-
matic structures: the least ordinal not the ordertype of an automatic wellorder-
ing is w¥, see [I7]

Something to be alert to. Do not confuse the concept of a recursive ordinal
with the concept of a recursive pseudowellordering of IN. This would be a
decidable binary relation R on IN which is a total order with the property that
every decidable subset of IN has an R-least member.

When reasoning inside a formal system of arithmetic care is needed in ap-
proaching the concept of recursive ordinal. It’s one thing to have a definable
binary relation on IN, it is quite another to have a proof that this definable
binary relation is a wellorder. Come to think of it, how on earth can a system
of first-order arithmetic (such as Peano Arithmetic) ever prove that a binary
relation is wellfounded? After all, to show that a relation is wellfounded one
has to be able to reason about all the subsets of its domain, and a first-order
theory cannot reason about arbitrary subsets. The answer is that whenever T
(being a first order theory of arithmetic) proves that a relation R on IN is a
wellorder what is going on is that 7" proves all instances of R-recursion that can
be expressed in the language of T'.

EXERCISE 91 (Jockusch)(*)

3This was question 12 on Prof Johnstone’s fourth sheet for Logic and Set Theory in Part
IT in 2011/12 so you might remember it.

4Come to think of it i’m not really entirely happy about this ...but Stan says it’s obvious
so it must be OK

6.3. TENNENBAUM’S THEOREM 113

Show that there is a decidable two-colouring of [IN]* such that any infinite
set monochromatic for it can be used to solve the halting problem.
[Hint: consider the 3-place relation {p}.(d)).]

EXERCISE 92 (*)
Construct a recursive counterexample to Konig’s Infinity lemma: a recursive
finitely-branching tree with no infinite recursive path.

6.3 Tennenbaum’s Theorem

O Tennenbaum, O Tennenbaum!
Wie treu sin’ deine Blétter!!

See [7] (but not all editions), [62] and [35].

We know from compactness arguments that there must be nonstandard mod-
els of PA—models containing nonstandard naturals. In this section we explore
what we can do with them.

You may recall from Question 11 on Example Sheet 3 of Professor John-
stone’s Set Theory and Logic course in Part IT in 2012/3 the relation n E'm on
natural numbers, which holds when the nth bit of m (m considered as a bit-
string) is 1. Clearly E is a decidable relation. It is useful to us because it holds
out the possibility of using a natural number to code a set of natural numbers:
for any n, {m : m En} is an actual set (a subset of the model) and it is coded
by the element n of the model. There are other encoding schemes that pop up
in the literature, and they are there because they are syntactically simpler. For
example we can think of a number n as encoding the set {m : the mth prime
divides n}.

Once we have erected a coding scheme we can use it to think of any nonstan-
dard model 91 of PA as a structure for the language of second-order arithmetic,
in the following way. 9 has a standard part, and any nonstandard element
of M has the potential to encode sets that are unbounded in the standard
part. According to the PTJ-example-sheet scheme no two (nonstandard) nat-
urals can encode the same set, while according to the prime-number scheme
distinct (nonstandard) naturals can encode the same set. However we are inter-
ested in the standard part of any set coded by a (nonstandard) natural, and—
on this view—two distinct (nonstandard) naturals can encode the same set of
standard naturals even under the PTJ-example-sheet scheme. The structure-
for-the-language-of-second-order-arithmetic to which 9t corresponds has as its
carrier set the standard part of 9. The range of the second order variables is
the whole of M. Let us call this structure “91*”.

We start with a simple observation.

REMARK 13 In 9N*, every decidable set of standard naturals is encoded by a
[nonstandard] natural [of M.

114 CHAPTER 6. RECURSIVE AND AUTOMATIC STRUCTURES

Proof:

Let’s write ‘x @ 3’ for the logical or of the two naturals z and y thought of
as bit-strings. [There is nothing specific to 91* here: this is happening in PA].
Let P() be a decidable predicate.

We will need the function f defined as follows.

fO) =0
f(n+1) =if P(n) then f(n)®2" else f(n).

Of course, if we prefer coding with primes then we obtain a different defini-
tion.

Now we find, in 9, that {n : n is standard AP(n)} is encoded by f(m)
whenever m is nonstandard, and f(m) is of course a set of M*. That is to say
that, in 9, any decidable set of standard natural number is a set of *—as
desired. []

Are there any undecidable predicates we can encode? If there is, then we
can derive a contradiction from the assumption that the graph of + and X in
the model is decidable. This is

THEOREM 17 (Tennenbaum)
PA has no nonstandard model with carrier set IN in which the graphs of +
and X are decidable.

Proof:

Suppose some undecidable set A is encoded by a nonstandard natural m.
Then—Dbecause the membership relation is decidable—it follows that member-
ship in A becomes the relation “n E'm” which is of course decidable. Now the
obvious undecidable predicate is the halting set. You might think (as did i!)
that one can encode it by the following ruse. Define f as follows:

f(0) =0;
f(n+1) =let n+1=(p,i,t) in

if {p}:(i)| then f(n)@2<p’i> else f(n).

The key to understanding what f does is to fix some pair (p,i) in one’s
mind and think about what happens to the (p,i)th bit of f(n) as n gets bigger.
It starts off clear, but gets set if {p}(i) ever halts; and—once set—it remains
set. The values of f are an ever-improving sequence of approximations to a
numerical code for the halting set, {(p, %) : {p}(i)| }.

So why doesn’t f(n) for some (indeed any) nonstandard n encode the halting
set? The answer is that 9T might lie about whether or not {p}(¢) halts, by saying
that it halts when in fact it doesn’t. Pertinant example: if p is looking for an
inconsistency proof for PA (so that p(i)}= 1 iff p(%) is a proof of =Con(PA)) then
it will never find one in standard time. But it might find one in nonstandard
time. It simply isn’t true that a standard p, applied to a standard ¢, halts in
standard time if it halts at all.

6.3. TENNENBAUM’S THEOREM 115

In fact we can indeed encode some undecidable sets—and we will need this
fact—but one has to do rather more work.

Meanwhile, to be going on with, we have the following observation of Dana
Scott’s, which I think I will leave as an exercise.

WKL (“Weak Konig’s lemma”) is the assertion that every rooted binary tree
with infinitely many nodes has an infinite branch.

EXERCISE 93 (Scott)(*)
If M is a nonstandard model of PA and 9M* the corresponding structure for
second-order arithmetic, then IM* =W KL.

We procede to Tennenbaum’s theorem.

We recall from remark that there is a pair of semidecidable recursively
inseparable sets. It doesn’t matter what they are—any pair will do. Let them
be A = {n : (Jy)A(n,y)} and B = {n : (3z)B(n,z)}. Because 2A and B are
recursively inseparable we must have (Vn)(Vy)(Vz)(—=A(n,y) V - B(n, z)).

So the standard model believes

(Vn < m)(Vy <m)(Ve <m)(=A(n,y) V ~B(n, x)) (1)

—_——N
for any numeral m. (Recall from p. [34|that m is the string S(S(S...0...)).)

Now observe that expression (1) is absolute and so must be true in any model
of PA, and so—in particular—in our 9. So 9 believes there is an [standard!]
m such that

(Vn <m)(Yy < m)(Vz < m)(—A(n,y) V -B(n,z)). (C)

Indeed it believes this for all standard m. Since 92 does not know how to
define standard-ness for its members, it must believe that there are nonstan-
dard elements bearing the property C. This trick is known in the trade as an
overspill argument. Let e be one such. Then we have:

M E= (Yn <e)(Vy < e)(Vo < e)(mA(n,y) V ~B(n,)). (D)

Now let X be the set of those naturals n [in the real world] satisfying 9 |=
(3y < e)A(y,n). We will show that X separates 2 and B.

2A C X holds because any member of 2 bears A(,) to some genuine natural,
and any such is less than e.

B N X = () holds for similar reasons. Suppose n € B. Then there is some
m such that B(n,m), whence 9 = B(n,m), and this m is certainly less than
e. So M = (Im < e)B(n,m). But then, by (D) above, n ¢ X.]

The final piece of the jigsaw is that if 9t is a model of PA in which even
one undecidable set is encoded by a (nonstandard) element then it cannot be
recursive. Since—as we have just shown—every nonstandard 99t has a model

Better supply the details

This section is a stub

116 CHAPTER 6. RECURSIVE AND AUTOMATIC STRUCTURES

that encodes a set 2" separating 2 and B, it will follow that every nonstandard
model fails to be recursive.

The idea is that
if
(i) there is an element ¢ of the model that encodes an undecidable set ', and
(ii) the relations of the model are recursive,
then
the element ¢ can be used as an oracle to answer questions about membership
in 20'—thereby rendering 2’ decidable.

A funny Logic

Consider now the Logic £ of those sentences true in all recursive (decidable)
structures. Let us write ‘T =g ¢’ to mean that every recursive structure that
models T also models ¢. Since the only recursive model of PA is the standard
model, it follows that—according to this logic £L—PA is complete. We must
have PA =g Con(PA) or PA = —Con(PA).
The second is false, because PA has a model, so we infer PA =g Con(PA).
It’s a pretty safe bet that £ is not axiomatisable!

6.4 Recursive Saturation

The models of Presburger arithmetic that can be expanded to models of PA are
precisely the recursively saturated ones.

Chapter 7

Incompleteness

7.1 Proofs of Totality

I emphasised on p[63]that concentrating on partial functions was the conceptual
breakthrough: it was that that enabled us to prove the completeness theorem
for computable partial functions. Quite how big a mess we would have got into
if we had stuck with total functions is shown by the diagonal argument:

THEOREM 18 The set of gnumbers of machines that compute total com-
putable functions is not semidecidable.

Proof: Suppose the set of gnumbers of machines that compute total functions
were semidecidable. Then there would be a total computable function f whose
values are precisely the gnumbers of machines that compute total functions.
Now consider the function An.{f(n)}(n)+ 1. This function is total computable
and should therefore be {f(m)} for some m. But it cannot be {f(m)}, because
its value for argument m is {f(m)}(m) + 1 and not {f(m)}(m).]

We knew from Rice’s theorem (theorem |14] p that this set could not be
decidable, but this claim is stronger. However, it should not come as a surprise.
Ask yourself: if I am given the gnumber of a machine, can I confirm in finite
time that the function computed by that machine is total? (And we would have
to be able to do that if {n : (Vm)({f(n)}(m)})} were semidecidable). At the
very least, it is obvious that there is no straightforward way of confirming it in
finite time. So one should not be surprised to be told that there is in fact no
way at all of doing it—in finite time.

Consider the total computable function f that we hypothesised in the proof
of theorem [I8 What happens if we assume that f“IN is not the whole of
{n : (Vm)({f(n)}(m)})} but merely a subset of it? Then the construction in
the proof exhibits a total computable function not in the range of f.

This property of {n : (Vm)({f(n)}(m))} is important enough to deserve a
name. . .

117

118 CHAPTER 7. INCOMPLETENESS

DEFINITION 21 Suppose X C IN is not only not semidecidable but also comes
equipped with a computable function g which “diagonalises out of” any semide-
cidable {n}“IN C X in the sense that g(n) is a member of X \ {n}“IN. Then
we say X is productive.

It can be hard to see whether or not a function specification specifies a func-
tion with the same graph as a recursive specification (recall Waring numbers).
However it is mechanical to check whether or not a piece of syntax is literally a
definition of a computable function.

That’s the easy part; the interesting hard part generally is establishing
whether or not a palpably p-recursive definition defines a total function.

It turns out that stronger theories of arithmetic can prove totality of more
function declarations than weak theories can. This will lead us to a famous
theorem of Godel’s.

7.2 A Theorem of Godel’s

A sound theory of arithmetic is one all of whose axioms are true. (Don’t panic!
‘unsound’ does not imply ‘inconsistent’. There are plenty of unsound consistent
theories of arithmetic.)

Fix a theory T of arithmetic, with a semidecidable set of axioms.

We proved in theorem [I8] p. [[17] that the set of gnumbers of programs that
compute total functions is not semidecidable. Observe however that, in contrast,
the set of gnumbers of programs that compute functions-that-T-can-prove-to-
be-total definitely is semidecidable. It is obviously decidable whether or not a
given proof is a proof that a given function is total. So, given a program, we
can systematically examine all T-proofs to see whether or not any one of them
is a proof that the program computes a total function.

Observe that this brings us some unwelcome news. If T' is a recursively
axiomatised system of arithmetic then the set of gnumbers of machines for
which T can demonstrate that they compute total functions is a semidecidable
set—unlike the set of gnumbers of machine that compute total functions. So
these sets cannot be the same. So either T' proves some function to be total
when it isn’t, or fails to prove total some function that happens to be total.
This is bad enough, but a refined analysis will tell us more, and will explicitly
provide a total function whose totality T cannot prove—if it is sound.

7.2.1 The T-bad function

Consider the machine 9 that tests, for each pair (p,n) of a T-proof p and a
machine n, whether or not p is a T-proof that the function computed by n is
total. Naturally we use a volcano for 9. We modify the volcano to obtain
a total function V' which emits all pairs (p,n) where p is a T-proof that the
function {n} is total. For each k € IN, we take V(k), which will be a pair (p,n).
We then compute {n}(k) + 1 and emit this as our output for input k.

Let us call this the T-bad-function. That is to say, the T-bad function is

7.2. A THEOREM OF GODEL’S 119

Mk € N.(1et (p,n)=V(k) in {n}(k)+1)

Consider now the project of proving that the T-bad-function is total. Obvi-
ously we are not going to be able to do this in 7! So our refined analysis has
already given us another nugget: a computable total function whose totality T'
cannot prove if it is sound.

A fruitful question to ask is: how can T fail to prove that the the T-
bad-function is total?

We have to prove the following:

For every n, if we take the nth program that T proves to be total,
evaluate it at n and add 1 to the result, we get an answer, and this
defines a total function (A)

Notice the difference between (A) and

For every n, if we take the nth total program, evaluate it at n and
add 1 to the result, we get an answer, and this defines a total
function. (B)

(B) is obviously going to be provable (in T or any halfway-sensible system
we choose), but sadly it is not (B) we are attempting to prove in T but (A).
That is to say: in T" when we pick up an arbitrary n we are asking not whether
or not the nth program is total, but whether or not T proves that it is total.

Observe that if T is merely consistent (never mind sound) it cannot prove
(A), for were it to prove (A) it would both prove and not prove that the 7-
bad-function is total.

Thus we have established

THEOREM 19 If T is a sound theory of arithmetic with a semidecidable set
of axioms than T is incomplete.

Indeed the proof explicitly exhibits an assertion that 7' cannot prove—
namely the assertion that the T-bad-function is total. (This assertion is Ils,
which is not best possible). Later, in chapter we will see an example of a
specific theory T and a specific function whose totality cannot be proved in T'
because it would imply the consistency of T'.

Now suppose we add to T a rule of inference (the “T-soundness” rule) al-
lowing us to infer ¢ from the fact that 7' F ¢. Observe that in this system we
can actually prove (A)—as follows. ..

The set {n € IN: T+ “{n} is total”} is a semidecidable set, and is
therefore f“IN for some computable total function f.

Now let n be an arbitrary natural number, and consider the function
{f(n)}. By the new rule of inference we infer that {f(n)} is in fact
genuinely a total function, so {f(n)}(f(n)) + 1 is defined; n was
arbitrary, so the diagonal function An.({f(n)}(f(n)) + 1) is total.
So we have proved (A).

expand this

Clearer if we appeal to
Godel’s argument

If T ever get round to it

120 CHAPTER 7. INCOMPLETENESS

COROLLARY 3
The T-soundness rule of inference cannot be a derived rule of inference for T.

Observe that corollary [3| doesn’t say that the T-soundness rule of inference
is invalid or unsound, merely that it is not a derived rule of inference for T
Specifically there is nothing to prevent us adding it as a rule of inference should
we feel like it.

The theory A of truths of arithmetic is obviously complete and sound. From
the foregoing it now follows that it cannot be recursively axiomatised. But the
construction actually shows a bit more than that. If T is any sound recursively
axiomatised theory of arithmetic the above construction shows how we can we
can “diagonalise out of” T' while remaining entirely within the set of arithmetic
truths. What we have in our hands is an algorithm which, on being presented
with a recursively axiomatisable T C A (such a T is a finite object and is a
possible input to an algorithm), returns something in A\ 7.

So what we proved above can be stated as:

REMARK 14 The set of (gnumbers of) arithmetic truths is productive.

Indeed {n : {n} is total}, the set that kicked off this chapter, is productive.
We will see later that A is productive iff A is in some sense “at least as
undecidable” as the complement of the halting set, the set {(p,7) : {p} (i)}

EXERCISE 94 (*) Jason Long said to me the other day that the complement
of the Halting set is productive. Which version of the Halting set did he mean?
And what did he mean by ‘complement’?

EXERCISE 95 (%)
Stephan [64]] says that both {e : |W.| < Ro} and IN\ {e : |[W,| = R} are

productive.

Although the set of arithmétic truths really is productive, and there really
is an algorithm that will accept a decidable axiomatisation of a fragment of
arithmetic and emit something unprovable in that fragment, the fact remains
that the algorithm is a bit unwieldy. Producing actual arithmetic truths that
are demonstrably unprovable in specific recursively axiomatisable fragments of
arithmetic requires ingenuity. We will see an example in chapter

7.3 Undecidablity of Predicate Calculus

THEOREM 20 The set of (gnumbers of) valid expressions of First-Order Logic
is not decidable.

7.4. TRAKHTENBROT’S THEOREM 121

Proof:

We have to be careful to state this properly. Monadic first-order logic with-
out equality is decidable, as one can easily see once one notices that the language
with n monadic predicate letters can distinguish only 2™ things and so any fal-
sifiable formula has a finite countermodel which can be found by systematic
exhaustive search. [In fact, what this shows is that every structure for monadic
first-order-logic-without-equality has a finite elementary substructure].

We mean sufficiently rich [valid expressions of ...]. How rich is sufficiently
rich? Rich enough to describe the working of a Turing machine. We know
that truth-in-all-models is finitely detectable, we want to use Turing machines
to show that falsifiability is not finitely detectable. So we have to show that if
falsifiablity is finitely detectable, then we can detect computations that will not
HALT. So, given a computation of p with input ¢, we have to find a sentence in
the appropriate language with a counter model. The sentence will be the one
that says that p applied to ¢ does not HALT.

We want to use the unsolvability of the Halting problem to prove the un-
decidablity of First-Order-Logic. On being given a Turing machine 9t and an
input ¢ to 91, we can compute a formula ¢ which has the property that every
model of ¢ is a complete course of computation of 9t on input ¢ and has a last
stage at which 9t has HALTed. If the set of valid expressions of First-Order-Logic
is decidable then we can determine whether or not this ¢ has a model. But ¢
has a model iff 9 halts on ¢, and that, we know, is not decidable. So the set of
valid expressions of First-Order-Logic is not decidable either.

7.4 Trakhtenbrot’s theorem

THEOREM 21 (Trakhtenbrot)
The set of sentences true in all finite structures is not semidecidable.

Proof: We show that if it were semidecidable we would be able to solve the
halting problem. To this end what we want is a standard uniform method
which, on being presented with an instance (9, n) of the halting problem, emits
a formula ¢ of first-order logic with the property that:

¢ is true in all finite structures iff M(n)f. (A)

What would ¢ be? The idea is that any finite model of ¢ will be a course-of-
computation-of-9t-applied-to-n (as in Kleene’s T function) with the property
that the state in the last snapshot in the list is not HALT. Loosely, a finite model
of ¢ will be a computation-of-9)t-applied-to-n that is still running, so that if ¢
has arbitrarily large finite models then 9t applied to n never HALTs. So ¢ must
say the following.

“There are these things called stages, and there is an order of succes-
sion on them. There is a first stage and every stage except the first
has a unique predecessor. Every stage has at most one successor.
Each stage s is a configuration of 91 (that is to say: an ordered pair

122 CHAPTER 7. INCOMPLETENESS

of a state of M and a state of M’s tape) and the stage succeeding
s must be the configuration that arises from s as a result of the
quintuples that represent 991. Finally

if the first stage is (9M-in-its-start-state, n-on-the-tape) then no
stage has 9M-in-the-HALT-state as its first component.”

This second clause is a conditional not a conjunction because the require-
ment on ¢ is that it should be true-in-all-finite-structures-(of the appropriate
signature) iff {m}(n)t. So it must be true in any finite structure (of the appro-
priate signature) and typically such a finite structure is a description of a course
of computation for a different machine or of the same machine on a different
input.

We now have to check that ¢ obeys (A), that is: M(n)T iff ¢ is true in
every finite structure of the appropriate signature. What is the appropriate
signature? It has apparatus for describing stages, and states of a machine and
configuration of a tape. A structure X for £(¢) has stages ordered like an initial
segment of a model of arithmetic (so it is finite or is an w-sequence followed by
some number of w* + w sequences). It also contains a description of a Turing
machine. There is nothing in being-a-structure-for-£(¢) to say that the stages
of X obey the transition rules for the machine, nor that the machine in question
is 91 for that X has to be a model of ¢.

L—R

Suppose X is a finite structure of the appropriate signature. If it
doesn’t encode a course of computation of 91 then it trivially satisfies
¢ by falsifying the antecedent. On the other hand, if it satisfies the
antecedent then it really is a course of computation for 9(n)t and
therefore—since M (n —it will satisfy the conclusion.

R—L

Suppose every finite X of the appropriate signature satisfies ¢. Then
M (n) cannot halt. For if it did there would be a course of computa-
tion of 9 applied to n whose final snapshot showed 9t in the HALT
state, and such a course of computation would be a finite structure
X E —¢, contradicting assumption.

Note: I have been a little bit hand-wavy in the specification of ¢. In order
for an expression like ¢ to be finitary first-order we probably have to specify an
upper bound for the number of states of 1. However this does not cause us any
difficulties: after all, we are cooking up ¢ on being given 9, so we just take the
bound to be |9].

Something to think about:

EXERCISE 96 (%)

7.5. REFINEMENTS OF THEOREM 7?7 123

Will the same argument show that the set A of formule with arbitrarily
large finite models is not semidecidable? Or the set B of sentences true in all
sufficiently large finite models?

What about the set of sentences true in all infinite models?

What about the set of sentences true both in all finite structures that have even
cardinality and in all infinite structures?

Observe that, despite exercise [06] the set of sentences true in all infinite
structures is axiomatisable, for it is the set of deductive consequences of the set
“there are at least n things” for all n.

7.5 Refinements of theorem [19

Try doing all the constructions of this section using instead of “T" F {n} is total”
something along the lines of “T" {n} converges rapidly”.

124 CHAPTER 7. INCOMPLETENESS

Chapter 8

WQO theory, Kruskal’s
theorem and Friedman’s
Finite Form

Recall stretching from exercise

The stretching relation on @-lists is inductively defined as the C-smallest
set of ordered pairs of Q-lists containing (nil, nil) and containing (l1,ls) if it
contains (l1,t1(l2)), or if hd(l;) < hd(l2) and it contains (t1(l1),t1(l2)).

No list stretches into its tail: for all lists [over a quasiorder, I >; t1(l).
I >; t1(l) by the second clause in the recursive definition of <;, and we prove by
induction that no list can <; something strictly shorter than itself. In contrast
to lists, a stream might stretch into its tail.

There are also finite trees over X, and we need to think how to lift quasiorders
of X to trees over X.

There is of course an inductive definition for tree-stretching for finite trees.

DEFINITION 22 T, <; Ty if
e Both are singleton trees {a} and {b} with a < b; or
e T, <; some child of Ty; or

e The root of T, < root of Ty, and the list of children of T, <, list of children
Of Tb.

PROPOSITION 1 If (Q, <) is a wellfounded quasiorder, then Q-lists are well-
founded under stretching.

Proof: Suppose not, and we had an infinite descending sequence of Q-lists

under stretching. They can get shorter only finitely often, so without loss of
generality we may assume that they are all the same length. But the entries at

125

126 CHAPTER 8. WQO THEORY

each coefficient can get smaller only finitely often, so they must eventually be
constant. |

PROPOSITION 2 If(Q, <) is a wellfounded quasiorder, then finite Q-trees are
wellfounded under tree-embedding.

Proof: Suppose (Q, <) is a wellfounded quasiorder and let (t; :i < w) be a
descending >;-sequence of Q-trees. We will derive a contradiction. The number
of children of ¢; is a nonincreasing function of ¢ and must be eventually constant:
indeed the trees will be of eventually constant shape, and we can delete the
initial segment of the sequence where they are settling down. Because the
shape is eventually constant there are unique maps at each stage, so for any
one address the sequence of elements appearing at that address gets smaller as
1 gets bigger.]

8.1 WQOs

DEFINITION 23 (Q, <) is a wellquasiorder (hereafter WQO) iff whenever
f:IN = Q is an infinite sequence of elements from Q then there are i < j € IN

s.t. f(1) < f(4)-

A natural example of a WQO is the set of (unordered) pairs of natural
numbers with {z,y} related to {n,m} if max(z,y) < min(n,m). It is the well-
foundedness of this quasiorder that ensures termination of Euclid’s algorithm.

DEFINITION 24 A bad sequence (over (Q,<)) is a sequence (z; : i € IN)
such that for no ¢ < j is it the case that x; < x;. A sequence that is not bad is
good. A sequence (x, : n € IN) is perfect if i < j — x; < z;.

Finite sequences (x; : i < k € IN) too will sometimes be said to be bad as
long as they satisfy the remaining condition: 1 < j < k — z; £ x;.

Thus a wellquasiorder is a quasiorder with no bad sequences. With the help
of Ramsey’s theorem we can prove that in a WQO not only is every sequence
good but that it must have a perfect subsequence. (Notice that this is not
the same as saying that in any quasiorder every good sequence has a perfect
subsequence!)

LEMMA 1 In a WQO every sequence has a perfect subsequence.

Proof:
Although this theorem is very easy to prove, the usual (indeed only) proof using
Ramsey’s theorem is so natural and idiomatic, and so important qua prototype for so

many other applications of Ramsey’s theorem, that it is worth doing in full.

Let (Q,<g) be a WQO, and f : IN — @ a sequence. Partition [IN]? into the
owd] picces {{i < j} : £(i) <o J()} and {{i < j} : /) £q J(7)}. An infinite

1We write ‘{i < j}’ for the unordered pair of two naturals ¢ and j instead of ‘{i,5}” when
we wish to supply the information that ¢ < j.

8.1. WQOS 127

subset monochromatic for the first piece would give us a bad sequence, contra-
dicting the assumption that (Q, <g) was a WQO, and the set monochromatic
for the second piece is a perfect subsequence. []

A quasiorder is a WQO iff the strict version of the corresponding partial
order is wellfounded and has no infinite antichains. (miniexercise) Notice this
does not mean that for each x in a WQO there are only finitely many things
incomparable with x, nor even that there are only finitely many equivalence
classes of things incomparable with . What it does say is that if there are
infinitely many things incomparable with x, some of them will be comparable
with some others.

Now some basic facts about WQO’s, some with an algebraic flavour.

PROPOSITION 3

(i) Substructures of WQOs are WQO;

(i) Homomorphic images of WQOs are WQO;

(iti) The pointwise product of finitely many WQOs is WQO;

(iv) The intersection of finitely many WQOs is WQO;

(v) Disjoint unions of finitely many WQO are WQO;

(vi) If <1 and <5 are both quasiorders of a set Q, and the graph of <1 is a
subset of the graph of <o, and <1 is a WQO, then so is <5.

Proof:

(i). Any bad sequence in a substructure is a bad sequence in the whole
structure.

(ii). Suppose f : (@, <) — (X,<) is a quasiorder homomorphism and
S : IN = X a bad sequence of members of X. Consider QT = {q € Q :
(In € N)(f(q) = S(n))}. (We are of course assuming that f is a surjective
homomorphism). Let R be the binary relation R(q,q’) iff (In € IN)(S(n) =
flQ)AS(n+1) = f(q")). RC (QF x Q") satisfies the conditions for the appli-
cation of DC' (in that (Vg € Q")(3¢’ € Q1)(R(q,¢'))) and the output sequence
will be a bad sequence of members of Q.

For (iii) (iv) and (v) it is clearly sufficient to deal with the case of two WQOs.
The proofs of all three use Ramsey’s theorem with exponent 2, or the perfect
subsequence lemma (lemma |[1f). For (iii) consider the product of two WQOs
(@Q,<g) and (X, <x), and suppose we have a bad sequence ((z;,¢;) : i € IN).
By the perfect subsequence lemma there must be an infinite I C IN such that
for ¢ < j both in I we have xz; <x x;. Now consider the sequence of ¢; for i € I.
This must be a good sequence, since (@, <g) is WQO, so there are ¢ < j both
in I with ¢; <¢g g;. So ((zi,q;) : i € IN) was not bad.

The proofs of (iv) and (v) are almost exactly the same. Notice that (iv) tells
us in particular the if <; and <5 are two WQOs of one carrier set, then the
intersection of their graphs is the graph of a WQO of the same set.

Finally (vi) is obvious, but—since it will be generalised later—a bit of detail
may be helpful. A quasiorder is a WQO if the complement of its graph does

128 CHAPTER 8. WQO THEORY

not contain a copy of (IN, <n). This property of (the graph of) a relation is
clearly preserved under superset.
|

8.1.1 The Minimal Bad Sequence construction

There is a well-defined notion of the wellfounded part of a quasiorder (X, <x)
that we saw in exercise [I[7] Sadly there is no good notion of the WQO part
of a relation; however there is an ingenious construction which will do some of
the work to which we would have put such a notion had there been one. Any
quasiorder that is wellfounded but is not WQO has bad sequences, and—as
we shall see—has some that are in some sense minimal. This “minimal bad
sequence” is a key idea, and its significance for us here is that the set of things
below such a minimal bad sequence in a wellfounded quasiorder (X, <) behaves
in some ways as if it were the WQO part of (X, <). A precise definition will be
given latelﬂ for the moment our approach is a two pronged one: (i) How do we
make one? (ii) What can it do for us once we have got it?

Let (X, <x) be a wellfounded quasi order that is not WQO.

Let A be the set of proper initial segments of bad X-sequences, and let
R(s,t) hold if ¢ is an end-extension of s by one element x, with x minimal so
that s with « on the end is in A. Notice that (Vs € A)(3t € A)(R(s,t)) so the
conditions of DC apply.

Let 2y be a minimal member of {x : there is a bad sequence whose first
member is 2}. Let x,4; thereafter be a minimal member of {z : there is a bad
sequence whose first n members are (xg...2,_1) and whose n + 1th member is
is x}. Let us say that a sequence constructed by this algorithm is an MBS.

The following remark is not needed just yet but crops up naturally here. If
we topologise Q“ in the usual way by giving @ the discrete topology and Q%
the product topology, we find that if @ is a quasiorder that is not WQO then
the set of bad sequences is a closed subset of @Q“ in the product topology. That
is why the MBS algorithm—which is a greedy algorithm—works. The set of its
outputs is a closed set.

REMARK 15 If Q is a QO that is wellfounded but not WQO then the set of
MBSs is a closed subset of Q.

Fortunately we do not need every subsequence of an MBS to be an MBS.
We need every such subsequence to be bad, and we also need every sequence
which is in some suitable sense below an MBS to be good.

LEMMA 2 Let (X, <) be a wellfounded quasiorder that is not a WQO and
B = (by,by...) be an MBS. Let X' = {x € X : (In)(x < by)}. Then (X', <) is
WQO.

