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Stuff to fit in

Make a point about the Anselmian nature of w;.

It now seems to me to be easy to prove that if @ and S are countable ordinals so is
aP. @® is the order type of the set of all functions of finite support from B to A ordered
somehow. (All we care about is the cardinality). But if B and A are both countable, the
set of all functions of finite support from one to the other is likewise countable. OK, but
what happens if we want to show that it works for exponentiation defined recursively?
Then we have to show that the two definitions are the the same. And i suspect that is
quite hard.

Start here

Mistral Constrastin and Jason Grossman have emailed me to say that (an earlier version
of) this document was ‘trending’ on Hacker News, which moved me to look again at
the text that was visible. A glance at the page of acknowledgements prompts the sad
thought that Harold Simmons has died since then, and the world has deteriorated in
other ways too.... The .pdf is clearly in need of updating, there being topics that I
now understand much better than I did then. And at least one correspondent said that
a document by John Baez was superior. This is not to be borne—Baez is a physicist
for heavan’s sake. Only logicians understand ordinals—and far too few of them, one
might add. Clearly it is again time for me to take up my pen!

This document doesn’t contain any original research, by which i mean that i am not
claiming any results here for my own. That’s not to say that it isn’t the result of hard
work! Much of these details i had to work out for myself, despite the best efforts of
friends to explain them to me. I often reflect on the sad fact that the only people who
really understand how the wheel works are the poor buggers who reinvent it. I suppose
my readers—despite my best efforts in turn—will end up having to reinvent the wheel
themselves. That’s life.

I am making this document freely available because it seems there is a call for a
tutorial of this nature. It is definitely work in progress, and this unhappy status be-
comes increasingly clear from about chapter 7 ...tho’ the appendices and chapter-of-
discussion-answers are OK. And the earlier parts can be trusted: I even recommend
them to my students! I intend to publish it one day, so i welcome feedback.

There are exercises in the body of the text and some of them (those marked with an
asterisk) have discussion answers in chapter T3]

Acknowledgements

I can be quite sure that much of the material below was explained to me by patient
friends and colleagues—to whom I undoubtedly owe a huge debt of gratitude. Sadly,
the manner in which I internalised this material was such as to render its provenance
unascertainable on subsequent regurgitation, so I cannot now be entirely sure what I
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learned from whom! (There is even the possibility—admittedly remote—that I actu-
ally managed to work some of this out for myself!) One thing I do know is that I have
profited greatly from the patience and understanding of Adrian Mathias, Harold Sim-
mons, Martin Hyland, Stanley Wainer, Jeroen van der Meeren, Michael Rathjen and
Nathan Bowler at least, and it is a pleasure to be able to record my endebtedness to
them—and my thanks—here. It is a pleasure also to be able to record my thanks to
those of my students who, trawling though these notes in the expectation of gaining
enlightenment thereby, discovered instead a rat’s nest of errors which they were then
kind enough to give me the opportunity of silently correcting.

Target Audience

Anyone who wants to know about ordinals. Graduate students in Logic will probably
derive more benefit from it then their minders would like to admit, since it provides
details that are often elided from treatments in the textbooks. People in neighbouring
subject areas in Computer Science (who might be subscribers to Hacker news!) are
certainly part of my target audience. On the whole the ordinals of interest to people in
Computer Science are countable, and one can gain a mastery of them which is adequate
for most purposes without having to go wading through any set theory.

Notation, Background, etc

Lowercase Greek letters are used to range over ordinals. The letter ‘A’—its use in A-
calculus notwithstanding—is always liable to be a variable ranging over limit ordinals
in the way that in A-level analysis ‘x’ and ‘y’ are ordinate and abcissa, or input and
output variables. With this in mind I shall refrain from using lambda notation, using
the ‘—’ notation instead.

I am going to assume that the reader knows a bit of first-year analysis: the rationals
are countable, and dense in the reals (which are not countable); there is a real between
any two rationals and a rational between any two reals. The set of naturals is of size
No; the continuum is of size 2%. The Continuum Hypothesis is the proposition that
2% = K. Perhaps you do not yet know what X, is but this will be explained to you on
page [36]

I am going to assume that you know a bit of recursive function theory, though not
very much, and only in the last few pages.



Chapter 1

The Emergence of Ordinals:
Basics

Ordinals were the last acquisition by the Mathematical Zoo for the Number House,
a donation by Cantor in the late 19th century. Like cardinals—but unlike naturals,
integers, rationals, reals and complexes—ordinals can be infinite as well as finite (a
feature they share with cardinals, and with Conway numbers) and therein lies much of
their interest. In this document I shall explain where they come from, what they can do
for you, and why (despite their being infinite) you (a mere finite being) need to worry
about them.

I have taken great care to develop the theory of ordinals in a way that is not
sensitive to set-theoretical assumptions. Nothing in what follows will depend in
any way on ordinals being sets of any kind.

1.1 Cantor’s Discovery of Ordinals

Ordinals were invented by Cantor to solve a problem in the theory of Fourier series.
Although it’s an interesting story I shall consider only those bits of it that are directly
relevant.

X is a set of uniqueness if any periodic function that takes the value O on all argu-
ments not in X has all Fourier coefficients zero.

A Fourier series whose every coeflicient is zero is obviously the identically zero
function. What about the converse? Cantor’s first theorem said that if S is a Fourier
series which converges to 0 everywhere then all coefficients are zero.

Obvious question: can we weaken the hypothesis by weakening ‘everywhere’ to
‘except on a small set” in some sense of small? The answer is: yes, indeed we can.
Think about the Fourier series for a square wave. That illustrates how a set of isolated
points is a set of uniqueness.

In the course of his investigations Cantor became interested in applying to an ar-
bitrary closed set X of reals the operation that returns its derived set, or derivative:

7
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the set of all limit points of X. I think the point is that if the derivative of X is a set of
uniqueness then so is X. Something like that. If X is closed its derived set is a subset of
it. How often can one apply this operation to a closed set before one reaches either an
empty set or a perfect closed set (which is a fixed point, being equal to its derived set)?
The interesting point here is that, since this operation is monotone decreasing with re-
spect to C, it makes sense to think of transfinite iteration: one can take intersections at
limit stages and carry on deriving. So the answer to the question “How often?”” might
not be a natural number. What sort of number is it? The answer is that it will be an
ordinal. Ordinals are the kind of number that measures the length of precisely this sort
of process: transfinite, monotone, deterministic and discrete.

(We should see this in the context of a thought that the job of any flavour of number
is to measure something. Cardinals measure multiplicity; the answer to “How many

” is always a cardinal. Real numbers measure continuous (analogue) finite quanti-
ties.)

The idea that ordinals count the length of discrete transfinite processes should be
taken seriously and can be taken further. There is an addition (concatenation) oper-
ation on processes, written ‘+’ with overloading, but—apparently—no operation of
multiplication of processes by processes. However there is a notion of multiplication
of a process by an ordinal (“Do this a times”): a process multiplied on the right by an
ordinal is another process.

Thus, if we let p and s be processes, and let @ and 8 be ordinals then we have the
following easy equations:

I.p-(@a+p)=p-a+p-p
2.5 (a-p)=(G-a)-p

and others like it. The effect is that processes form a module over the ordinals. In
fact this could be an operational way of characterising the ordinals: as that-kind-of-
number-such-that-processes-form—a-module-over-therrﬂ

Processes in our sense are discrete things (they have lengths that are ordinals after
all) so we can interleave them. So we have to think about the lengths of interleavings
of two processes. This turns out to be a thing called the Hessenberg sum which we will
see in chapter[6] and gives us an inner product!

I’m not sure how seriously this idea should be taken: certainly the mathematical
community at large makes nothing of the possibility of thinking of the set of processes
as something like a vector space over the ordinals.

The Greeks never knew about ordinals. If they had, they might have seen a connec-
tion with Zeno’s paradox of Achilles and the Tortoise. In that mind-game (More po-
litely thought-experiment) one envisages an infinite sequence of stages where Achilles
catches up to where the Tortoise has advanced to since the previous stage. This se-
quence is of course of length w.

!Pedants will delight in pointing out that modules are formed over rings and that the ordinals do not form
aring.
I have recently (re)discovered a typescript of Girard and Norman which says that things called dilators
(which we may see later) behave like linear operators in vector spaces ...so presumably they had the same
idea.
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Even if all we know about ordinals is that they are the kind of number that enu-
merates the stages in processes like that of Cantor’s we considered, we nevertheless
know quite a lot about them. At any stage there is always in principle the possibility
of a next stage, so the successor of an ordinal is an ordinal. But because the operation
of taking-the-derived-set is monotone, there is a concept of a limit stage, so it must be
that a supremum of a set of ordinals is an ordinal.

At this point I should really give a presentation of the ordinals as a recursive
datatype. Unfortunately I am not in a position to do so, since assembling ing the pre-
cise specification turns out to be a fiddlier task than I had hoped, and it may well be
that there is more than one way of doing it. I shall restrict myself to making some
basic but (i hope) helpful observations, leaving the discussion of work-in-progress to
an appendix.

1. The idea is that the Ordinals are like the Naturals with an extra constructor:
sup-of, which is applied to sets of ordinals. This makes it a higher-order re-
cursive datatype. Finite ordinals are in some sense the same things as natural
numbers. Unless we have very strong type-theoretic scruples we just think of
them as the same.

2. Since distinct sets of ordinals can have the same sup the sup constructor is not
free, and this is the chief source of the trouble.

3. The reader should rehearse the way in which the declaration of IN as a rectype
gives rise to the engendering relation < and a proof that that engendering rela-
tion is a total order, and wellfounded. Make sure you understand that. Once you
do, you will be able to see what a declaration of the ordinals should look like.

Ad (1) it’s worth warning the reader not to confuse ordinals with nonstandard in-
tegers or with infinite Dedekind-finite cardinals. These three wild-and-woolly things
that live in the desolate marches beyond IN often sound similar to beginners, but they
are all completely different things!

Infinite Dedekind finite cardinals (aka Dedekind cardinals) are cardinals not ordinals—
they measure bulk, not order. Whether or not there are such things depend on whether
or not countable choice holds. At all events there are no definable Dedekind cardi-
nals, none you can name. So there is no way of reidentifing Dedekind cardinals across
models, and there is no system of notation for them.

Nonstandard naturals are a pox brought to us by compactness. They’re ordinals,
beco’s they are natural numbers and natural number are finite ordinals, but of course
they are nonstandard ordinals. Like Dedekind-cardinals they are a product of a mal-
function, and none of them can be definable. Again, there is no way of reidentifying
them across models, and there is no system of notation for them.

In contrast, countable ordinals are not creatures of the night. Their relationship to
natural numbers is that natural numbers are the finite things of this flavour. Unlike the
Dedekind cardinals and nonstandard naturals, countable ordinals can be reidentified
across models, and there are systems of notation for them. Indeed we will have quite a
lot to say about notations for them in later sections.
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1.2 Ordinals as Order Types

Ordinals are also the order types (aka isomorphism classes) of wellorderings, which
are a special kind of total order.