2By the reader!

8.2. KRUSKAL’S THEOREM 129

Proof: Suppose S = (s, s1...) is a bad sequence from X’. We will prove by
induction on IN that nothing in S is below b,,. This is clearly true for n = 0, as
follows. If s; < by then the tail of S starting at s; is a bad sequence beginning
with something less than by contradicting minimality of bg.

For the induction suppose that nothing in S'is below any of b; ... b,. Suppose
now that, per impossibile, there were s; < b,41. Consider the sequence that
begins by ...b, and continues s;, s;4+1 It can’t be bad, because b, 1 was
minimal among the set of elements that are the are n + 1th members of bad
sequences beginning bg ... by, and s; < b, 41 rules s; out as a candidate. So this
sequence contains a good pair. Both S and B are bad, so the good pair must
be a b; < s with j < n and k > i. Now consider s;. It is in X’ so there is a
by, in B with s, < b,,. This m cannot be < n, by induction hypothesis, so we
must have m > n. But then we have j <n < m with b; < b, (in fact b; < by,)
contradicting badness of B. []

8.2 Kruskal’s theorem
Next we show that (finite) lists over a WQO are WQO.
LEMMA 3 If (X, <) is a WQO, so is (X< <;).

Proof: We use reductio ad absurdum. Suppose that (X, <) is a WQO but
that (X <% <;) is not. We know by now from proposition 1| that (X<« <;) is
wellfounded, so let us construct a minimal bad sequence (a; : i € IN) of lists.
Look at the heads of the lists in the minimal bad sequence. These are WQO by
hypothesis so (by lemma [1)) there must be an infinite subsequence (b; : i € IN) of
(a; : i € IN) such that for ¢ < j, hd(b;) < hd(b;). Throw away all the other lists
in this bad sequence. We now have a bad sequence of lists whose heads, at least,
form an increasing sequence. Now consider the tails. We want to show that the
tails are WQO as well, for that will complete the proof for us by using the third
clause of definition[8} We know from that t1(l) <; [always, so these tails belong
to a collection of things below this minimal bad sequence, (a; : i € IN), in the
sense of lemma Therefore the sequence of tails of elements of (b; : i € IN) is
not a bad sequence. So there are i < j such that t1(b;) <; t1(b;). Therefore
(by the third clause in the inductive definition of <;) b; < b;, so (b; : i € IN) is
not a bad sequence, and (a; : i € IN) is not bad either. |

Now we can prove
THEOREM 22 (Kruskal) Finite trees over a WQO are WQO.

Proof: By wellfoundedness of <, if there is a bad sequence there is a minimal
bad sequence, and let (a; : i € IN) be one. Look at the roots of the trees in
thiis sequence. Since the roots are from a WQO there must be an increasing
w-subsequence (b; : ¢ € IN) from (a; : ¢ € IN) such that if i < j then (root of b;)
< (root of b;) (this was lemmal[I)). Let I; be the list of children of a;.

130 CHAPTER 8. WQO THEORY

We know that the roots of the a; form a strictly increasing sequence. What
we now have to look at is an w-sequence of lists of children of the trees we
started with. These trees form a collection of trees below (in the sense of lemma
the minimal bad sequence we started with. So, by lemma [2[they are WQO,
so lists over them are WQO as well. Therefore there are ¢ < j with I; <; I,
so (by the third clause in the definition of <;) it follows that a; <; a;. Thus
(a; : 4 € IN) is not bad.

|

8.3 Some bonnes bouches

8.3.1 How to get some large ordinals

REMARK 16 Let (X,<x) be a countable QO. Then the following are equiva-
lent:

2. The set {a : 3 homomorphism 7 : (X, <x) —» ({B:0<a},<)} is
bounded below w1 .

Proof:

—(i) — — (ii) is proved by the observation above about infinite antichains.

(i) — (i)

Consider the (downward-branching) tree (B, =) of bad sequences from X
ordered by reverse end-extension (each bad sequence is above all its bad end-
extensions). (X, <x) is a WQO (no infinite bad sequences) so (B, =) is well-
founded and therefore has a rank. The carrier set X is countable so the set B
is countable, and the rank of (B, =) is therefore countable too. We will show
that this rank is an upper bound for {« : 3 homomorphism 7 : (X, R) —» {8 :
B <al}.

Let 7 be such a homomorphism. We quasi-order X by the relation x <, y
iff 7(z) < w(y). Evidently (the graph of) <, is a superset of (the graph of)
<x. Accordingly there are fewer bad sequences in (X, <) than there are in in
(X, <x). Consider the tree of descending chains in (X, <) ordered by reverse
end-extension in the style of (B, =).

It is easy to see that the rank—in this tree—of any descending sequence is
simply 7 of its last member, so the tree must have rank «. It is also straight-
forward that any descending chain in (X, <) is a bad sequence in (X, <x), so
this tree is a subtree of (B, =), so (B, =) has rank at least « too.

|

The surjections here are, in contrast to the rank function from page the
precise opposite of parsimonious: the rank function tries to use as few ordinals
as possible. Here we are trying to use as many ordinals as possible—while
remaining surjective.

8.3. SOME BONNES BOUCHES 131

8.3.2 Friedman’s Finite Form of Kruskal’s Theorem

Consider the one-point WQO, and suppose there is a natural number k such
that for all n there is a bad sequence of length n:

n n mn n
T3, T ... T

n

where T7" is a finite tree (over the one-point WQO) with k + ¢ nodes. Then

7
there will be an infinite triangular matrix of trees (one row for each n):

Figure 8.1: An infinite triangle of trees: I

T}
¢ T3
Ty T

ot T T T

Consider the first column of figure the sequence (T7": n € IN). Each
tree in this sequence has only k + 1 nodes, so only finitely many of them can be
distinct. So some of them must be present with infinite multiplicity, and let us
call “T}’ the one that appears first. Now discard all the rows that do not begin
with 77. Now consider the second column and obtain T» analogously. Iterate
with all subsequent columns. Eventually we will have constructed an infinite
bad sequence of trees. But this would contradict theorem [22] Therefore the
initial assumption was wrong, so there is no such &, and we have proved

THEOREM 23 Vk3dn if Ty ...T, is a list of trees where T; has k + i nodes,
then there are j <l <n s.t. T; <1Tj.

Observe that this proof is nonconstructive. We have not so much proved
Vkdn as —3dk—3In or Vk——existsn.

132 CHAPTER 8. WQO THEORY

Chapter 9

Elementary Degree Theory

DEFINITION 25 B is many-one reducible to A (written B <,, A) if there is
a total computable f s.t (Yn)(n € B «— f(n) € A).

The point being that if I can correctly answer “is it in A?” then I can
correctly answer “is it in B?”. Observe that there is no requirement that f be
surjective: we might not need the whole of A.

Evidently <,,, is a quasiorder of IN.

KK is the Halting set, {{(n,z) : {n}(z)|}

Some writers (e.g. [64]) define IK to be the diagonal halting set: {n : {n}(n)}.
The full halting problem is no harder than the diagonal halting problem. To
ascertain whether or not {n}(x)] using only the diagonal halting oracle it suf-
fices to build the machine that computes the function with constant value
{n}(z). (That is: it suffices to be able to compute—from n and z—the e
such that {e}(k) = {n}(x) for all k.) ...and then apply it to its own index:
{er(e) = {n}(x).

I'm not sure at this stage what is involved in choosing between these two
sets, and (for the moment) whenever furnishing a proof of a theorem about the
halting set I shall use that form of the definition that was used in the proof that
I found.

It might be a useful reality check to write out a proof that the two versions
of the halting set are <,,, each other. Can’t do any harm.

The following two trivialities will help to clear the air. The first thing to
note is that if B <,,, A and A is decidable then B is decidable. The second is:

REMARK 17 A <,, K iff A is semidecidable.

Proof:
Since IK is semidecidable it is the domain of a partial recursive g. If A <, IK
in virtue of f then A is the range of g o f, which makes A semidecidable.

For the other direction, suppose A is semidecidable. Define a binary partial
(computable) function f by f(e,z) =: if e € A then 1 else 1. By theorem

133

134 CHAPTER 9. ELEMENTARY DEGREE THEORY

(the S-m-n theorem, p. there is now a computable function g such that,
for all z and e, {g(e)}(z) = f(e,x). From this we have (Ve)({g(e)}(g(e)+—
e € A). Thus (Ve)(e € A +— g(e) € IK). (Here we take IK to be the diagonal
halting set). But now A <,,, IK in virtue of g.

|

This observation is very much in the spirit of complete problem from com-
plexity theory. Indeed there is a connection between complete problems and
many-one reducibility: NP-complete problems (to pick a salient example) are
maximal among NP problems wrt many-one reducibility. The result here, re-
mark is telling us that the halting problem is complete for the class of
semidecidable problems.

LEMMA 4 Let ACIN. Then N\ K <,,, A iff A is productive.

Proof:

(Proof supplied by Zachiri McKenzie, titivated by tf. In this proof K is the
diagonal halting set.)

First we establish that IN \ K is productive. Let n be such that {n} is total
computable and W,, C IN\ K. If, per impossibile, {n}(n)] then n € IN'\ K by
assumption on n—but then {n}(n)t, so n € (IN\K)\ W, and we have computed
a witness to the fact that IN \ K # W,,. Indeed (if we think of the index of a
semidecidable set as the index of a partial computable function whose domain
it is) then the the fact that IN \ K is productive is witnessed by the identity
function.

Suppose IN\K <,,, A. That is to say there is a total computable f : N — IN
such that (Vn € N)(n € N\ K «— f(n) € A). Fix such an f.
Let T'(-, -) be the Turing machine such that: T'(e,n) runs {e}(y) for ally € N,
and f(n) in parallel; if {e}(y) | and f(n) = y then T'(e,n) outputs y.
Define
g(xz) = the index of the machine T'(z, -).

Note that g : IN — IN is a total computable function. Now, for all x € IN,

W) ={n € IN: T(z,n) 1}
={neIN:(Fy e N)(f(n) =y Awa(y) 1)}

— f—l ccwx.

Define F' = f o g. I claim that F' witnesses the fact that A is productive:
Let n € IN be such that W,, C A. If F(n) = f(g(n)) ¢ A then g(n) ¢ IN \ K.
And so, g(n) € Wy, and F(n) = f(g(n)) € W,, C A, which is a contradiction.
This shows that F(n) € A. Now, this means that g(n) € IN\ K. And so,
g(n) & Wy(n), which implies that F'(n) = f(g(n)) & f“Wy(n) = W,. This shows
that A is productive. []

Despite the neatness of remark and lemma |4} the correct notion of re-
ducibility (at least when we are considering maximal unboundedly-finite notions
of computations as we are in this course) is Turing-reducibility. This is slightly
more subtle, and it requires a bit of motivation.

9.1. COMPUTATION RELATIVE TO AN ORACLE. 135

9.1 Computation relative to an oracle.

We add an extra style of command to the language, as it were:
consult-oracle O, branch on the answer.

That is to say: we spice up our machines so that as well as doing whatever it was
they were doing already they can now ask an oracle “Is n in O?” [where O is the
set that the oracle knows about and we don’t] and branch on the answer, and
they can do this as often as they like. We then say A < B if the characteristic
function xa (total version) for A can be computed by a machine of the new
style that has access to an oracle for B.

In this setting, where we are considering recursion relative to an oracle, we
let {e} be the eth member of the set of functions-in-intension—that—call-oracles.
Think of {e} as code written in a language that allows invocations of oracles.
Then {e}“ is the function computed by {e} when given access to the oracle C.
The notation ‘{e}“’ doesn’t mean “the eth program that calls the oracle C”
[which is what I used to think].

It looks as if, in the first instance, “recursive-in” is defined between sets and
functions. (A function is recursive in a set). However we can define what it is
for f to be recursive in g.

Lerman [39] defines <p between functions rather than between sets. And
he does it by considering the set of functions obtained like the general recursive
functions but containing g as an extra founder. Thus, f is recursive in ¢ if f is
a member of this set.

We can also do it as follows: the program for f is allowed to ask for g(n),
and it will be given either a value or the news that g(n)f.

Then we can say that A is recursive in B if x4 is recursive in xyg. Observe
that if we do this it won’t matter whether we take the characteristic function for
A to be An.(if n € A then 1 else fail) or An.(if n € A then 1 else 0).

Observe that the quasiorder <r is prima facie weaker (contains more or-
dered pairs) than the quasiorder <,,, so there can be A < IK where A is not
semidecidable. In particular IK <7 (IN \ IK) but K %, (IN\ IK).

Why?

Clearly we have X <p (IN'\ X). So, in particular, (N \ IK) <y K. If per
impossibile A <7 IK were sufficient for A to be semidecidable we would be able
to infer that IN'\ IK were semidecidable, and thence that IK were decidable. But
we know it isn’t. This give us a natural example—IN \ IK—of a set that is <p K
but is not semidecidable.

Observe that this means that you can have two sets of the same degree of
unsolvability (namely IK and IN \ IK) where one is semidecidable and the other
isn’t. Whether or not you are semidecidable might not be entirely determined
by your Turing degree.

136 CHAPTER 9. ELEMENTARY DEGREE THEORY

So we might be in with a chance of finding A, B satisfying A £ B £p A
because A and B are not semidecidable.

EXERCISE 97 (*)

Surely Turing reducibility and many-one reducibility must be the same? Surely
when I have finitely many questions to ask the oracle I can bundle them up
into a single question to ask the set-of-finite-subsets-of-the-oracle? So anything
Turing-reducible to A is many-one-reducible to Py, (A) (the set of finite subsets
of A) and that is no more complex than A.

What has gone wrong?

We observed at the outset that < is a preorder: transitive and reflex-
ive. The intersection of a preorder and its converse is an equivalence relation.
In this case the equivalence classes are called (Turing) degrees or degrees
of reducibility, and < induces a partial order of the degrees. The symbol
‘<7’ is often simplified (in context) by dropping the subscript. We also tend
to equivocate between Turing-reducibility—between—subsets-of-IN and Turing-
reducibility—between—degrees, and when we are asserting that <7 holds between
two degrees we tend to use the lower case Roman letter ‘d’ (written in boldface)
to range over degrees. If A < B we often say “A is recursive in B”.

0 is the degree of decidable sets. d’ is the degree of the halting set for
functions that call a set of degree d.

Observe that the proof of the unsolvability of the halting problem relativises:
we can think of theorem [12] as saying 0 <7 0’. Then the same proof will show
d <7 d’ for any d.

EXERCISE 98 (%)

An infinite set X C IN is introreducible if it is recursive in all its infinite
subsets. By considering a labelling of the perfect binary tree, or otherwise, show
that every Turing degree contains an introreducible set.

There are various nice properties a poset can have. Look again at exercise
The technique there will show that the-Turing-degrees-with-<; form an
upper semilattice (binary lubs exist) but that’s the end of the good news. No
other nice properties hold.

9.2 Kleene-Post, Friedberg-Muchnik, and Baker-
Gill-Solovay

“Is the relation <7 a total order?” one might ask. It turns out that the answer
is ‘no’. In fact:

THEOREM 24 There are incomparable degrees even below 0'.

9.2. PRIORITY METHODS 137

Proof:

We prove this by a fairly straightforward diagonal construction, Let us start
by enumerating the set {0, 1}<“ of all finite strings from {0,1} as (n, : n € IN).
Each string is thought of as a function from an initial segment of IN to {0, 1}.

When the superscript is an 7,—which of course is finite—it might happen
that {e} calls for the oracle to rule on an input at which 7, is not defined. In
these circumstances {e}"s(z)f. [It seems to me that this means that {e}"=(x)
is a different notation from {e}?(x) because If B is finite then {e}?(z) will
diverge—if at all—only because of e; it always gets answers from B...whereas
{e}"=(x) might diverge because it doesn’t get an answer from the oracle.]

Observe that

o if {e}"(z)] then {e}“(z)] for every C extending 7n,. (We are thinking
here of C' as an infinite sequence of Os and 1s—as a characteristic function,
in fact.)

o If {e}Z(z)| then there is a € IN such that {e}"(z)|

We will construct two sets A and B such that A £ B £ A. There will be
two sequences of binary strings:

(v, : m € IN) such that a4 extends «; and U Q= XA;

i€IN

and

(B : n € IN) such that 811 extends f; and | J 8; = x5
i€IN

We initialise ag = fg = 0. Thereafter. ..

e Stage 2s+ 1. Let z be the first number not in the domain of ay,. [That is
to say, it is length(ags) co’s we start counting at 0.] If there are any 7, that
are end-extensions of fa such that {s}"=(x)| then use the least such a and
set ags11 to be aggiiy, where y is the least element of {0,1}\ {{s}"(z)}.
[Beware overloading of braces]. And (2541 is set to be 1,::0. If there is
no such 7, then set aosy1 1= aog::0 and PBasy1 = Pos::0.

e Stage 2s+ 2. Let = be the first number not in the domain of Ba54;. [That
is to say, it is length(B2s41) co’s we start counting at 0.] If there are
any 7, that are end-extensions of aggy1 such that {s}™(x)| then use the
least such b and set Pas42 to be PBasi1::y, where y is the least element
of {0,1} \ {{s}™(z)}. [Again, beware overloading of braces]. And agsyo
is set to be my::0. If there is no such 7, then set agsyo := agsy1::0 and

Bas+2 = Bast1::0.
The idea of the construction is that at stage 2s (resp 2s+1) you do something

to ensure that B # {5} “IN (resp. something to ensure that A # {s}®“IN.) At
the end of the construction the union of the as is x4 and the union of the Ss is

XB- n

Sr PSP

138 CHAPTER 9. ELEMENTARY DEGREE THEORY

We have constructed A and B, neither Turing-reducible to the other, but
we have done it by appealing to an oracle for the halting set (at the point on
p indicated by the ‘=& sign in the margin). The result is that they are
<7 the halting set. However we haven’t ensured that they are <, the halting
set (remember that that <; contains more ordered pairs than <,,, so that—for
example—(IN \ IK) <7 IK) so the construction doesn’t guarantee that they are
semidecidable. That is our next challenge.

9.2.1 Friedberg-Muchnik

THEOREM 25 Friedberg-Muchnik
There are <p-incomparable degrees of semidecidable sets.

Proof:

We are trying to build two sets A, B C IN such that neither is recursive in
the other. In particular neither of them can be recursive tout court—decidable.
Both A and B are constructed as a union of finite approximants: (A; : i < w)
and (B; :i < w) and this will make them semidecidable, which is clearly the
best we can hope for. The fact that neither A nor B are decidable means that
the A; (resp. the B;) cannot be ordered by end-extension, because that would
mean A and B could be enumerated in increasing order and that would make
them decidable. (See exercise [75]) However the A; are totally ordered by C.
Do they start off empty, with Ay = By = 07 A useful thought is that it actually
doesn’t matter a damn what finite sets Ay and By are. (In fact my guess is
that we can even take Ay and By to be decidable moieties, like the odds and
the evens.) We have countably many conditions all of which are incredibly easy
to satisfy (= can be satisfied in infinitely many ways), and we can satisfy any
finite bundle of them with our hands tied behind our back. The only hard part
is to satisfy them all simultaneously. The reader might perhaps be reminded at
this point of the Baire Category Theorem, in the form that a countable family
of dense open sets has nonemepty intersection. Managing to land inside any
one dense open set is a piece of cake. Arranging for a “tail-event” like landing
in all of them requires a bit of ingenuity.

We wish to ensure that for no e is {e}# the characteristic function for B nor
is {e} P the characteristic function for A. The requirements are x4 # {e}? “IN;
xB # {e}*“IN, for each e € IN.

Each requirement x4 # {e}?“IN is looking for a witness, an € IN s.t.
{e}B(x) = 0 (which will say that x is not a member of the eth set computable
from B) or {e}Z(z)!. When this happens we can put = into A. Thus = will
be the desired witness to the fact that {e}?“IN is not x4. (Mutatis mutandis
swapping A and B.) [You might think that = could be a witness if {e}?(z) = 1
(which will say that x is a member of the eth set recursive in B)—so that we
then make sure never to put « into A—but we never put things into IN'\ A, only
into A.]

9.2. PRIORITY METHODS 139

Each requirement has its own list of potential witnesses. The lists are dis-
joint, and written in increasing order. We make them disjoint so that no number
is compelled to discharge more than one requirement. It’s not that no number
can discharge more than one requirement, it’s that we can arrange things so
that no number is called upon to, and it keeps things simple. A propos of the
observation that Ay and By don’t have to be empty but could be decidable
moieties ...what we really do need is that all the lists of candidate witnesses
for the a-requirements should be disjoint from Ay (and the B-lists similarly of
course).

Earlier requirements have higher priority than later requirements. At any
stage a requirement has a barrier and a list of candidate witnesses.

At stage n you run the first n requirements for n steps, each processing
the current head of its witness list, consulting oracles A,, and B, ...by which
we mean the following. {e} is allowed to ask about membership of {m : m <
sup(A,)} (mutatis mutandis {m : m < sup(B,)}). The point is that if {e} halts
on 17 (say) when consulting this oracle and gives 0 (so that we want to put 17
into B) it might have done so because it asked whether or not 3 € {m : m <
sup(A,)}, and got the answer ‘no’, whereas 3 later got put into A.

Any requirement that asks for information outside that initial segment is
told to crash (for that round). As long as it asks only about membership in
{m :m < sup(4,)} it gets an answer which will be yes or no.

A computation of {e}#(n) merits attention when it halts with output 0.
Then we put n into B. (mutatis mutandis for B). Then the requirement is
met. Every time a requirement is met it freezes (“Bank!!”) an initial segment
of A (or B) which means that, for all requirements, it deletes—from the list
of candidate witnesses for all requirements of lower priority—all the candidates
below the barrier.

Clashes happen when a decision of a lower-priority requirement is overruled
by a higher-priority requirement putting up a barrier that voids the computation
it (the lower-priority requirement) has made.

A requirement might decide to put a number into A (or into B). When
it freezes it thereby erases from lists-of-potential-witnesses for requirements of
lower priority all witnesses that lie in the frozen area. This inevitably resets
some computations.

A requirement r might be feeling happy, thinking it has found a witness.
The purported witness is a witness as long as the initial segment frozen by r
is indeed frozen. However a higher-priority requirement might come along and
write something into the frozen area, with result that—as it might be—17 is
now a member of A when r has been acting on the assumption that it wasn’t.
So the witness that r had been banking on is no longer a witness, and r has to
try another candidate. However this can happen only finitely often, and r has
infinitely many candidates to play with.

Pin the following to the wall.

140 CHAPTER 9. ELEMENTARY DEGREE THEORY

Once you put something into A (or into B) you never take it out again.
You put things into A (or into B) but never into their complements.

You do NOT add members in increasing order: A and B are NOT
decidable.

The nth requirement can be reset at most 2" — 1 times.

You can prove by induction on the requirements that they are satisfied
in the limit.

Here’s another way in. Imagine you are the deemon whose job it is to look
after the B-requirement {17}4 # xp. When the bell strikes for the start of
round n you look at the head of your list of potential candidates—z, say—and
compute {17}4(z) for n steps. In the process you might be called upon to
consult A. At this stage you only have access to A,,, but you consult it anyway.

e If you ask your membership-of-A question of something greater than sup(A,,)
you crash. Smackie handy. Sit in the corner until the next round.

e If you halt and get output 1 then that’s no use to you. Discard x and
sit on your hands until the next round (when you will use the next thing
after x in your list of candidate witnesses)

e If you halt and get output 0 you are pleased: we can put x into B,,;1 and
you are satisfied for the moment. The system managers then raise the
barriers for all A-requirements of lower priorityﬂ so that none of them can
write anything into A that undermines your reason for putting x into B.
That is to say, for every A-requirement of lower priority, they erase—from
that requirement’s list of candidates—all the candidates that are smaller
than sup(A4,,).

Once you are satisfied you sit out subsequent rounds—unless something bad
happens. Something bad?! Well, a deemon guarding a requirement of higher
priority than you might put some a into A which is smaller than some of the
things in A,,. This can be a problem because it could be that your decision that
{17}(x){= 0 happened because you asked the oracle if a was in A and it said
no—whereas it now turns out that the correct answer is yes! So you are back
to square one.

It’s important to remember that we don’t now delete x from A. We never
delete anything! We leave it in. It no longer serves its original purpose but it
isn’t actually doing any harm.

9.2.2 Omitting Types

I insert this here because people say that the priority method has deep connec-
tion with omitting types. I still don’t understand why, but you might!

IWhy stop there? Why not raise the barriers on all requirements? because you might end
up going round in circles!

9.2. PRIORITY METHODS 141

A type in a propositional language £ is a set of formulae (a countably infinite
set unless otherwise specified).

For T an L-theory a T-valuation is an L-valuation that satisfies T'. A valu-
ation v realises a type X if v(o) = true for every o € X. Otherwise v omits X.
We say a theory T locally omits a type X if, whenever ¢ is a formula such that
T proves ¢ — o for every o € X, then T —¢.

THEOREM 26 The Omitting Types Theorem for Propositional Logic.
Let T be a propositional theory, and X C L(T) a type. If T locally omits X
then there is a T-valuation omitting 3.

Proof:

By contraposition. Suppose there is no T-valuation omitting 3. Then every
formula in ¥ is a theorem of T so there is an expression ¢ (namely ‘T’) such
that T + ¢ — o for every 0 € X but T I/ —¢. Contraposing, we infer that
if T+ —¢ for every ¢ such that T+ ¢ — o for every o € ¥ then there is a
T-valuation omitting X. []

However, we can prove something stronger.

THEOREM 27 The Extended Omitting Types Theorem for Propositional Logic
Let T be a propositional theory and, for eachi € IN, let ¥; C L(T) be a type.
If T locally omits every %; then there is a T-valuation omitting all of the 3;.

Proof:

We will show that whenever TU{—A4;,...-A4;} is consistent, where A,, € X,
for each n < i, then we can find 4,11 € ;41 such that TU{—A4;,...7A4;,7A4;11}
is consistent.

Suppose not, then T (/\ —A;) = Ay for every A; 1 € ¥;41. But, by

1<5<i
assumption, T locally omits 3;11, so we would have T — /\ —A; contra-
1<5<i
dicting the assumption that T'U {—A;,...—A;} is consistent.

Now, as long as there is an enumeration of the formulee in £(T), we can
run an iterative process where at each stage we pick for A;;1 the first formula
in 3;41 such that T'U {—-Ay,...2A;,—A;41} is consistent. This gives us a
theory T'U {—A4; : i € IN} which is consistent by compactness. Any model of
T U{-A; : i € IN} is a model of T that omits each ¥;.

|

There is a version of this theorem for predicate (first-order) logic. (It deals
with n-types for n > 0.) I doubt if we will get round to it. Look at [67], theorem
6.62.

A Conversation with James: 1/x/12

The word “transversal” usually denotes a set that, for a family S of pairwise
disjoint sets, meets each member of S on a singleton. (Use of this idea enables

142 CHAPTER 9. ELEMENTARY DEGREE THEORY

us to give a purely set-theoretic formulation of the axiom of choice: one that
does not make any use of—for example—pairing functions). For our purposes
the word will denote a 1-1 function with domain S (and members of S are no
longer assumed to be pairwise disjoint) that picks a member from every S € S.

EXERCISE 99 (%)

1. Use propositional compactness to show that if S is a family of finite sets
such that every finite ' C S has a transversal then so does S. [something
to think about: can you capture Hall’s Marriage theorem in propositional
logic in this way?]

2. Ezhibit an Np-sized family S of countably infinite sets such that every
countable ' C S has a transversal but S does not.

3. Finally if S is an N, -sized family of sets all of size < W, such that every
S’ C S with |§'| < Xy, has a transversal then so does S. [hard! you need
a priority argument]

A Conversation with James: 8/iv/12

James says that with infinite injury priority construction “you pick the leftmost
child node that is visited infinitely often”.

What is going on here? One has the picture of a tree through which one
is trying to define a branch, by lots of false starts. Now what is this tree,
exactly? What are its nodes? Don’t forget that in the construction of the two
sets by finite approximation we never remove anything that we put in, so the
backtracking involved in the false starts doesn’t take the form of deleting things.
So the nodes are not things like “Put n into A”; they must be things like “x is
the number in A that meets requirement n”. Presumably the nodes are finite
partial functions f from requirements to IN so that “f(n) = k” sez that k is the
number that satisfies requirement n.

9.2.3 Baker-Gill-Solovay and ;P = NP?
See [4].

THEOREM 28 There are oracles with respect to which P = NP and also ora-
cles with respect to which P # NP.

Proof:

The reason for the appearance of this result here is that the proof of the
existence of an oracle O such that—relative to O—P # NP, uses a priority
argument like that used in the proof of Friedberg-Muchnik. We will write “P© =
NP and “P° # NP©”.

For the first part (an oracle O such that P© = NP®) we show—and this bit
sounds as if it should be easy—that if O is an oracle that is PSPACE-complete

9.2. PRIORITY METHODS 143

(or EXPTIME-complete) then P© = NP®. I'm planning to leave this part to
the reader.
The second part requires a bit more work.

First a few definitions

Recall from section that |z| is the length of the string x, and 1™ is the
string of length n consisting entirely of 1s.

We need a new definition. For a language B C {0,1}* let Up C IN be
{lz| : = € B}.

We enumerate all oracle-consulting Turing-machines. Because of the way
the story has come down to me the oracles that are consulted by the oracle-
consulting Turing-machines are languages—mamely infinite sets C {0,1}*—
whereas the machines themselves have numerals (rather than strings) as input
and output.

The idea is to cook up a language B C {0, 1}* with the property that
Ug ¢PB but Up € NPB

The second is easy: it is sufficient for a machine to guess a particular string
of the desired length. The first requires a bit more work. The Turing machine
is trying to establish, by interrogating B, whether or not B contains a string
of length n. It’s allowed to ask about the membership of any particular string
of course, but it can take only a polynomial amount of time, and there are
exponentially many strings of length n that might be in B and about which it
might have to ask.

We will construct B as a union of a C-increasing sequence (B; : i € IN) of
finite B; as usual. (This time the B; are ordered by end-extension. There is
no reason to try to stop B from being decidable: computability-in-polytime is
a much stronger condition than decidability).

At stage i we obtain B,y from B; by [possibly] putting something into B;.
The role of this something is to ensure that T;, the ith Turing machine (with
access to B;) does not compute—in polytime—the characteristic function for
Up. We need an input on which it gives an incorrect answer. This input will be
n;, a natural number chosen to be bigger than the length of any string in B;.
We fire up T; with input n; and allow it to consult B;.

If T; halts in time < n;™ and says yes we must be sure to put no strings of
length n; into B. We can secure that end by simply doing nothing. If T; halts in
time < n;™ and says no (thereby alleging that B does not contain any strings of
length n;) then we put 1™ into B;;1. This will ensure that T; (when consulting
B) gives the wrong answer to the question of whether or not B contains a string
of length n;.

Is this enough? It’s clearly the right idea. The problem is that if T; doesn’t
give an answer to n; in time < n;™ it might nevertheless give a correct answer
in polytime for all inputs—by having a huge constant of proportionality or by
having an exponent higher than n;. If we only investigate it once we might find

144 CHAPTER 9. ELEMENTARY DEGREE THEORY

that on the one input 7 it is still running after n™ steps (so we do nothing) but
it still eventually halts in polytime every time and gives the right answer. The
key is to give us infinitely many opportunities to bugger up any given Turing
machine. Let T" be a Turing machine that computes a total function with range
{yes, no} and runs in time k - n° (polytime in n). Then, for n suff large,
n" > k- n®, so if we sample the machine’s behaviour for sufficiently large n we
will be able to refute it.

Accordingly the plan is to enumerate the Turing machines in such a way that
every Turing machine is visited infinitely often. At each stage we perform the
action described two paragraphs above. That is, if the machine being examined
does not halt we do nothing; if it halts and says yes, do nothing; if it halts and
says no we put 1™ (but of course any string of length n; will do) into B, ;. If,
at the end of time—after infinitely many visits—it still has not halted then it
is evidently not a total function and we don’t have to worry about it. (We will
have taken no steps in regard to it but then none need to be taken)

This strategy will at least ensure that every Turing machine that halts in
polynomial time on every input doesn’t correctly answer membership questions
about Ug. If it reliably halts in polytime then eventually we will reach an n;
bigger than the exponent and from that visit onwards it has enough time to
halt if it wants to. u

Ben Millwood writes:

Consider the oracle machine that does the following;:

on input n, construct the string 1™ and consult the oracle for B, returning
its result.

Clearly this machine always halts in polynomial time. Moreover, B that you
construct in your B-G-S proof consists only of strings that are repeated ones,
so the above machine decides Up. Hence, Ug € PP, contrary to your proof.

I have a pretty good idea of what is going on here but the margin of time
between now and my two (!) exams tomorrow is too narrow to contain a full
explanation. I think you really have to pay attention to the strings that each
machine queries, so you don’t end up changing your mind about what’s in B
(as it is, it seems that a machine can query 1™ with B; which says no, but later
you put 1" into B; for some j > 7).

There’s an alternative proof in the lecture notes for Computational Complex-
ity http://www.qi.damtp.cam.ac.uk/node/251 (page 34). I think it doesn’t
address what happens if your machine run doesn’t halt in its alloted time, but
I think if you just count that as a rejection then the proof goes through.

(Another conspicuous difference between your proof and that one is that the
definitions of Ug are different. You have just |z|, which is a number, versus that
proof’s 117 a string in a language. This matters because the size of the input
is the parameter to the polynomial for which your machine is allowed to run,
and |z| can be given as an input in log-|z| bits.)

Ben

http://www.qi.damtp.cam.ac.uk/node/251

Chapter 10

Ordinals, Fast-growing
Functions, Consistency and
Totality Proofs

Synopsis: induction up to €y to prove consistency of PA. Goodstein, a generali-
sation and a converse.

Schmidt-coherent. Build a tree out of the predecessor relation. Fundamental
sequences lie along branches of the tree. If @ <z f then f,(0) < fz(0) and

(Vn > 0)(fa(n) < fa(n)); if @ < B then (V*°n)(fo(n) < fa(n)).

At some point use the apercu about the destination of w forming an w-
descending sequence in IR as we pile more and more stuff on the end and press
stuff down. It pops up!-—and at places where coherence fails.

10.1 The Ordinal ¢; and the Consistency of Peano
Arithmetic

A longer wellordering contains fewer ordered pairs! think it’s true that for any
countable ordinal there is a wellordering <, of IN of that length whose graph is
a subset of <. No, that’s obviously rubbish. What might be true is the for any
countable ordinal « there is a subset of < that is a WQO whose tree of bad
sequences has rank «a. And wellfounded inductions over worders with a proper
subset of pairs are stronger. For compare: (Vy)((Vz <, y)(F(x)) — F(y)) is
harder to prove than (Vy)((Vz <n v)(F(z)) — F(y)) if < has fewer ordered
pairs than <.

Recall from definitior[J] that functions IN — IN can be preordered by domi-
nance thus: f < g if for all suff large n, f(n) < g(n). It’s pretty clear that IN[X]
(the polynomials in one variables with coefficients in IN) is linearly ordered by
dominance in order type w®. (just replace every occurrence of ‘z’ by ‘w’). Now

145

146 CHAPTER 10. PROOFS AND ORDINALS

consider the slightly fatter set, containing functions of one variable IN — IN
which is inductively generated from the set of polynomials in one variable with
coefficients in IN by allowing 2/ whenever we have f. Thus we have things like

9 - 2
x¥ 43 x 2 F 5

It can be easily seen analogously that if we order these by dominance we get ¢q.
However if we consider the somewhat larger inductively defined family of expressions
that contains all the functions in (i) and is closed under exponentiation, so it contains
things like

9,. 2 5 2943, 22, 2. .
(:EII 34 0% 205 n xzburm)(rz 2% 4?45 4 4 1000y

then it is far from obvious that the set of [the functions denoted by] these expressions is
totally ordered by dominance, let alone well-ordered by dominance, but as it happens
it is. The order-type has not been computed, tho’ some bounds are known. see [48],
[20] and [40].

I will now sketch how to prove the consistency of Peano Arithmetic by trans-
finite induction. (I have lifted this from the first edition of [44]; this material
has been removed from later editions.) The proof goes back to [54].

We have a system of arithmetic with an w-rule:

THF1) THFQ)...TFF®)...
'k (Vn)(F(n))

It also has a rule of cut:

TFAA ATFA
TFA

The assumptions (the leaves of the proof-trees in this system) are true atomic
sentences of the kind ‘0 = 0’, ‘0 # S(0)’ and suchlike (no variables!)

Proofs in this system can be seen as countable trees (each node [inference]
might have a countable infinity of premisses). Clearly we are not going to be
interested in proofs that have infinite paths—after all, any formula whatever can
be supplied with a proof with an infinite path. We are interested only in proofs
whose corresponding trees have no infinite paths. Such a proof can be decorated
with ordinals in the standard manner from chapter How large a countable
ordinal might one need to decorate a tree of a proof in this system? There
are only countably many formulse in the language of arithmetic so each node
can have only countably many immediate predecessors, and a sup of countably
many countable ordinals is countable. This means that the rank of a proof
must be countablﬂ This invites us to consider, for a limit ordinal o < w{'¥,
the collection T'(«) of those formulae that have proofs whose trees have rank
< . For suitable «, T'(a)) might be closed under the finitary rules of inference

IThere is enough structure around for us not to need countable choice to prove this.

10.1. THE ORDINAL ¢y AND THE CONSISTENCY OF PEANO ARITHMETIC147

and thereby be a set deductively closed in the usual sense, to wit: a theoryEI
Theories arising from countable ordinals in this sense have the potential to be
very interesting . .. particularly if they are consistent! Mendelson [44] says that
T'(wq) is the first-order theory of the standard model.

When do we know that such a theory is consistent? One way of detecting
that a theory is consistent is to prove cut-elimination for it. This is because
there is no cut-free proof of the false.

This is roughly the point of departure for the analysis in [44]. The labellings
of the trees that he uses there differ slightly from the rank function on a naked
tree but the idea is the same. Decorate the proof tree by labelling endpoints
with ‘0’, and the rank of a node is the sup of rank + 1 of the nodes above
it—unless the node corresponds to a structural rule, in which case the rank is
the same as the rank of its predecessor.

If we eliminate cuts from a proof of a certain rank, what can we say about
the rank of the cut-free proof we obtain? We get blowup in the case where the
cut formula was introduced by an application of the w-rule. It turns out that
any proof of rank 8 with a cut C' on a formula of length [can be transformed
into a proof of potentially higher rank, but with the desirable feature that the
cut C has been replaced by cut(s) on formule of length < [. The rank of the
new proof may be greater, but at all events no greater than 2°.

Suppose we can show that if we eliminate the a cut from a proof in T'(a) we
obtain a proof in T'(8) with 5 > «, 8 depending only on a. We will have gone
to great effort (we will done transfinite induction up to 8 to prove termination
of the process of elimination of cuts) and all we have to show for it is a proof
that T'(«) is consistent if T'(8) is consistent—and that of course was obvious
all along, since § > « whence T(«) C T(8). However if § = « (so that if we
take a proof in T'(«) and we remove the cuts from it the resulting proof is still
in T(a)) then our work will not be in vain, for it will have shown that T'(«) is
consistent—using only transfinite induction up to a—rather than beyond it as
far as .

(What had been worrying me here is that if the proof is infinite there may be no
cut of greatest rank, so how can we prove that the process halts? The point is that
all proofs that arise from embedding proofs of finitary arithmetic in this system are
finitary and have finite cut degree.)

EXERCISE 100 w is the first solution to the equation o = 2%. What is the
next solution?

DEFINITION 26 An ordinal o is an epsilon number iff it is a solution to
a = w®, or equivalently iff the ordinals below it are closed under exponentiation.

The foregoing means that, for any e-number €, we can prove by transfinite
induction on ‘e’ that

21 shall equivocate between thinking of T'(a) as a theory and thinking of it as a body of
proofs.

Beware—this cut rule is cut
as in Mendelson not cut as in
Gentzen.

148 CHAPTER 10. PROOFS AND ORDINALS

if @ < € then every formula that has a proof of rank < « has a
cut-free proof of rank below ¢

Thus

REMARK 18

If « is an e-number and we can induct as far as o (i.e., we have a wellordering
of length «) then we can recursively eliminate cuts from proofs in T(a) while
remaining inside T'(«) thereby proving T'(«) consistent.

In particular, if we can induct as far as €, then this will show that T'(eg)
is consistent. So: what do we know about this system T'(ey) whose consistency
we can prove if we can induct as far as ¢y? It turns out that T'(eg) is at least
Peano Arithmetic.

10.2 The Goodstein function

The Goodstein function, known as G (for obvious reasons) is an example of a
function that is manifestly computable but very far-from-manifestly total. To
discover what G(z) is to be, we first express = as a sum of powers of 2, and then
express the exponents as sums of powers of two, and so on recursively. Thus, if
we do this to—say—37, we get

32+44+1=

254224 1=
24+l 122 1 =
222+1+22+1

This is the extended base 2 representation of a number. I have written the
‘2’s in boldface to remind us that this expression is in extended base 2E| Now
replace all the 2’s by 3’s and subtract 1. This gives us 33°+1 4 33 The result
is still in extended base 3. Now replace all ‘3’s by ‘4’s

444+1 4+ 44

and subtract 1 to get
I |

But this is not in extended base 4 representation because of the minus sign, and
we have to express 4* — 1 as a sum of powers of 4 with a few 1’s left over, thus

41+1+1 +41+1+1 +41+1+1 +41+1 +41+1 +41+1 +4+4+4+ 1 + 1 + 1
so the whole thing is

444+1 +41+1+1 +41+1+1+41+1+1+41+1 +41+1 +41+1 +4+4+4+1+1+1

3there is a reason for the choice of a Greek font for the first letter of ‘extended’.

10.2. THE GOODSTEIN FUNCTION 149

(The ‘4’s are still in boldface to remind us that this number is being written
in extended base 4.)

Then we can replace all ‘4’s by ‘5’s, subtract 1 and continue. How long can
we continue doing this? These numbers seem to go on getting bigger and bigger!

However, if we try it on 2, the process stops: 2 becomes 3 — 1 which in
extended base 3 is 1 + 1 becomes 1 becomes 0. If we try it on 3 we get 2! + 1
becomes 3' becomes 4' —1 =14 1+ 1 which will decay to 0 as before. we are
now in a position to announce a definition:

G(z) is the length of the sequence of terms generated in this
way (if it is defined).

Thus the Goodstein function is actually a cost function for the computable
function IN— {0} defined by

INPUT n

write n in extended base 2

1 =:3

REPEAT

n =: replace ‘¢’ with ‘4 + 1’ in representation of n
rewrite the result in extended base ¢ + 1 representation;
subtract 1

UNTIL

n=>0

PRINT n

and this definition makes it clear that G is p-recursive.

Thus G(2) = 4 and G(3) = 5. G(4) is quite large but can be computed by
hand. One might think that for at least some larger numbers the sequence goes
on for ever; remarkablyﬂ this is not so: G is total computable.

THEOREM 29
If there is a wellordering of length €y then G(n) is defined for all n € IN.

Proof

The key to the proof is to spot the trick that the conjuror is playing on
you. Your attention is being directed to the apparently inexorably increasing
sequence of numbers, so that you don’t notice the thing that is actually decreas-
ing.

Start with a number in extended base 2 representation. Consider the ordinal
in Cantor normal form obtained from this expression by replacing every ‘2’ by
an ‘w’ In our first example above (37), this would be w*”+! 4 w® + 1, since
the extended base 2 representation of 37 was 22 +1 422 4 1.,

4Try proving by induction on ‘n’ that G(n) is defined; you will get nowhere.

5For these purposes we take the Cantor Normal Form of an ordinal to be the wordy, verbose
version that does not allow multiplication by naturals, so that an ordinal is a sum of powers
of w.

150 CHAPTER 10. PROOFS AND ORDINALS

To every number in the sequence we are building (whose length will be G(n))
we will make correspond an ordinal in precisely this way—(That was why I wrote
the base in boldface so that we can say:)—simply replace the boldface number
by w. Numerals not written in boldface are not replaced by ‘w’. Thus for each
i the ith member of the sequence (on the left) will correspond to the ordinal to
its rightﬂ

227+1 1 22 1| W e 1
333+1 + 33 Wt
441 1 3.4343.4243.4+3 w408 34 w? 34w -3+3
55°+1 1 3.5343.5243.542 W 33 w2 3w 342
66°+1 +3.63+3-62+3-6+1 Wt 4w 3 b w? 3w 341
77 3.7 3.2 43,7 Wt w3 31w 34w 3
88°+1 1 3.8513.82+2.8+7 Wt LB 3 w2 34w 247

151"+ 1 3.153 +3.152+2.15 W 3 3 1w 3w 2
16641 3 2 w® 41 3 2
16 +3-16°+3-16°+16 +15 w +w’-34+w-34+w+15

So the length of the sequence we are building will be the same length as a
particular decreasing sequence of ordinals. Why is it decreasing? The entries
in the left-hand column keep increasing as long as there are boldface numerals
around, because we increase each boldface numeral by one at each stage. In
the short term, this more than compensates for the 1 that we keep subtracting.
In contrast the entries on the right have w instead of a boldface numeral, and
we do not increase the w, so there is nothing to counteract the slow attrition of
subtraction of 1.

Any decreasing sequence of ordinals must be finite, so the original sequence
of numbers was finite, so G(n) is defined. In this case the ordinals we are using
are all below €g, so it will suffice to have a wellordering of that length.]

Oncee you understand the proof of theorem you can see immediately
that from the same assumption used above—namely that the set of ordinals
below ¢y is available to us, along with its ordering, and the information that
that ordering is wellfounded—we can prove not only the totality of G but also
the totality of any function computed like G but with the tweak that we are
not required to decrement every single time we increase the base, as long as
we promise, when we find ourselves at a nonzero number, to decrement at
some point. Consider what one might call the Nondeterministic Goodstein
Function where at each stage in the computation of G(n) one makes a random

5T have reverted to the style of Cantor normal form that allows multiplication by naturals
in order to save space!

10.2. THE GOODSTEIN FUNCTION 151

choice about whether to decrement or not. Clearly an analysis analogous to
the analysis above will establish that any nonterminating computation of the
Nondeterministic Goodstein function has only finitely many decrements. Let us
minute this fact.

REMARK 19 If there is a wellordering of length €y then the nondeterministic
G(n) is defined for all n € IN.

Why the odd title?

Goodstein’s paper was entitled “On the Restricted Ordinal Theorem”; “The
restricted ordinal theorem” was the name current at that time for the allegation
usually expressed nowadays by the form of words “the ordinals below ¢y are
wellordered”. This is loose talk: €y is an ordinal, and for any ordinal « the
ordinals below « are wellordered: that’s a complete triviality and cannot be
used to prove anything. The bit that does the work is the assumption that
there is a wellordering of length «. For consider how the proof would procede
in a formal system: for each input to G we define a decreasing function from
IN to the ordinals below €y, and we need the range of that function to be a set,
so we need that collection to be a set, and we need the ordering on it to be
a wellordering. One might suspect that Goodstein’s purpose in devising this
rather odd function was to exhibit a computable total function whose totality is
not demonstrable in Peano arithmetic, precisely because the totality relies on an
induction that is not available in PA. However’] the reason is more likely to do
with the view——current around that time—that ¢y was the supremum of those
ordinals that had a finite description. That in turn may be something to do with
the fact that the ordinals below ¢y are closed under +, x and exponentiation,
and that those three operations are the only operations in the Doner-Tarski
sequence that correspond to actual operations on wellorderings. In case you
didn’t know, of is the order type of the set of functions B — A which are
0 at all but finitely many places, ordered colex—where otp({4,<4)) = a and
otp({B,<gB)) = B. The next operation—f,, the “tower of exponents”—has
no concrete representation of this kind. This is because it grows faster than
n +— Ji(n) for any k € IN, so we cannot find any expression R(z,y) in the
languages of set theory such that |y| = |f3(x,)|. Actually it’s not the next one
after exponentiation that explodes the type hierarchy but a slightly later one.

I do not know if this consideration is explicit in the literature of the 1930’s
and 40’s .. .it could be worth checking.

We’d better complete Goodstein’s [putative] project by showing a converse
to namely that if the nondeterministic Goodstein function is total then PA
is consistent.

REMARK 20 There is a definable total ordering of IN with the property that
it is of length €q if every nonterminating run of the nondeterministic Goodstein
function has only finitely many decrements.

"Thank you Stan Wainer!

Worth spelling out in some
detail

152 CHAPTER 10. PROOFS AND ORDINALS

Proof:

\ 4

\ 4

(Nl <6) (IN,|<7) ...

(I, <2) <Iq

We construct the total order as a direct limit. In fact it will be not merely
definable but also actually decidable. And we can exhibit it without the as-
sumption that the nondeterministic Goodstein functions is total; we don’t need
that assumption until we attempt to prove that the ordering is a wellordering.

Let ((IN,,, <n):2 <n <w) be a family of copies of (IN,<i). Define, for
each 2 < n < w, an injective homomorphism ¢,, : IN,, < IN,,;; as follows. Given
y € IN,,, think of it as written in extended base n. Then replace every ‘n’ by
‘n 4 1’; this number is to be our value of i, (y). Now consider the direct limit
(“colimit”) of this system, which we will call (W, <,,). Every element of the
direct limit (W, <w) is an w-sequence of natural numbers. Indeed any such
sequence is a computable function, and thus a natural number, so W is clearly
countable. (Actually—assuming countable choice—a direct limit of countably
many countable structures is always countable, but never mind). However we
will continue to think of elements of W as functions.

Thus, as per the slightly more detailed figure that follows, i sends 1 to 1,
sends 2 to 3, sends 3 (= 2+1) to 4 (= 3+ 1), sends 4 (= 22) to 27 (= 3?), sends
5(=2%+1) to 28 (= 3%+ 1) and so on. Similarly i3 sends 1 to 1, 2 (= 1+ 1)
to 2, sends 3 to 4, sends 4 to 5, sends 9 (= 3'71) to 16 ...

AW <w)

10.2. THE GOODSTEIN FUNCTION 153

256

Each member of W is a function from a terminal segment of IN, typically a
proper terminal segment. Consider IN5 for example. The only numbers in INg
that are in the range of is are sums of distinct powers of 3 (since they arise by
replacing ‘2’ by ‘3’ in the extended base 2 representation of something). The
sequence that is to become the finite ordinal n in (W, <y/) is a sequence that
starts at IN,, 1.

If <w is illfounded there will be a descending w-sequence. (We do not need
DC for this, since the carrier set is wellordered, being a subset of IN.)

Suppose f; : i < w is a descending sequence in (W, <y). Every f;, being a
member of W, is an w-sequence, and it starts at IN; for some i. Without loss
of generality we can pass to a subsequence of f so that the sequence of is s.t.
members of the sequence start at IN; form an increasing sequence. Recall that
we are thinking of the f; as functions on terminal proper segments of IN, so
that f;(n) is not defined if f; first appears at IN; with j > 4. Given this family
fi 1 i < w consider the evaluation sequence g for the modified G function (so
that g(n) € IN,, for all n) defined as follows. Set ¢g(0) to be some natural large
enough to ensure that g(j) > fi1(j), where IN; is the copy of IN where f; first
appears. The idea is that g decrements only when a new f; appears. That is
to say, g(n+1) =: i,(g(n)) unless IN,,;; is one of those copies of IN at which a
new f; starts, in which case g(n + 1) =: i, (g(n)) — 1.

154 CHAPTER 10. PROOFS AND ORDINALS

It may well be that, for all f,, it happens that for sufficiently large values
of m we have g(m) <,, fn(m), but the values of m for which this first happens
increase monotonically with n. This means that any function f in W that lies
entirely <y -below all the f; must lie <y -below g. But, by assumption on g, f
now must be the zero element of W.

Finally we have to check that the order type of <y is indeed €y. To do this,

we have to find, for any ordinal a < €p, a sequence which is a member of W

to which it corresponds. Every ordinal o < €y has a Cantor normal form €(a;),

which is a finite string of characters, so there is an upper bound a on the natural

numbers that appear in €(«)). The w-sequence that will correspond to « starts
in IN,.

|

Recall at this point the results of chapter (for example theorem
where we saw how natural assertions that certain functions are total can turn
out to be unprovable. What remark gives us is a specific function whose
totality implies the consistency of PA.

It seems pretty obvious that the Goodstein function is monotone increasing.
However we have to open a can of worms if we want to prove it. This introduces
a new topic.

10.3 Hierarchies of fast-growing functions

Need the concept of predecessor function; P, («)

Look at the picture on page [I50] P, is the function you need if you are to
obtain the n + 1th ordinal in the right-hand column from the nth ordinal in
the right-hand column: P, of the nth ordinal in the right-hand column is the
n + 1th ordinal in the right-hand column. To be precise:

P,(0) :=0;
P(a+1):=a;
P,(\) := P,(A\n).

... where)\, is the nth member of the fundamental sequence for A. Fundamental
sequences (see for example Q 10 on Professor Leader’s second example sheet
from Part II Logic and Set Theory in 2015) go back to Hardy [30], an article
rediscovered by Kreisel, Lob and Wainer. ‘P’ for predecessor. We need another
auxilliary function:

Ho(n) :=n;
Ha(n) = Hpn(a)(n —+ 1);
H)\(TL) = H)\n(n).

and a function ord: IN x IN — w; defined so that ord(n,m) is the ordinal you
obtain by writing m in extended base n and then replacing all the ‘n’s by ‘w’.

10.3. HIERARCHIES OF FAST-GROWING FUNCTIONS 155

We’d better check that if we replace Hy by any strictly increasing function
f:IN - IN with (3k € IN)(Vn € IN)(f(n) < n-k) then we get the same
dominance behaviour. This could make an exercise.

The significance of H is as follows:
Evaluate Hoqk,2)(2). First step gives Hp, (ora(k,2))(3); then we get, succes-
sively:

Hp, (P, (ord(k,2))) (4);
Hp, (py(Py(ord(k,2)))) (5);
Hp, (Py(Ps(Ps(ord(k,2))))) (6);

and this continues until we reach an n such that P, (P,_1(... (ord(k,2))(n+
1)...)) = 0, at which point we return the answer n + 1. The ‘n’ works like
a kind of count variable that records the length of the evaluation sequence so
far. Thus Hoq(r,2)(2) is the length of the descending sequence of ordinals in the
right-hand column, starting with ord(k, 2), which is to say, it is G(k). Hang on
to this fact: it’s useful!

G(k) = Hord(k,2)(2)'
REMARK 21 If G is total, so too is H, for every a < €.

Proof: We prove by induction on IN that (Vo <€) (Ha(n)l).

Assume G is total. That is to say H,(2)], for all o < 9. That takes care of
the base case, n = 2.

Induction step: Suppose true for all a < €g that H, (n)|; we will show by UG
on ‘a’ that the same goes for n + 1. Let a be arbitrary. We want H,(n + 1)|.
But Hy(n + 1) = Hyt1(n) and the RHS is defined by induction hypothesis on
‘n’. [|

This is clear enough, but it involves reasoning explicitly about ordinals.
What are the chances of reproducing this proof (or anything like it) in a theory
of natural numbers? Well, instead of ordinals-below-¢y, we can reason about
(gnumbers of) character strings for ordinals-below-€q. It is simple enough to
define a set of natural numbers that are codes for ordinals-below-¢p, and it is
clear that this set will be decidable. We can even define an order <’ on the
codes which (seen from outside) orders them like the ordinals below ey. The
tricky part is justifying induction on <’. That is to say, the challenge is to prove
all instances of

(¥n)[(¥m <" n)(d(m)) = ¢(n)] — (Vn)(d(n))
How might we prove this? One naturally expects to use induction of some
sort. The only kind of induction that we have straightforwardly available is

156 CHAPTER 10. PROOFS AND ORDINALS

mathematical induction. It is true that transfinite induction over IN? can be
simulated by a nested induction (“inner loop”) as in the second proof of totality
of Ackermann (theorem [8)) but that technique offers hope only up to ordinals
below w?.

We cannot in fact do this in Peano Arithmetic, and the reason is that transfi-
nite induction up to €g enables us to prove the consistency of Peano Arithmetic.

The Hardy hierarchy is a hierarchy of functions IN — IN each one dominating
all previous ones. There is also ...

DEFINITION 27 The Fast-Growing hierarchy.

Fy(x) :=x+1;
Foqi(z) = Fo™H(2);
Fx(z) = F(F \)(2)-

(T shall use capital ‘F” rather than lower-case ‘f’ to forstall confusion with
the Doner-Tarski hierarchy from p.) The fast-growing hierarchy with finite
subscripts is the Grzegorczyk hierarchy from [29]E|

It turns out that

REMARK 22 (Va)(F, = Hye)

EXERCISE 101 (%)

Think of the fast-growing hierarchy as a function F from the second number
class to Baire space, NN . Both these spaces have natural topologies: the second
number class has the order topology and IN™ can be thought of as the product
(with the product topology) of countably many copies of IN (with the discrete
topology).

Is F' continuous with respect to these topologies?

There is an obvious possibility of proving by induction on the ordinal sub-
script that every H,, is total. What one has to think about is the formal system
in which such a proof might be couched.

Just to reassure myself that I am in familiar surroundings I shall prove
REMARK 23 For a < w, F, is primitive recursive.

Proof: Clearly true for o = 0. Define iter g so that iter(g,n) : m — (¢"(m))
by means of the following declaration:

iter(f,0) m:=m; iter(f,(n+1)) m:= f(iter(f,n) m)

81 want a medal for spelling this name correctly. Craig McKay (my first Logic teacher) told
me that Grzegorczyk was usually known in the West as ‘G’—not because he was a spymaster
but merely in order to sidestep the challenge to which I have just risen.

10.3. HIERARCHIES OF FAST-GROWING FUNCTIONS 157

we see that iter(g,n) is primitive recursive as long as g is. Then
Fop1:n — iter(Fy,n+1)n

is primitive recursive as long as F, is.
|

Indeed there is even a converse: we can show—by analogy with the proof
that the Ackermann function dominates all primitive recursive functions—that
every primitive recursive function is dominated by an F),, with n < w.

EXERCISE 102 Complete this proof sketch from Stan Wainer.

“For the primitive recursive bounding, you can show that if f(0,a) =
g(a) and f(x+1,a) = h(z,a, f(x,a)) where both g and h are assumed
to be bounded by F,, then f(x,a) < F,(Fo(F,...(Fy(a+x)...)
with x 4+ 1 iterates of F,, (or something like this). Then you get <
F,Fo,F,..FoF, (max({x,a})) with one extra iterate, since F,(b) >
2b forn >0 .

Since Fny1(x) = F, iterated x + 1 times on x, this yields f(z,a) <
Fri1(maz{z,a}) < F,(maz{z,a}) for max{zx,a} > n. F, is a ver-
sion of Ackermann, as can be shown fairly easily by comparison with
the original.”

The Goodstein function is roughly F,,. The modified version where you use
base 2 not extended base 2 (so you leave the exponents alone) corresponds to
Fww .

10.3.1 Good behaviour of the F,, and the Schmidt condi-
tions

We would like to establish that every F, is strictly increasing and F,, dominates
Fg whenever o« > . However this is actually quite tricky, and the attempt
to secure it gives rise to very subtle conditions on fundamental sequences. It
turns out that—for ordinals below eyp—all the conditions one needs are in fact
satisfied by the “obvious” system of fundamental sequences.

EXERCISE 103 For o an ordinal, let o' be the least ordinal that is the length
of a terminal segment of a wellordering of length o.. Prove that o is always a
power of w.

EXERCISE 104 (%)

1. Characterise the “obvious” system of fundamental sequences for ordinals
below €q.

2. Establish that, using those fundamental sequences, F,, is strictly increasing
and F, dominates Fg whenever f < a < €.

This will lead us to the Schmidt conditions from [55].

Might it be a good idea to
think of a family of funda-
mental sequences as a three-
place relation on the ordi-
nals?

158 CHAPTER 10. PROOFS AND ORDINALS

10.3.2 Schmidt-coherence

Now we return to the endeavour of showing that a sequence of functions defined
in the style of definition ?? will be monotone increasing with each function
dominating all earlier ones. The idea is to prove by induction on « that f, is
monotone increasing and dominates all earlier fz. Given the induction hypoth-
esis it’s easy to prove that f, dominates all earlier fz. Suppose f,, is strictly
increasing for each ¢ € IN and later fs dominate earlier fs. If f, is An.fq, (n)
then it dominates every «;. Why isn’t strict monotonicity obvious too? If f, is
strictly increasing so is f,+1. The hard case is that of limit ordinals.

‘We want
fHn< frun+1). This holds iff
o < fan(n+1). But

. n<fa,(n+1)

because fy, is strictly increasing by induction hypothesis. Then to complete
the proof it will suffice to show

o (n+1) < fa (1)

which will follow if (VAYR)(S(Ay, Ant1)) where S(o, §) is:

a < fB— (Vm)(fa m < fzg m).

Now this clearly isn’t going to happen: otherwise what could f,,(0) possibly
be? Duh! What one can ask for is that fy,,, has overtaken f), by the time
argument 1+ 1 comes along. This we can bring about by controlling our choices
of \,,.

The construction of the f,s ensures that S(a,) holds if 8 = a4+ 1 or if
B is limit and o = By. To be sure of S(a,) when o < § are members of a
fundamental sequence we need to specify that they are related by the transitive
closure of the union of these two relations. A family of fundamental sequences
satisfying this condition is Schmidt-coherent.

Formally:

DEFINITION 28 Let F : A — AY be an assignment of fundamental sequences
to an initial segment A of the second number class. Define the step-down
function f: A — A by

if f=a+ 1 then o else F5 0

and f(0) is of course undefined.

10.3. HIERARCHIES OF FAST-GROWING FUNCTIONS 159

We can think of f as a digraph, in which all paths lead to 0. If we do this then
we can see that it is actually a tree, and a tree with no infinite descending paths.
Any digraph like that is of course also the graph of a transitive relation, and
if we reverse the arrows we obtain the Hasse diagram of a wellfounded (strict)
partial order.

If we zoom out a bit and show only the branches consisting entirely of limit
ordinals we get

160 CHAPTER 10. PROOFS AND ORDINALS

w- wt-5
w - wt 4
w.

w3
w- wt-2
w - w?
w.
w
0

[Is every wellfounded partial order on a set an intersection of two wellorder-
ings of that set?]