Actually a very special kind of total order. Practically none of the total orders you
will have encountered so far in your life, Dear Reader, will have been wellorderings.
The integers, the reals, the rationals, interesting natural subsets of them, none of them
are wellorderings. Almost certainly the only wellorderings you will have encountered
are the finite wellorderings (every finite total ordering is a wellordering) and IN. Every
now and then i encounter beginners who expect the order type of the reals to be wy; it
isn’t: the reals in their natural order are not a wellordering. No uncountable total order
that you have seen is a wellorder. The natural numbers IN in their usual ordering is the
first nontrivial example of a wellordering.

The order type (isomorphism class, ordinal) of IN in its usual order is always de-
noted ‘w’. ‘w’ is of course the last letter of the Greek alphabet, and that ordinal comes
after all the finite ordinals. However, for our purposes, it is a beginning rather than the
end—a point of departure—co’s we are interested in ordinals beyond w.

What distinguishes ordinals from other linear order types is that they are the order
types of wellfounded linear order types, aka wellorderings. We’d better get welfound-
edness straight.

1.2.1 Wellfoundedness

Suppose we have a carrier set with a binary relation R on it, and we want to be able to
infer

Vxy(x)

from

(VO((YNR(, x) = Y(y) = ¥(x))

In words, we want to be able to infer that everything is ¢ from the news that you are
¥ as long as all your R-predecessors are . y is an R-predecessor of x if R(y, x). Notice
that there is no “case n = 0” clause in this more general form of induction: the premiss
we are going to use implies immediately that a thing with no R-predecessors must have
Y. The expression “(Yy)(R(y,x) — ¥(y))” is called the induction hypothesis. The
first line says that if the induction hypothesis is satisfied, then x is i too. Finally, the
inference we are trying to draw is this: if x has y whenever the induction hypothesis is
satisfied, then everything has . When can we do this? We must try to identify some
condition on R that is equivalent to the assertion that this is a legitimate inference to
draw in general (i.e., for any predicate ).

Why should anyone want to draw such an inference? The antecedent says “x is i as
long as all the immediate R-predecessors of x are ¢””, and there are plenty of situations
where we wish to be able to argue in this way. Take R(x, y) to be “x is a parent of y”, and
then the inference from “children of blue-eyed parents have blue eyes” to “everyone
has blue eyes” is an instance of the rule schematised above. As it happens, this is a
case where the relation R in question does not satisfy the necessary condition, for it is
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in fact the case that children of blue-eyed parents have blue eyes and yet not everyone
is blue-eyed.

To find what the magic ingredient is, let us fix the relation R that we are interested
in and suppose that the inference

(VRG, x) = Y() = Y(x) . ,
Vo)W (x)) R-induction

has failed for some choice i of predicate. Then we will see what this tells us about R.
To say that R is well-founded all we have to do is stipulate that this failure (whatever it
is) cannot happen for any choice of .

Let ¢ be some predicate for which the inference fails.

Then the top line is true and the bottom line is false. So {x : —/(x)} is nonempty.
Let us call this set A for short. Using the top line, let x be something with no R-
predecessors. Then all R-predecessors of x are i (vacuously!) and therefore x is
too. This tells us that if y is something that is not i, then there must be some y’ such
that R(y’,y) and y" is not  either. If there were not, y would be . This tells us that
the collection A of things that are not ¢ “has no R-least member” in the sense that
everything in that collection has an R-predecessor in that collection. That is to say

(Vx € A)(Jy € A)(R(y, x))

To ensure that R-induction can be trusted it will suffice to impose on R the condition
that (Vx € A)(Jy € A)(R(y, x)) never hold, for any nonempty A € dom(R). Accordingly,
we will attach great importance to the following condition on R:

DEFINITION 1 R is well-founded iff for every nonempty subset A of dom(R) we have
(Ax € A)(Yy € A)(=R(y, x))
(x is an “R-minimal” element of A.)

This definition comes with several health warnings: it is easy to misremember.
The only reliable way to remember it correctly is to rerun in your mind the discussion
we have gone through: well-foundedness is precisely the magic property one needs a
relation R to have if one is to be able to do induction over R. No more and no less. The
definition is not memorable, but it is reconstructible.

A second warning. It’s easy to remember that wellfoundedness has a crucial minimal-
element condition, but it’s easy to remember it wrong. The condition is not that the
domain of the relation has a minimal element; it’s that every nonempty subset has a
minimal element.

THEOREM 1 Wellfounded induction: recursion on wellfounded relations

Induction over a wellfounded relation is immediate. Justification of recursion re-
quires a little thought.
Let (X, R) be a binary structure, with R wellfounded. Then the recursion

() = G, {f(x) : R(X', 0}

has a unique solution as long as G is everywhere defined.
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A niggle: why does G need to look at x? Why isn’t it enough for it to look
merely at {f(x") : R(x', x)}?

Answer: There might be two distinct things a and b s.t. { f(x) : R(x,a)} and
{f(x) : R(x, D)} are the same set, and we want to keep open the possibility
of f sending a and b to different things.

Fix f. We need the concept of the transitive closure of a relation. The transitive
closure of R, written ‘Rx*’ is the C-least transitive relation 2 R.

However the clever idea which is specific to this proof is the concept of an attempt.
An attempt-at-x is a function f, which is defined at x and at every y such that R*(y, x),
and obeys the recursion wherever it is defined. That is to say, if f; is defined for all z
s.t. R(z,y), and it is defined at y, then we must have f.(y) = G(y, { f+(2) : R(z,y)}).

The concept of attempt is the only clever part of this proof. All that remains to be
done is to choose the right thing to prove by induction. We prove by R-induction on ‘x’
that (i) every x has an attempt-at-x and that (ii) all attempts-at-x agree at x and at all y
such that R*(y, x). Everything has been set up to make that easy.

So: suppose the induction hypothesis holds for all y s.t. R(y, x).

That is to say, for every y s.t. R(y, x), there is f;, an attempt-at-y, and all attempts-
at-y agree on all y’ s.t. R*(y', ).

Is there an attempt-at-x? Yes. We take the union of all the f; for R(y, x) and add the
ordered pair that tells us to send x to G(x, {f,(y) : R(y, X)}).

Then the function that we are declaring by this recursion is simply the function that,
for each x € X, sends it to whatever-it-is that all attempts-at-x want to send x to. This
function is defined everywhere and it clearly obeys the recursion.

That is to say, for any set X with a wellfounded relation R on it, and every function
G : X XV — V there is a unique f making the following diagram commute.

A Ix x f*
1x XR G
v
X 4 » V

DEFINITION 2 Wellordering a wellfounded strict total order
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“every terminal segment has a least element” is equivalent. It’s the “always an
immediate next stage” condition.

COROLLARY 1 Principle of induction for wellorderings

COROLLARY 2 Definition by recursion for wellorderings

DEFINITION 3 Ordinals are isomorphism types of wellorderings.

There now follows a raft of things that you need to keep straight in your mind if
you are to avoid going crazy. You don’t need to know the proofs of these things but
you need to internalise them co’s they underpin everything.

THEOREM 2

1. Every wellordering is rigid (no nonidentity automorphisms);

2. If there is an isomorphism between two wellorderings (A, <a) and (B, <g) then
it is unique;

3. Given two wellorderings (A, <) and (B, <g) one is isomorphic to a unique initial
segment of the other.

Proof:

1. The automorphism group of a total order is torsion-free: every nontrivial cycle
looks like Z. If 7 is an automorphism of a wellordering consider {7"(x) : n € Z}.
What is its least element?

2. Suppose o and T were two distinct isomorphisms (A, <4) — (B, <p);
then o - 77! would be a nontrivial automorphism of (B, <g).

3. We define an isomorphism by recursion in the obvious way. It must exhaust

either (A, <4) or (B, <p) and, by the earlier parts, it will be unique.

To be slightly more formal about it, define f : A — B by the recursion f(a) =:
sup{f(a’) : a’ <4 a} and g : B — A mutatis mutandis. We prove by wellfounded
induction that f - g is the identity where it is defined. One of f and g must be
total. If not, let a be the first thing not in the domain of f and b the first thing
not in the domain of g. Then (a, b) should have been in f and (b, a) should have
been in g.

DEFINITION 4 (X, <y) is an end-extension of (Y, <y) iff

(i)Y cX,
(ii) <y € <x, and
(iii) ¥ye V)Vxe X)(x <y - xeY).

Alternatively “(Y,<y) is an initial segment of (X, <x)”
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“New stuff cannot be earlier than old stuff”.

For the moment we use this only where (Y, <y) and (X, <x) are wellorderings, but
the idea is susceptible of generalisations to arbitrary posets. The concatenation of two
tosets is an end-extension of the first toset, so addition of order types involves end-
extension.

Every nonstandard model of PA is an end-extension of the standard model. We have
an important notion of end-extension in set theory (“no new members of old sets”) but
we won’t develop these ideas here.

LEMMA 1 Every suborder of a wellorder is isomorphic to an initial segment of it.

Proof:
The suborder inherits totality and wellfoundedness, and so is a wellorder. Apply
theorem 2 [ |
You might like to visualise this.... Suppose (A, <4) injects isomorphically into

(B,<p). You do the “Othello” (falling discs) trick to the range of the injection to
collapse it down to an initial segment of (B, <g).

Notice that this is not true of arbitrary total orders. Not every subordering of Z is
iso to an initial segment. There is in fact a converse to lemma [I] which you might like
to prove.

EXERCISE 1 If every subordering of a given toset is iso to an initial segment then the
toset is a wellordering.

In the light of this lemma we can define an order relation on ordinals:

DEFINITION 5
a <on B if every wellordering of length B (every wellordering whose equivalence class
is ) has an initial segment of length a.

Equivalently

a <opn B if every wellordering of length a can be injected in an order-preserving
way into every wellordering of length .

The two ways you might define it are equivalent beco’s of lemmal[T}

Notice that this leaves open the question of how we define < on arbitrary linear
order types.

The following fact is crucial.
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@o

@]

@2
as

a4

THEOREM 3 <y, is wellfounded.

Proof: Let a be an ordinal. We will show that the ordinals below «a are wellfounded
under <p,. The long arrow represents a wellordering (A, <4) of length @ = «. If per
impossibile there is a family {@; : i € I} of ordinals with no least member (and all of
them < @) then, for each i € I, (A, <4) has a (unique) proper initial segment of length
a;. For i € I let a; be the supremum of that (unique) initial segment of (A, <4) of length
«;. Then {a; : i € I} is a subset of A with no <4-least member. [ |

This result is nontrivial: it’s not always true that the family of isomorphism types
of widgets has a widget structure. Think of the open and closed intervals (0, 1) and
[0, 1] in the reals. This illustrates how linear order types without wellfoundedness are
not a linear order; not even antisymmetrical indeed!