This order is written <z by Schmidt [55]—who calls it the step-down relation
of F.

Then

F is Schmidt-coherent iff

(VA € A)(X limit — (Yn € IN)((F A n) <7 (F A (n+1)))).

Equivalently: every fundamental sequence lies entirely within one branch of the
tree.

The first picture is <z restricted to ordinals below w?. The ordinals in this
picture are a fundamental sequence for the first ordinal not so far seen, which
is w?, so we put w? on the end of a new sprout coming off 0, to its right. We
can now put in the ordinals below w®, as in the second picture.

Is there an identifiable wellfounded tree such that a family of fundamental
sequences is just a decoration of this tree? branches thru’ the tree are limit
ordinals. This give a topology on the limit ordinals. Is this the same as the
order topology?

10.3. HIERARCHIES OF FAST-GROWING FUNCTIONS 161

EXERCISE 105 In exercise[104 you defined the natural assignment of funda-
mental sequences to ordinals below €y: check that it is Schmidt-coherent.

Now define a natural assignment of fundamental sequences to the ordinals
below I'y, and check that that, too, is Schmidt-coherent.

We are now in a position to prove

THEOREM 30 (Schmidt, [55] theorem 1)
Consider the conditions:

(a) Fy is strictly monotonic;

(b) if Fy is strictly monotonic so is Fqy1, and Fy(0) < Fu11(0), and
Fo(r) < Foya(z);

(¢c) Fx(n)= Fy, (n) when A is limit.

If the system F defined on the initial segment A satisfies conditions (a), (b)
and (c) and is Schmidt-coherent then, for each oo € A,

(i) F, is strictly monotonic, and
(i1) if o is a limit ordinal then

F,,(0) < Fa, ., (0)
and
Fo,(z) < Fo, s ().

Proof:
We show by transfinite induction on « that, for each oo € A,
(i) holds and
(ili) B <r a — F3(0) < F(0); B8 <r a — Fg(z) < Fo(x)
[(ii) follows from (iii) because F is Schmidt-coherent.]

The case o = 0 is easy.

Suppose a = 7 + 1: By induction hypothesis, (i) holds for v; hence, by (b),
it also holds for a.

By (b), (iii) holds if 8 = ~; but 8 <r a iff 8 = vV 8 <z +; hence, by (iii)
of the induction hypothesis, (iii) holds for all 8 <z a.

« a limit ordinal:

For each z € IN F,(z) = F,, (z) < F,,,,(z) by (iii) of the induction hy-

Qg1
pothesis
< Fy, ., (x +1) by (i) of the induction hypothesis
=F,(x+1).

Hence (i) holds. Moreover, if 0 < = < w, Fy,(z) < F,,(x) = Fy(x), by (iii)
of the induction hypothesis, since F is Schmidt-coherent; but f <r a +— g =
ag V B <F ag; hence—Dby (iii) of the induction hypothesis—f <r a — Fp(z) <
F,(x).

Also, 8 <r a — 8 <Fr ap V B = ag which implies F(0) < F,,(0) = F,(0),
by (iii) of the induction hypothesis.

162 CHAPTER 10. PROOFS AND ORDINALS

Thus (iii) holds for a.

The following is from [55], but the proof is due to Nathan Bowler.

THEOREM 31 For every proper initial segment A of the second number class
there is a [are uncountably many, in fact] Schmidt-coherent system of funda-
mental sequences for the limit ordinals in A.

Proof:

Let f be a bijection IN +— {8 : 8 < a} for some countable ordinal «,
satisfying f(0) = 0. Suppose that f(k) is a limit ordinal. We define a sequence
(sk :n € IN) as follows

e sk is that element of {i < k : f(i) < f(k)} on which the value of f is
maximal.

e sk ., is the minimal element of {i € IN: f(s%) < f(i) < f(k)}.
It follows that

(a) s5 <k

(b) For any i with f(s§) < f(i) < f(k), we have i > k;

(c) For any n € IN and any i with f(sk) < f(i) < f(k), we have i > s*;
(d) The sequence (f(s¥) : n € IN) is strictly increasing with limit f (k).

(d) says that (f(s¥):n € IN) is a fundamental sequence for f(k). We take
these sequences as the elements of our system of fundamental sequences for the
limit ordinals below «. Let o be the corresponding step-down function, and
define 6 : IN — IN so that o - f = f-0. Thus when k € IN is such that f(k)
is limit we have §(k) = s5. We must show that, for any limit ordinal 8 < «
and any « in the fundamental sequence for 3, the sequence (c™(7y) : n € IN) run
through all lower members of that fundamental sequence. To establish this, it

will suffice to prove the following

LEMMA 5 Let k be such that f(k) is a limit ordinal, let n € IN and i € IN be
such that f(s¥) < f(i) < f(k). Then 6(s¥) < o(f(i)).

Proof:

This is immediate if f(4) is successor, so suppose it is limit. So o(f(i)) =
f(6(3)) = f(s8). By (c) above we have s < i, and by assumption we have
f(sk) < f(i), so by definition of s} we have f(s) < f(s§) = o(f(3)). [|

REMARK 24 There is no definable family of fundamental sequences for all
a < wi.

10.4. PREPOSTEROUSLY LARGE COUNTABLE ORDINALS 163

Proof: Suppose F were such a family. We then define by recursion on w; a
sequence (W, : a < wi) of wellorderings of IN (so each is a subset of IN x IN).
0 is easy, successor steps are easy; at a limit A use the fundamental sequence
FA, to get the codes Wry,, you have already formed for each FAn and then
piece them all together one after the other to get a wellordering of IN x IN. Use
a bijection IN x IN +— IN to turn this into a code for ¥, cvJFAn—which may
have overshot the mark, so take the right initial segment and you have a code
for A\. (The sum of a sequence of ordinals might be bigger than its sup). None
of this uses any AC.

This shows that if we have a function assigning a fundamental sequence to
every countable ordinal, then we have a function assigning to each countable
ordinal a wellordering of INx IN. But any wellordering of INx IN is coded by a
real number so this implies ®; < 280, Tt is known that this is independent of
ZF. [|

(I think that when (in [30]) Hardy introduced the Hardy Hierarchy—of which
more later—he was trying to solve the continuum problem)

Suppose there is a function g : IN — IN that dominates all f,. Then, for each
n € IN, let h(n) be the sup of the as such that g has permanently overtaken f,
by stage n. h is clearly nondecreasing. For every a there isn € IN s.t. h(n) > «,
so h is unbounded below wq, and is an w-sequence of countable ordinals whose
sup is wi, contradicting countable choice.

This shows that if we assume countable choice (or merely that w; is regular)
then there cannot be a Schmidt-coherent system of fundamental sequences for
the whole of the second number class.

Rose says that theorem 7?7 is best possible, and credits [3] I'm sceptical
about this because he also says that Schmidt, too, proves that it is best
possible—and she doesn’t!

If it really is best possible, it’s presumably because a Schmidt-coherent
family for all countable ordinals would give us an embedding of wi into
the reals, or something like that. There can be long sequences (> wi)
of functions with each function dominating all earlier functions, but they
don’t increase as fast as Wainer-Buchholtz.

10.4 Preposterously Large Countable Ordinals

Notes of Countable Ordinals Reading Group meeting on
16/v/2014

(look also at taranovsky’s ordinalnotations.ps in my assorted-paper-archive folder)
Under the guidance of Jeroen van der Meeren and Michael Rathjen I finally
began to get the first glimmers of an understanding of the use of a large ordinal
in describing initial segments of the countable ordinals. What follows is my notes
of the discussion of this topic at the meeting of the ordinals reading group on
16/v. Present were: your humble correspondent, Professors Leader and Dawar,

LT

164 CHAPTER 10. PROOFS AND ORDINALS

Arno Pauly, Philipp Kleppmann and an unidentified Ph.D. student from the
Lab. We put our heads together and made some progress, and this file records
my understanding of that progress.

Key word lurking in the background is impredicativity.

The following gadgetry goes back to Bachmann. [need a ref]

It’s probably a good idea for the reader to start off by keeping in mind the
Veblen picture of rows and rows of ordinals. The top row consists of powers of
w, written in increasing order left-to-right. Going down the page, each subse-
quent successor row consists of the fixed points in the enumeration of the row
immediately above it; at limit stages the row is the intersection of all the rows
above it. We assume that the reader is familiar with this picture.

For ordinals o and ¢ we define a set C(«, () of ordinals and a function
¥ : On — On, by a simultaneous recursion on On?. The thing we are really
interested in is the function 9J; the C(«,) are mere scaffolding, and they play
no role in the system of notations with which the ¢ gadgetry will eventually
furnish us.

To construct C(a, ¢) you start with a set containing 0 and 2, all the ordinals
less than ¢, and 9(7) for all v < «; you then close under + and o — w®. Our first
stab at the definition of 9(«) is: the least ¢ such that ¢ € C(«,). Bear in mind
that ¥(«) is not defined as the least thing not in C'(«, ¢). For one thing, it would
need two arguments—}(«a, ()—not one. It’s a complex diagonalisation and you
need to read the definition carefully. Bind the ‘(’ somehow, and “the least ¢ such
that ¢ & C(a, ()” sounds sensible. However we add a clause so that ¢(«) is not
the first ¢ s.t. ¢ € C(a,) but rather the first ¢ s.t. (€ C(a,{)Aa € C(a, (). Tt
will become clear later what purpose is served by this extra a € C(«, () clause,
but you should not expect it to be clear at this stage.

Here is something that threw me and it might throw you. It’s pretty clear
that the function «,(— C(q,() is C-increasing in both arguments, but you
mustn’t jump to the conclusion that ¥ is strictly increasing—it isn’t, as we shall
see. The best way to understand what is going on is to fix a small « and consider
C(a,0), C(a, 1) and so on, so let’s do some of these by hand to calm our nerves.
We will see that the first few values of ¢ are the first few e-numbers.

C(0,0) contains 0 and Q. We don’t have to put any values of ¥ into it co’s
the first argument is 0. We then close under addition and 8 — w”. Pretty
clearly it is going to contain everything less than €¢y. It won’t contain €; itself
(how could it, after all?) but it does contain a lot of stuff beyond 2. We will
see later [much later] what that stuff does. For the moment it does nothing.

What about C(0,1)? It’s just going to be the same set. C(0,w) is going to
be the same set, too. Observe that if ¢ < ¢y then ¢ € C(0, (), so all the C(0, ()
are going to be the same set all the way through all the ordinals less than ¢q.
Indeed even C(0, €p) is the same (tho’ C(0, ¢y + 1) is bigger).

The first ¢ such that ¢ € C(0, €) is therefore €5. The second (&) condition on
candidates for ¥(a) (the condition that requires that o € C(a, ()) is satisfied—
all it requires in this case is that 0 € C'(0,0)—so we conclude that ¥(0) is €.

10.4. PREPOSTEROUSLY LARGE COUNTABLE ORDINALS 165

Notice that there is never any need for us to compute C(0,() for any ¢ >
9¥(0); since the only purpose served by the C(a, () is to enable us to calculate
Y¥(a), once that is done we lose interest.

How about C(1,0)? It’s like C(0,0) except that we put ¢¥(0) (which is €g)
into it before closing under the operations. This means that we get everything
less than €; (think: Cantor Normal Forms for ordinals < €;). As we run through
the ¢ < €1 we get nothing new in C(1, () until we reach ¢; itself, so we conclude
that 9(1) = €;. As before, the (&) condition on ¢ does nothing because all
it requires is that C(1,¢) should contain 1, and we already know it contains
everything below €;.

Similarly we conclude that ¥(n) = €, for n < w. A picture emerges in which,
for small arguments, 9 enumerates the € numbers. In fact Jeroen tells me that
9 is injective and all its values are e-numbers.

Fixed point € numbers are sometimes called x-numbers, so that kg is the
least solution to K = €,. Let us think a bit about what ¥(ko) might be. We
start with C(kg,0). This set contains 2 and all the e-numbers below kg, and
is closed under + and ¢ ~ wS. Now, recalling what we know about Cantor
Normal Forms, we can see that this act of closure will put into C(kg,0) every
ordinal below kg (plus a lot of big rubbish beyond 2). This immediately tells
us that the sets C'(kg, ¢) for ¢ < kg are all going to be the same set as C(kg,0).
We observe that kg & C(ko, ko) so we might expect that we then declare ¥(xo)
to be kg. However note that kg is not only the second argument at this stage,
but also the first, so we look at the & condition—“a € C(«,()”"—and we see
that it is not satisfied! So we have to look at a few more C(kq, ¢) before we can
say we have reached ¥(k¢). In fact we have to go as far as C'(ko, €x+1)-

The picture I now have is that, for a < §2, ¢ enumerates the e-numbers less
than Q—except that it misses out the fixed points (that is what the & condition
is doing). Another way of putting this is that it enumerates those ordinals in
the first row that do not appear in the second row; yet another way of putting
it is to say that the purpose of the & clause is to prevent ¥ from having fixed
points.

That was what one might call the first pass. I am assured by Jeroen that
¥(R2) is the first fixed-point e-number (the first k-number)—aka ¢(2,0)—and
that 9(Q + 1) is the second fixed-point e-number.

OK, so: thus emboldened, let us check these allegation for ourselves and
start by thinking about what ¥(Q2) might be. We obtain C(£2,() by starting
with {9(a) : @ < 2} and all the ordinals less than ¢ and closing under 3 + w?
and +. If I was right earlier, then we have all the ¢ numbers less than the first
x number. So C(2, ko) contains € but does not contain k¢ so ¥(€2) is going to
be kg as foretold. Observe that we have now reached a stage where all the stuff
>) that we always put into the C(a, ()s starts doing something.

This is consonant with what the preceding paragraph is telling us, namely
us that, in the second pass, ¥ goes back and enumerates those ordinals in the

166 CHAPTER 10. PROOFS AND ORDINALS

second row that do not appear in the third row. Indeed one has the impression
that in the ath pass ¥ enumerates in increasing order those ordinals in the ath
row of the Veblen table that do not appear in the « + 1th row. Jeroen and
Michael tell me that 9¥(Q?) = I';. This would appear to confirm what i have
just been saying, because, after all, once one has made €2 passes (and thereby
reached 9(Q?)) one should have hit every power of w below I'g.

Stuff to sort out

There now follow some observations from Jeroen and Michael that I am reas-
sured to find plausible but which I can’t at this stage actually prove.

Jeroen also sez a < Q — o < J(a).

All values of ¥ are less than €.

¥ is injective.

[These last two observations cannot both be true! What did he mean?]

The values of ¥ do not depend on the choice of €2. You can even take 2 to
be w{K.

Every e-number below the Bachmann-Howard ordinal is a value of 9.

C(eq+1,0) 192 is the ordinals below the Bachmann-Howard ordinal.

If &« < eq11 then a has a CNF with base Q. That much is obvious. Let K(«)
be the set of ordinals that appear in the CNF for «, and let o* = max(K(«)).
Then we can say

d(a) < 9(B) iff either a < B A ™ < 9(B)
or a>pAY a) < p*

Then
Ha)=min{ € F:a* < (AN (VB <a)(f* <=9 <)}

where (€ F means that (is an e-number.

All this machinery presumably supports a notational system. There is a
binary ¢(-,-) function that we can use to denote ordinals in sufficiently early
levels of the Veblen table. I would like to understand that properly.

Should say something about why all these ordinals described by this Bach-
mann gadgetry are recursive. Anuj says that the ordering on the ordinals de-
noted by these notations is decidable. So, for any of these ordinals—a,say—the
set of [gnumbers of] notations for ordinals below « gives a wellordering of IN.
[but why is this set of notations for ordinals below « a decidable set? Why isn’t
it merely r.e.... 7]

Apparently it’s straightforward to show that C(Q, 8) never exhausts all the
ordinals, so that J(«) is well-defined. Should find something to say about this.

10.4. PREPOSTEROUSLY LARGE COUNTABLE ORDINALS 167

10.4.1 Cantor normal form using w 11 «

One obvious generalisation of CNF replaces the base w by a different base. We
exploited earlier the fact that ordinals above ey but below €; can be notated by
a CNF with base ¢yg. How else can we generalise?

Something that has always puzzled me is why the discovery that Cantor
Normal form sometimes gives uninformative answers (think: €) did not prompt
the reflection that one should use the normal function after exponentiation as
the gadget for a system of ordinal notations. After all, CNF uses exponentiation
to base w as a normal function that drives a “division algorithm”, so why not
just use the next normal function in the Doner-Tarski hierarchy? (Every normal
function supports a division algorithm). Let’s try this and see what happens;
perhaps we shall learn from this exercise why Veblen and co¥ escalated the
struggle to notate ordinals by using this new gadget of enumerating fixed points
rather than do what seems the obvious thing.

The next Doner-Tarski operation beyond exponentiation is declared by

110 =p;
BT (at1)= (511)%
taking sups at limits.

3

Thus z 11 1 = 2% x 11 2 = (27)" = 2% 113 = (909”2)$ = z%"; and
presumably = 11 n = z*" for n € IN.
And, when 8 = w.
w10 =w;
w11 (a+1) = (@11 a)*s

taking sups at limits.

It’s worth noting that if you get it the other way round, so that the successor
step is
wtM(a+1)= w@tte)

—which looks more natural—you find that w 1w =€y and w ™M (w+ 1) =
W = % = ¢y so B +— w 11 B grinds to a shuddering halt, and is not strictly
increasing, let alone normal.

Then when we do the CNF thing we get.... Give me an ordinal a. Let Sy
be maximal such that

wt By < a < wit(fo+1)=(wth)”

Now let ng be maximal such that. ..

(@ Tt Bo)™ < o < (Wt Bo)™ ™ = (w1 Bo)™ - (w 11 Bo)

Now let 31 be maximal such that. ..

(W1 B)" (Wt B1) < a < (w1 o)™ (w T (B1+1)) = (w T Bo)™-(w T B1)”

168 CHAPTER 10. PROOFS AND ORDINALS

Then we find n; s.t.

(w1 Bo)™-(w 11 B)™ < a < (w11 Bo)" (w1 (Bi+1)) = (w11 Bo)™ (w1)™

The next question is: why do people not do this analysis? What is the least
fixed point a = w 11 a?
w™Ml=w"
W 2= (@ 1) = (W) = w

2 3

w3 = (w12 = (W) =w”

2

So presumably

wMw=w"

and
W (1) = (@) = W

so it’s looking as if the least fixed point @ = w 1 « is €y. If that’s the case
then that might help to explain why Veblen and co? went straight to the device
of enumerating fixed points. What rather bothers me is that the literature
nowhere seems to explain why the tradition took the step it did. If the reason
why it moved straight to Veblen ¢s is that using 11, 111 and do on does nothing
for us, then why was this never spelled out?

Connect this with Paris-Harrington and other connections between typing
disciplines and strength.

What was Zachiri saying about Paris-Harrington?

Ackermann a fixed point for DT..?

Want to show that every function in the DT hierarchy is normal in its second
argument

http://www.math.ucsb.edu/~doner/articles/\

http://www.math.ucsb.edu/~doner/articles/

Chapter 11

Constructive Mathematics

The classical concept of nonempty set multifurcates into lots of constructively
distinct properties. Constructively = is nonempty if —(Vy)(y € x); x is inhab-
ited if (3y)(y €), and these two properties are distinct constructively: the
implication =V¢ — 3—¢ is not good in general.

A is decidable iff (Vz)(x € AVz ¢ A). AC B is a detachable subset of
Biff (Vz € B)(x € AVax ¢ A).

Linton-Johnstone. Negative interpretation. Heyting Arithmetic.
Every Kfinite set is notnot Nfinite
Every subset of an Nfinite set is Nfinite

Heyting naturals the cardinals of N-finite sets. DecidableE] whether or not
two Nfinite sets are in bijection. We prove by induction on X that (VY)(Nfinite(Y') —
(X ~Y V(X ~Y)). Clearly true for X empty. Sse true for X, and
consider X U {z}, with z ¢ X. If Y is Nfinite then its either § in which
case the answer is ‘no’ or it’s Y’/ U {y} with y ¢ Y’. By induction hyp on
X we have X ~ Y’V =(X ~ Y'). If the first then X ~ Y. If =(X ~
Y’) then we can’t have X U {z} ~ Y’ U {y}. This is because any bijec-
tion 7 : X U {a} «— Y’ U {y} will give rise to a bijection X ~ Y’, namely

T\ {7 @), v) o, m(@) } U{{r~H (y), m (@)}
7 (before)

IDifferent meaning of this word here!!

169

170 CHAPTER 11. CONSTRUCTIVE MATHEMATICS

T\ T W) y), (2, m(2))} U{{m (), m(2)} (after)

x

Y

™ ())

Then we prove trichotomy for Nfinite cardinals: given any two Nfinite sets
one injects into the other.

LEMMA 6 (VX)(Nfin(X) — (VY)(Nfin(Y) = X = Y VY < X))

Proof:

By induction on X. Base case (X empty) is easy.

Suppose true for X. Want it to be true for X U {z}. Let ¥ be Nfinite. By
induction hypothesis either Y < X (in which case Y — X U {z}) or X — Y.
Y is non empty so it is Y/ U {y}. By induction hypothesis either Y' < X (in
which case Y (which is Y U{y}) < X U{z}. On the other horn X < Y” which
gives X U{z} — Y'U{y} =Y. (NB for this to work we need both X and Y to
be Nfinite not merely Kfinite). [

11.1. DIACONESCU: THE AXIOM OF CHOICE IMPLIES EXCLUDED MIDDLEI171

Then we prove
LEMMA 7 FEvery nonempty Kfinite set of naturals has a least member.

Proof:

Suppose X U{n} is a set of naturals with X kfinite. By induction hypothesis
X has a least member, z, say. But then we have n < m V m < m and either
way we have a least element of X U {n}. n

Then
LEMMA 8 FEvery natural number has a prime factor.

The set of nontrivial (> 1) factors of a natural number n is an Nfinite set,
being a subset of the numbers below n. It has a least element. That least
element is a prime factor of n. []

LEMMA 9 (Euclid) (VX)(X an Nfinite set of primes — (3)(p a prime not in
X).

Proof: If X is an Nfinite set of primes then [] X + 1 is Nfinite and has prime
factors, by lemmal[8 All of them lie outside X, for the usual reasons. Therefore
there are primes not in X.]

Notice that this strategy doesn’t work to show that there are infinitely many
primes = 3 (mod 4), because the only thing the classical argument tells us in
that case is that not all the prime factors of [[X + 1 can be in X.

I do not know if the infinitude of the set of primes congruent to 3 mod 4 has
a constructive proof.

11.1 Diaconescu: the Axiom of Choice implies
Excluded Middle

Clearly if every family of nonempty sets is to have a choice function then if z is
nonempty we can find something in it, This would imply that every nonempty
set is inhabited. We shall not resort to such cheating. If we are to refrain from
cheating we will have to adopt AC in the form that every set of inhabited sets
has a choice function.

Let us assume AC in this form, and deduce excluded middle. Let p be an
arbitrary expression; we will deduce p V —p. Consider the set {0,1}, and the
equivalence relation ~ defined by x ~ y iff x = y V p. Next consider the quotient
{0,1}/ ~. (The suspicious might wish to be told that this set is {z : (Jy)((y =
0Vy=1)A(Vz)(z € x «— z ~y))}). This is an inhabited set of inhabited
sets. Its members are the equivalence classes [0] and [1]—which admittedly may
or may not be the same thing—but they are at any rate inhabited. Since the
quotient is an inhabited set of inhabited sets, it has a selection function f. We
know that [0] C {0,1} so certainly (Vz)(xz € [0] = 2 =0V z = 1). Analogously

172 CHAPTER 11. CONSTRUCTIVE MATHEMATICS

we know that [1] C {0,1} so certainly (Va)(z € [1] > 2 =0V = 1). So
certainly f([0]) = 0V f([0]) = 1 and f([1]) = 0V f([1]) = 1. This gives us
four possible combinations. f([0]) = 1 and f([1]) = 0 both imply 1 ~ 0 and
therefore p. That takes care of three possibilities; the remaining possibility is
f([0]) = 0A f([1]) = 1. Since f is a function this tells us that [0] # [1] so in this
case —p. So we conclude p V —p. []

This proof is what Douglas Bridges and I reconstructed from memory, given
only the fact that the result is correct. There is no reason to suppose that is
the original proof due to Diaconescu, [I8]—tho’ it could be, for all i know.

11.1.1 Least Number Principle Implies Excluded Middle

The least number principle says that every inhabited set of naturals has a least
member.

LEMMA 10 The Least Number Principle Implies Fxcluded Middle

Proof: Let p be any proposition, and consider A={n e N:n=1 V (n=
0 Ap)}.

A is inhabited (since 1 is a member of it) so, by LNP, it has a least member.
Every member of A is 0 or 1. If this least member is 0 then we must have p. If
it is 1 we must have —p.]

Observe that A is not Kfinite. (We saw in lemmam that every Kfinite set of
naturals has a least member).

“Fishy” Sets
The two proofs we have just seen involve ...
A={nelN:n=1V (n=0 Ap)}.
z~yiffx =y Vv p.
In the first example A is classically either {1} or {1,0}.

In the second example classically ~ is either the identity relation or the
universal relation—mneither of them things involving ‘p’.

Classically we have two infinite distributive laws:
pV (Vz)(A(x)) is equivalent to (Vz)(p V A(x))
and
p A (Fx)(A(x)) is equivalent to (3z)(p A A(z))

so we can “export” from the scope of a quantifier any subformula not con-
taining any occurrence of a bound variable. This does not work constructively
(constructively p V (Va)(A(x)) does not follow from (Vz)(p V A(z))—though
the converse is good) and where we have failures of exportation we find these
“fishy” sets that—as we have seen—turn up in proofs that certain set-theoretic
principles imply excluded middle.

11.2. PROOF THEORY, CURRY-HOWARD AND REALIZABILITY 173

11.1.2 Linton-Johnstone and Markov’s Principle
LEMMA 11 Let X be Kuratowski-finite. Then

(Vy € X)(—=¢(y)) = ~~(Vy € X)(o(y)).

Proof:
Naturally we use induction on K-finite sets.

The proposition certainly holds when X = (). Now assume it holds for X,
and assume also that (Vy € X U {z})(——¢(y)). This last assumption implies
both

(i): (Vy € X)(~6(y)) and
(i) (Vy € {z})(==¢(y)),
and (ii) of course implies =—¢(z). By induction hypothesis (i) implies
(i))": == (Vy € X)(o(y))-
Now (Vy € X)(¢(y)) and ¢(x) together imply
(iii) (Vy € X U{z})(¢(y))

so the conjunction of their double negations will imply the double negation of
(iii), namely:

(VY € X U{z})((y))

as desired.
Markov’s principle is a kind of dual to Linton-Johnstone. If you attempt to
prove the dual to L-J, namely

—=(3y € X)(o(y)) = (Fy € X)(—¢(y))

you will find that the proof breaks down because —=— does not distribute over
V (tho’ it does over A). Markov’s principle asserts that nevertheless in some
circumstances —— does distribute over V. Suppose ¢ is a decidable predicate of
naturals, so that (¥n € IN)(¢(n) V —¢(n)). Markov’s principle then tells us that

—~=(3n € N)(¢(n)) = (3n € N)(4(n))

11.2 Proof theory, Curry-Howard and Realiz-
ability

EXERCISE 106 (%)
Find a normal proof of (p +— (p — q)) = q.

11.2.1 Proof Theory

Do we prove cut-elimination here? or keep it for chapter [10]/

174 CHAPTER 11. CONSTRUCTIVE MATHEMATICS

11.2.2 Curry-Howard

Read the relevant chapter of www.dpmms.cam.ac.uk/~tf/chchlectures.pdf

here.
We can define other connectives in terms of — if we are allowed infinitary

intersections:

AV B

AVBis N(A=C) = (B—C) = C))
C

Evidently one can infer C' from AV B, A — C and B — C, as desired.

A—C A-C)—=(B—=C)—= ()

(B—C)—=C —eelim o C(11)
C —-elim
And one can infer AV B from A:
A [A— O})
C —-elim B — 0}2 . '
c) identity rule (11.2)
Boo oo e
—-int (1)

A=C)=(B—>C)—=C)

...and from B:

c —-elim
-int (1
Boo oo M e (11.3)
B0 S0 identity rule

AS0 S(Boo oo @

AANB

AABis... N(A= (B—C)) = C)
c

/\((A — (B = ()) = () can be deduced from the two assumptions A and B:
c
A [A— (B—=O)! i
—-elim
e B elim (11.4)
-int (1
a-moose Tl

For the other direction—inferring both A and B from /\((A - (B=0))—=C)—

c
observe that we are allowed to specialise ‘C” to ‘A’ or to ‘B’, giving both

www.dpmms.cam.ac.uk/~tf/chchlectures.pdf

11.3. REALIZABILITY 175

(A-(B—A)—-A and (A—(B—B))—B.
Both these formulae have antecedents that are valid, so we can infer both A
and B.

I'm now a bit worried by this. What is to be gained by defining finite
conjunction in terms of infinitary conjunction? And the /\(......) really is a

c
conjunction over all formule not just all formulee of lower rank, or whatever.

11.3 Realizability

Section [T1.3] is not examinable but that is no reason for not reading it!

See also [47].

Martin says: K is an isomorphism between a binary structure whose opera-
tion is application and a binary structure whose operation is . . . to be revealed! K
sends z-applied-to-y to the result of doing mystery-operation to (Kx)-applied-
to-(Ky). This mystery-operation turns out to be S!

K(zy) = S(Kz)(Ky)
Can we use this to prove that K and S generate all lambda terms?

Observe that S says that — distributes over itself. That is to say, for any
proposition A, the operation Az.(A — z) is an endomorphism of the (—)-
structure. The converse to S is constructively valid too.

For me at least the point of departure for Realizability is Curry-Howard.
Curry-Howard is so cute that one wants to know whither it leads. What follows
is my journal of that journey.

We'’ve done Curry-Howard for propositional logic. Curry-Howard for pred-
icate logic needs dependent types and isn’t much fun, or at least not as much
fun. However if we are content to first tackle a special case we can make some
progress. We can combine the ideas in the propositional Curry-Howard corre-
spondence with the concept of a certificate to give a very elegant connection
between computability and constructivity called “Realizability”. Realizability
is a semantics for constructive arithmetic.

Say something about here about what the language of this theory is: =, 0, S,
and various function symbols for primitive recursive functions plus perhaps <p.
This sits on top of first-order logic. Our atomic formulae are of two sorts. There
are equations of the sort y = f(&) where f is a primitive recursive function, and
there are expressions like ¢(Z) where ¢ is a primitive recursive predicate.

Recall from p that every [graph of a] primitive recursive function or
[graph of a] primitive recursive relation [tho’ not at this stage a general recursive
function] is itself a rectype—and elements of rectypes have certificates: if y =

176

CHAPTER 11. CONSTRUCTIVE MATHEMATICS

f(&,n) there will be a certificate to that effect. These certificates will play a
role as realizers of atomic formula in the language of arithmetic.

What is a realizer for the atomic formula 2 4+ 3 = 57 Addition is defined by

the recursion z+S(y) = S(xz+y), so the triple (2, 3,5) belongs to 4+ because the
triple (2,2,4) belongs to +, and that in turn because the triple (2,1, 3) belongs

to +,

and that because the triple (2,0,2) belongs to +. This last is a “ground”

triple: it gets in because of the base case in the recursion for +: z + 0 = x.

So a realizer for the atomic formula ‘2 + 3 = 5’ is the certificate—the list—

[(2,0,2); (2,1,3); (2,2,4); (2,3,5)]

where we are using ML notation for lists.

Similarly a realizer for the atomic formula ‘3 < 5’ will be the certificate

[<072>§ <173>; <274>§ <375>]

since the graph of < is the rectype with founders (0,n) for every n and the
constructor (z,y) — (S(z), S(y)). (We noted this on p[§])

This puts us in a position to provide a realizability semantics for the arith-
metic of IN by recursion as follows:

Realizers of atomics we have above;
‘1’, the false, has no realizersﬂ

A realizer of A A B is an ordered pair of a realizer of A with a realizer for
B.

A realizer of AV B is either the ordered pair of a realizer of A with the
symbol ‘first’, or the ordered pair of a realizer for B with the symbol
‘second’ [}

A realizer of A — B is a function from realizers of A to realizers of B.

Since certificates are always certificates that particular things belong to a
rectype, we do not have realizers for expressions with free variables.

A realizer of (In)¢(n) is a pair of a certificated numeral ¢ and a realizer

for ¢(t).

A realizer of (¥n)¢(n) is a function that, for all numerals ¢ takes a certifi-
cate that t is a natural number and returns realizers for ¢(t); or perhaps,
more generally. ..

20f course what we mean is that we don’t provide any initially. Establishing that ‘L’ has
no realizers requires a consistency proof.

380 the flag (the second component) is the address of the thing being proved, rather than
the address-contents, the thing being proved.

11.3. REALIZABILITY 177

o A realizer of (¥n)¢(n) is a function r that takes a state s (itself a function
from variables into the domain) evaluates s at the variable ‘n’ to obtain
an object z in the domain, and then returns a realizer for ¢(n). By the
same token a realizer of (In)¢(n) is a pair of a state s and a certificate
that the result of evaluating s at the variable ‘n’ bears ¢.

[It seems from what i have been able to learn of realizability as done by the
Big Bad Boys of Category Theory that one has a fair amount of leeway in coming
up with realizers for atomics. On some accounts any true atomic is realized by
everything. What is distinctive about [(2,0,2); (2,1,3); (2,2,4); (2,3,5)] as a
realizer for ‘2+ 3 = 5’ is that it’s obvious that it is a realizer for ‘243 = 5’ but
not at all obvious that it’s a realizer for anything else—tho’ it could be for all
we know. Something should be made of this fact.]

Then the idea is to show that every theorem of the constructive arithmetic
of the naturals has a realizer. Curry-Howard gives us realizers for every theorem
of constructive arithmetic that is a thesis of constructive logic.

What sort of things might these realizers turn out to be? Functions from
certificates to realizers sometimes have to be realizers (vide the recursions for
‘=’ and ‘V’), and pairs of realizers with other stuff sometimes have to be realizers
(the recursions for ‘v’ and ‘A’) and the realizers of atomics are certificates (which
are lists). The obvious gadget to support all these operations is what is known
in the trade as a PCA ...

DEFINITION 29 A Partial Combinatory Algebra (henceforth ‘PCA’) (A,-)
18 a structure with a single binary operation which—in the most general case—is
partial. It must contain elements K and S with the usual properties one expects
for things with names like that.

Kmn=m

and
Sabe = (ac)(be)

Sab is always defined but isn’t required to be total; K is total and Km is
total for all m.
PCAs always admit a defined pairing and unpairing opemtimﬂ

We also require combinatory completeness. Suppose (A,) is a PCA,
and that ¢(z) is a word in this algebra with ‘@’ free that defines a partial map
A — A; then there is an element a; € A such that for all x € A, a; - z = t(x).

However, combinatory completeness follows from the other parts of the def-
inition, so we don’t need to stipulate it. Beeson sez:

“Prove by induction on the complexity of the term ¢ that for each variable
‘z’ there is a term which (at the meta-level) we call ‘lambda(x,t)’ such that

4 This is possible because pairing and unpairing can be defined in terms of S and K (See
part (iv) of exercise which follows below) and (presumably?) that is what the totality
conditions of the previous paragraph are for—at least in part.

178 CHAPTER 11. CONSTRUCTIVE MATHEMATICS

Ap(lambda(x,t),x) = t and more generally Ap(lambda(x,t),u) = t[z := u] (8
reduction). All you need to assume are the axioms for K and S, vis Kzy = «
and Szyz = (zz)(yz), written out formally with Ap, the binary operation of the
algebra.”

The first example of a PCA is IN with n - m taken to be {n}(m) for some
enumeration of partial recursive functions fixed in advance. This is not only the
first example here, it is the first example historically (it is Kleene’s example)
and it is also the most important.

Beeson sez:

“If you want to do realizability for a theory that contains arithmetic then
it’s convenient to add a predicate N(z) and 0 and successor to the theory PCA,
getting PCA™T.

Exercise: the hyperarithmetic partial functions are a PCA™. But they don’t
satisfy the existence of two recursive inseparable ”r.e.” sets. In this example the
"r.e.” sets are partial I} sets.”

Realizability is now a relation between elements of a (given) PCA and ex-
pressions. The recursion goes as follows.

e Everything realizes the true;
e p realizes ¢ A ¢ iff p = (g, r) where ¢ realizes ¢ and r realizes v;

e p realizes ¢ V¥ iff either p = (0, r) where r realizes ¢ or p = (1,r) where
r realizes 1.

[When Martin Hyland was lecturing Realizability Kim Wagner made the
following point. The clause for V is obviously a way of getting disjoint union.
But consider the following. Suppose ¢ is the thing realized only by 0 and by 1.
Then ¢ A1 is realized precisely by ordered pairs whose first component is 0 or 1
and whose second component realises 1. But this is precisely the set of things
that realize ¢ V 1. This is of course not quite what was intended, but we’ll just
ignore it. In any case, as Martin says, that is just saying that x x 2 = = + =,
which isn’t soo bad.

That doesn’t look right to me. Surely the correct reponse is to ensure that
the flags that tell you which disjunct you are trying to realize should not them-
selves be elements of the PCA?]

What we have so far gives us an interpretation of intuitionistic LPC at least
in the sense that if I' - ¢ then there is a € A such that a € (T' - ¢) (i.e., there
is an a that realizes I' F ¢) and this last set is of course (), (v — ¢).

Note that ¢ V —¢ is realized but is not valid. Realized? Well, if there is
nothing that realizes ¢ then the set of realizers of ¢ is empty, and in that case
there is certainly a realizer of =¢ because such a chap is a function from the set of
realizers of ¢ to the set of realizers of 1. Both these sets are empty so the empty
function realizes ¢ — L. So in those circumstances the pair (1, empty function)
is a realizer for ¢ V —¢. (In fact—and i overlooked this for a long time,‘til PTJ
pointed it out to me—any function at all is a realizer—vacuously!) On the other
hand if r is a realizer for ¢ then (0,7) is a realizer for ¢V —¢.

11.3. REALIZABILITY 179

So one way or another there is going to be something realizing ¢ V —¢.
Problem is, this cannot be done uniformly. Or perhaps we should say deter-
ministically. If we try to write down a term that does it then it will be a fishy
term.

What goes wrong if we try to prove that everything realizes ¢ V —¢? Well,
not everything, co’s not everything is an ordered pair of the right kind, but
...everything of the right kind. The answer is that a realizer of ¢ V —¢ is an
ordered pair all right, and it’ll be an ordered pair whose first component is 0 or
1. Sadly a pair whose first component is 0 will fail to be a realizer if ¢ is false,
while a pair whose first component is 1 will fail to be a realizer if ¢ is true.

So is there a uniform realizer for ((¢ V ~¢) — L) — L7 There will be as
long as there is no realizer for (¢ V —¢) — L, and there will be no such realizer
as long as the set of realizers for ¢ V —¢ is nonempty. And we have just seen
that it is nonempty.

Apparently it matters that P(IN) with recursive maps is not a cartesian
closed category.

Consider IN for example. A p-ary predicate ¢(Z) (Z a tuple of length p) in
this language is (in a natural way) an element of IN” — P(A). (P(A) is the set
of truth-values of course). Each of these things is itself an interpretation of IL
[HOLE What did Martin mean by this? No entiendo ...Is an interpretation a
function sending formulae to elements of P(A)?]. Operations defined pointwise.
Validity as before. T'(Z) - ¢(Z) holds just when ((;cn (I'(7) — ¢(7))) # 0.

That takes care of propositional logic. For predicate logic we need to be able
to deal with atomic formulse and quantification.

Atomics: At(Z) : m — {(m)} if At(m) = true; QAt(m) = false.

The interpretation of At(Z) is an element of P(A). In particular it is the set
of those elements of the PCA that code tuples of the right length of which the
predicate-in-hand happens to be true.

Michael Beeson says:

What to do about the atomics is dependent on the theory and is the crucial
point.

The guiding principle is that that sets go over into sets of pairs, so

p realizes x € A becomes (p,) € Ax.

So you set up syntactically a one-one correspondence between variables A
and some corresponding variables Ax (e.g. Ax has double the subscript of A
or something) and then you have to show that for every set TERM A, you can
define a suitable term Ax. For example in the language of second order arith-
metic you take Ax = {(p,z) : p realizes x € Ax} and show that the condition
in the definition can be expressed in the language. If you have sets of sets than
the switch from A to Ax has to take place hereditarily. If you don’t have well-
foundedness that might well be a problem. If I can remember what I called the
file when I looked at this for NF I will send it to you (again).

Quantifiers

(Vw)p(w, T) : w = ({w} = d(w, 7))

180 CHAPTER 11. CONSTRUCTIVE MATHEMATICS

(Vw)o(w, T) : w = J({w} A ¢(w, 1))

Church’s thesis is realized but is not valid.

PTJ’s definition of PCA (which follows) is subtly different. ..

DEFINITION 30 ...a set A equipped with a partial binary operation (that is,
a partial map Ax A — A) denoted (x,y) — xy, and two distinguished elements
K and S satisfying

Ky = x and Szyz = xz2(yz)
for all x,y,z € A. Here we adopt the conventions

e that unbracketed expressions are ‘evaluated from left to right’ (that is, Kzy
means (Kz)y: we do not assume that the binary operation is associative),
and

e that an equation between possibly-undefined terms means “if either side
is defined, then so is the other, and they are then equal”: thus the first
equation above contains the information that Kxy is defined for all x and
y, and a fortiori that Kz is defined for all x.]

Check that these two definitions are equivalent.

A partial function f: A™ — A (for some n > 1) is called recursive if there
exists a € A such that f(x1,...,2,) = axy -z, for all zq,...,z,.

EXERCISE 107 (%)

An old example sheet question from PTJ:

Using the definition [30 of Schonfinkel algebra above,

(i) Let | = SKK. FEwvaluate |z, and deduce that the identity function A — A
18 recursive.

(i) Let B = S(KS)K. FEwvaluate Bxyz, and deduce that a composite of two
(unary) recursive functions A — A is recursive.

(#ii) Let E = S(K(S)K. FEwvaluate Exy, and deduce that for any a € A the
partial function x — xa is recursive.

(iv) Let D = S(BS(BK(BBE)))(KE), P; = E(KI) and P2 = EK. FEuvaluate
Py (Dzy) and Po(Dxy), and deduce that there is a recursive (total) pairing func-
tion A x A — A, with corresponding recursive unpairing functions.

(v) Show that the set IN can be given a Schionfinkel algebra structure in such
a way that ‘recursive function’ means what it usually does in this context.

(vi) Let W = S(BSK)(K(SI)) and Y = SWW. Fuvaluate Wzy and Yz, and
deduce that if A is a total Schénfinkel algebra (that is, one for which the binary
operation is defined on the whole of Ax A), then every recursive function A — A
has a fized point. What happens if A is not total?

The original source for realizability is the final chapter of [37]. A good thing
to read is [2], which has the advantage of being available on-line.

11.3. REALIZABILITY 181

EXERCISE 108 (*) (Part III Computability and Logic Examination 2014)
Find a natural deduction proof for

(((A—-B)—A) - A) - B)—> B
using only the two rules for — and the “identity rule”:

A B
A

Then decorate your proof appropriately with \-terms.

Sort out the duplication
The phrase “computational content” (of a proof) has been around for while.

I assumed that it waas just a piece of mathematical slang. However it has a
precise meaning! The computational content of a proof is the function encoded
by the lambda term that realizes that proof! Duh!

11.3.1 The Axiom of Choice in Constructive Set Theory:
notes consequent to a lecture given by Sol Feferman
on 10/i/2014, written up partly to amuse Valeria
Paiva

AC

...T am trying to explain to myself why the implication

(Ve e A)(Fy)(¢(z,y)) =) (Ve € A)(o(, f(2))) (S)

is suspect. (Hence the ‘S’!)

A certificate for S is a function that takes certificates for (Vz € A)(Jy)(o(x,y))
and gives back certificates for (3f)(Vz € A)(¢(z, f(z))).

Very well, so: what is a certificate for (Vo € A)(3y)(¢p(z,y))? Write it out
in full as (Vz)(x € A — (Jy)(o(x, y))).

A certificate for (Vz)(x € A — (3y)(¢(z,y))) is a function that takes an x
and returns a certificate for x € A — (Jy)(é(x,y)).

A certificate for x € A — (Jy)(P(x,y)) is a function that takes a certificate
for x € A and gives back a certificate for (y)(¢(z,v)).

A certificate for (3y)(¢(z,y)) is a pair-of-a-y-and-a-certificate-that-¢(x, y).

So, with the help of a bit of currying (which is constructive!) we can think of
a certificate C for the antecedent of S as a function that takes x and a certificate
that € A and returns a pair-of-a-y-and-a-certificate-that-¢(x,). Actually we
can think of the input to C as a certificate that x € A simpliciter—rather than
the-certificate-plus-x—since presumably we can recover x from the certificate.
But nothing hangs on it. What emphatically does matter that the y given by
the certificate depends not just on z but on the certificate that = € A.

182 CHAPTER 11. CONSTRUCTIVE MATHEMATICS

Now! Can we turn such a certificate C into a certificate for (3f)(Va €
A)(p(x, f(x)))? A certificate for (3f)(Vz € A)(p(x, f(x))) must be a pair-of-a-
function- f-with-a-certificate-that-(Va € A)(¢(z, f(z))). You might think, Dear
Reader, that the desired f is staring us in the face, being nothing more arcane
than the certificate C that we have in our hand. Sadly, life is not that simple.
According to the consequent of S, inputs to this function f are members of
A rather than certificates-that-things-are-in-A. Recall now the plot point: our
ability (embodied in the certificate C) to produce y s.t. ¢(z,y) relied on more
than just the identity of x, it relied on the certificate that x € A.

This reminds me (for one) of the fact that A — (BV(C). - .(A — B)V(4A —
(') is not constructive. [Better men than i have been fooled by this—PTJ for
one, albeit only briefly!]

You might think that the problem will go away if we drop the restriction
on the range of ‘z’, so we are considering ‘(Vx)(3y)o(x,y)" and you'd be right.
However this is less use than it might seem, since we forfeit generality. The
point is that altho’ classically (Vo € A)(3y)¢(x,y) is equivalent to (Vz)(Jy)(z €
A — é(x,y)), nevertheless the equivalence is not good constructively. This is
not hard to see, for in the second case we have to conjure up a y on given a bare
x, without any information about whether it is in A or not.

Myhill

So we don’t believe that S is constructively correct. Observe that if we make
Myhill’s move, and require the existential quantifier in the antecedent to be a ‘3"
rather then a ‘3" then the problem goes away. This is because the uniqueness
of the y means that the dependence on the certificate for z € A no longer
affects the outcome. [Really...?] Of course the ‘3! has some nontrivial internal
structure, so it would be quite instructive to write out this case with the same
thoroughness we showed in our attack on S...it would be a lot longer. But
that’s for later, if at all. For the moment the question is: what about DC?

DC

(Ve € A)(Fy € A)(¢(z,y)) = DC
(Ve € S : N = A)(f(0) =z A (Vn € N)(¢(f(n), f(n+1))))

I did the discussion of S in some detail in the hope of being able to deal
with DC with slightly more despatch. Certainly the antecedent of DC is very
nearly the same as the antecedent of S so we are off to a flying start. The
only difference is that the C that we get from this antecedent also provides a
certificate that y € A.

What about certificates for the consequent? The key observation here is
that the f whose existence is claimed depends on x, so when we are called upon
to produce it we are also given a certificate that x € A.

11.4. RECURSIVE ANALYSIS 183

Okay, so suppose we have our certificate C, modified from that in section
11.3.1] The challenge is to find a certificate for

(Vo e A)3f : IN = A)(f(0) =z A (Vn € N)(¢(f(n), f(n+ 1)) A f(n) € A))

A certificate for this will be a function that takes x and a certificate that z € A
and returns a certificate that

@Af:IN= A)(f(0) =z A (Vn € N)(&(f(n), f(n+1)) A f(n) € A))

A certificate for this last is going to be a function f : IN — A together with a
certificate that f(0) = x A (Yn € IN)(¢(f(n), f(n+1))A f(n) € A). Can we cook
up such a function given C? Yes: set f(0) to be x; for larger n we repeatedly
apply C. If we apply C to the certificate for x we obtain y € A s.t. ¢(z,y).
We announce to the world that f(1) is to be this y. However we also get a
certificate-that-y € A, and this is what we need to keep the recursion going, for
we can now apply C—this time to the certificate for y—to obtain f(2)...and
beyond.

11.4 Recursive Analysis

Douglas Bridges sez: IR has only two subsets that are detachable, itself and the
empty set.

See [9] pp 53ff.

Reals can arise as all sorts of things, from Dedekind cuts, or Cauchy se-
quences for example. But if we have the added dimension of computability to
worry about then even if we have decided to think of computable reals as com-
putable Cauchy sequences (in the rationals of course) we can wonder whether
we think of those computable Cauchy sequences as functions-in-intension (pro-
grams) or as function graphs (functions in extension). Both make sense. If we
do the first, then Rice’s theorem will ensure that the equality relation between
computable reals is undecidable.

Another thing we can do is say that a real is computable iff there is a Cauchy-
sequence-in-intension whose limit it is. That way our computable reals aren’t
different things from reals, but delineate a subset IR, of IR; this is how Bridges
does it.

Analysis is full of dependencies: If f : IR — IR is continuous then (Vz)(Ve)(30)(. . .)
But how does the § depend on x and €? Riemann’s theorem: if f is integrable
then Ve3dé ...In the realistic cases we deal with in ordinaryﬂ mathematics we
can obtain values for § from the arguments x and e in fairly explicit ways that
one would like to be allowed to describe as ‘computable’. People in Analysis
don’t make much of these dependencies but occasionally you will see the es and
ds equipped with subscripts, as below:

Remember TWK’s proof that:

51 know one shouldn’t use the phrase ‘ordinary mathematics’ but sometimes temptation
gets the better of one.

184 CHAPTER 11. CONSTRUCTIVE MATHEMATICS

if a,, — a and b,, — b then a,, +b,, = a+0b. (Q1 on Analysis 1 sheet
1):

an — a so (Ve > 0)(IN,(€))(Vn > Ny(e))(Jan —al <€) ...=

and

by, — b so (Ve > 0)(INy(€))(Vn > Np(€)(|b,, — b <€)

Now set N(e) := max({N,(e/2), Ny(¢/2)}), and take it from there

(Vn > N(e)(|(an +bn) — (a+b)| <€)

Connect with skolemisation.

Sometimes people are tempted

Is it, in fact, OK to describe this process as ‘computable’? There is an
obvious prima facie problem in that the quantities z, € and ¢ are infinite precision
objects, so we cannot compute with them in the way we have been accustomed
to so far. But that’s not really a problem because we can always take these
quantities to be rationals.

11.5 A constructive treatment of infinitesimals

see [6].

Chapter 12

Notes and Appendices

12.1 Chapter

12.1.1 Horn clauses in rectype declarations

This illustration comes from Ben Millwood.
... we can declare a datatype C equipped with a constructor con: (C — () — C.
Now, by recursion, declare a function f defined on this datatype by:

f(con(g)) = g(con(g))

This is a legitimate (if degenerate) declaration of f by recursion.

Do some type-checking. .. g must be of type C — (since it is an argument
to com; so con(g) is of type C, and f(con(g)) is of type @ which is impossible,
so f must be the empty function.

So C' must be empty if we are allowed to define f.

Ben says:

It’s worse than that: f is a legitimate function C' — 0, so then con(f) is a
legitimate element of C. So C' can’t be empty.
You can look at the declaration con : (C' — 0) — C' as saying:

e if C is uninhabited, then there is a function h : C' — 0, but then con(h) : C,
so C' is inhabited,

e if C is inhabited, say by « : C, then C only has one constructor, so
2 =con(h) for some h : C' — 0. But the existence of such an h proves that
C is uninhabited.

So C has elements if and only if it doesn’t—Dbeing empty doesn’t resolve the
paradox. Here’s another example: let D be a datatype with one constructor,
don : P(D) — D, where P is the powerset. Then clearly D is inhabited,
since don()) is an element of it. But don itself is (by definition) an injection
from the power set of D to D, which Cantor says is impossible. This is a less

185

186 CHAPTER 12. NOTES AND APPENDICES

striking example than the previous one to my eye, but maybe a more familiar
one. (Perhaps the resolution is simply that this signature gives a rectype that
is a proper class, but that’s quite an awkward conclusion.)

The lesson that I take from this, at least, is that some constructor types are
permissible and some are not. In particular, the rectype C above isn’t merely
empty, it cannot exist at all.

He’s right, but it’s easy to see where the problem lies: it’s the “negative
occurrence” of the datatype in the declaration. It prevents the datatype decla-
ration being Horn.

12.1.2 Infinitary Languages
While we are on the subject of infinitary languages let’s have the following
morsel:

THEOREM 32 Scott’s Isomorphism theorem

FEvery countable structure can be characterised up to isomorphism by a single
sentence of Ly, -

Proof:

We can obviously do this by cheating: if we want to characterise 2 up to
isomorphism by providing a name a for every element of A, the carrier set of 2.
However we want to do it without cheating!

(lifted from [33] who lifted it from [12]).

Let 2 be a countable structure for a language £. We will show that there is
a sentence ¢ of L, such that, for all countable structures 9B for £, B = ¢ iff
B~ A

It will be easier to understand the construction of ¢ if we bear in mind that
it is intended to power a back-and-forth construction of an ismorphism B ~ 2.

For each tuple a;...a, from A, and every § < wi, we define a formula
@5 o, (z1...2y) by recursion on j as follows:

BZO:

21“'% (x1...25) 18

N0z 2n) A= bar .. an)}
where 6 is atomic or negatomic.
B#at:

Naturally (bgl-..an (x1...25) 18 /\ 0, (T 2p)
v<B

12.1. CHAPTER 77 187

f=a

This is where the work gets done. ¢gj_,1,an (21 ...x,) is the conjunction

oy, (T) A
N Ceas)(@8, o, (@1 20g1)) A
an+1€A
Vzni1) \/ (0 anis (@1 2ng).
an+1€A

(Both these clauses look like infinitary V3)

Reality check:
for all tuples a; ...a, and all 8 < wy,

1. the formula qbglman has at most the free variables ‘z{’ ... ‘x,’; and

2. AE ¢>£1___an [a1...an];
3. Ak (Voy...an) (68, . — &1 ..) whenever v < f3.

We prove (2) by induction on ordinals. The hard stage is the successor.
By the induction hypothesis we know that the first conjunct is satisfied. The
second conjunct /\ (Fzn+1) (B, apsr (T1 -+ Tnt1))A is satistied by instanti-

ant1€A
ating ‘z, 11’ to ‘an41’. The third conjunct is satified similarly because we can

take a,41 to be 2,11
We are now in a position to prove theorem

Observe that—by (3)—for each tuple a;...a, from A and for every tu-
ple 1 ...z, the truth-value of gbglman (1 ...2,) decreases monotonically as 3
increases. (If it ever becomes false it remains false). So the truth value is
eventually constant. So to each 2n-tuple a; ...a, with tuple z; ...z, we can
associate the ordinal at which the truth-value of ¢, (21...x,) settles down.
Fix a; ...a,. There are only countably many tuples x; ...z, so there are only
countably many such ordinals. w; is regular, so, for each tuple a ...a,, there
will come a stage by which the truth-values of ¢§1man (21 ...2,) have settled
down for all x; ...x,. Again, there are only countably many tuples a; ...an,,
so (by regularity of wy again) there is a countable sup of all the settling-down
ordinals; call it a

The ¢ we want is now:

g5 A N (@ @rz) = 0t (2 w)

n<w

ay...an€A

Now suppose B = ¢ and that B is countable. We use a back-and-forth
construction to show that B ~ 2. To do this it will suffice to establish.

188 CHAPTER 12. NOTES AND APPENDICES

(Vans1 € A)TFons1 € BB =62, 0 (b1 bui1)) (1)
and
(Vbpt1 € B)(Jant1 € A)(B = 65, a,p, (01 bny1)) (2)

(1) holds because B = ¢, 50 B = (3xn11)0g, . a0, (01 by Tnt1).
To show (2) we use again the fact that B = ¢2F1 (b1...b,). This gives

al...Qn

B = (VTni1) Vo, ea 96, ang, (01 - bn, Tny1) whence, for some ani1 € A,
%): ¢31,..an+1 (bl ttt bn+1)‘

12.2 Chapter

12.2.1 A bit of pedantry

If f(x,y) is a primitive recursive function of two arguments, f(z,x) is a primitive
recursive function of one argument. Cutland [I6] calls this construction identi-
fication and writes as tho’ it is not a special case of substitution. I'm wondering
if it is actually a derived rule after all, as a special case of substitution. ..

Why isn’t f(z,z) a straightforward instance of substitution? Substitute ‘z’
for ‘y’ in ‘f(x,y)’. One obvious problem is that the rule of substitution enables
us to replace a variable by a function term. Is a variable a function term in this
sense? Perhaps it is. But even if it isn’t we can perhaps do the following.

proj?(z,y) is a primitive recursive function that takes two arguments and
returns the first one as its answer. So, if f(z,y) is a primitive recursive function
of two arguments as above, the desired unary function is presumably

x> f(x, proji(z,0)).

Is this OK? Can we substitute constants for variables under this rubric?
Constants are nullary functions after all. But then the nullary function (aka the
constant) 0 has to be primitive recursive. (Wikipzedia, for one, doesn’t give this
nullary function as a primitive recursive function.) Or should it be

z v f(z,proji(z, 2(z)))

where z is the identically zero function? That seems to work. Is that what is
meant?

Any apprentice pedants out there like to sort this out for us? Usual
inducements .

A message from Ben Millwood

The unfortunate thing about composition of primitive recursive functions is that
there’s more than one obvious thing, and though they’re all equivalent or easily
made so, it’s hard to make sense of the basic proofs unless we’re all talking the
same language.

12.2. CHAPTER 77 189

One way, and what seems to me to be the easiest, is to define the composite of
the m-ary function f with m n-ary functions g1, ... g, to be the n-ary function
which takes arguments (z1,...2,) and returns

flar(zr, . xn), - gm(x1, ... 2p))

i.e. passes the same n arguments to every g; and then passes the result of g; as
the i*" argument of f.

For example, composing a binary f with g; and go both identity functions
gives — f(x,x), an instance of what Cutland called identification. In fact,
Cutland refers to identification only as something you might want to do, and
then immediately proves that it is achievable by composition with appropriate
projections, so is in fact a special case of composition (substitution).

An alternative composition method is similar, but you give different argu-
ments to each g;. This has the advantage that the g; need not be the same
arity, but suffers the disadvantage that the arity of your functions can then only
increase, which is problematic.

With a bit of thought, it’s clear that the first composition can be used to
implement the second: if you have, say, g1 with arity 3 and go with arity 1 and
you want to compose with f of arity 2, just compose g; with proji, projs, and
projs and go with projj. This gives two four-argument functions which can
then be composed with f in the usual way, to give a four-argument function
that passes its first three to g;, its last one to go, and then the result of both to
f, i.e. the function you get with the second notion of composition.

Since the second composition can only increase arity, it clearly can’t be used
to implement the first: we’ll need some way of taking one argument and plugging
it into two places. But equally clearly, that’s all we’ll need.

Once you’ve done the above thinking, you might as well compose and du-
plicate things however you want, leaving all the projections implicit. But when
you’re doing your structural-induction proofs, you'll probably want to stick to
just one idea, and the first is probably the easiest to formalise.

12.2.2 The Ackermann function

One of you pointed out to me that to perform this wellfounded induction we
do not need the relation on which we do the induction to be the whole of the
lexicographic order on IN x IN. This is true. One can do it on the weaker relation
(relation with fewer ordered pairs) given by the transitive closure of

(n,m) < (n,m+ 1);
(m,Alm+1,n)) <{m+1,n+1)
The point being that to get the induction to work we need
(m, Alm+ 1,n)) < {(m+1,n+1)
but we don’t need

(m,Alm+1,n)+ 1)< (m+1,n+1)

190 CHAPTER 12. NOTES AND APPENDICES

(my, A(m + 1,n)) < (m + 1,n).

But one needs to know that this relation < is wellfounded and well-defined
and presumably one can’t do that without first proving that Ackermann is
total. There may nevertheless be something enlightening one can say about this
situation.

A message from Auke Booij

about the footnote on p

From: Auke Booij <abb40@cam.ac.uk>
To: tf@maths.cam.ac.uk

Date:Tue, 3 Jun 2014 23:15:11 40100
Subject:Re: the status of n

n is a metatheoretical symbol: inside the theory, it represents one specific
symbol S(...S(0)...), but it is “meta-generated” by a variable of the theory in
which we phrased our theory (aka the metatheory). So in the metatheory, n is
a function of the meta-variable n, which generates some symbol (e.g. a Church
numeral) which can be interpreted inside the theory (e.g. lambda calculus).

Similarly, in the metatheory, we generate [logical formulas for the theory]
such as the ones you give—the theory itself has no way to do that (since there
is no internal concept of quoting of logical formulas). Hence, in the metatheory,
we generate [logical formulas for the theory] as a function of the metavariable
n (ie. as a function of n, which is a variable in the language of the metatheory
rather than in the theory).

I think that should answer your suspicion in the footnote on page 30 of the
Part III computability notes.

So on page[103] you are defining a miaow function for every possible metathe-
oretical choice of n. I don’t think this is what you mean (I'd like to give a
counterargument using nonstandard natural number objects, but that doesn’t
seem to work). What you instead want to say is that “we can test for equality of
Church numerals within lambda calculus”. Indeed, if you are writing “snd(hd
x) =n”, you are expressing that in the theory of lambda calculus, we (somehow)
test for equality of the lambda term “snd (hd x)” with the constant symbol “n”.
But there is no need to involve any kind of metavariables or quoting for that:

and := \bb'.bb’ false
equal := Anm. and (iszero(mpred(nsucc0)))(iszero(npred(msucc0)))

The implementation of pred (predecessor) is a bit contrived but possible (see e.g.
http://en.wikipedia.org/wiki/Church_encoding#Derivation_of_predecessor_
function).

Indeed, the later use in that definition of miaow of non-underlined n therefore
becomes ill-typed (what does the metavariable n mean to the theory?).

http://en.wikipedia.org/wiki/Church_encoding#Derivation_of_predecessor_function
http://en.wikipedia.org/wiki/Church_encoding#Derivation_of_predecessor_function

12.3. CHAPTER 77 191

In my humble opinion, the interpretation of relative computation for models
versus theories I told you about a few weeks ago is a good way to understand
these things.