Beware! Some textbooks contain theorems with statements that sound like theorem
[] but are actually much weaker. A proof that the order relation on von Neumann
ordinals is wellfounded is not a proof that (On, <¢p,) is wellfounded any more than a
check that UBUNTU runs properly on my laptop means that it will run safely on yours.
The fact that UBUNTU runs safely on my laptop is not a fact about the safety of UBUNTU
but a fact about the binary for my machine, and that says nothing about the binary for
your machine.

The order relation < on ordinals is a wellordering, so the wellordering of the ordi-
nals below « has an ordinal. What is this ordinal? It obviously depends somehow on a.
It turns out that it is fact exactly a. This fact is so cute that it has become the basis of the
standard implementation of ordinal arithmetic into set theory. In this implementation
(due to Von Neumann) each ordinal is simply taken to be the set of ordinals below it.

THEOREM 4 Vital, central fact! (Cantor)
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Every ordinal is the order type of the set of ordinals below it in their natural order.
Equivalently:
The order type of an initial segment of the ordinals is the least ordinal not in it.

Proof:
On the assumption that ordinals are monomorphic you prove this by induction. B

“Monomorphic”?

If, like me, you have type-theoretic scruples then there is something to worry about
here. Put your type-theorist’s hat on for the moment. Ordinals arise as isomorphism
classes of wellorderings of stuff. Does the type of the ordinal that you get when you
abstract away from the wellorderings depend on the type of the stuff that is being
wellordered? Prima facie it might. Think about natural numbers and lists. Usually
we take lists to be polymorphic: for each type a there is a type @-list. However
once we apply the length constructor to objects of any of these types to get a natural
number we get objects of only the one type: int. We don’t get a polymorphic family
a-int, and nobody would normally suggest that we should. However, if one were an
extreme purist one feel like saying that, in principle, we should. For example: one
might note that, strictly speaking, Euler’s totient function (for example) is properly
defined only for those ints that are ints of lists of ints, not on ints that are ints
of lists of wombats, for example. However this purism is obviously extreme, since it’s
pretty clear that all these types are isomorphic and we will happily make do with only
one type of ints. This will enable us to minute that fact that, for any natural number
n, the set [0,n — 1] of its predecessors is of length n. Rosser called this the Axiom of
Counting. The axiom of counting (for IN at any rate) is ﬁneE]; it is the extension of this
observation to ordinals that is—ultimately—problematic. The problem it ultimately
leads to is the Burali-Forti paradox.

COROLLARY 3 (The Burali-Forti Paradox)
The collection On of all ordinals cannot be a set.

Proof:

By theoremE] (On, <,,) is a wellordering. Since it is downward-closed, theorem[z_f]
tells us that its order type must be the least ordinal not in it. The least ordinal that is
not a ordinal? I don’t need this! Beam me up, Scottie. [ |

The availability of theorem ] relies on ordinals being monomorphic. The type-
theoretic take on this is that at some point they have to stop being monomorphic
lest we get the Burali-Forti paradox. At some point we have to start distinguish-
ing between ordinals-from-(infinite)-lists-of-as and ordinals-from-(infinite)-lists-of-bs.
However the point at which hygiene compels one to adopt this stronger typing machin-
ery comes a long way beyond anything we are concerned with here. These dangers
will remain innocuously over the horizon and we can quite safely take our ordinals to
be monomorphic as we did our naturals, with the effect that we believe the analogue of
the axiom of counting for countable ordinals.

2There is virtue to be gained from thinking about how one might prove it!
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So concretising ordinals—thinking of them as something—is fraught with diffi-
culty. For the moment here is a mental device that can help. Try thinking of cardinals
just as sets, ordinary sets. Two sets are identical-as-sets iff they have the same mem-
bers, but they are identical-as-cardinals iff there is merely a bijection between them.
Similarly ordinals can be thought of simply as wellorderings; two wellorderings are
identical-as-wellorderings if they wellorder the same things in the same way; they are
identical-as-ordinals iff they are merely orderisomorphic.

In any case one can argue that corollary[3]goes deeper than set theory. That “fact”—
that On turns out not to be a set—is an artefact of our decision to clothe this particular
mathematical spirit in set-theoretic flesh. There is something deeply weird going on,
and the weirdness is nothing specifically to do with set theory. If you try to under-
stand it through other sensory modalities it will look different. As we have seen, if
your first recourse is to type-theoretic intuitions then your insight will be that all or-
dinals are in principle polymorphic and that—altho’ small ordinals can be thought of
as monomorphic—all sufficiently large ordinals have to be thought of as polymorphic.
Remember the Buddhist trope about the five blind men and the elephant: if you have
only one teacher you will receive only one insight, and you will not get the full picture.
I think it is fair to say that the Burali-Forti paradox is not generally understood, even by
the cognoscenti. It’s one of those things where you cannot trust the textbooks. Really.

1.3 Operations on ordinals defined “Synthetically”

Ordinals can be thought of as isomorphism classes of wellorderings. Thus some oper-
ations on wellorderings give rise to operations on ordinals.

Some of these operations are not peculiar to wellorderings. disjoint-union-followed-
by-concatenation gives rise to addition; lexicographic product gives multiplication.
And these operations distribute over one another in the way one expects. We can even
define exponentiation! And all of these for arbitrary linear order types.

I’1l supply the definition of exponentiation of order types for the sake of complete-
ness here, tho” we are not going to use it—at least that’s not my current intention!

Let (A, <4) and (B, <g) be orderings of length a and 3 respectively.

A function f : A — B is said to be “of “finite support” iff it sends all but finitely
many of its arguments to Lg. ‘L’ !? If B has a bottom element then L is that element.
If not, simply adjoin a new element below all the proper elements of B, and let that be
1. If (B, <p) is a wellordering then there will be a bottom element. (We are trying to
define exponentiation in sufficient generality so that it works for arbitrary linear order
types, and of course not all linear order have a bottom element.)

If f and g are both of finite support then there will be a last argument x on which
they disagree. We ordain that f < g iff f(x) <p g(x). This is the “colex” ordering.
Then we define 8 to be the order type of the set of functions A — B of finite support
ordered colex.

It is an elementary but extremely fiddly exercise to verify that exponentiation de-
fined in this way interacts with multiplication in the way that it should. Mostly we
will not make use of this definition, tho’ we will need the fact that if A and B are both
countable so is the set of functions A — B of finite support.
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Warning! Ordinal exponentiation is not the same as cardinal exponentiation. w is
an ordinal and 2¢ is also an ordinal. N is a cardinal and so is 2™. 2% is uncountable of
course, but the ordinal 2 is countable. (It is in fact equal to w.) There is a thoroughly
reprehensible habit in some circles of abusing these notations—for example writing
‘w’ when they mean ‘Ny’—and this is a running source of confusion for beginners.

1.4 We can also define operations recursively

This is for when we thinking of ordinals as a recursive data type with 0, succ and sup.

DEFINITION 6

a+0:=qa;
a + succ(B) := succ(a + f);
a + sup(X) := sup({a + B : B € X}).

a-0:=0;
a-succ(B) = (a-p) +a;
a - sup(X) := sup({a - B : B € X}).

a° := succ(0);
a/succ(ﬂ) = (a,ﬁ) -
S = sup({ef : B € X)).

Given these definitions, it is clear that addition on the right, multiplication on the
right and exponentiation on the right, namely, the functions @ — B+ a), @ — S «@
and @ — (B%) are—for each fixed ordinal S—continuous in a “the value at the sup is
the sup of the values” sense.

Remember which way round to write multiplication and addition. They are not
commutative!!!

As well as addition and multiplication we are going to need ordinal subtraction.
We desire a construct @ — 8 which is defined whenever @« > S and which obeys

B+(a-p)=a.

DEFINITION 7 If B < «a then whenever (B, <p) belongs to 8 and (A, <4) belongs to a,
there is an isomorphism nt : (B, <p) to a unique initial segment of (A, <a).
The truncation (A \ 1B, <al(A \ 7°“B)) is our wellordering of length a — .

This definition ensures that 8 + (@ — 8) = «.

Observe however that for subtraction of 8 from « to be well-defined we need (i) an
ordering of type @ to have a unique initial segment of type S—or at the very least we
need (ii) all the tail segments that remain after deletion of an initial segment of type 3 to
be isomorphic. Thus we can subtract w* from w* +w tdﬂ obtain w but to get subtraction
of B from « to be defined for all 8 < a we need all initial segments of an ordering
of type a to be pairwise nonisomorphic—or something quite like it—and there is not
much hope of that unless a is an ordinal.

3see pfor definition of w*.
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We will need ordinal subtraction for Cantor Normal Forms in section .1—and
ordinal notations generally.
Part 3 of theorem 2] reassures us that ordinal subtraction is uniquely defined.

B @-p

Y
Y

We really do need wellfoundedness here. Let’s introduce a bit of notation on the
fly. For an ordinal «, a* is a “turned upside down”, so that—for example—w* is the
order type of the negative integers, and w* + w is the order type of Z. You’d think
that w* — w* would be 0, wouldn’t you? But it can be any natural number. The set of
negative integers has lots of initial segments of length w*.

We remark without proof that it is immediate from the definitions of addition and
multiplication in terms of disjoint union and lexicographic product that both operations
are associative, and that multiplication distributes over addition.

LEMMA 2

1. Va)(¥B)(a < a + B)
2. (Mo)VB)B < a + )

Proof:

These two assertions are blindingly obvious if we think of @ and g as isomorphism
classes of total orders. However if we are thinking of ordinals as members of a recursive
data type then these two assertions have to be proved by induction on that datatype. In
definition [§] we define ‘+’ by recursion. The challenge is to use that recursion to prove
these two inequalities.

The two cases are different because addition on the left is different from addition
on the right. Interestingly different, in fact....

Casel:a<a+p
For each @ we prove by induction on 3 that @ < a + .
Case2: B<a+p

We prove by induction on 3 that (Va)(8 < a + f5).

Clearly (Va)(0 < a + 0)

For the successor case, assume (Ya)(8 < « + 5). We want
VMo)B+1<a+p+1)Butclearlyg<a+giff f+1<a+p+ 1.
For the limit case let A =supX. Let « be arbitrary. We want 1 < o + A.
a+Ad=a+ supX



check this!

20 CHAPTER 1. THE EMERGENCE OF ORDINALS: BASICS

a+ supX =sup{a +B: 8 € X}
But now (by induction hypothesis) everything 8 in X is < something (to wit: @ + f3)
in {a@ + B : B € X} so supX—which is A—is < sup{a + 8 : § € X}—whichis @ + A.
|

Notice that for Case 1 we did a A induction and for Case 2 we had to do a II;-
induction. Addition on the right is easier to reason about than addition on the left!

We can extend this list of three definitions of functions On X On — On further.
Infinitely far in fact. (Readers may be familiar with the word tetration).

1.4.1 Doner-Tarski
Doner-Tarski [15] consider a hierarchy of functions defined so that:

DEFINITION 8
Jolewy) =ta+y;
fn+1(a'» O) = (l’,ﬂ
S,y + 1) = fifur1(@,y), @);
Jnr1(@, A) =: supypfrsi(@,y);
Sala, B) =: sup;<afz(a, B).