12.3 Chapter
12.4 Chapter
12.5 Chapter [6]
12.6 Chapter [9|
12.7 Chapter

192 CHAPTER 12. NOTES AND APPENDICES

Bibliography

[1] J-P Allouche and J Shallit. “Automatic Sequences: Theory, Applications
Generalisations”. CUP 2003.

[2] Peter Aczel and Michael Rathjen, draught of book on constructive set theory.
http://wwwl.maths.leeds.ac.uk/~rathjen/book.pdf

[3] Bachmann: Transfinite Zahlen Springer, 1967.

[4] T.P. Baker, J. Gill, R. Solovay. “Relativizations of the P =7 NP? Question”.
SIAM Journal on Computing, 4(4): 431-442 (1975)

[5] Baumslag. Review of [2I] Bull Am Maths Soc 31 1994 pp 86-91

[6] J. L. Bell “A Primer of Infinitesimal Analysis”. Cambridge University Press,
1998. Second Edition, 2008.

[7] George S Boolos and Richard C Jeffrey “Computability and Logic”, various
editions. CUP

[8] W Buchholz and Stan Wainer. “Provably Computable functions and the
fast-growing hierarchy”. Logic and Combinatorics, Proceedings of a Summer
Research Conference held August 4-10, 1985, Contemporary Mathematics 65
American Mathematical Society 1987. pp. 179-198.

[9] Douglas. S. Bridges. “Computability, a Mathematical Sketchbook” Springer
Graduate texts in Mathematics 146 1994.

[10] Bunder, M. “The Logic of Inconsistency”. Journal of Non-Classical Logic
6 1989 pp 57—62

[11] Martin Gardner The Annotated Alice. lib.rmvoz.ru/sites/default/
files/fail/carroll_lewis_-_the_annotated_alice.pdf

[12] C.C. Chang “Some remarks on the model theory of infinitary Languages”
in LNM 72

[13] W. Craig. “On Axiomatizability within a System”, JSL 18 No. 1, pp. 30-32
(1953).

193

http://www1.maths.leeds.ac.uk/~rathjen/book.pdf
lib.rmvoz.ru/sites/default/files/fail/carroll_lewis_-_the_annotated_alice.pdf
lib.rmvoz.ru/sites/default/files/fail/carroll_lewis_-_the_annotated_alice.pdf

194 BIBLIOGRAPHY

[14] Craig and Vaught, “Finite axiomatizability using additional predicates”,
JSL, 23 (1958), pp. 289-308.

[15] James Cummings “Notes on Singular Cardinal Combinatorics”, Notre
Dame J. Formal Logic 46, Number 3 (2005), pp 251-282. http://www.math.
cmu. edu/users/jcumming/papers/1911_001.pdf

[16] N.J. Cutland “Computability, an Introduction to Recursive Function The-
ory”, CUP

[17] Christian Delhommé, “Automaticité des ordinaux et des graphes ho-
mogenes.” C. R. Acad. Sci. Paris Ser I 339 pp 5-10 (2004). available from
http://personnel.univ-reunion.fr/delhomme/filename.dvi

[18] Radu Diaconescu, “Axiom of Choice and Complementation”. Proc. AMS
51 (1975) 176-178.

[19] John Doner and Alfred Tarski. “An Extended Arithmetic of ordinal num-
bers”. Fundamenta Mathematicee LXV(1969) pp. 95-127. Also on http:
//www.math.ucsb.edu/~doner/articles/.

[20] Ehrenfeucht, A. “Polynomial functions with exponentiation are
wellordered” Algebra universalis 3 December 1973, Issue 1, pp 261-262

avl . A. Epstein, J. W. Cannon, D. F. Holt, 5. V. F. Levy, M. 5. Pater-

21] David B. A. E in, J. W.C D.F.Holt,S. V.F. L M.S. P
son and W. P. Thurston. “Word Processing in Groups”. Jones and Bartlett
1992

[22] Benson Farb “Automatic Groups a guided Tour”. Enseignement mathema-
tique 38 (1992) pp 291-313. Also at http://retro.seals.ch/digbib/view?
rid=ensmat-001:1992:38::528&id=&1d2=&41d3=

[23] Forster, T. E. Talk to the TMS www.dpmms . cam.ac.uk/~tf/TMStalk2012.
pdf

[24] Forster, T. E. Tutorial on countable Ordinals. www . dpmms . cam. ac.uk/~tf/
fundamentalsequence.pdf

[25] Martin Gardner “Logic Machines and Diagrams” University of Chicago
Press and Harvester Press second edition 1982 ISBN 0-226-28243-0

[26] R. Gilman, “Groups with a rational cross-section”, in: Combinatorial
Group Theory and Topology, Annals of Math. study 111, ed. by S. Gersten
and J. Stallings,

[27] Girard Lafont and Taylor “Proofs and Types” CUP

[28] M. Goldberg: On the Recursive Enumerability of Fixed-Point Combinators
BRICS RS-05-1. 2005 University of Aarhus

http://www.math.cmu.edu/users/jcumming/papers/1911_001.pdf
http://www.math.cmu.edu/users/jcumming/papers/1911_001.pdf
http://personnel.univ-reunion.fr/delhomme/filename.dvi
http://www.math.ucsb.edu/~doner/articles/
http://www.math.ucsb.edu/~doner/articles/
http://retro.seals.ch/digbib/view?rid=ensmat-001:1992:38::528&id=&id2=&id3=
http://retro.seals.ch/digbib/view?rid=ensmat-001:1992:38::528&id=&id2=&id3=
www.dpmms.cam.ac.uk/~tf/TMStalk2012.pdf
www.dpmms.cam.ac.uk/~tf/TMStalk2012.pdf
www.dpmms.cam.ac.uk/~tf/fundamentalsequence.pdf
www.dpmms.cam.ac.uk/~tf/fundamentalsequence.pdf

BIBLIOGRAPHY 195

[29] Andrzej Grzegorczyk “Some classes of Recursive functions”, Rozprawy
Matematyczne IV 1953

[30] Hardy, G. H. “A theorem concerning the infinite cardinal numbers”. Quar-
terly J. of Pure and Applied Mathematics. 35 (1903) 87-94.

[31] Wilfrid Hodges: Model theory
[32] Douglas Hofstader “Godel, Escher, Bach”.

[33] H.J. Keisler “Model Theory for Infinitary Logic” North Holland Studies in
Logic and the foundations of mathematics 62, 1971

[34] Hummel, T. L. “Effective versions of Ramsey’s theorem: avoiding the cone
above 0"”. Journal of Symbolic Logic 59 (1994) pp. 1301-1325.

35] R.W. Kaye. “Tennenbaum’s theorem for models of arithmetic”. http://
p
web.mat.bham.ac.uk/R.W.Kaye/papers/tennenbaum/tennenbaum. pdf

[36] Bakhadyr Khoussainov and Sasha Rubin “Some Thoughts On Automatic
Structures”, Auckland 2002, linked from Wikipsedia page on Automatic
Groups.

[37] S.C. Kleene, Introduction to Metamathematics.

[38] S.C. Kleene, “Finite Axiomatizability of theories in the predicate calculus
using additional predicate symbols” Memoirs of the AMS, 10.

[39] Lerman, Manuel. “Degrees of Unsolvability, local and Global theory”. Per-
spectives in Mathematical Logic, Springer Verlag 1983.

[40] Hilbert Levitz “An ordinal bound for the set of polynomial functions with
exponentiation”. Algebra universalis 8 (1978) 233-243

[41] M. Makkai. Review of [38] JSL 36 (1971), pp. 334-335.
[42] D. Marker “Model Theory”

[43] A.R.D. Mathias “Weak systems of Gandy, Jensen and Devlin” Trends in
Mathematics Springer 2006, pp 149-22

[44] Mendelson, E. “Introduction to Mathematical Logic”. various editions Van
Nostrand. We want the first edition.

[45] Piergiorgio Odifreddi, “Classical Recursion Theory: The Theory of Func-
tions and Sets of Natural Numbers” (Studies in Logic and the Foundations
of Mathematics 125) 1992

[46] Larry Paulson’s Computer Science 1b functional programming notes:
http://www.cl.cam.ac.uk/~1p15/papers/Notes/Founds-FP.pdf

http://web.mat.bham.ac.uk/R.W.Kaye/papers/tennenbaum/tennenbaum.pdf
http://web.mat.bham.ac.uk/R.W.Kaye/papers/tennenbaum/tennenbaum.pdf
http://www.cl.cam.ac.uk/~lp15/papers/Notes/Founds-FP.pdf

196 BIBLIOGRAPHY

[47] Valery Plisko “A Survey of Propositional Realizability Logic” Bull. S. Log
15 (2009) pp 1-42.

[48] by D. Richardson “Solution of the identity problem for integral exponential
functions” Zeilschr. f. math. Logik und Grundlagen d. Math. 15, S. 333-340
(1969)

[49] Hartley Rogers

[50] Rozsa Péter. “Recursive functions” Third (English) edition Academic Press
1967.

[61] Andrew Pitts Lecture Notes for 1a RLFA:
http://www.cl.cam.ac.uk/teaching/1112/RLFA/materials.html

[52] W. v O. Quine “Set theory and its Logic”. Harvard Belknap Press 1969

[63] H. E. Rose, “Subrecursion: functions and hierarchies”. Oxford Logic Guides
9 OUP 1984.

[54] Schiitte, K. “Beweistheoretische Erfassung der unendlichen Induktion in
der Zahlentheorie”. Math Ann 122 pp 369-389.

[65] Diana Schmidt. “Built-up Systems of Fundamental Sequences and Hier-
archies of Number-Theoretic Functions”. Arch. Math. Logik. 18 pp 47-53
1976.

[56] Schwichtenberg and Wainer. “Proofs and Computations”. CUP 2012

[57] Scott, D. “Logic with denumerably long formulae and finite strings of quan-
tifiers” in Addison Henkin Suppes (eds) “The theory of models” Studies in
Logic and the Foundations of Mathematics NH 1965.

[58] Scott D.S. Semantical Archaeology, a parable. In: Harman and Davidson
eds, Semantics of Natural Languages. Reidel 1972 pp 666—674.

[59] Dana Scott, “Axiomatizing set theory” in Jech, Thomas, J., ed., Axiomatic
Set Theory II, Proceedings of Symposia in Pure Mathematics 13. American
Mathematical Society Volume XIII Part IT, 1974

[60] Harold Simmons “The Ackermann functions are not optimal, but by how
much?” JSL 75 1 (march 2010) pp 289-313.

[61] Peter Smith “An Introduction to Gédel’s Theorems” 2nd Edition, Cam-
bridge University Press 2013 ISBN 9781107606753.

http://www.cambridge.org/gb/knowledge/isbn/item7137024/

[62] http://www.logicmatters.net/resources/pdfs/tennenbaum_new.pdf

http://www.cl.cam.ac.uk/teaching/1112/RLFA/materials.html
http://www.cambridge.org/gb/knowledge/isbn/item7137024/
http://www.logicmatters.net/resources/pdfs/tennenbaum_new.pdf

BIBLIOGRAPHY 197

[63] Stearns, R. E., Hartmanis, J., Lewis, P. M. “Hierarchies of memory limited
computations”. Sixth Annual Symposium on Switching Circuit Theory and
Logical Design, 1965. SWCT 1965. Date of Conference: 6-8 Oct. 1965 pp
179-190

[64] Frank Stephan. Recursion theory preprint 125pp.

[65] Patrick Suppes “Introduction to Logic”. Dover

[66] Jaap van Osten “Realizability - An Introduction to its Categorical Side”
[67] Vaandnen, Jouko. Models and Games CUP (ISBN-13: 9780521518123)

198 BIBLIOGRAPHY

Chapter 13

Answers to selected
questions

Chapter [2: Recursive Datatypes

Exercise [4]

Discussion

This is a beautiful question, co’s it touches several important points. It tests
your understanding of structural induction; it tests your ability to do the fiddly
manipulation necessary to perform the inductive step; it underlines the impor-
tance of having a sufficiently strong induction hypothesis, and finally it makes
a point about dereferencing.

So: we have a propositional language—a recursive datatype of formulsee—
which starts off with three propositional letters (“literals”) ‘a’, ‘T’ and ‘L’. We
then build up compound formulse by means of the constructors ‘A’, ‘v’ and ‘—’.
We have a length function defined on objects in the datatype of formulee, written
with two vertical bars as in the question, which is roughly what you think it
is—so that the length of a literal is 1, and the length of a conjunction (or a
disjunction) of two formulee is one plus the sum of their lengths, and the length
of the negation of a formula is one plus the length of the formula. Evidently the
question-designer thought that the length of a ‘(’ or a ‘)’ is zero!

One tends naturally to write the second half of the preceding paragraph with
expressions like

|ANB| = |A]+|B| + 1.

199

200 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

This looks fair enough, and in some sense it is, but we need to be clear about
the conventions we are using. The letter ‘A’ by itself is a single symbol, so a
pedant might insist that |A| = 1. This is wrong of course: the letter ‘A’ is not a
formula, but a variable ranging over formule. .. when looking for the length |A|
of A we have to see through the variable all the way to the value it takes—and
that value is a formula. All this is well and good, but it can cause some confusion
when we start thinking about expressions like: |A V B|. The constructor ‘V’ is
something we put between two formule to make a new formula; we don’t put
it between two names of formulae or between two pointers to formulae! Until
we have a convention to make our practice OK, writing things like ‘|4 V BJ’
should generate a syntax error warning. If you look back to page where
this exercise first appears you will find that i wrote

“ ..length of a literal is 1, and the length of a conjunction (or a
disjunction) of two formulee is one plus the sum of their lengths. . .”

...and this is syntactically correct. When we wrote ‘|AA B|’ we should really
have written ‘| the conjunction of A and B|’.

There are two ways of dealing with this. One is to have explicit names for the
constructors, as it might be ‘conjunction of ...’ and ‘disjunction of ...’ and
‘negation of ...’ This makes huge demands on our supply of alphanumerics.
The other solution is to have a kind of environment command that creates an
environment within which [deep breath)]

Contructors applied to pointers to objects
construct
pointers to the objects thereby constructed.

Inside such a context things like ‘| AV B|” have the meaning we intend here. There
is a culture within which this environment is created by the ‘™’ symbol (IATEX:
\ulcorner) and closed by the ‘7 symbol (IWTEX: \urcorner). In practice
people tend to leave these things out. The fact that this is—apparently—a safe
strategy tells us quite a lot about the skills of our language module: it’s very
good at dereferencing (among other things)

Thus we should/should-have posed the question as:

“Define the length of a Boolean proposition by structural induction as fol-
lows:

|a‘ =1,
ITI=1,
|-l =1,

"TAAB|=|A|+|B|"+1,
FAV B = A+ B+ 1,
F=Al = [A 1.

201

[or something like that, with the corners placed correctly!]
“Define a translation which eliminates disjunction from Boolean expressions
by the following recursion:

tr(a) =a, tr(T) =T, tr(L) = L,
Ttr(AA B) = tr(A) Atr(B),
tr(AV B) = —(—tr(A) A —tr(B)),
tr(—A) = —tr(A)™.

Prove by structural induction on Boolean propositions that
"tr(A)| < 3[A] =17,
for all Boolean propositions A.”

The above use of corner quotes illustrates how there is no restriction that
says that the scope of the corner quotes has to live entirely inside a single
formula. T use corner quotes in what follows, but (although—i think—i have
put them in correctly) they can be inserted correctly in more than one way.

The Proof by Structural Induction

We aspire to prove by structural induction on the recursive datatype of formulae
that

(VA)([tr(A)] < 3-|A[—1)
The base case we verify easily. The induction step has three cases
- If |tr(A)] < 3-|A| what is ["tr(=A)7|? Ttr(=A) = —tr(A) " so T|tr(-A)| =
|[=tr(A)|", and |"—tr(A)7 is [tr(A4)] + 1 which is certainly < 3-|"=A7|.
N If |tr(A)] < 3-|A] and |tr(B)| < 3-|B| what is |"tr(A A B)7|?

Ttr(AAB)is Ttr(A)Atr(B)7. By induction hypothesis |tr(A4)| < 3-|A|-1
and [tr(B)] < 3:|B|—=1so"|tr(A)Atr(B)|7 < (3:|A]—-1)+(3-|B|-1)+1.
The final ‘+1’ is for the ‘A’. This rearranges to

"tr(A) Atr(B)7] < 3-([A[+[B]) -1

but |A| +|B|] < |"AA B7| whence

Tler(A) Atr(B)] < 3-(|JAA B|)— 17 and finally

“ltr(AANB)| < 3-(JAAB]) -1

If |tr(A)| < 3-|A] and |tr(B)| < 3-|B| what is |tr(AV B)|? "tr(Av B)~
is "= (=tr(A) A =(tr(B)))". What is the length of this last expression?

Clearly it’s going to be |tr(A)| + |¢tr(B)| + one for the outermost ‘=’ +
one for the ‘= attached to tr(A) + one for the ‘= attached to tr(B) +

202 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

one for the ‘A’ ...giving |tr(A4)| + |¢tr(B)| + 4. By induction hypothesis
[tr(A)] < 3-]A]—1and [tr(B)] < 3-|B|—1 so we have

Tltr(Av B)| < (3-]4|—1)+ (3-|B]—1)+4". We can rearrange this to
Tler(Av B)] < 3-(|A|4+|B|) —1—1) 447 and further to
Tltr(Av B)| < 3-(JA|+|B|)+ 2™

Now |A| +|B| ="|AV B|7 =1 so we can substitute getting
Tltr(Av B)] < 3-(|JAV B| —1)) 4+ 27 and rearrange again to get
Tltr(AV B)| < 3-]AV B|—1" as desired.

A final thought ...I wouldn’t mind betting that quite a lot of thought went
into this question. We've proved [tr(A)] < 3-|A| —1 so we've certainly also
proved the weaker claim [tr(A)| < 3-|A|. However wouldn’t stake my life on
our ability to prove the weaker claim by induction. You might like to try ...i'm
not going to!

Exercise [14]

A D-finite set is a set without a countably infinite subset.

(i) Prove that every hereditarily D-finite set is inductively finite.

The set of all hereditarily finite sets is countably infinite, so every set of
hereditarily finite sets is countable finite or countably infinite. Consider a D-
finite set = of hereditarily D-finite sets. By induction hypothesis all its members
are hereditarily finite, so x is either inductively finite or countably infinite. It
is not countably infinite (being D-finite) so it must be inductively finite.

There is a slightly easier proof. The collection V,, aka Hy, of hereditarily
inductively finite sets contains all its D-finite subsets. This is because it is
countable and any D-finite subset of a countable set is inductively finite.

(ii) Provide a constructive proof that every hereditarily Kfinite set is N-finite.
A proof from Andreas Blass:

“First, I claim that equality between hereditarily K-finite sets is decidable,
i.e., either x = y or not x = y. This is proved by induction on hereditarily K-
finite sets x (for all y simultaneously) as follows. Given (hereditarily K-finite)
z and y, we have, for all members z’ of z and 3’ of y, that 2’ = ¢ is decidable,
by induction hypothesis. But decidability is preserved by quantification over
K-finite sets and by conjunction, so we also have decidability of

(Va' € 2)(Fy' € y)a' =y

and
(Vy € y)(Fa' € x)2’ =/,

That is, we have decidability of z = y.”

203

“To finish the proof, I claim that K-finiteness of a set z plus decidability of
equality between its members implies N-finiteness of z. (This is undoubtedly
well-known, but T'll give the proof anyway for completeness.) Proceed by in-
duction on K-finite sets, the case of the empty set being trivial. So suppose
a U {x} has decidable equality between all its members (where a is a K-finite
set for which the result is known to hold). In particular, each member of a
is either equal to x or not. Using again that quantification over K-finite sets
preserves decidability, we find that x is either in a or not. So a U {z} is either
just @ (which is N-finite by induction hypothesis, because equality between its
members is decidable) or the disjoint union of a and {z}, which is N-finite by
definition of N-finiteness. That completes the proof.”

Exercise [15]

REMARK 25

Suppose [is monotone and injective: (Vxy)(x Cy+— f(x) C f(y)).
Let A=z : P(f(x)) C x}.

Then A is not a set.
Proof:

Suppose there is such a set A; we will show that f(A) both is and is not a
member of A.

First we prove that f(A) & A.

The idea is that if f(A) € A then A\ {f(A)} is also a fixpoint, contradicting
minimality of A.

We want

P(FAN{S(A)}) € AN{f(A)}

which is to say

X CfAN{f(A)}) = X € A\{f(A)}

which is

X CHAN{(A)) » X € ANX # f(A)

Now f is monotone and injective, so f(A\ {f(A)}) is a proper subset of
f(A) and no subset of f(A\ {f(A)}) can possibly be a subset of f(A), let alone
equal to it, so we have only the first conjunct to worry about:

XCfA\{r(A}) - XeA

F(AN{f(A)}) C f(A) by monotonicity of f; f(A) € A by assumption, so
FA\{f(A)}) is in A and so too is any subset of f(A\ {f(A)}), since A is a
power set, so is closed under C.

For the other horn, we use the fact that A is a fixpoint for P o f: (Va)(x C
f(A) —» z € A). Now specialise ‘@’ to ‘f(A)’ to obtain f(A4) C f(A) — f(A) €
A), which tells us that f(A) € A after all.]

Note that the only set-theoretic axiom we have used is subscission.

204 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

Exercise [16]

Let IN* be {n : g(n)}; we claim IN* = IN.

Clearly IN* contains 0 and is closed under S and so IN C IN*. (i.e., we can
prove m € IN* for all m € IN by induction).

For the other direction we will justify induction over IN*: this will enable
us to prove that everything in IN* is in IN. Suppose (i) that F'(0) and (ii) that
(Vn)(F(n) — F(n + 1)), and take a € IN*. Suppose, per impossibile, that
—F(a). Then {m : m < aA-F(m)} contains a and is closed under P (by (ii)),
and so must contain 0, contradicting (i). |

Here is another proof that IN* C IN.

Let m € N*\IN. Set M = ({Y : m € Y A P“Y C Y}. (Notice that the
intersection remains the same if we take it not over all Y with that property, but
only over those Y satisfying additionally Y C {k : kK < m}, all of which are finite.
This is because if m € Y A P“Y C Y then the same goes for Y N{k : k < m}).
M is finite. Notice that M \ IN contains m and is closed under P and so is a
superset of M, whence M and IN are disjoint. But 0 € M by hypothesis.

Exercise [1]

An answer from Maria Gorinova.

Provide a sequent calculus or natural deduction proof that

Va(Vy(R(y, x) = ¢(y)) = 6(x)) = V2(4(2)) and Vay(R'(z,y) — R(z,y))
together imply Va(Vy(R'(y,z) = ¢(y)) = d(2)) = Vz(¢(2)).

SEQUENT PROOF:

Let XY =Vay(R'(z,y) = R(z,y)),
Y =Vy(R(y,z) = ¢(y)),
V' =Vy(R'(y,) — ¢(y)) and
Y, =Vy(R (y,2) = 6(y))-

We want to prove

(VY = ¢(2)) = V2(6(2))) A XY = (Va(Y' = ¢(2)) = Vz(4(2)))

Ry, 2), R 2) 7 002, 00)- 00 R)))), R 2) - o), 000, 00) Rr)
R(y,z) = R(y, z), R'(y,), R'(y, 2) F ¢(2), $(y), ¢(2), R(y, z)
Vay(R' (z,y) = R(z,y)), R (y,2), R (y,2) F 6(2), ¢(y), $(2), R(y,)
XY, R'(y,z), R'(y,2) - ¢(z), $(y), $(2), R(y,)
(3 *)

(2 x V1)

(expand)

205

(5 k)
XY, R'(y,z), R (y, 2) - ¢(2), 6(y), #(2), R(y, z) XY, ¢(y), R (y, 2), R'(y, 2) F ¢(z), d(y), ¢(2)
XY, R(y,x) = ¢(y), R'(y,2), R'(y, 2) F ¢(2), d(y), ¢(2)
XY, Vy(R(y,z) = ¢(y)), R'(y,z), R (y, 2) F ¢(2), 6(y), ¢(2)
XY,Y, R (y,2), R (y,2) F ¢(x), d(y), $(2)
XY, Y,F ¢(x), $(2), R (y,z) — (y), R (y,2) = é(y)
XY, Y, F é(x), d(2), Vy(R (y,z) — #(y)), Yy(R' (y, 2) = ¢(y))
XY, Y,k ¢(z), d(2),Y",Y!
(o %)

(b)
(=D

()

(expand)

(2x = r)

(2 x Vr)

(expand)

(s * %)
XY, Y& ¢(x), ¢(2), Y, Y] XYY, ¢(x),d(2) - ¢(x), (2)
XYYV, Y] = ¢(2) - ¢(2), ¢(2), Y’
()

(®)
(=0

()
XYY, Y] = ¢(2) F o(x),6(2), Y XYY, (x),Y] = ¢(2) b ¢(x), $(2)
XYY, Y = ¢(x), Y] = ¢(2) F ¢(x), ¢(2)
XY, Y, V(Y = ¢(x)) b ¢(x), 6(2)
XY, Ve (Y — o)) F ¢(2), Y — é(x)
XY Va(Y' = ¢(x)) F ¢(2), V(Y — ¢(x))
(%)

(=0

(2 x V1)

(=)

(vr)

(%) ¢(2), XY, Va(Y' = ¢(z)) - 4(2)
XY Va(Y' = ¢(x)) F ¢(2),Va(Y = ¢(z)) Vz(9(2)), XY, Va(Y' = ¢(z)) -
Vo (Y = ¢(x)) = V2(¢(2)), XY, Va (Y = ¢(z)) F ¢(2)

Va(Y = ¢(x)) = Vz(4(2)), XY, Va (Y — ¢(z)) F Vz(¢(2))

V(Y — ¢(x)) = Vz(9(2)), XY EVz(Y' — ¢(x)) — Vz(d(2))

V(Y = ¢(z)) = Vz(9(2)) A XY E V(Y — ¢(z)) — Vz(¢(2))

F((Va(Y = ¢(z)) = Vz(8(2))) A XY) = (Va(Y' — ¢(z)) = Vz((2)))

(vr)
(=)
(AD)

(=)
(]

Exercise

(i) Every X C IN such that 0 € X has a <-least member, namely 0 itself.
Suppose every X that n belongs to has a least element. Consider S(n). Let
X be an arbitrary set containing S(n). If it contains n then by induction
hypothesis it has a minimal element (tho’ not necessarily n itself!) If not, take
the set {k—1: %k € X}. This contains n, since X contained S(n), and so it has
a minimal element a. But then S(a) is the minimal element of X.]

206 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

(ii) True for n = 0; suppose true for n, and suppose S(n) € X. Consider X \
{S(n)}. Does it contain anything < n? If not, then S(n) is the desired minimal
element. If it does, then it has a minimal element by induction hypothesis. B

Those of you with refined palates will probably notice that these proofs
are not constructive. The only constructive account of induction is structural
induction.

Exercise

The wellfounded part of a binary structure (X, R) is the C-least set Y s.t. x € Y
whenever {y: R(y,z)} €Y.

207

Chapter [3] Functions

Exercise 19

The lexicographic product of two wellfounded strict partial orders is wellfounded.

The pointwise product of two wellfounded strict posets is wellfounded by
horn-ness, and every subset of a wellfounded relation is wellfounded because
‘wellfounded’ is V in L, 4, -

Exercise

Primitive recursion on lists. We need composition and projection. We also need
gadgets corresponding to the basic functions. The function that always returns
the null list is an obvious candidate. We will need cons here just as we need
successor in IN. The recursion gadget is presumably

) = h(@);
fla::,2) = g(a, f(1,2),1,2).

where the Zs can be anything, so certainly either as or a-lists. More work to do here
Show how to define tail like predecessor.

=
[
e
|_l
“I—'
8]

tail(null) = null;
tail(a::l) =1.

Comment on the rectype of hereditarily finite sets. (Set Theory and Logic
2012/3 sheet 3 q 6); if and y are hereditarily finite so is 2 U {y}. This is not
free, so the recursions are not safe.

One wants to say

f(0,%) = g(2);

f(a U {b}v f) = h(f(a)v b, f)

but we cannot be confident of a unique answer, since a U {b} might be the
same as ¢ U {d}.

Exercise 22|

Elementary, just a quick reality check. You do it by induction on ‘.
fo(m, k) :=m+ k;

frt1(m,0) := mﬂ

fTL-‘rl(m +1,k+ 1) = fn(m, fn-‘rl(m +1, k))

I This is surely correct. fn,+1(m,0) must be the result of doing f, zero times to m and this
must be m. The consideration that causes me slight unease is that according to this line of
thought m - 0 should be m not 0. So the function we call multiplication—m - j—is actually
not f1 but rather fi(m,j — 1). Not that it matters. But one would have expected to see
something about it in the literature. Ben Millwood says not to worry. Perhaps he’s right.

208 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

falm+ 1,k +1) = fi(m, f2(m + 1,k))
fom+1L,k+1)=m-(fo(m+1,k)+1).
Define an operation D7 : (IN? — IN) — (IN? — IN) by

(DT f)(m,0) :=m;
(DT)(0,m) := (DT f)(m + 1,0);
(DT f)(m + 1,k +1) := f(m, (DT f)(m + 1,k)).

Observe that if f is primitive recursive so is DT (f). That powers the induc-
tion.

Some tho’rts to sort out

What is the next operation (in the DT sequence) after exponentiation? People
tend to think that it’s “towers”, so that a 11 (8 + 1) = a®™# but it’s easy to
see that this cannot be right. For what is w 11 w? Clearly it must be ¢y. But
then w 11 (w + 1w = ¢y and 11 is not strictly increasing. So we must have
att (B+1)=(at B)™ So what, one might say? The point is that the tower
function appears very early on in the Ackermann function—which behaves like
a fixed point for DT. Surely there is something illuminating one can say about
this..? see minutes.tex.

Observe that DT : (IN?* — IN) — (IN* — IN) is monotone wrt dominance.
[The proof will go as follows: suppose f is dominated by g; unpack DT (f)(x,y)
to get some horrendous word W(f,z,y) in ‘f’, ‘’ and ‘y’. Replace ‘f’ by
‘g’ in W to get an expression which, by assumption on f and g, must point
to a number bigger than the number pointed to by W(f,z,y). But this new
expression is the result of evaluating DT (g)(z,y).]

Observe further that DT is just the Doner-Tarski operation minus the clause
for limit ordinals. Isn’t it...? Let’s check...

The Doner-Tarski recursion for finite subscripts is:

fn,+1(m+17k 1 :fn(m7fn+1(m+1vk))'

If fr41 = DT (fn) then we must have

frt1(m,0) :=m;
fn+1(0>m) = fn-‘rl(m +1, 0);
Fosr(m+1,k4+1) := fu(m, fari(m+ 1, k).

...and this last thing would look sort-of OK but for the fact that the first
clause is missing and we have ‘n + 1’ instead of ‘n’ in the third. We saw this
worry earlier.

209

Observe further that the Ackermann function is a fixed point for DT, and is
presumably the least fixed point above A(n,m).1. T now find myself wondering
if there might not be a simpler proof that Ackermann is not primitive recur-
sive. . .one that procedes by showing that, for every primrec f, there is an n s.t.
DT"(plus) dominates f.