We are not going to be greatly concerned with functions beyond exponentiation.
Generally people seem not to make much use of them. It may be worth reflecting on
the fact that although—as we shall seeﬂ—there is a “synthetic” definition of ordinal
exponentiation (defining ordinal exponentiation in terms of an operation on the under-
lying wellorderings) this doesn’t seem to be possible for operations higher up in the
Doner-Tarski hierarchy. If you want to understand the Doner-Tarski operations you
have to be thinking of ordinals as a recursive data type rather than as isomorphism
classes of wellorderings.

EXERCISE 2

1. Give examples to show that addition and multiplication on the left are not com-
mutative.

2

2. Give an example to show that « — «a“ is not continuous.

3. Which of the following are true for all a, B and y?

(@B =B
y((l+ﬁ) =y7. yﬁ’-
(@+p)-y=a-y+B-y
y-(@+tf)=y-a+y-pB
4This is surely correct. f+1(a, 0) must be the result of doing f,, of something or other 0 times to @ and
this must be @. The consideration that causes me slight unease is that according to this line of thought @ - 0
should be @ not 0. So the function we call multiplication—a - 3 is actually fi(a, + 1). Not that it matters.

But one would have expected to see something about this in the literature.
3T hope!
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Prove the true assertions and give counterexamples to the false assertions.
4. Can you simplify (aBy)*?

The picture of ordinals as order-types of wellorderings also gives us slightly smoother—
and more fundamental—motivations for the operations of addition, multiplication and
exponentiation of ordinals that we have already seen. Addition corresponds to dis-
joint union (concatenation) and multiplication to colex order of the product. It is worth
noting that because these definitions do not involve recursion we can invoke them in
connection with linear order types that are not wellfounded: they work for arbitrary
total order types. And the operations obey the distributivity laws that you expect.

EXERCISE 3 Give a recursive definition of ordinal subtraction, and prove that your
definition obeys B + (o — B) = a.

There is one other fact about ordinals we will need which can be obtained only
from the ordinals-as-isomorphism-classes-of-wellorderings view. Here we will be con-
cerned specifically with countable ordinals. Recall that a countable ordinal « is the
length of a wellordering of a countable set. So without loss of generality « is the length
of a wellordering of IN. A wellordering of IN can be coded as a set of ordered pairs
of naturals, and ordered pairs of naturals can be coded as naturals. Wellorderings of
IN can therefore be coded as sets of naturals, which is to say as reals. This means that
there is a surjection from the set of reals to the set of countable ordinals as follows: if a
real codes a wellordering of IN, send it to its length, else 0. Notice that this does not
obviously give us an injection from the set of countable ordinals into the reals: to do
that we would have to choose, for each countable ordinal, a wellordering of the naturals
of that length, and there is no obvious way to choose one. Notice that countable choice
does not help here. We shall see more of this later.

So now we can do induction/recursion on ordinals.
DEFINITION 9 A countable ordinal is the order type of a wellordering of IN.

It’s an immediate consequence of this definition, in conjunction with theorem []
that an ordinal is countable iff there are countably many ordinals below it. This fact
is too elementary to merit a label, but you need to internalise it. This absolutely must
underpin your understanding of countable ordinals. Without it you would be entirely
lost.

So there are three ways of thinking of countable ordinals:

(1) an ordinal with only countable many ordinals below it;
(ii) the order type of a wellordering of IN;
(iii) the order type of a wellordering of a countable set.

I find that students need to be warned about the possibility of confusion lurking in
this form of words ‘countable ordinal’. (If you are not planning to do any set theory you
can ignore the rest of this paragraph.) It doesn’t have the same semantics as ‘countable
set of reals’ beco’s ‘countable ordinal’ doesn’t mean that the set that is that ordinal
is countable. It may or may not be countable. If you are thinking of ordinals as von
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Neumann ordinals then, as a matter of fact, a countable ordinal is a countable set, but
that’s not what it means: it’s pure coincidence. If you are using Scott’s-trick ordinals
then a countable ordinal is actually an uncountable set. So: do not attempt to add
clause (iv) “is a countable set” to the list above. It’s an artefact of the von-Neumann
implementation.

1.5 Normal Functions, fixed Points, and the Division
Algorithm

DEFINITION 10 Normal Functions

A total function f : On — On is normal if it is total, strictly increasing and
continuous.

The range of a normal function is a clubset “closed unbounded set”

“continuous”? In what topology? The order topology. Continuous means that the
following diagram commutes.

P(On) f P(On)
sup sup
!
On On

“f*” is a nonce notation for the function X — f“X. I don’t expect to use it again.

Addition, multiplication and exponentiation on the Right are normal. In fact all the
Doner-Tarski functions are normal “in their second argument” Not on the Left!

1.5.1 The Division Algorithm
The following lemma is absolutely central.

LEMMA 3 The Division Algorithm for Normal Functions.
If f: On — On is normal, and « is any ordinal, then there is a unique 3 such that

fB) sa<f@B+1).

Proof:

The B we want is sup{8 : f(8) < a}. What is f(8)? By normality it must be
sup{f(B) : f(B) < a}, which is clearly < @. So f is not merely the supremum of
{B: f(B) < a}, it is actually the largest element of {8 : f(B8) < a}. But then f(B + 1)
must be strictly greater than «. ]
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The division algorithm holds out the promise of building systems of notations for
ordinals. You can think of it as saying “Give me a normal function f and a target «, i
can give you a best attempt at representing « in terms of f and smaller ordinals”. To
make progress you can try subtracting f(8) from @, where 8 was maximal s.t. f(8) < a.
You hope that @ — f(8) < @, co’s in that case you will have made some progress. We
will elaborate this into a rigorous technique in section 4.1}

1.5.2 The Fixed Point Theorem

THEOREM 5 Let f : On — On be a normal function and « any ordinal.
Then sup{f"a : n € N} is
(i) a fixed point for f and
(ii) the least such fixed point above «.

Proof:
For (i) sup{f"a : n € IN} is a fixed point for f because f is continuous.

For (ii) we prove by induction on ‘n’ that f"(a) < the least f-fixed point above a.

Clearly true for n = 0.
For the induction suppose f™(@) < sup{f*a : k € N}.
Then, by monotonicity of f, we have

" Ya) < f(suplf'a:neN}) = sup{f'a:neN}.

This theorem is incredibly fruitful. The fact that every ordinal has a fixed point
above it tells us that any normal function f has arbitrarily late fixed points. By normal-
ity of f we know that a limit of fixed points of f is another fixed point, so the function
that enumerates those fixed points is itself normal. This function is sometimes called
the derivative of f. This is elementary but incredibly important.

1.6 Some examples of ordinals that aren’t too big

It would be nice to have natural examples of well-orderings of lengths other than w.
The fact that every ordinal is the order type of the ordinals below it means that for
any ordinal there is a canonical wellordering of that length. Altho’ this is an important
fact it isn’t much help to the beginner who is trying to get a sense of what particular
individual ordinals look like—as it might be w?. Being told that w? is the order type
of the ordinals below w? isn’t much help. Fortunately w? does have some natural
manifestations: IN x IN ordered lexicographically is of length w?. And—in general—
IN" ordered lexicographically, is of length w”". We can well-order the set of all finite
lists of natural numbers to a longer length than this by a variant of the lexicographic
ordering, but the definition is forgettable because of complications that have to do with
deciding how to compare lists of different lengths. In some ways a simpler way to
present these ordinals is through well-orderings of polynomials by dominance.
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DEFINITION 11 f dominates g if, for all sufficiently large n, f(n) > g(n).

Consider polynomials in one variable with coefficients in IN—Specifically the quadrat-
ics x = (ax®> + bx + ¢)—and order them by dominance. It is fairly clear that x —
(ax® + bx + ¢) is dominated by x > (a’x*> + b'x + ¢’) iff (a, b, ) comes below (a’,b’, ")
in the lexicographic order of IN X IN X IN. So the set of quadratics, ordered by dom-
inance, is of length w?. In fact, the analogue of this holds for polynomials of higher
degree as well: the set of polynomials of degree n, ordered by dominance, is of length
w™!. One way of seeing this is to replace, in each polynomial, every occurrence of
‘x’ by ‘w’. Finally, the set IN[x] of all polynomials (ordered by dominance) will be
of order w + w? + w*--- + " ---. What is this ordinal? Since 1 + w = w it follows
that 1 + w copies of anything is the same length as w copies of whatever it was, so in
particular " + w™! = w". Given this, the sum is simply the sup of all these ordinals,
which—by definition—is w®. There is another way of seeing this, given the synthetic
definition of ordinal exponentiation using functions of finite support. It is not hard to
see a polynomial in one variable with coefficients in IN as a function N — IN of finite
support.

Let us call this family IN[X] of polynomials in one variable the set of polynomials
of rank 1 (to give it a name). Now consider the set of polynomials in one variable with
coefficients in IN whose exponents are polynomials of rank 1. (I suppose one might
notate this IN[IN[X]]!). An example would be

3
X 200 4137 55,

These will be the polynomials of rank 2. If you order these by dominance you obtain a
wellorder of length w®”. Similarly an example of a polynomial of rank 3 would be

Bax 50
X LT 4 200 1137 45,

If we wellorder by dominance the set of all polynomials in one variable of finite rank
we find it is of length

W’ + o + 0
which is the first fixed point for @ — w®, otherwise known as €. Of which more later!

However if we consider the somewhat larger inductively defined family of expressions that
contains all the above functions and is closed under exponentiation, so it contains things like

9 2 43, 02 2
(xxx 32 245 + xx5+10)(xr w245, 1000)

then it is far from obvious that the set of [the functions denoted by] these expressions is totally
ordered by dominance, let alone well-ordered by dominance, but as it happens it is. The order-
type has not been computed, tho” some bounds are known. See [20], [6] and [17].

1.7 Some worked exercises

This is material that we use on our third year students at Cambridge.
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EXERCISE 4

1. Write down subsets of R of order types w + w, w* and & in the inherited order:

2. Let a, B and 7y be ordinals.
If @ < B, must we have a +y < B+7y?
If a < B, must we have ¢ +y < +y?
3. Show that the inductive and synthetic definitions of ordinal multiplication agree.

4. Is there a non-zero ordinal a with aw = a? What about wa = a?

5. Let a, B,y be ordinals.
Must we have (a + B)y = ay + By?
Must we have a(B +7y) = a8 + ay?

6. Find two totally ordered sets such that neither is isomorphic to a subset of the
other. Can you find three such sets?

7. Let a, B and y be ordinals.

Must we have o = o# - o7 ?
Must we have o = oP7?
Must we have (o -B) = a” - 37?2

1.8 Cofinality

We will need the concept of the cofinality of an ordinal.

DEFINITION 12 The cofinality cf(a) of an ordinal « is the least ordinal that is the
length of an unbounded subset of a wellordering of length a.

Thus the cofinality of a successor ordinal is obviously 1. It’s an interesting function
only when applied to limit ordinals. Clearly cf(w) = w; cflw+w) =w....