How does it differ from the wth Doner-Tarski function? Presumably the wth
Doner-Tarski function sends some pairs of naturals to infinite ordinals. ...

So I think we can characterise the Doner-Tarski hierarchy by saying: Do DT

at successor stages and at limit stages take pointwise sups and then do D7 again.

Exercise 23|

It isn’t what you think!
The next Doner-Tarski operation beyond exponentiation is declared by

6110 =5
Bt (a+1)= (511 a)

taking sups at limits.

Thus ¢ 11 1= 2% z 112 = ()" =2"; ¢ 113 = (@)” = 2”; and
presumably = 11 n = z*" for n € IN.
And, when § = w.

w10 =w;
w T (a+1) = @ 11)

taking sups at limits.

It’s worth noting that if you get it the other way round, so that the successor
step is
wtM(a+1)= w@tte)

—which looks more natural—you find that w 1t w =€y and w ™M (w+ 1) =
Wt = % = ¢y so B +— w 11 B grinds to a shuddering halt, and is not strictly
increasing, let alone normal.

Exercise 24]
Show that, if f is primitive recursive, so are
1. the function) ,(n) = Z f(z) that returns the sum of the first n values

0<z<n
of f;

224(0):=0; 32,(S(n) =3 25(n) + f(n).
>_¢(0) must be zero because it is the sum of the empty set of numbers!

and

might need to check the indices

210 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

2. the function [],(n) = H f(z) that returns the product of the first n
0<z<n
values of f.

[1;(0) :=1; TI;(S(n)) = [Ts(n) - f(n).

Exercise 25|

I don’t know what proof you were given, but here is a sketch of how to show
that there are primitive recursive upper bounds.

(Notation: a — (8)))

We will start off by proving w — w3. (There are many proofs: I think this
one is due to Rado.)

We are given a two-colouring (red and blue) of all the edges in the com-
plete undirected graph on Ny vertices. We are going to form an infinite finite-
branching tree whose nodes are labelled with natural numbers. Below 0, to the
left and to the right, respectively, we place the first natural number z such that
there are infinitely many numbers greater than z to which z is connected by a
blue edge (red edge respectively) and—strictly temporarily—we associate to it
that same set of greater numbers. We now build the tree recursively. Below
each growing bud (which is a number with a set of greater numbers temporarily
associated with it) we place—to the left (and to the right)—the smallest mem-
ber x of the set-temporarily-associated-to-the-bud such that there are infinitely
many larger members of that set to which z is connected by a blue (resp. red)
edge.

As we deal with each node we throw away the set that has been temporarily
associated with it. When we have finished we have a tree in which every node
has either one or two children. It cannot have no children at all since whenever
you split an infinite set into two bits, one of the two is infinite. This is a finite-
branching infinite tree and must have an infinite branchEI This infinite branch
either has infinitely many left turns in it, or infinitely many right turns.

Clearly the choice of a two-colouring was unneccessary: the same construc-
tion would have worked for any finite number of colours n. So we have proved
w— (w)2.

Observe that had we started with a set that was merely finite, and we wanted
a monochromatic set of size n we would find (working backwards) that the path
through the tree would have to be of length 2n, so the binary tree would have
to be of height 2n so we would have had to have started with 227 elements. And
n +— 22" ig clearly primitive recursive.

This proves 22" — (n)3, or, if ¢ is the number of colours, ¢ — (n)2. (As it
happens this is not best possible: e.g., we know 6 — (3)3.)

For higher exponents we reason by induction: assume (Vn)(w — (w)) and
try to prove w — (w)™ 1. The idea (I'm leaving the execution to you!) is to cre-
ate a tree somewhat in the style we saw above such that, on any branch through

2K6nig’s lemma not needed because the graph is countable and therefore wellordered

211

it, whenever s is subsequence of that path of length m, then all extensions-of-s-
by-one-element receive the same colour. You then use Ramsey for exponent m
to obtain a monochromatic subset of that branch.

The challenge for the student is to recover a finite version and the computable
upper bound, and show that the upper bound is described by a p.r. function.

Indeed this proof will give us a primitive recursive function f(z,y,2) such
that f(z,y,2) = (z)¥.

I think it’s probably best to write f,(z,2) — (z)¥ and prove by induction
on ‘y’ that A\zz.f,(x, z) is primitive recursive. I haven’t done it myself.

Exercise 26

(i) is order-preserving, but its only fixed point is the empty function. (iii) is not
order-preserving, but has a unique (and obvious) fixed point. Values of the last
two operations are always total so the operations can’t be continuous!

Exercise

(i) For partial functions f,¢g : IN — IN, define d(f,g) = 27" if n is the least
number such that f(n) # g(n), and d(f,g) = 0 if f = g. [The inequality
f(n) # g(n) is understood to include the case where one side is defined and the
other is not.] Show that d is a metric, and that it makes [IN—IN] into acomplete
metric space.

(ii) Show that the function ® (IN — IN) — (IN — IN) which corresponds to
the recursive definition of the factorial function is a contraction mapping for the
metric d, and hence obtain another proof that it has a unique fixed point.

(iii) Which (if any) of the functions defined in Exercise [26| are contraction
mappings?

PTJ says: ‘(iii) is a contraction mapping, the other two are not. It’s worth
emphasizing to students who do this question that the contraction-mapping
approach to fixed points is special to the case of partial maps defined on IN
(note how the well-orderedness of IN is used in the definition of d), but the
order-theoretic approach is applicable to an arbitrary [A — B]. Perhaps also
worth pointing out—to brighter students, at least—that contraction mappings
don’t form a category (identity maps are missing, for the obvious reason that
they don’t have unique fixed points).”

Exercise 28]

Clearly bounded subtraction will be useful here. Does n = m represent n < m?
Almost but not quite, because it isn’t two-valued. We need an auxilliary function
to zap all non-true (nonzero) truth values to 1.

iszero(0) :=0; iszero(S(n)):= S(0).

iszero returns the truth-value of the assertion that its input is 0.

212 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

Then iszero(n — m) represents m < n so of course iszero(S(n) — m)
represents m < n so of course iszero(S(n) —m) + iszero(n - m) represents
m = n.

Exercise 29|

It has to be admitted that division by 2 looks a bit dodgy, but if one treats that
rational expression as something that denoted the (x + y)th triangular number
it becomes much more sensible. T(0) = 0; T(S(n)) = T(n) + S(n) defines
triangular numbers. Then pair(n,m) = T (n 4+ m) + m does the trick.

As for computing the unpairing functions ...

According to the definition, pair(z,y) is the sum of a triangular number
(in fact the z + yth triangular number) and a remainder—z—that is less than
the difference—zx + y + 1—to the next triangular number. Thus the z + yth
triangular number is the largest triangular number < pair(z,y). Thus pair
is injective. To decode a number z as pair(z,y), first ascertain the largest
triangular number < z; this gives you the x + y; the remainder after subtracting
the triangular number is x; subtract the first component from the remainder to
recover y. Thus pair is surjective.

fst(z) is Z(if (3z < z)(pair(i,z) = =) then i else 0);
i<z
snd(x) is Z(if (3z < z)(pair(z,i) = =) then i else 0).
i<
I imagine that this kind of counting construction will help us show that
Euler’s totient function is primitive recursive.

Exercise

“Prove that ¢ is primitive recursive.”

We will need some auxilliary functions/relations. The relation “n divides

b2

m” is primitive recursive, since it is (3k < n)(k-m = n). So “n is prime” is a
primitive recursive predicate. “m and n are coprime” is a primitive recursive
predicate, being the negation of “(3k < m)(k|m A kln A S(0) < k)”. We can
now obtain ¢(n) by bounded summation thus

Z if m and n are coprime then 1 else 0.

m<n

Exercise [32]
[32] part [1]

“Find a primitive recursive declaration for the function commonly declared by

[0 :=f1):=1 fln+1):=f(n)+fln-1)"7

213

Declare F'(0) := (1,1); F(n+ 1) = (snd(F(n)),£st(F(n)) + snd(F(n))).
Then Fib(n) = fst(F(n)).

If you program Fibonacci in the obvious way you get exponential blowup:
by making two calls at each stage you end up with 2" calls to Fib(0) when
computing Fib(n). If you program it in the primitive recursive way you end up
with only one call to Fib(0).

This technique is commonly called pipelining.

[32] part 2]

We want to represent H as something obtained by iteration. The function we
are going to define by iteration will be An.(H (n),n) (though of course that is
not how it is explicitly defined!), and then we get H from it by composition
with fst. Abbreviate An.(H(n),n) to F. Then we have

F(S(y)) = (H(S5(y)), S(y))
= (G(H(y),), S(y))

(we know this by the recursion). Now H(y) = fst(F(y)) and y = snd(F(y)),
so this is

(G(£st(F(y)), snd(F(y))), S(snd(F(y)))),

and we notice that all occurrences of ‘y’ are wrapped up in F’s, so this is

f(E (),

where f is
Az.(G(fst(z),sndz), S(snd(z))),

so H(y) = fst(Fy) = £st(fY(F0)) = £st(f¥(b)), where b = {(a,0).

214 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

Chapter 4: Machines

Exercise 35|

If we have a mutually recursive definition of two functions f and g we can turn
this into a single primitive recursive declaration of the function An.(f(n), g(n)),
from which we can then recover f and g by composition with the unpairing
functions.

Exercise [38

1. The clause that says A(m +1,0) = A(m, 1) takes care of the cases where
n = 0. For the remaining cases we use transfinite induction on the lexico-
graphic product. A(m+1,n+1) = A(m, A(m+1,n)). (m, A(m + 1,n) <jex
(m+1,n+1) so A(m, A(m + 1,n)) > A(m + 1,n) by induction hypoth-
esis. Also (m +1,n) <jex (m+ 1,0+ 1) so A(m + 1,n) > n by induction
hypothesis. This gives us A(m + 1,n+1) > A(m+ 1,n) > n so certainly
A(m+1,n+1) > n+ 1, which was what we wanted.

2. We prove by induction on a that (Vn,m)(n < m — .A(a,n) < A(a,m))
When a =0, A(0,n) := n+ 1 whence n < m — A(0,n) < A(0, m).

For a > 0 we reason as follows. Assume true for a, prove it for a + 1.
A(a+1,n) := A(a, A(a,n—1)) and A(a+1,m) := A(a, A(a,m—1)). If n <
m then the induction hypothesis tells us that A(a,n—1) < A(a, m—1), and
another application of the induction hypothesis tells us that A(a, A(a,n—
1)) < A(a, A(a,m — 1))—which is to say A(a + 1,n) < A(a+ 1,m) as
desired.

3. We prove by induction on n that (Ym)(A(m + 1,n) > A(m,n + 1))
When n = 0, we have that A(m +1,n) = A(m + 1,0) = A(m, 1).

Now suppose the result holds for n and consider n+ 1. Let m be arbitrary.
We want A(m + 1,n+1) > A(m,n + 2)

The recursion tells us that A(m + 1,n + 1) = A(m,A(m + 1,n)). The
induction hypothesis gives us that A(m + 1,n) > A(m,n + 1). whence
A(m, A(m + 1,n)) > A(m, A(m,n + 1)) by clause (2).

Clause 1 gives us that A(m,n 4+ 1) > n+ 1 and consequently A(m,n +
1) > n+ 2. But A is monotone in its second argument by clause 2, so
A(m, A(m+1,n)) > A(m,n+2). Now A(m, A(m+1,n)) = A(m+1,n+1),
whence A(m+ 1,n+ 1) > A(m,n + 2) as desired.

4. A(m+1,n) > A(m,n + 1) by clause 3; A(m,n+ 1) > A(m,n) by clause
2.

215

5. We will show that

A0,n)=n+1
A(l,n)=n+2
A(2,n) =2n+3 > 2n

The result for m = 0 follows by definition. For m = 1, we have A(1,0) =
A(0,1) = 0+ 2 as required. By induction,

A(l,n+1)=A(0,A(1,n)) = A0,n+2)=n+2+1=(n+1)+2,
as required. Similarly,
A2,n+1)=A(1,A(2,n)) =A(1,2n+3) =2n+3+2=2(n+1) + 3.

Using this result and those previously obtained we have

(2 2)* (4)
A(m+2, S(n)) = A(m+1, A(m +2,n)) > A(m+1, A2,n)) = A(m+1,2n0) > A(m, 2n)
———— ——
>A(m,n) (4) >2n

as required, provided we prove (2)*: strictly monotone increasing. True
for m = 0. By (1)

Am+1,n+1)=A(m,A(m+1,n)) > A(m+1,n)

as required, and n = 0 is trivial.

Exercise

Define the terms primitive recursive function; partial recursive function; total
computable function. Ackermann’s function is defined as follows:

A(0,y) :=y+1; A(x+1,0) := A(x,1); A(x+1,y+1):= Az, A(z + 1,y)).

For each n define A

Show that, for all n > 0, f,41(y) = fYT1(1), and deduce that each f, is
primitive recursive. Why does this mean that the Ackermann function is total
computable?

You have to prove by induction on ‘y’ that this holds for all n.

Base case: y = 0. We want (Vn)(fn11(0) = f}(1)). Let n be arbitrary.
Want f,,+1(0) = fL(1). Expand using definition of f:
LHS: f,+1(0) = A(n+1,0) = A(n,1). RHS: f}(1) = A(n, 1), as desired.

Now for the induction step.

216 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

Assume (¥0)(fus1(y) = F27(1). We want (9n)(fusr(y + 1) = F2F2(1)).
Let n be arbitrary as before and expand f,1(y + 1) as before to get A(n +
1,y + 1), which is A(n, A(n + 1,y)), which is f,(fn+1(y)). But by induction
hypothesis on ‘y’, fui1(y) = fET(1), 50 fu(fat1(y)) = fu(fZT(1)), which of
course is fY+2(1).

(This is a useful example of a general problem. There are two universally
quantified variables in ‘(Vn)(Vy)(n > 0 — f,i1(y) = fY*1(1)), and both of
them range over a rectype. On the face of it, each quantifier can be dealt with
by either a UG or an induction. In many cases, such as the one in hand, there
is only one strategy that will work. You have to treat ‘n’ by UG and ‘y’ by
induction.)

Finally, we show that f,, is primitive recursive for each n. We will use the
fact we have proved, namely, that f,1(y) = fY*1(1). Consider the declaration:

9(0) :==h(1); g(n+1) = h(g(n)).

This is clearly primitive recursive: g will be primitive recursive if h is. But
fn+1 is obtained by primitive recursion over f,, in precisely the way ¢ is declared
over h, so, as long as fy is primitive recursive, we can prove all the f, to be
primitive recursive by induction on n.

Exercise [41]

1. Stan Wainer writes:

Nested n-recursion is any definition f(z1,...xn,a) = T(f, 21, ...y, a) where
T is any term built up from given functions and applications of f(t1,...t,,a’)
where the vector t1, ...t,, is always lexicographically less than 1, ...x,. See
50].

2. The appropriate generalisations of the Ackermann function can be found
in (e.g.) [B3] p 28 exercise 19. (He calls them Péter functions.) When
n>1

¢n(03y17 o yn) = d)n—l(ylv e yn)

¢n(y0 +1,0,y2-- 'yn) = ¢n(y0> 1,-- yn)

¢n(y0 + 17 o Yn—1 + 1,0) = an(yo + 17 1a o Yn—2 + 17yn—17 1)

¢n(y0+1a e yn+1) = ¢n(y0+17 e yn—2+1a Yn—1, ¢n(y0+1a e yn—2+17 Yn—1,""" ¢n(y0+17 e yn—l+

217

I can’t parse this last one. I think one of those ‘yg+ 1’ ought to be a mere
10 My guess is that when n = 2 the last clause should be:

d2(yo+ 1,y1 + 1,92 + 1) = d2(y0, y1 + 1, d2(yo, Y1, d2(Y0, Y1, ¥2)))

If it were ¢3 in play we would have

¢3(y0 + layl + 152/2 + lay3 + 1)
- ¢3(3/0»y1+1792+1, ¢3(y0; y17y2+17 ¢3(y07?/1»y27 ¢3(y07y13 y27y3))))

Observe that we can prove the totality of ¢,, by wellfounded induction on
the lexicographic product ordering on IN". Or, in PA, by mathematical
induction using n nested inductions.

Exercisd43]

An interleaving of two words w; and ws is a word obtained by inserting the
characters from w; into ws in the order in which they appear in w;. Thus, for
example, both the strings b0alc and baOlc are interleavings of the two strings
bac and 01.

Now let L; and Lo be regular languages over alphabets »; and X5 respec-
tively. Let the interleaving L1 ® Lo of two languages L; and Lo be the set of
words that can be obtained by interleaving words from L; with words from L.

(i) If Ly and Lo are both regular must Ly @& Lo be regular?

(i)

Suppose X1 and Yo are two alphabets with || and 23| both even natural
numbers (so that both alphabets can be tho’rt of as a set of generators with
their inverses). Let Ly and Lo be regular languages over ¥; and 5 respectively
and let G; be the group consisting of elements pointed to by words in L; and
let G5 be the group analogously indicated by words in Ly. (We say that the
machines corresponding to L; and Ly are word acceptors for G; and Gs.)
What group corresponds to the interleaving of Ly & Lo?

Answer: (i) Yes. Suppose L and Lo are recognised by deterministic finite
state machines M7 and M,. We will describe a nondeterministic machine that
recognises L1 ® Lo.

The new nondeterministic machine My & My will have |M;| - |Mas| states.
Each state of M; & M; represents a guess about how the string-seen-so-far is
to be represented as an interleaving of a string from X7 and a string from ¥3.
Thus a state of M; @ My will be an ordered pair (mq,ms) of states of M; and
Ms,. When it receives a character a from ¥ \ Xo it goes to the state (m],ma)
where m)] is the state whither M; would go were it to receive ¢ when in state
m1. Mutatis mutandis when it receives a character b from 35\ X; it goes to the

218 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

state (mj,mb) where m/, is the state whither My would go were it to receive b
when in state mo. When it receives a character a from Y1 N X5 it goes to one
of the two states (m}, ms) and (my, mj).

The start state of M7 & Ms is the ordered pair of the two start states, and
the accepting states are ordered pairs of accepting states of M7 and Ms.

Answer (ii)

Naturally one’s first thought is the free product G * G3, but of course what
one actually obtains is a quotient. Say v and u in (X U X9)* are equivalent
if there are wy; € Ly and we € Lo such that both u and v are interleavings of
wy with we. Then uv~! belongs to L; @ Lq, and thus the homomorphism onto
the quotient identifies any two equivalent words. But two words are equivalent
precisely if they arise as interleavings from the same pair of elements of G; and
G4. So the quotient is precisely the ordinary (direct, cartesian) product G1 x Gs.

Exercise

(1) Let A be semidecidable (and nonempty), so that it is g“IN for some com-
putable g, and let f be the (gnumber of the) p-recursive function that
sends n to the nth output of ¢g’s volcano. Pick some arbitrary a € A.
Then define h by:

h(n,k) = if T(f,n,k) has final state HALT
then final register-contents of T'(f,n, k)
else a.

[My Doktorvater Adrian Mathias calls this an “impatient” function: if it
doesn’t immediately get what it wants then it emits a default value.]

h is seen by inspection to be primitive recursive.

If f(n) = y, say, then f(n) halts, so h(n,k) = y for some k and y €
h“(IN?). Hence A C h“(IN?). Conversely, we always have h(n,k) € A. So
h“(IN?) = A, with h primitive recursive.

(2) It’s immediate that if X is the range of a p-recursive function then X =
f“Y for some computable f and semidecidable Y C IN (on taking Y = IN).
Suppose X = f“Y for some semidecidable Y C IN. If X is empty then
we're done. Otherwise, let g be the primitive recursive function defined
above with range Y, and set:

h(n, k) = f(g(n, k))

Then h is p-recursive and has range f“Y.

219

Exercise 50!

Check that, for all A,B C IN, the set {2n : n € A}U{2n+1:n € B} is
semidecidable iff both A and B are semidecidable.

(Jane Aston’s answer)

Suppose A and B are semidecidable, with A = {n : f(n)|} and B = {n :
g(n)\}.

Define h(n) as:

if (niseven) then f((uk <n)(n =2k =0)) else g((uk <n)(n = (2k+
1) =0)).

This h is certainly p-recursive, and h(2n) = f(n) and h(2n + 1) = g(n). So
{n:hn)} ={n:neven and f(n/2){} U{n : n odd and g((n —1)/2)}}, and
this is the set we wanted.

For the other direction suppose the set {2n:n € A} U{2n+1:n € B} is
semidecidable. Soitis {n : h(n)l} for some u-recursive h. Define hi(n) =: h(2n)
and ha(n) =: h(2n 4+ 1). (This is OK by composition). Then

{2n:ne A}Uu{2n+1:n € B}
{2n : hi(2n)]}U{2n+1: ho(2n+ 1)} }.

Thus A = {n : hi(n)l} and B = {n : ha(n)l}, so A and B are both
semidecidable.

Exercise [51]

“Prove that there is a semidecidable set X C IN with IN\ X infinite
such that X meets every infinite semidecidable set. What is the
asymptotic density of your X ?”

This is much easier than I thought when I set it!

For each i run the volcano for {i} until it produces a number > 24, then put
the result into X. This construction ensures that, for every n € IN, | X N[0, 2n]| <
n. By spicing up the construction we can make X as thin as we like.

Another thing you can do is observe that D = {i € IN : {i}(¢) |} is semide-
cidable. Might it be the set we want ...7 Let A be any infinite semidecidable
set. Then A = {i}“IN for some {i}. Then {i}(¢) is defined and is in both A and
D. But how then do we know that |IN \ D| = g7 But this is easy: we know
that there are infinitely many 4 such that {i} is everywhere undefined—we can
exhibit them by hand whatever the gnumbering system is.

220 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

Exercise 52|

Suppose the graph of f is a 3V set. That is to say, there is a decidable set 4 C IN*
s.t. (Vuv)((u,v) € f«— (Fx)(Vy)((u, v, z,y) € A)). If there is to be a g of the
kind desired we must have (Vuv)({(u,v) € f +— (Fz)(Vy > 2)(g(u,y) = v)))
whence (Vuv)[(3z)(Vy)((u,v,z,y) € A) +— 3Bz)(Vy > z)(g(u,y) = v)].

What is g(u,w)? We seek z and v such that (Vy)({u,v,z,y) € A). The
idea is that when we find them, v will be the value of g. Of course we can’t
reliably identify such x and v in finite time, but we have some wiggle room
because finitely many ws don’t matter. Fix w; we enumerate the pairs (z,v)
and examine them one-by-one until we find z and v s.t. (u,v,2,0) € A. Then
we return v as the value of g(u,0). What is g(u,1)? We ask whether or not
(u,v,2,1y € A. If it is, we return v as the value of g(u, 1) and we ask whether
or not (u,v,xz,2) € A. If it is, we return v as the value of g(u, 2), and so on. If
(u,v,2,1) ¢ A we look for the next pair 2’ and v’ s.t. (u,v’,2’,0) € A and we
return v’ as the value of g(u, 1). At some point in the enumeration of the pairs
(the nth, say) we will encounter ' and v’ such that (Vy)({u,v’,2’,y) € A). This
encounter will happen because f is total, and the pair z’, v/ is unique because
f is a function. Then g(u,w) = v’ for all w > n. It is true, of course, that when
(at stage n) we encounter such a pair z’, v', we have no way of telling that it
is the last pair we will ever examine (n cannot be computed from u)—but that
doesn’t matter. Had we been able to compute n from u then f would have been
computable.

Exercise (3l

(i) A union of a semidecidable set of semidecidable sets is semidecidable;
(ii) A union of a semidecidable set of decidable sets is decidable;
(iii) A union of a semidecidable set of semidecidable sets is decidable;
(iv) A union of a decidable set of decidable sets is decidable.
In each case prove or provide a counterexample.

For (i) We have a volcano that emits gnumbers of volcanoes. Every time it
emits such a number we power up the corresponding volcano, so that at each
finite stage we have finitely many volcanoes on the go. By the end of time the
chorus of volcanoes has emitted every number in the union.

For (ii), let A be a semidecidable set that is not decidable. Then {A} is
decidable, but its sumset is not.

For (iii), let A be a semidecidable set that is not decidable. Then all the
singletons {1}, {2}, ... of members of A are decidable, but (J,c 4{i} = A is not.

This might remind you of Conway on Countable choice (“A counted union of
counted sets is counted; a countable union of counted sets is countable ...” but a
countable union of pairs can be uncountable.) but there are extra subtleties in this
that are worth spelling out. By thinking of a countable family F of semidecidable sets
as itself a semidecidable set we are perforce thinking of F as a set of indices of functions.

221

That is to say, we have—Dby equipping each set in F with a function (volcano) that
emits it—done all that we would have wanted AC (the choice of a counting) to do.
The countable/counted contrast is not at all like the decidable/semidecidable contrast.

For (iv), consider (thanks to Shoham LetzteIED the set A:

A= {2537} {t}n ()}
(Beware annoying double use of ‘{}’ notation for both functions-in-intension
and sets!)
A is a decidable set of decidable sets. But |J A is

A={3":ne NYU{2t: {t}()}}

which is clearly not decidable.

Exercise [54]

The first step towards discovering one is to observe that we can obtain the effect
of the last paragraph by adopting a rule of inference

(Vo) (0(z) <— (Fy)(8(z,9))), (Va)(B(z) <— (Vy)(¥(z,y)))
(Fy) (Vo) (z € y «— 0(x)
where ¢ and 1 are AY.

So we now have a decidable set of axioms, but the price we have paid for it
is to have a new—awkward—rule of inference. Fortunately we can “internalise”
this rule of inference by adopting, for each 6, a scheme

(V2)(0(z) +— (Fy)(d(z,9))) A (Vo) (0(x) +— (Vy)(P(z,9)))) —
(3y) (Vo) (x € y «— 0(x))

where ¢ and 1 are A as before.

or

(va) \ (0(z) < Gy)(d’(”f’y)))) S @)V @ ey e 0(z) (13.1)

Exercise 67

Given a machine 9t and an input &, form a machine 9t* so that:

M (k) = M(k);

MF(n) =0 for all n > k;

IMF (n)t for all n < k
Let f(k,n) be the p-recursive function which is zero if 9t*(n) halts and unde-
fined otherwise. Then the least n such that f(k,n) halts is k if (k) halts and
k + 1 otherwise, so the function g defined in the question is total and solves the
halting problem.

3This proves—in case you ever doubted it—that a vegan diet is good for your brain!

222 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

Exercise [59]

The relational product of two primitive recursive relations might not be a prim-
itive recursive relation.

Try R(z,y) iff x = (m,i) and y = (¢,0) and (I’ < ¢)({m}y(i}{= 0). Then
consider the composite (3z)(R(z,z) A R(y,z)). This is surely not a primitive
recursive relation. It’s not even decidable, by Rice’s theorem.

There’s probably a simpler demonstration.

Exercise

When setting the question I envisaged the following answer:

We build a transversal 1" in stages, 1;,.

Put 0 into Ty. Compute [[n ~ 0]] (the truth-value of n ~ 0) for all n in
parallel. As soon as we discover a k such that =(k ~ 0) we put k into 7;.

Subsequently at the nth stage we compute [[k ~ m]] for all m € T,, and all
k & T,. As soon as this process reveals a k such that (Ym € T,)(=(k ~ m)) we
set Tp41 := T, U{k}. Since ~ is of infinite index, there is such an m and—since
the graph of ~ is the complement of a semidecidable set—we will find it. The
idea is that T, = U T; is a transversal.
ieN

However, I'm no longer happy with this approach. How can we be sure
that T,, meets every equivalence class? It might be a useful exercise to think
about how one might modify the construction to get it to work but i'm not
staking my life on it ...and Henk-Jaap Wagenaar tells me it can’t be repaired.
Anyway, a solution is easily found by observing that {n : (Vm < n)(=(m ~n))}
is semidecidable. It’s also evidently a transversal.

Too easy for a tripos question, really.

Exercise [61]

Suppose f : IN¥ — IN is total computable and increasing: f(#) > max(Z). Show
that there is a decidable A C IN satisfying f“A* = IN \ A.

(For the moment i’ll just prove the special case where k = 1.)

Put 0 into A. Put f(0) into IN\ A. Put into 4 any n s.t. f(n) = f(0). So
far so good. Now look at the least k that we haven’t considered. It’s not f of
anything known already to be in A so we can safely put it into A. Put f(k)
into IN' \ A and of course also put into IN \ A any k' s.t. f(k') = f(k). Keep
chugging on.

223

Exercise [62]

see http://vxheavens.com/1lib/awd00.html

Exercise 63|

The answers are ‘yes’, ‘yes’ (i.e., it changes).
b) b)

Exercise [65]

The second function is a step function and is therefore computable: all step
functions are, being finite objects. The fact that we do not know which step
function it is merely means that we do not know how to compute it.

The first function might be computable. Nobody has a clue. My guess is
that it is the computable function An.true.

The third function is in fact computable, in the sense that there is a com-
putable function with the same graph, but you would not guess it from the
declaration. Remember that computability is in the first instance a property of
function declarations (functions-in-intension), not of functions-in-extension.

This is another opportunity to wheel out the expression ‘self-validating’
sometimes used by CompScis to describe functions that tell you what they
are doing. If the function An.true computes the second function in the exercise
then we can’t tell that just by looking at the code.

Exercise

If the set of gnumbers of boxes that cannot tile the plane is to be semidecidable
then, whenever a box-of-tiles does not tile the plane then we will have to be
able to detect this fact in finitely many steps. We rummage around in the box
b and add tiles, one at a time, to a growing finite assembly of tiles on the plane.
Every now and then we get stuck, so we backtrack and try something different.
How do we know that we can’t go on making ever bigger and bigger assemblies,
but always getting stuck and having to backtrack?

Fix a box b of tiles and consider the set of finite (legal) assemblies of tiles:
they form an obvious partial order. However what we want is a tree, so we
consider instead the set of finite sequences of applications of tiles—the partial
order is an obvious quotient of this set. There are only finitely many flavours of
tiles in the box b, and only finitely many buds in any assembly where we can put
a new tile, so this tree is finitely branching. If b cannot be used to tile the plane
then this tree has no infinite paths. Now, by Konig’s lemma, the tree must be
actually finite, and that means that if we try adding new tiles in a particular
order we will know when we have run out of possibilities.

The point is this: Konig’s lemma tells us that if b will not tile the plane
there will be what one might call a cut: a finite set of legal assemblies none of
which can be legally enlarged, and such that every legal assembly is a subset of
one of them. As long as we search systematically then if there is such a cut we
will find it.

http://vxheavens.com/lib/awd00.html

224 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

However (thank you Zhen Low and Lovkush Agarwal!) one has to be careful
how one states this. You could consume an infinite amount of time putting tiles
in a Z-line without attempting to fill the space and thus fail to discover in finite
time that your enterprise was doomed. (One thinks of space-filling curves in
this connection) What you have to do is spiral out from the origin.

Mind you, this probably needs more discussion still. Spiral out from the
origin so that the (22 + y?)th day (or thereabouts) finds you attempting to put
a tile on (z,y). It’s a weee bit more complicated than that, because remember
there is backtracking. So one doesn’t count for this purpose time spent in blind
alleys.