Let’s start with a few banalities to orient ourselves.

Do not expect @ +— cf(a) to be monotone. This will become clear later.

Think about cf(a-B) (‘B copies of @”). Place a red dot on the first element
of each copy of @. If S is limit the red dots are a cofinal sequence, so
cf(a-B) < B. Aslong as S is limit of course. If it’s successor then the
cofinality is a.

Notice that cf is idempotent: cf(cf(a)) = cf(a). This is because “is an
unbounded subsequence of” is transitive.

One reason why the concept of cofinality is unappealing to many maths students
is that it doesn’t seem to be doing anything: it doesn’t seem to help in drawing useful
distinctions. Most people have never seen any wellordering that isn’t of cofinality w,
so cofinality isn’t something they ever needed to think about. Let’s illustrate this.
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THEOREM 6 Every countable limit ordinal is of cofinality w.

Proof:

Let @ be a countable limit ordinal. Then there is a worder <, of IN of order type
a. We now define a cofinal subsequence of (IN, <,) of length w. The first point is 0.
Thereafter the n + 1th point is the smallest natural number which is >, the nth point.

Why is this sequence cofinal? Suppose it reaches a limit below a. Consider a
natural number above this limit. It must be below something (say the nth) in the list
of points we have identified, since this list contains arbitrarily large natural numbers.
But then, at that stage n, it was a better candidate to be the nth point than the point we
actually chose. ]

My colleague Imre Leader calls this construction picking winners; it’s a good name
and we should use it. Picking winners enables us to show that cofinalities are always
initial ordinals, as we shall see below when we meet initial ordinals in section 3.2}

It is very important that this construction of a cofinal sequence for @ needs an extra
input, namely the wellordering <, of IN. If we vary the choice of wellordering we get
a different cofinal sequence.

What one wants to say at this point is that there is no way, given an ordinal a, of
computing a cofinal sequence of ordinals below @ of minimal order type. The obstruct-
ing to stating this properly is that it is not at all clear what it would be to be “given” an
ordinal. If you are a complexity theorist reading this (and my target audience certainly
includes complexity theorists!) then you would think of a presentation of an ordinal
as a finite object, a notation for an ordinal, in some pre-agreed system of notation. If
that is what we mean by a presentation of an ordinal then yes, indeed, we can compute
a cofinal sequence of minimal length. But that isn’t quite what we mean here, since
ordinals are not prima facie finite objectﬂ Suppose i give you an ordinal in the form
of a concrete set equipped with a wellordering of that length? Even that is not enough.
(A lot of work will have gone into setting up a system of notation, and—anyway—a
finitary system of notation will capture only countably many countable ordinals, and
there are uncountably many of the buggers.) Suppose i give you an ordinal in the form
of a von-neumann ordinal—which is a highly concrete object, a set—can you compute
such a sequence? I can find such a sequence (for a countable von neumann ordinal)
by picking winners but in order to pick winners i have to have an enumeration of the
set. The problem then is that there is no way of computing an enumeration of a count-
able set from a wellordering of it, even when given the extra information that the set is
countable. Let’s set this up in lights:

REMARK 1

e There is no algorithm which, on being given a set equipped with a wellordering, plus
the news that the set is countable, will output an enumeration of the set.

o There is no algorithm which, on being given a set equipped with a wellordering, will
output a cofinal subsequence of that wellordering of minimal length.

6See appendix|10.1.5|for a discussion of finite object.
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It’s as well to ensure that you are happy about these limitations now beco’s they
will matter when we come later to think about fundamental sequences.

(An aside on this subject for people who want to do a bit of Set Theory. ...

Let (X, <x) be a wellordering, living in some model that believes it to be uncountable. (For
example, (X, <x) might be a von Neumann ordinal). In a bigger model it might become count-
able. If there were an engine that could take a wellordering of X and return an enumeration of
X then clearly it couldn’t do it just by looking inside X, because then the smaller model would
also be able to count X. This is what lies behind the fact that inter alia you need AC to set up a
system of fundamental sequences for all countable limit ordinals.)
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CHAPTER 1. THE EMERGENCE OF ORDINALS: BASICS



Chapter 2

Rank Functions, and some
Applications

Consider a computer system for storing sensitive information like people’s credit in-
formation, or criminal records, and suchlike. It is clearly of interest to the subjects of
these files to know who is retrieving this information (and when and why), and there
do exist systems in which each file on an individual has a pointer to another file which
contains a list of the the userids of people accessing the head file, and dates of those
accesses. One can even imagine people wishing to know who has accessed this infor-
mation, and maybe even a few steps further. A well-designed system would be able to
allocate space for new and later members of this sequence of files as new reads by users
made this necessary. These files naturally invite numerical subscripts. The system con-
trollers might wish to know how many files had been generated by these reads, and
know how rapidly new files were being generated, or what statistical relations existed
between the number of reads at each level. This information would have to be stored
in a file too, and the obvious subscript to give this file is w. (It wouldn’t be sensible to
label it ‘n’, for n finite (even if large) because there is always in principle the possibility
that we might generate more than n levels of data files.) Then we start all over again,
with a file of userids and dates of people who have accessed the wth file. Thus we can
imagine a system where even though there are only finitely many files some of those
files naturally have transfinite ordinals as subscripts|

DEFINITION 13 If (X,R) and (Y,S) are two wellfounded binary structures then f :
X — Y is parsimonious if, for all x € X, f(x) is an S-minimal y in Y such that
(YX'Rx)(f(x)Sy).

1You might be thinking: “all we need for the labels is that they come from a dense ordering, like the
rationals, so that we can always insert a new file if needed. So why can’t we use the rationals? Yes, you
can use the rationals. However, since at each stage there is no least rational that is suitable, your choice
of rational conveys no information to any observer of your activities. You could have labelled your files O,
1/2,3/4,7/8 ...1. But you could equally well have labelled them with a sequence ending at 2. If you use
ordinals then your choice of w is forced. If you use ordinals then at each stage there is a least ordinal that is
suitable, and that ordinal conveys information.

29
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I think the ordinals are a terminal object in the category of wellfounded structures
and parsimonious maps.

DEFINITION 14 Rank functions for wellfounded (binary) structures.
If (X, R) is a wellfounded binary structure we define:

p(x) = supfp(y) + 1 : R(y, 0)}.

(The intention is that p(x) shall be the least ordinal bigger than all the p(y) for y Related
to x.)

LEMMA 4 Rank function is uniquely defined.

Proof: By coroll[I.2.1] [ |

The word ‘least’ in the above definition ensures that rank functions are parsimo-
nious. Why do we want rank functions to be parsimonious? Because we want the rank
of a structure to be a measure of its complexity. The more complicated a structure is,
the bigger will be the smallest ordinal we can use to encompass its complexity.

Sometimes we are interested in finding maps that are not parsimonious maps, maps
that in contrast use as many ordinals as they can, subject to the constraint that the range
of the map is an initial segment of the ordinals. The more ordinals we use to describe a
structure, the more features we can highlight. This happens in WQO theory. But that’s
for another day.

So every wellfounded structure has a homomorphism onto an initial segment of
On. There is a converse of sorts: If there is a homomorphism 4 : X — On defined on
a wellfounded structure (X, R) satisfying xRy — h(x) < h(y) then R is wellfounded.
This can sometimes be a useful way of showing that a relation is wellfounded.

EXERCISE 5 Let (X, R) be a wellfounded binary structure, with rank function p.
Prove that

(Vx € X)(Yar < p()(Ty € X)p(y) = ).

(You’re obviously going to do this by induction; but is it by induction on R or on
<on r))

The point of this exercise is to highlight the parsimonious nature of rank functions.
If p(x) = « that’s beco’s all the ordinals below @ have been used to decorate things
below x in the sense of R. The range of a rank function is always an initial segment of
On: no ordinal missed out—no holes!

Here is a live application of rank functions.

The game of Sylver Coinage (you can google it: there is stuff about it on the
web, tho’ i think it is first in Winning Ways) is played between the mintmaster and the
mintmaster’s assistant. They take turns announcing a positive integer, which is to be
the denomination of a new coin. There is a restriction that says that when your turn
comes to announce a denomination, you may not announce a number that is a sum of
numbers already announced. So for example, if the first two numbers announced are
10 and 15 you are not allowed to say 20 or 25 and so on, though you may say 5. 5
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is a linear combination of 10 and 15 but it’s not a sum of positive integer multiples of
numbers already announced. The last player who is able to move loses.

One’s first thought is that a play of this game might go on for ever, but interestingly
this is not the case: all plays are finite. I use this as a take-home exercise for my first-
year Compsci students (at least the better ones) beco’s it’s a good thing for them to
think about. However we are in a hurry, so i shall cut to the chase. Here’s why every
play is finite.

Suppose it is your turn to move. What numbers are available to you? Anything
that is not a sum of positive multiples of numbers already played. Here we need the
key fact that every sufficiently large multiple of the HCF of numbers already played
is unavailable. For example, suppose two numbers have been played so far, and they
are 50 and 40. The HCF of 50 and 40 is 10. You can play 10, you can play 20, you
can play 30, 60 or 70 or even 110, but every multiple of 10 from 150 onwards is of the
form 40x + 50y with x and y positive integers. There are only finitely many multiples
of the HCF-of-the-numbers-already-played that are available to you. So either (i) you
play one of those numbers or (ii) you play something that is not a multiple of of 10. In
case (i) you reduce by 1 the number of multiples-of-the-HCF-that-are-available, and in
case (ii) you make smaller the HCF-of-numbers-so-far played. If you think about this
for a bit you will convince yourself that every play must come to an end.

This suggests a parameter for describing a state of the game. The parameter is
the ordered pair of (i) the HCF of the numbers played so far with (ii) the number of
multiples of that HCF that are available. This parameter is important because whenever
you make a move you either make the second component smaller while leaving the first
unchanged, or you decrement the first component.

When you decrement the first component the second component might get bigger.
For example, in the case we considered, where the first two numbers were 40 and 50,
the first component is 10 and the second component is (i think, you may wish to check
it) 6. If i now play—say—75, the HCF drops to 5, but the number of multiples of the
new HCEF that is available is now much more than 6.

The set of these ordered pairs has a wellordering. Every descending sequence in
this ordering is finite. That is why every play of this game must end.

Can we straightforwardly identify a position in a play of this game with one of these
ordered pairs? Depends what you are trying to do. Properly speaking a position in the
game is a finite set of natural numbers, namely the set of numbers played so far. If all
you know is the HCF of the numbers played so far you don’t know which multiples of
the HCF are available so it’s best to think of the ordered pair not literally as a position
in the game, but a parameter that contains most of the information that matters.

This wellordering is actually the “lexicographic ordering” on pairs of naturals.
And, since it is a wellordering, it has a length. The length (you can check this) is
w?. And not only that. Any position in this game can be thought of as an ordered
pair, a thing in this wellordering, and this gives us a measure of the complexity of that
position, which is the ordinal length of the set of positions that are below that position
in the ordering. Let me illustrate, beco’s this probably sounds a bit scary. Suppose the
first two moves were 10 and 6, so we are in the position (2, 4). 2 is the first component
beco’s 2 is the HCF of 6 and 10. Why 4 for the second component? Because there
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are 4 multiples of the HCF that are available, namely 2, 4, 8 and 14. The positions
that are below this are: any ordered pair whose first component is 1, plus the four pairs
(2,3),(2,2), (2, 1) and (2, 0). This set of positions is wellordered by the lexicographic
order and is of length w + 4. So the ordinal w + 4 is in some sense a measure of the
complexity of the position (2, 4), in that it says something about the wealth (or dearth)
of positions that can be reached from (2,4). The pleasing part of this is that although
the position (2,4) is in some sense a well-behaved finite object, it points to an infinite
set of possibilities, and this set of possibilities is indicated by an infinite ordinal.

Here is another slightly different treatment of the same game. We can think of
a position in the game as a finite sequence of numbers, specifically the sequence of
numbers played up to that point. So: let us consider the set of those finite sequences of
numbers that can arise in the course of a play of this game. We put the empty set at the
top of the page, and immediately below it all the singleton sequences (1), (2), (3), and
so on. We don’t put anything below (1), beco’s that’s an endpoint, beco’s the game has
ended. What goes below (2)? (2, 1) does, and that’s also an endpoint. (2, 3) also goes
below (2), and (2, 3), is not an endpoint, tho’ there is only one thing below it, namely
(2,3,1) (co’s 1 is the only legal move in reply to (2, 3) and that’s an endpoint). (2, 3,4)
is not a legal move, so the next thing to the right of (2, 3) is (2, 5). In that position one
can play 1, which takes one to the endpoint (2,5, 1), or 3 taking one to (2,5, 3). Then
there is only one legal move—namely 1—and it takes us to the endpoint (2,5, 3, 1).

This is illustrated below.

0

So far, no ordinals. We can decorate this picture (remember, the whole picture
is infinite, so i have drawn only an infinitesimal part of it) with ordinals as follows.
Decorate the endpoints with 0. Thereafter recursively decorate each node with the
least ordinal that is bigger than all the decorations on the nodes below it. Thus all the
tuples with 1 as their last element get decorated with 0; (2, 3) and (2, 5, 3) get decorated
with 1; (2,5) get decorated with 2. To see what (2, 7) gets decorated with one would
have to draw the part of the picture below it...which i have omitted. I think it gets 3,
and (2,9) gets 4. In fact (2,2n + 1) gets n. Then (2) gets w!

This process of decorating-with-ordinals all the elements in a partial ordering in
this way is a perfectly standard manceuvre, and the decorations are called ranks. It
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works as long as all descending sequences eventually hit an endpoint.

OK, so what is there about the position (2) that justifies this infinite label? Any
play from (2) is of only finite length of course. The point is that there is no finite bound
on the length of plays from this position: you can spin it out as long as you like. You
have to pick an odd number of course, and if you pick 2n + 1 the game can last for n
further moves. Once you play your odd number the possible length of the subsequent
play suddenly becomes finite. There is no response to 2 which leaves you in a position
with the character that the position (2) has, namely that there is no finite bound on the
length of feasible plays from that position.

Now consider the position (4). I can play an odd number, at which point the pos-
sible lengths of subsequent games suddenly gets a finite bound. However, if i play any
number of the form 2n + 2 i find the game in a position where the other player has
infinitely many choices, just as he did in the position (2). Hence the larger rank.

There are other applications of rank functions which are more consequential, and
we will see some in chapter[7] That was just a taster.
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Chapter 3

Generalities about possibly
uncountable ordinals

3.1 Hartogs’ Lemma

w is a countable ordinal. Observe that w + 1, w? and lots of other ordinals are also
countable. Are all ordinals perhaps countable ... ? No!

The answer is ‘no’, and you might think that it is obvious that the answer is no.
After all, R is uncountable, and—if we believe the axiom of choice—then we can
wellorder IR and no ordinal of such a wellordering can be countable. But we can give
a more direct and informative proof without using AC.

THEOREM 7 Hartogs’ Lemma.
For every set X there is a wellordered set Y s.t. Y 4> X.

Proof:

We exhibit a uniform construction of such a Y.

Consider P(X x X). This is the set of all binary relations on X. We define a map
fiPXXxX)—> On. If R e P(X X X) is a wellordering we send it to its order type, its
length; if it is not a wellordering we send it to 0. The range f“(P(X x X)) of f is the
set Y that we want.

Y is naturally wellordered, being a set of ordinals, so what is its order-type in this
ordering? Y is downward-closed so, by theorem[d]its order-type is the least ordinal not
in Y. The ordinals in Y are precisely the ordinals of wellorderings of subsets of X. So
the order type of Y is the least ordinal not the length of a wellordering of any subset of
X. So Y is not the same size as any subset of X. It’s too big.

|

A word is in order at this point about the meaning of Hartogs’ lemma. Recall that
ordinals are the kind of number that measures the lengths of discrete, deterministic
transfinite processes. Suppose you are trying to construct something by a transfinite
process. The tower of Babel, perhaps. The stages of your construction are indexed by

35
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ordinals. In principle you might be worried that the process could be so complicated
that there aren’t enough ordinals for the process to complete. Hartogs’ lemma lays this
worry to rest. It doesn’t guarantee that all discrete deterministic processes complete
successfully, but it does tell you that if your process goes wrong it’s not beco’s you
have run out of ordinals.

An aside about notation. The cardinality of the set Y that we obtain from X in
the above proof is notated ‘N(|X])’, but beware! That notation is for for the cardinal
|Y| of the Y thus obtained, not for the ordinal of the obvious wellordering of Y. This
function is sometimes called ‘Hartogs’ aleph function’. Do not confuse this notation
with the notation (which we will see later) that gives subscripts to alephs: N is not
N(0)! However we will not make much use of this notation here, and i mention it only
for the sake of completeness.

It’s natural to ask specifically what happens if we do the construction of theorem
[7]in the particular case where X = IN. The answer is that we get the set of countable
ordinals, a set that Cantor called the second number class. We need a name for the
cardinal of this set: &;. The supremum of the second number class is the ordinal w,
the least uncountable ordinal..

It’s worth spelling this out and thinking about it.

Start with the set IN of natural numbers, the first number class. Its members are
canonically ordered (wellordered indeed) by magnitude, to length w, and there are N,
of them.

Now pick up your magic Hartogs’ hammer. Consider the set of all wellorderings
of subsets of IN, and take the quotient under orderisomorphism. The result is a set of
ordinals. This set is the second number class. Its order type (which of course is the
same as the first ordinal not in it, by thm[d) is called w; and its cardinality is N;.

Of course you can repeat the trick, and obtain yet more ordinals, what one might
(but doesn’t) call the third number class, whose order type (and whose supremum) will
be w, and whose cardinality is ;.

And N3, N4, andsoon...(!)

Do not panic if these last paragraphs look unintuitive. You have almost certainly
never seen a set of size X or N, before. It looks weird beco’s it is unfamiliar.

DEFINITION 15
(i) An aleph is the cardinality of an infinite wellordered set;
(ii) N(a), for a a cardinal, is the least aleph £ a.

I know i said we wouldn’t be doing any set theory here, but it may be worth pointing
out—since people do worry about these things—that one can prove Hartogs’ Lemma
(lemma [7) without any use of the axiom scheme of replacement (as Hartogs in fact
originally did, the axiom scheme of replacement not having been formulated at that
stage).

It goes as follows.

Given X we seek a wellordered set Y with |Y] £ |X].

Consider P(X x X) (use Wiener-Kuratowski ordered pairs if you want to be spe-
cific); throw away every subset that isn’t a wellordering; quotient out what’s left under
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isomorphism. The result is (a concretisation of) the set of ordinals of wellorderings of
subsets of X—as it were equivalence-classes-local-to-X—and is the Y we desire.

(Yz . .
This argument gives us an upper bound for 8(|X|): X(a) < 2*" . By modifying the
construction you can obtain better bounds (such as N(a) <* 2% __where the asterisk

means surjection) but we don’t need them.

3.2 Initial Ordinals

For the moment write ‘card(a)’ for {8 : B <o, a}|. (This ‘card’ notation is in the
literature, but it is not in common use, and you do not need to know it). Then

DEFINITION 16

An orderingﬂ whose carrier set is of size k is said to be k-like if every proper initial
segment has size < k.
An ordinal « is initial if it is the order-type of a k-like wellordering: (VB <o, @)(card(B) <card
card(@)).
The set of orderings-whose-order-type-is-initial is a subset of On and is therefore
wellordered in the inherited ordering.
We enumerate the initial ordinals as wy, w1, ... Wy ..., and
We define X, to be card(w,) which of course was {8 : B <on Wa}l-

Thus every finite ordinal is initial and (more to the point) w is initial—while w + w
isn’t.
The following should be evident:

N, is also the ath aleph;
N(tJrl is x(xa)7

The alephs are wellordered by < 4,q.

Notice the overloading of ‘N’. Most vexing!

This notation is legitimate because, if X is wellorderable, the Y that we obtain from
the construction in the proof of theoremis of minimal size £ |X|. So, if |X]| is the ath
N, |Y|is the (@ + 1)-th aleph. Is this OK? Yes: each aleph corresponds to a unique initial
ordinal, so—by theorem E]—the alephs are wellordered by <44, SO We can enumerate
them using ordinals.

[You can skip this next paragraph if you don’t want to get embroiled in set theory]

We can use initial ordinals to implement alephs as sets. Every aleph corresponds
to a unique initial ordinal, so we can implement an aleph as the corresponding (von
Neumann) initial ordinal. If we are willing to adopt AC then every cardinal is an aleph,
and we have in fact thereby implemented all cardinals. Could we not have implemented
cardinals by Scott’s trick (if you know what thatis)? Yes, if we have foundation, or even
if we have the (weaker) assertion that every set is the same size as a wellfounded set.

I'The definition works for all orderings, tho’ here we will be concerned only with wellorderings
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This route via von Neumann initial ordinals doesn’t need either of these assumptions,
but it does use AC.
However it is blindingly cute, and has become the industry standard.

DEFINITION 17 If a = cf(@) we say « is regular; otherwise singular.

This terminology comes from Topology (The ordinals an be given the order topol-
ogy).

COROLLARY 4 Every regular ordinal is initial.

Proof:

Suppose cf(@) = @ and that (A <4) is a wellordering of order type @. Now if «
were not initial there would be a subset A’ ¢ A which was an initial segment A" of
(A, <4) and a bijection 7 : A «— A’ (not order-preserving!). We use m and “picking
winners” to inject A’ cofinally into A. But the image of A’ under this embedding is of
order type less than a, contradicting cf (@) = a.

|

REMARK 2 Every countable limit ordinal A is the sup of an w-sequence {A; : i < w) of
smaller ordinals.