Exercise [T5]

Part (1) Show that the range of an increasing total function f : IN — IN is a
decidable set.

Either the function f is eventually constant, in which case its range is finite
and is therefore decidable, or it is unbounded. If it is unbounded, the way to
test whether or not the candidate number is a value of f is to compute f of 0,
1, 2, 3 ... until the candidate number is either hit or overtaken.

Of course, if you do not know which of these two situations is the one you
are in, you have no way of discovering the decision method in virtue of which
this set is decidable, but that is your problem, not God’s. This rams home the
point that, for a problem to be solvable, what is necessary is that there should
be a decision method for it-—not for there to be a decision method for it known
to us.

You might think this is an elementary point—and it is—but it is one that
can be easily overlooked.

Another point worth taking away from this is that we have here a noncon-
structive proof that something is recursive. Ironical, what?!

Part (2) Show that every decidable subset of IN is the range of an increasing
total computable function IN — IN.

If A is decidable then A = f“IN and IN\ A = g“IN for two total computable
functions f and g. Run the volcanos for f and for g (and we use the non-
repeating style of volcano) until one of them emits 0 (they may emit other
things, do not record them); then restart them and run them until one of them
emits 1; and so on. We define the strictly increasing total computable function
a by a(n) is the nth member of A recorded as being emitted by this duet of the
volcanos.

Part (3) What if f is merely nondecreasing (but still total)?
The technique of Part (2) works here too.

Part (4) What if f is increasing but perhaps not everywhere defined? (i.e.,
(V) (Ym)(((n <m) A f(n)l Af(m)) = f(n) < f(m))?)

Strictly-increasing and nondecreasing are equally good here, but if f is not
total we are stymied. If f is undefined at only finitely many inputs then we

225

can tweak it into a total computable function function with the same range.
(“Hard-code” the missing bits).

Part (5) What is the notion of “increasing function IN — IN"” that one
would need were one to prove that every decidable subset of IN" is the range of
an increasing computable function IN — IN™?

You have to order IN* in order-type w.

Exercise [T6

Suppose X is a semidecidable set. Then there is a volcano that emits members of
X, possibly with repetitions and not in increasing order. We define an increasing
function s : IN — IN by s(0) := the first number emitted by the volcano, and
thereafter s(n+1) is the first number > s(n) that the volcano emits. Evidently
s“IN C X, sis an increasing computable function and—because X is infinite—s
is total, so, by exercise its range is a decidable subset of IN.

Exercise

The best way to answer this question is to draw lots of pictures.

Clearly we are going to have to execute a back-and-forth construction.

Think of the naturals in (IN, <4) as 04,14,24 ... and think of the naturals
in (IN, <p) similarly as 0p,15,25.. ..

Clearly we wish to pair 04 with 0. What do we do thereafter? In the
routine back-and-forth construction we seek, at stage n, a mate in (IN, <g) for
the first n4 we have not already found a mate for. We examine Op,1p ... and
so on until we find one that lives in the open interval that qualifies it to be a
mate for n 4. This process of checking involves asking questions like “z <p y?”
all of which are ex hypothesi answerable, since the graphs of <4 and <p are
decidable sets of ordered pairs. Then we come back the other way. At the end
of time we have a bijection as usual.

Exercise

I can’t do the first two parts!

By considering enumerations of the partial computable functions, find a
computable partial function that cannot be extended to a computable total
function.

Let {{n} : n € IN} be an enumeration of the partial computable functions
of arity 1, that is, {n} : IN — IN.

Now take f : IN — IN to be f(m) = {m}(m) + 1. Note that f is certainly
not total, and it certainly is recursive. Suppose now that h is total computable
and extends f to all of IN. Then we must have h = {ng} for some ng, because
h is total computable.

Then h(ng) = {no}(no), and as h total, the latter is defined. Therefore
f(no) is defined, and

226 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

{no}(no) = h(no) = f(no) = {no}(no) + 1.

Exercise [T9]
Given f as in (i), define g by picking a; € A; for each i (such that A; is

nonempty!) and then computing g(z) = Zz(l — f(ai,x)). Incidentally, it is
=0

(as far as I know [says PTJ]) an open problem whether the equivalence of (i)

and (ii) still holds for (countably) infinite families of sets—if anyone has any

ideas about this, let us know! For the last part, take

Ao ={n: fn(n) is (defined and) odd}
and

Ay ={n: fn(n) is (defined and) even}

If we had a total function taking the value 0 on Ay and 1 on Aj, it couldn’t
equal f, for any n.

Exercise

[marked by PTJ as HARD]

A set A C IN is called Diophantine if there exists a polynomial p(z,y1, - .-, Yn)
with integer coefficients such that z € A if and only if there exist y1, ..., y, such
that p(z,y1,...,yn) = 0. Show that any Diophantine set is semi-recursive. [A
famous result due to Yu. Matiyasevich asserts that the converse is true.] Show
also that a set is Diophantine if and only if it is the set of non-negative values
taken by some polynomial with integer coefficients.

[The first part follows easily from question 2%, and the (obvious) fact that
the set of zeros of a polynomial is decidable. For the last part, given a polyno-
mial p(z,y) witnessing the fact that A is Diophantine, consider the polynomial
q(x, %) = 2 — (x + 1)((z,7))?. Note that, given Matiyasevich’s result, this im-
plies that there is a polynomial p(x1,...,x,) such that the non-negative values
taken by p are exactly the primes. Incidentally, if students worry about whether
Diophantine equations should be solved in integers or in natural numbers, point
out to them that p(z) = 0 has a solution in IN iff p(s®> +t> +u? +v2) =0 has a
solution in Z* (since every natural number is a sum of four squares), and that
p(y) = 0 has a solution in Z iff p(y).p(—y) = 0 has a solution in IN.]

Exercise 81l

“Explain what a model of a sentence is. If ® is a sentence the
spectrum of ® is the set of n € IN such that ® has a model of size
n. Is every spectrum decidable? Use a diagonal argument to find a
decidable set that is not a spectrum.”

227

It’s coming back to me, slowly. I think the answer must be that any spectrum
(of a single sentence that is, not a theory) must be decidable. After all, for any
formula ¢ and any n there are only finitely many structures of size n that are
suitable for £(¢) and it suffices to examine them exhaustively.

Another fact that swims into my mind as being vaguely relevant is that
one can write down an expression in predicate calculus that says that there
are precisely n things in the universe. This is useful if one is thinking about
spectra of theories . ..every subset of IN is a spectrum of a theory, even if not a
recursively axiomatisable one. It does at least show that every decidable subset
of IN is the spectrum of a recursively axiomatisable theory.

I have no idea about the last part. Most vexing.

228 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

Chapter [5; Lambda Calculus

Exercise 82|

By using Curry-Howard on a two-membered set B with a five membered super-
set A of it, or otherwise, show that Peirce’s Law: ((A — B) — A) — A is not
a constructive thesis.

Uniform definability is clearly going to have something to do with invariance
under permutations acting inside the sets we are considering . . . but what exactly
do we mean by invariance? We need to get straight what it is in general for
a permutation of A to act on some complex construct involving A and other
things, and this we do by recursion on the structure of the complex construct.
For m € Symm(A), 7 acts on A as itself, and on any other atom it acts as the
identity. How does m act on X — Y? Clearly it must send f € X — Y to
{(m(x),m(y)) : (x,y) € f} where w(x) is what the induced action of 7 does to z,
told us by the recursion. ‘Invariant’ means fixed by this action. Observe that
any A-term is invariant in this sense.

Now for Peirce’s Law: ((A — B) — A) — A.

Suppose per impossibile that there were a uniformly definable (and, accord-
ingly, invariant) function P for Peirce’s law. Let B be a two-membered set, and
let A be obtained from B by adding three new elements.

A

The pigeonhole principle now tells us that, for any function f : A — B,
there is a unique b € B such that |f~1“({b}) N (A\ B)| > 2. (A unique member
of B that is hit by at least two members of A\ B). This defines a function
from A — B to B, which is to say (since B C A) a function from A — B to A.
Let us call this function F. F exists only because of the special circumstances
we have here contrived, and it’s not the sort of thing that P would normally
expect to have to deal with, so we should expect P to experience difficulty with
it ... which of course is what we want! At all events we must have P(F) € A. In
fact we can show that P(F) € B. For suppose per impossibile that P(F) = a,
for some a € A\ B; with a view to obtaining a contradiction let 7 be a 3-cycle
moving everything in A\ B while fixing everything in B. We have

P(F) =a, S0

229

which is to say

m(P(F)) = 7(a)
=m(a) but P is fixed, whence
)-

m(P)(r(F))
P(n(F)) = 7(a

To obtain the desired contradiction we have to show that 7w(F) = F. We
have 7(F) = m=1 - F - 7 by the recursion. So, for all f: A — B, we obtain

~—

w(F)(f) = (x " -Fm)(f) = (x VF)((f)) = 7 (F(w()) =V 7 (F(f) =P F(f).

The first three equations hold by unravelling the recursion.

(1) holds as follows. 7(f) =7~ ! - f-m and this is the same as f - 7 since 7
fixes both things in the range of f. Similarly F'(f-7) must be the same as F(f),
since F' looks only at the range of its argument not its domain, and everything
in the range of F' is fixed.

(2) holds because the output of F'is in B, and = fixes both things in B.
That is to say, for all f: A — B, n(F)(f) = F(f); whence n(F) = F, giving

a = P(F) = P(x(F)) = n(P)(n(F)) = n(a) # a,

and the contradiction tells us that P(F') was not in A\ B; it must have been in
B as claimed.

So P(F) € B. But this now means that we have a uniform way of finding
a distinguished element in any two-membered set B. Simply add three new
elements to B to obtain A, apply P to F' to obtain a member of B; then throw
away the new elements. This is clearly absurd.

Exercise 83

One starts by noticing that A — (A4 — A) and (A x A) — A are naturally
isomorphic, by currying and un-currying. So let’s show that (4 x A) — A has
only two definable inhabitants: left and right projection.

Any definable inhabitant of that type must commute with any permutation
of A ...but what exactly do we mean by this? We need to get straight what it
is in general for a permutation of A to act on some complex construct involving
A and other things. We do this by recursion on the structure of the complex
construct. For m € Symm(A), 7 acts on A as itself, and on any other atom as
the identity. How does m act on X — Y? Clearly it must send f € X — Y
to f7, by which we mean {(r(x),7(y)) : (z,y) € f} where m(x) is what the
induced action of 7 does to x, told us by the recursion.

We want to show that if f: (A x A) — A commutes with all permutations
of A then it is one of the two projections.

We start by showing that f({a,a’)) must be a or a’. Suppose it weren’t, and
that a; and as gave us a counterexample. Let m be a permutation that fixes
ap and as and moves f(aj,az). Then f doesn’t commute with 7. (We have
assumed that A has enuff inhabitants but I think that’s allowed ...?)

230 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

Now we have to show that a definable f must always “jump the same way”.
With a view to obtaining a contradiction let us suppose that there are aq, b1,
as, be all distinct s.t f(ai,a2) = a1 but f(by,b2) = be. Let m be the dou-
ble transposition (ai,bi)(az,b2). We have f(aj,a2) = a1 so we must have
f(m(a1),m(az)) = w(ay). But this is f(b1, ba) = by, contradicting f(by, by) = ba.

Further thoughts to be worked up. ..show by the same means that the only
definable inhabitants of (A — A) — (A — A) are I, KI and the Church
numerals.

Fixed under all permutations of A. Permutations of A act on A by moving
members of A around? How do they act on things obtained from A? If 7 is a
permutation of A, it will, when acting on A x A, send (a1, as2) to (w(a1),7(asz)).
It acts on subsets of A by translation: 7 sends X C A to {n(a) : a € A} also
written m“A. What does 7 do to a function f: A — A? f is a set of ordered
pairs of members of A, so we send it to {m({a1,a2)) : {(a1,a2) € f} which is
{{n(a1),n(az))) : {a1,a2) € f} which is 7 - f - 7~ !, which we can write f™.
What is 7(g) when g : A — (A — A)? Well, g is a set of ordered pairs whose
first components are members of a and whose second components are functions
A — A. Soit’s Aa.(mta)".

Exercise

pair:= Axyf.fzy
fst:= Ap.p true
snd:= Ap.p false
nil:= Az.true

What are the types of these expressions?

pair is clearly of type A - (B — (A — (B — C)) — C) so (assuming
naturally that a is of type A and b is of type B), pair a b is of type (A — (B —
) —C.

Now we compute some unpairing:

Consider what happens if one applies an object of type (A — (B —
C)) — C to an object of type X — (Y — X) (which is the type of
true). We are forced to make the identifications: X — A, Y — B
and X — C. Thus the result of this application must be of type A.

If one applies an object of type (A — (B — C)) — C to an object
of type X — (Y — Y) (which is the type of false) one is forced to
make the identifications: X — A, Y — B and Y — C. Thus the
result of this application must be of type B.

Exercise 106

Find a normal proof of (p «— (p — ¢)) = ¢

231

(ze1)
wle-4—

d
wIo-4<—
el d & d + (b« d)
-
b+ d)«d . y .
A — v WI[O-4— @T@T&v A: U< b+

b« d
NTN_ E:mwlT
wie-—

b« d
b
IT[9-4—

(z) yur-+

q beded
b+
M e 1]

232 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

Exercise 107

[PTJ says in his message to supervisors for Part IT Logic, Computation and Set
theory back in the days before The Flood: I'm presumingEI that any students
confident enough to stray into this question will be good enough to do most of
it without your help. The answer to the last part of (vi) is that, if Y is de-
fined, it must be a fized point of (the recursive function represented by) x, but
the example of the Kleene algebra of (v), in which there are certainly recursive
functions without fixed points, shows that it needn’t be defined (and indeed, Y
needn’t be defined in general). In answer to (vii), you should talk about the corre-
spondence between combinators and theorems of the pure implicational calculus
(the correspondence being found by assigning types to the variables on which the
combinator operates); worth mentioning that the equation | = SKK corresponds
to the fact that the proof of (p — p) (which they saw in lectures some time ago)
involves one instance of Aziom (S) plus two of Aziom (K) (and two applica-
tions of modus ponens, which correspond to the two compositions). Also point
out that a fized-point combinator such as Y must have type ((p — p) — p); the
fact that this isn’t provable in the pure implicational calculus corresponds to the
fact that Y doesn’t provably exist in a partial Schonfinkel algebra.]

I say:

Cheat by using ML. What follows is a transcript of an ML session.

- fun K x y = x;

val K = fn : ’a -> ’b -> ’a
-funSadc=(ac)dc);

val S = fn : (a => ’b -> ’c) -> (a -> ’b) -> ’a -> ¢
-val I =8 K K;

val I = fn : ’a -> ’a

Recall that we stipulated that, in a PCA, Sab is always defined (even if not
total), so we expect I to be defined.

S (K S) K;

- val B =
=fn : (’a -> ’b) > (°c -> ’a) -> ’c -> ’b

val B

Sab is always defined (even if not total) and Ka is always defined and total, so
we expect B to be defined.

-valE= S (K (S 1I))K;
val E = fn : ’a -> (Pa -> ’b) > ’b

Sab is always defined and Kab is always defined, so we expect E to be defined.
But from D onwards we are beyond the warranty, so henceforth things can go
belly-up without notice.

41 think he should have said “assuming” here. I keep hoping to catch him making a mistake
one day. ..

233

-valD= S (BS (BK (BEE)) KE;
val D = fn : ’a -> (’a -> ’b) -> ’b
- val P1 = E (K I);
val P1 = fn : ((’a -> ’b -> ’b) -> ’¢c) > ’c
- val P2 = E K;
val P2 = fn : ((’a -> ’b -> ’a) -> ’c) -> ’c
-val W=S(B SK KB II);
std_in:10.19-10.25 Error: operator and operand don’t agree (circularity)

operator domain: (°Z -> ’Y) -> °Z

operand: zZ > YY) > Z > Y

in expression:

SII

This is the first point where things go wrong. To ascertain the type of S
I we unify the type of the antecedent of S (namely A — (B — C)) with the
type of I (namely A — A) getting (B — C) — (B — C), and the type of
SI will be the result of applying the substitution (B — C)/A to (A — (B —
) - (A - B) - (A — (), and then doing a modus ponens. We get
(B—C)— B)— ((B— C)— (). Notice that we cannot sensibly apply an
object of this type to an object of polymorphic type A — A: the occurs check
will prevent us from unifying (B — C') — B with A — A, and that is what the
error message is telling us. SII is not well-typed: it is self-application.

Exercise

Clearly the first step must be to decide to infer B from (((A — B) — A) —
A) — B.

The only way to use the assumption (((A — B) - A) — A) — B is to
exploit it as the major premiss of a —-elimination, which means that we have
to somehow obtain the minor premiss, namely ((A — B) — A) — A. Now this
last formula is not a constructive thesis (tho’ it is a truth-table tautology), so
we will have to derive it from the assumption we already have, namely (((A —
B) — A) —» A) — B.

If we are to infer (A — B) - A) — A from (((A — B) » A) — A) — B,
then clearly it means we have to infer A from (((A — B) -+ A) — A) — B and
(A— B)— A.

If we can deduce A — B from (((A — B) — A) — A) — B we'll be all
right. But this is easy, because A implies ((A — B) — A) — A (use K) . Thus
we can obtain the following proof. (The decorations are easy once one has the
proof.)

QUESTIONS

(ge1)
g (g + (v < (v « (g < V) : ((zhy)zzx)mmy) 2y

e g : ((mhiy)zay)mmy)z

~

wWiI[o-4—

V< (V < (g <+ V))) : (mhix)zzx)m my
v (@ i)z zy)m

vl « (v < (g« (@ < v))) 2]

CHAPTER 13. ANSWERS TO SELECTED

(8) 1~

WiE-+—
elv (g < v):] (@) s v ﬁ.a.mcw.a«
wrpo-— g : (zfix)z
Wl < (v < (v < (g < V) : 2] Ve (v« (g < v)):zhy
(1) yur-< vE
s Aj1yuspl
iV (@« v):a elv 7]

234

235

Chapter [6] Recursive and Automatic Structures

Exercise

“Show that if G under some presentation is automatic, then it is automatic
under any presentation.”

[RP sez: Replace the generators of one presentation for words in the other
group that they are equal to.]

Exercise

Forget the “automatic” bit for the moment. Let 77 and 75 be two theories.
We claim that the set {AV B : A is an axiom of T} and B is an axiom of T5}
axiomatises 11 N T5.

Let ¢ be a theorem of 77 N Ts. By compactness there are finitely many
axioms Ay ... A, of T s.t. A1... A, F ¢ and finitely many axioms Bj ... B,, of
15 st. By...By, F ¢. We claim that ¢ follows from the m - n formulee A; V B;
with 1 <i<n, 1 <j <m. Repeated use of distributivity shows that this finite
scheme is equivalent to

(A 4)v(i AN B

1<i<n 1<j<m

and by asssumption each disjunct implies ¢.
Thus we can axiomatise 77 N T, with the scheme {A; VB;:i € IAj€ J}
where {A; : ¢ € I} axiomatises 77 and {B; : j € J} axiomatises Tb.

Now suppose that both 77 and T3 are automatic theories, so that {A; : i € I'}
and {B; : j € J} are both regular languages. The axiomatisation for T} N T
that we obtain as above is clearly a regular language. [The cartesian product of
two regular languages is regular under a suitable presentation]

Exercise

We prove by induction on « that the ordinals below w are closed under f,
for all recursive a. True for fy? Is the sum of two recursive ordinals recursive?
Pretty obviously yes: take the disjoint union. Product? Take the cartesian
product of the two wellorderings of IN. We can do the same for the synthetic
definition of ordinal exponentiation (which you have probably forgotten) but
that won’t help us with the induction. Suppose the recursive ordinals are closed
under f,; are they closed under f,17 We appeal to the definition:

CK
1

fopr(a,y +1) = fulfosi(a,7), a);

frv1(a, A) = sup7</\fn+1(a,)

The first (successor) case give us no trouble. With the second (limit) case we
need to think a bit about sups of soberly constructed w-sequences of recursive

236 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

ordinals. When we have done this, the results will serve us in good stead for
the case f).
The point is that we want the sup of the set

{frns1(a,y) sy < A}

to be a recursive ordinal. It’s at least a sup of recursive ordinals. And the set
of ordinals of which it is a sup is in some sense recursive. So we must get that
sense straight and exploit it.

I think it will be sufficient to have a function that allocates to each recursive
ordinal a decidable worder of IN of that length.

So, instead of considering the set { f,,+1(a,7) : v < A}, we consider a cofinal
subset of it of length w that has a recursive definition. To be specific, we consider
a wellorder of IN of length v and we consider the decidable subsequence of that
worder that is of length w.

It turns out that what we need is a ternary partial function ¢ : IN* — IN
thought of as a function IN? x IN? x IN? — IN? so that each argument is a code
for a wellordering of IN. If k£, n and m are codes for wellorderings of lengths x,
v and p respectively then ¢(k,n,m) is a code for a wellordering of IN of length
f (v,). Isomorphism-of-binary-relations is a congruence relation for ¢ so we
can think of ¢ as a ternary function from recursive ordinals to recursive ordinals.

For fixed k we define ¢(k,m,n) by induction on the lengths of m and n.
Suppose we know ¢(k, m’,n) for all m’, n’ shorter than m, n respectively. What
orderjizlng is going to be ¢(k, m,n)? The hard part is when otp(m) or otp(n) are
limit

Exercise [91]
Let p: [IN]®> — {0,1} be defined by

pla,y,z} =0 i @<y <z — (vp,d <) {phy (Dl {p}.()).

Suppose X is an infinite subset of IN monochromatic for p. We must have
p“[X]® = {0} since p“[X]®> = {1} is obviously impossible (“too few truth val-
ues”). We will show that if X is decidable then we can solve the halting problem.

To determine whether or not {p}(d)| first find a member n of X larger than
p and d. Then, for any y and z in X both bigger than n, we have {p},(d)| iff
{p}:(d)}. Since X is infinite it has arbitrarily large members and so if {p}(d)
ever halts at all there is z € X large enough to ensure that {p},(d)l. But then,
by monochromaticity of X, it will be sufficient to check {p}.(d)| for even one
z € X bigger than n.]

On the other hand there is a theorem of Seetapun’s that every decidable
partition of [IN]? has a homogeneous set in which the halting problem is not
recursive. (See Hummel [34]).

5otp(R) is the order type of R. Typically we use this notation only when R is a total order.
Some people always use the locution ‘order type’ to mean an ordinal.

237

Exercise [92]

Let J be Jockusch’s partition of [IN]? from exercise [91} and fix a colour, x. The
elements of the tree will be [some] finite strictly ascending sequences of natural
numbers, and the tree ordering will be end-extension. We use an ascending
sequences s for the tree iff every increasing [?] triple from s is coloured y. All
sequences of length 1 or 2 are allowed in free. (In the case of length 2, one
demands that the sequence be strictly ascending).

This condition on the sequences is decidable. If s is of length n one performs
() calculations (at most). If p is an infinite path through the tree, let P be
the set of integers along it. Then P is monochromatic for J. Hence P is not

decidable, and therefore p is not either.

Another answer supplied by Zachiri McKenzie, doctored by me.

I write ‘2<%’ for the set of all finite sequences from {0,1} (we think of finite
sequences as functions with domain an initial segment of IN) and ‘2%’ for the
set of all functions with domain IN and range a subset of {0,1}. Define

0 if pn(n) 1#0
d(n) = 1 if n(n) I=0
undefined if p,(n) T

It is clear that d is a partial computable function with domain {0, 1}. Moreover,
if . is total then d(e) |+ e.
For all £ € IN, define

d® (n) = { d(n) if d(n) L

* otherwise

The binary function d)(-) is total computable. Define
T ={oe2 |forall 0<i<|o|,(d17V () =)V (c(i) = dlD(i))}.

Now, (T, C) is a computable tree. Since T'C 2<% T is finitely branching.

Let f : IN — IN be such that for all n € IN, if d(n) | then f(n) = d(n). Now,
forall k € IN, f | k € T (f restricted to k is in the tree). So, T is indeed infinite
(and has a path f). Now, suppose f = ¢.. Then d(e) | and f(e) = ¢.(e) = d(e),
which is a contradiction. Therefore f is not computable.

Exercise [03]

If 9 is a nonstandard model of PA and 90t* the corresponding structure for
second-order arithmetic, then 9* = WK L.
Proof:

Suppose a nonstandard n € M encodes in 9* a rooted binary tree with
infinitely many nodes; we will show how to obtain a [nonstandard] n’ that
encodes an PM*-infinite path through that tree.

238 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

How does one prove WKL anyway? One hopes to have a wellordering of the
nodes, which we can use to guide the obvious depth-first search. [IN the obvious
depth-first search one procedes from a node to its left child if there is one; failing
that one takes the right child. If one is forced to backtrack one deletes the node
from which one backtracks.] And indeed here one does, because the nodes are
natural numbers. So the challenge is to describe the algorithm in a way suitable
for M*. Clearly the root must belong to the infinite branch we are building. If,
once we have put a node on the tree we are building, we find that one of the
children of this node is childless we put the other node on the end. If neither of
them is childless we first investigate the node that is the smaller of the two (as
a natural number).

So the idea is as follows. Consider the evolving status of an arbitrary node
as the depth-first search procedes. Initially it has not been visited, and is
coloured ‘0’. At some point it may be visited (and be recoloured ‘1’), and at
some later point it may be deleted (coloured ‘2’)—if the search discovers that
it has only finitely many descendents. So we have a function f : IN — IN, where
f(0) encodes the original tree with every node labelled ‘0’ and later values of
f encode the tree with the labels on the nodes modified by the workings of the
depth-first search. Evidently f is going to be primitive recursive. We compute f
for some nonstandard input and looks at the nodes that are labelled ‘1’. These
nodes are our infinite branch.

Observe that we didn’t really need the ramification number to be exactly 2.
Any concrete natural number will do.

239

Chapter [7; Incompleteness

Exercise [94]

Jason Long said to me the other day that the complement of the Halting set is
productive. Which version of the Halting set did he mean? And what did he
mean by ‘complement’?

He meant that {n : {n}(n) 1} is productive. Let {m} be a function whose
domain of definition is a subset of this set. Is m a member of {n : {n}(n) 1}?
Can’t be! so {n}(n) 1. Thus, given m s.t. W, C {n : {n}(n) 1}, we have
computed a number that is in {n: {n}(n) 1} \ Wy, ...namely m itself!

Exercise [05]

Proof supplied by Zachiri McKenzie.
Consider X = {e € IN: |IW,| < No}. Let T'(-,-) be the Turing machine such
that: T'(n,x) runs @, (n). Define

f(n) = the index of the machine T'(n,-).
Note that for all n € IN, W,y =0 or IN and
Wiy = 0 if and only if @, (n) 1.

It is clear that f : IN — IN is total computable. This shows that X is produc-
tive.

Consider X = {e € IN : |W,| = Xo}. Let T'(-,-) be the Turing machine such

that: (n)
B 0 if pp(n) Ts
T(n,z) = { undefined if p,(n) .

Define
f(n) = the index of the machine T'(n,-).

It is clear that for all n € N,
©n(n) | if and only if W,y = IN.

And, f: IN — IN is total computable. This shows that X is productive.

Exercise

If, for even one n, there is a proof of

O — (Var...xn)(\/ T = ;)

i<j<n

then we can find that proof.

This is a jumble

240 CHAPTER 13. ANSWERS TO SELECTED QUESTIONS

CAREFUL!!

Compactness tells us that if ¢ has arbitrarily large finite models it has infinite
models. So, if ¢ is true in all infinite models then —¢ has no infinite models; so
—¢ does not have arbitrarily large finite models. So —¢ can be refuted from the
scheme

(Fzy ... xp) /\ T # Tj (1)
1<i<j<n

So ¢ follows from the scheme I. So the scheme I axiomatises the set of
sentences true in all infinite structures.

	Introduction and some History
	Definitions

	Recursive Dataypes
	Wellfounded Induction
	Inductively Defined Sets
	Horn Clauses and the Uniqueness Problem
	Structural Induction
	Engendering Relations
	Rectypes and Least Fixed Points
	Fixed Point Theorems
	Rectypes as least fixed points

	Finite vs Bounded vs Unbounded Character
	Rectypes of Unbounded Character are Paradoxical
	Bounded Character

	Ordinals
	Rank functions

	Restricted Quantifiers
	Infinitary Languages
	``Wellfounded'' is Infinitary Horn
	Some Remarks on Infinitary Languages

	Functions
	Primitive Recursion
	Some quite nasty functions are primitive recursive
	Justifying Circular Definitions

	Exercises
	Primitive Recursive Relations
	Simultaneous Recursion

	-recursion
	The Ackermann function

	Machines
	Finite State Machines
	Kleene's theorem
	The Thought-experiment and Myhill-Nerode
	Nondeterministic Machines

	Stuff to fit in
	Exercises

	Machines with infinitely many states
	-recursive = register machine-computable
	A Universal Register Machine

	Decidable and Semidecidable Sets
	Zigzagging Autoparallelism: Volcanoes
	Decidable and Semidecidable Sets
	A Nice Illustration and a Digression
	``In finite time''—a warning

	Decidable and semidecidable sets of other things
	Applications to Logic

	The Undecidablity of the Halting Problem
	Rice's Theorem

	Recursive Inseparability
	Exercises

	Representability by -terms
	Some -calculus
	Arithmetic with Church Numerals
	Representing the operator in -calculus
	Typed Lambda terms for computable functions
	Combinators??

	Recursive and Automatic Structures
	Automatic Structures
	Two Guest lectures from Maurice Chiodo
	Automatic ordinals
	Automatic theories

	Recursive structures
	Tennenbaum's Theorem
	Recursive Saturation

	Incompleteness
	Proofs of Totality
	A Theorem of Gödel's
	The T-bad function

	Undecidablity of Predicate Calculus
	Trakhtenbrot's theorem
	Refinements of theorem 19

	WQO theory
	WQOs
	The Minimal Bad Sequence construction

	Kruskal's theorem
	Some bonnes bouches
	How to get some large ordinals
	Friedman's Finite Form of Kruskal's Theorem

	Elementary Degree Theory
	Computation relative to an oracle.
	Priority Methods
	Friedberg-Muchnik
	Omitting Types
	Baker-Gill-Solovay and >P = NP?

	Proofs and Ordinals
	The Ordinal 0 and the Consistency of Peano Arithmetic
	The Goodstein function
	Hierarchies of fast-growing functions
	Good behaviour of the F, and the Schmidt conditions
	Schmidt-coherence

	Preposterously Large Countable Ordinals
	Cantor normal form using "3222378 "3222378

	Constructive Mathematics
	Diaconescu: the Axiom of Choice implies Excluded Middle
	Least Number Principle Implies Excluded Middle
	Linton-Johnstone and Markov's Principle

	Proof theory, Curry-Howard and Realizability
	Proof Theory
	Curry-Howard

	Realizability
	The Axiom of Choice in Constructive Set Theory: notes consequent to a lecture given by Sol Feferman on 10/i/2014, written up partly to amuse Valeria Paiva

	Recursive Analysis
	A constructive treatment of infinitesimals

	Notes and Appendices
	Chapter 2
	Horn clauses in rectype declarations
	Infinitary Languages

	Chapter 3
	A bit of pedantry
	The Ackermann function

	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 9
	Chapter 10

	Answers to selected questions