Proof:

J
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The picture shows why every countable limit ordinal has cofinality w. The long
right-pointing arrow represents a countable ordinal manifested as a wellordering of
naturals (IN in a funny order). The (unbounded!) increasing sequence of natural num-
bers reading from the left are the numbers chosen as in the picking-winners recursion
... 1001 is the least natural number > 257 that is above 257 in both orders. The semicir-
cle represesents where this increasing sequence of naturals comes to a halt, closes off.
Are there any natural numbers in the region flagged by the question marks? Suppose
there were—347, say. OK, so what were doing declaring 1001 to be the 6th member
of the sequence? We should have used 347!

DEFINITION 18
Such a sequence of smaller ordinals is a fundamental sequence for A.

For many countable ordinals there is an obvious fundamental sequence: for w the
obvious fundamental sequence is the increasing sequence of finite ordinals, aka the
identity function (tho’ of course any increasing sequence of naturals will do). w + w
has the obvious fundamental sequence {(w + 7 : n < w); for w? we obviously reach for
(w-n:n<w), for o we want (W" : n < w). For g we want the sequence w, w®,
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w W . . ¢ .
w”, w? .... However, in general there is no ‘obvious’ fundamental sequence for
an arbitrary countable ordinal. This fact is not obvious, but it is one of the many

consequences of remark [1]

We will equivocate harmlessly between thinking of fundamental sequences as wellorder-
ings and thinking of them as strictly increasing functions from IN into the set of count-
able limit ordinals]

We have seen that all countable limit ordinals have cofinality w. Can a limit ordinal
have any other cofinality? Might all limit ordinals have cofinality w? It turns out that
the answer is ‘no’—at least if we have the axiom of choice.

REMARK 3 (AC)
cf(wy) = wr.

Proof:

Suppose not, and let (X, <) be a wellordering of length w; with x; < x; < x3... <
Xg < « a cofinal subsequence of length @ with & countable.. Then if we let Xz =: {x €
X : xg £ x < xpy41} then all the X3 are countable (w; is the least uncountable ordinal
after all) so {X3 : B < a} is a partition of the uncountable set X into countably many
countable pieces. Countable choice tells us that a union of countably many countable
sets is countable. So X would have to be countable, contradicting assumption. [ |

(and yes, X here could be taken to be the second number class).
Quite what happens if we do not have AC is a complicated question which we
cannot treat here.

EXERCISE 6 Show that w®' = w;.
Is w the least ordinal « such that w* = a?
[You may use standard facts about ordinal arithmetic. |

Something to think about ... every regular ordinal is initial ... 1is every initial ordi-
nal regular...? Also ...the fixed point theorem [3] tells us that every normal function
has arbitrarily late fixed points. However the proof given only supplies fixed points
of cofinality w. Might it be the case that every normal function has a regular fixed
point...?

33 N?2=N

This section heading is a shorthand. We say a cardinal |X| is idempotent if |X| = [ X x X|.
Clearly if |X| = |X x X]| then X is either empty or a singleton or is infinite. An aleph is
the cardinal of an infinite wellordered set. The claim is that every aleph is idempotent.
In the heading we are using the letter ‘N’ as a variable to range over alephs. ...

>There is an opening here for a little sermon whose burden is that our need to equivocate about this
reveals that we haven’t really got our data structures right (cf page@).
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We start by noting that § = X+NX. (Well, what we will actually need is N+N+N = N,
but never mind). Beginners might like to have this spelled out, and it holds because
2wy, = we. How so? Any order of limit order-type consists of lots of concatenated
copies of IN, each of length w. You can interleave two (or indeed three) worders of
length w to get a worder of length w so you can do this for all the copies simultaneously.

We start by defining a function S : On — On. Given an ordinal a, take a wellorder-
ing (A, <4) of order type a, make disjoint copies of all its proper initial segments, and
then concatenate the copies ... with longer things appended after shorter things.

The result is a wellordering and its order type is defined to be S(a). [This notation
is not standard, and I am not going to use it outside this proof so i’m not numbering it].
Thus—for example—S(w) =1 +2+3+4+... = w.

[It occurs to me that you might be worried that an infinite wellordered sum of
ordinals is not an ordinal, but it’s quite easy to show that it is. Suppose i concatenate
lots of (pairwise disjoint) wellorderings. Suppose there were a subset of the union with
no least element. There must be a first summand that meets this bad subset. But then
that summand wasn’t a wellordering.

Another way of seeing it is to reflect that the sum—concatenation—of a host of
wellorderings is the supremum of the partial sums. And we prove by induction on
the partial sums that they are wellorderings. As long as the family of summands is
wellordered of course!]

LEMMA 5
(i) S : On — On is a normal function;
(ii) Every initial ordinal is a value of G.

Proof:
(1) @ : On — On evidently also has a recursive definition:

Sla+1)=S(a) +a and
S(A) = Sup{S(@) : @ < A} for A limit.

...from which it is clear that S is a normal function.

(i)

Use the division algorithm for normal functions to show that there is a 8 s.t
SPB) Lwy <GB+ 1).

If 3(B) < w, then we have w, < S(B + 1) = S(B) + B which is impossible, since S(3)
and B both have cardinality below N, . ]

We want to show that (N,)> = N,. Now N, is defined as the cardinal {8 :
B < we}|, which means that the canonical set of size (N,)? is the cartesian product
{B:B < wy} X{B:B < w.}. We partition this last set into three pieces:
(i) the [graph of] the identity relation restricted to {8 : 8 < a}, and

(ii), (iii)
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the two triangles above-and-to-the-left, and below-and-to-the-right of the
diagonal.

=l

To be formal about it, we partition the cartesian product {8: 8 < a} X {8: 8 < a}
into the three pieces {(B,y) : B <y <a}, {{B,y):B=y <aland {{B,y) : y < B < a}.

It is clear that the third piece is of order type S(«) in the lexicographic order.

The idea is to show that these three pieces all have cardinality &,. That’s obvious
for the second piece, the identity relation. Also there is an obvious bijection between
the first and third piece (“flip your ordered pairs™) so it will suffice to prove that the
third piece (“the bottom-right triangle”) has cardinality N,,.

Now we can prove
THEOREM 8 (Va)(N, = (Rp)?).

Proof:

By induction on @. The fact that it holds for @ = 0 you learnt in your first year.

Assume true for all alephs < N,. By lemma[3] w, is a value of S; we want to show
that it is actually a fixed point. Now w, is an initial ordinal, which is to say that for any
B < w,, the cardinal |{y : v < B}| is less than N, and (by induction hypthesis) is equal
to its own square. Suppose w, were S(8) for some S < w,. This would entail that the
size of the cartesian product {y : y < 8} X {y : v < B} is at least N,, contradicting the
induction. So w, is a fixed point of S. This means that the lower-right triangle of the
cartesian product {y : v < wy} X {y : ¥ < w,}—which can be wellordered to length
S(we) = we—is of cardinality &,. It’s clearly naturally isomorphic to the upper-left
triangle (as remarked earlier) so the cartesian product is now a union of three sets each
of size N, giving (N)? =8, + N, + 8, = N, as desired.

|

Thus if the axiom of choice holds (so every infinite cardinal is an aleph) then a = o

for all infinite cardinals. There is a converse, but since this is a pamphlet about ordinals
not Set Theory I shall not prove it. We can also use theorem [§|to show that a lot of
initial ordinals are regular.

THEOREM 9 (uses AC)
Every ordinal wq+1 is regular.
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Proof:

If wq+1 is the sup of fewer than 8,,;—which is to say the sup of no more than N,
smaller ordinals—then the set of ordinals below it (which is of size 8,,) is a union of
at most N, things each of size N, at most. We saw in an example sheet questiorﬂ how
to use AC to show that such a union is of size (¥,)? at most, and theorem now tells
us it is of size N, at most, which is impossible. [ |

The obvious follow-up question is: if A is limit can w, be regular? Itisif A = 0....
The context in which to consider this question is the context of independence proofs,
to which we now turn. Except we don’t

3Cambridge reference here



Chapter 4

Mainly concerning Countable
Ordinals

4.1 Cantor’s Normal Form Theorem

To prove Cantor’s normal form theorem we will need to make frequent use of lemma
Bl the division algorithm for normal function.

The way into Cantor Normal Forms is to think of that lemma as a rudimentary result
of the kind “Given an ordinal 5 and a normal function f, f(ao) is the best approximation
to B from below that I can give using f.” Cantor Normal form is an elaboration of this
idea into a technique. Let us first minute a few normal functions to see what sort of
things we can attack 8 with. For every @ > 0 the functions

Vi a+y; Vi a-y; v

are all normal, and each is obtained by iteration from the preceding one.

We are given § and we want to express it in terms of a given normal function. Let
a be some random ordinal below 3. Then y +— «” is a normal function and since a < 8
we know by lemma [3] that there is a largest y such that @ < B. Call this ordinal .
Then o < B. If @ = 8 we stop there.

Now consider the case where @’ < . By maximality of vy we have

" <B< "t =¥ . o (*)

We now attack S again, but this time not with the normal function y +— @ but the
function 6 — a”° - 6. So by remark [3there is a maximal 6 such that @ - 6 < B. Call it
6y. By (*) we must have 6 < a.

If @ - 6y = 8 we stop there, so suppose a”° - 6y < 3, and in fact

a0y <B<a” - (Bp+1)=a" 6+ (%)

by maximality of 6.
Now B = a” - 6y + 9y for some Jy, and we know Jy < a?° because of (¥*).

43
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What we have proved is that, given ordinals @ < 3, we can express 8 as @”° - 8y + 0y
with o and 8y maximal. If 59 < @ we stop. However if 69 > @ we continue, by
attacking ¢y with the normal function y — a”.

What happens if we do this? We then have § = o' - 6, + §;, which is to say

ﬁ:a70-90 +oﬂ‘~01 + 01

One thing we can be sure of is that yy > ;. This follows from the maximality of 6.
We now go back and repeat the process, this time with §; and « rather than 8 and a.
Therefore, when we repeat the process we obtain:

ﬁ:ayo'00+a”~91+ayz-02+63

and so on:

B=a" -G+a" -0 +a”? - O+...a" -0, +...

Now we do know that this process must terminate, because the sequence of ordinals
{yo > vi > v2 > ...y,...} is a descending sequence of ordinals and must be finite,
because <, is wellfounded.

So we have proved this:

THEOREM 10
Forall @ < Bthereareyg > ... >y, and 0y ...6, with 6; < a for each i, such that

B=a" -0 +a" -0, +a? -6, +...a" -6,

[HOLE We can also prove it by using only the first part of this proof, by extract-
ing the largest power of « that is less than  and subtracting it—thereby obtaining
something smaller—and appealing to induction. The point being that there is y s.t.
¥ <8 < a”!, so the exponent of the largest power of @ that is < (8 — a”) is less than
v. So we claim that the CNF for 8 is @+ CNF for 8 — a”, and—since (8 — o) < p—it
has a CNF by induction hypothesis.

In particular, if @ = w all the 6; are finite. Since every finite ordinal isa sum I + 1 +
1 + ... this means that every ordinal is a sum of a decreasing finite sequence of powers
of w. ]

EXERCISE 7 Use Cantor Normal Forms to show that every ordinal can be expressed
as a sum of powers of 2.

4.2 The Veblen Hierarchy

(Veblen chores:
Establish that every ordinal below I'y has a normal form.
Establish that you can use those normal forms to equip all ordinals below I'y with a
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fundamental sequence
Establish that ¢(a, B) is ctbl if @ and 8 are.

To find the normal form of 6 find the last row that contains something below 6. 6
then sits between the ath and the « + 1th elements of that row. Record the ath. But the
a + 1th element is the sup of an w-sequence starting at the ath (it’s the next fixed point
after all, and is acquired by iteration) so it lies between the nth and the n + 1th. Record

)

Oswald Veblen came up with a system of notations for countable ordinals which
takes Cantor Normal form as its point of departure. This happened really quite early
on in the piece, and it is worth emphasising that the treatment of Veblen’s happened at
a time when there was an abstract theory of ordinals but before anyone had come up
with a bundle of axioms for Set Theory. In fact Veblen’s article and Zermelo’s axioms
appeared in the same year—1908. The moral for us nowadays is that you can do a lot
of ordinal arithmetic without actually doing any set theory.

Start with notations for 0, w, +, - and exponentiation. The thought is that if we have
a second-order constructor—sup—then we can reach all ordinals, but we are interested
in first-order notations. Cantor Normal Form exploits those five bits of syntax and gives
us notations for countably many ordinals, in fact an initial segment of the countable
ordinals. How far does it take us? The first step (“look for the largest power of w <
your target) works for things that are not fixed points for @ — w?. Or rather, it works
until we reach the least such fixed point. If we try it on things with such fixed points
below them then the process of descent (as in: the computation of Cantor Normal
Form) gets trapped at one of those fixed points. So we have to do something. We could
add a constant term for this fixed point, and use that as the base for our exponentiation
algorithm instead of w. This new constant is written ‘&y’.

The construction underlying the Cantor normal form theorem works for all ordi-
nals, but we tend to reserve the expression for ordinals notated in this style where the
base of the exponent is w. This analysis is informative as long as the ordinal we are
processing into normal form is less than the first fixed point for @ — «®, an ordinal
that we commonly call ‘e’. If we apply the above algorithm to € we find that it has
Cantor Normal form w® which—admittedly—is true, but it is hardly informative, in
the sense that it doesn’t describe the target ordinal in terms of smaller ordinals. It will
be helpful—in digesting the developments which are to come—to think of this as the
CNF algorithm crashing. It is a deep and discouraging (or inspiring, depending on how
you look at it) fact that any finitary system of notations for countable ordinals must
crash, because a finitary system of notations can have only countably many wffs, and
there are uncountably many countable ordinals queueing up to be notated. We need to
embrace the fact that any system will crash, and try to form a picture of how the crashes
happen: there is method in this madness.

CNF crashes at €. Ok, so you pick yourself up, dust yourself off and start again
building CNFs as tho’ nothing had happened, the only difference being that this time
you use ¢ as the base of your exponentiation instead of w.

That way you notate an ordinal & as a sum of terms of the form (g)* - y; with
vy < € and B; < a. This works as long as & < €%, so you go on until you reach an « s.t.
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a = €“. In principle this ordinal could be anything but the world is a neat and tidy place
and the least solution is the ordinal which we call €. The suspicious reader will have
noticed that this ordinal € of which we discourse so airily has a notation with internal
structure, specifically a numerical subscript, carrying the strong suggestion that there
are other € ordinals with names that have other subscripts—of which we have heard
nothing so far. Connoisseurs of notation might notice that we have been writing ‘ey’
with a numerical subscript, rather than ‘€(0) with the number as an argument, so that
we think of € as a function. Really we should think of € as a function (tho’ the notation
will soon be superceded) so that () is the ath fixed point for the (normal!) function
B — «”. Hang on to the fact that € will be a normal function.

€ is the first fixed point for 8 — «” above &. However what will matter is that it
is also the smallest fixed point for 8 - .

Let’s quickly verify this.

&° = (W) =) yee — 8 = €

Might be an idea to check the equation at (*). It’s obviously true but it’ll do no harm
to write out a proof of the general case: (@?)? = o#”. (It would be a good currying
exercise to do this for the synthetic definition.) And it might be an idea to check that
analogous equations work for €, €3 and so on.

€, = (W) =() € = e+t =

= €+l
In fact, we can prove the more general
REMARK 4
For all @, €,4 is the least fixed point for  +— (€,)°.
Proof:
First we check that it is, indeed, a fixed point.
(€)™ = (W)™ = W = Yo = €,

Showing that it’s the least will probably be easy. The thing to do is to show that

&

_ € €, 6
€atl = Sup{em € € " .. }

and then prove by induction on this sequence that all its members are <g, the least
fixed point.
|

Armed with this insight we can rethink CNF.

Bog standard CNF works for ordinals below . By using ¢, as our base instead
of w we can notate ordinals below the least fixed point for @ — €% which—as we
have just seen—is €. In doing so we have spiced up the syntactical base by adding the
symbol ‘g’

By using € as our base instead of w we can notate ordinals below the least fixed
point for @ — €;* which—as we have just seen—is €.
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And so on!

Now we can notate ordinals below the least fixed-point e-number. Suppose a is an
ordinal less than the least fixed-point e-number. Since the function e that enumerates
the e numbers is normal there will be a largest e-number below @. Now use that largest
e-number below « as the base for your exponentiation in the version of CNF algorithm!

In effect what this has done is to augment the notational apparatus with which we
started (and which gave us Cantor Normal Form) by adding the function e.

Now, Dear Reader, take a pause for refreshment and a deep breath; and think about
how this algorithm resembles the CNF algorithm we started with. Now ask yourself:
“where does this system crash?”’. The answer is that it crashes at the first fixed-point
for €, the least @ s.t. @ = e(@)—or a = ¢, if you prefer. Let us call this number «j. It
crashes at g in the sense that when we look for the largest e-number < ky we get. . . k.

Now, just as we upgraded CNF by using € as the base of our exponentiation, so
we can upgrade the current algorithm by—on being given an input a—Ilooking for the
largest e-number below a. In doing so we have spiced up the syntactical base by adding
the symbol ‘«¢’

Thus we are led to invent a function «, that enumerates the fixed-point e-numbers. I
think there was a brief period in the development of this subject when these were called
‘«’ numbers but it rapidly became obvious that we are going to have to go on forever
inventing new notations in this way, so the best thing to do—rather than have lots of
one-place functions—is to have a single two-place function, and this function symbol
is ‘¢’.

This move to having a two-place predicate instead of this indefinitely extensible
family of one-place predicates is the key move in the erection of the Veblen hierarchy.

The derivation of a CNF for an ordinal relied heavily on the fact that @ = «® is
a normal function. If we are to use ¢ as a gadget for ordinal notation then we need
a — ¢(B, @) to be normal for every 5. This may be hard work. Anyway, once we’ve
done that, how do we notate an ordinal @ using ¢? You look for the largest y which is
to the left of « in the row you are interested in, and get a CNF for a using y as base
for the exponent. Then all the ordinals that appear in the CNF are below @ and you can
notate them. So we need each row to be a clubset.

Something i felt it would be a good idea to write out a proper proof of is the fact
that the least ordinal in the Ath row of the Veblen diagram (4 limit) is the sup of the
first ordinals in the rows above. It’s elementary but it matters.

Let us write ‘u,’ for the least ordinal in the ath row. Fix A limit, and consider
{tto : @ < A} and then consider its sup. For 8 < A we reason as follows: sup({u, : 8 <
a < A}) = sup({ue : @ < 4}), and each row is closed, so sup({u, : @ < 4}) belongs to
every row, and is therefore in the Ath row. Is that enuff to ensure that it is 1, ? It bounds
a whole lot of things all < u, so it, too, is < . But it belongs to the Ath row since it
belongs to all higher rows, so it must gen uinely be the least ordinal in that row.

So the function that enumerates the y, is normal and so has a fixed point. And on
it goes.
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The Veblen diagram

Top row is the stream of countable powers of w. This is a clubset and the function that
enumerates it is a normal function from the second number class into itself. Its order
type is wj.

Thereafter we obtain the a + 1st row from the ath as the set of fixed points in the
enumeration of the ath row.

At limits we take intersections. At this point we really really need to think about
diagonal intersections.

“This is a clubset and the function that enumerates it is a normal function from the
second number class into itself. Its order type is w;”—or at least we hope so! The
quoted text is obviously to be desired, and we naturally aspire to prove it by induction
on a.

Things we will need:

(i) The pointwise sup of a countable family of normal functions is normal.

(ii) Every row is unbounded. Ideally we also want: every row is of length w



Chapter 5

Fundamental sequences and
fast-growing functions

Fundamental sequences were introduced in chapter ?? but no use was made of them
there. The time has come to put them to work.

My point of departure here is an exercise that my friend and colleague Peter John-
stone used to give to the third-year logic students here at Cambridge: prove that for
every countable ordinal « there is a set of reals which is of order type « in the inherited
order.

There are [at least!] three ways of exhibiting a set of reals of order type « in the
inherited order..

(i) Make « copies of Q;

(i) Embed « directly by picking a worder of IN of length @ and doing a
“forth” construction.

(iii) A method using fundamental sequences which will explain below.

(i) runs as follows: Let a be an arbitrary countable linear order type (even!—it
doesn’t even have to be an ordinal). Concatenate a copies of (Q, 0) (the rationals as
an ordered set with a designated element.) This structure is a dense linear order with
a family of designated constants forming a subset of order-type @. But the ordering
formed by discarding the designated constants is a countable dense total order and
is therefore isomorphic to the rationals. Therefore every countable linear order type
embeds in the rationals. In particular, every countable ordinal embeds into the rationals
and therefore into the reals.

More formally:

(Q X {B : B < a}) ordered colex is a countable dense linear order and so there is an
isomorphism i : (Q X {8: 8 < a}) «— Q and now the function S — i({0,)) injects
{B: B < a}into Q.

(ii) Is the best way, because the construction does not require that & be an ordinal;
any old countable linear order type will do. We will prove that if < is any total order
of IN then (IN, <) can be isomorphically embedded into (Q, <p). We construct an

49
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embedding f by recursion on <. Send 0 to O; thereafter, when considering n + 1, see
how it is related by < to the numbers k <y n. If it is above all those k then declare
f(n + 1) to the the smallest whole number bigger than all the f(k); If it is below all
those k then declare f(n+ 1) to the the negative integer with smallest absolute value <
all the f(k). If neither of these hold then it is <-sandwiched between two immediate
neighbours m < n + 1 < m’. Then we ordain that f(n + 1) = arithmetic mean of f(m)
and f(m’).
This embeds any countable linear order into Q.

However, many students try to do it using fundamental sequences.

We will show how to construct, for arbitrarily large countable ordinals @, an order-
preserving map f, from the ordinals below «@ into [0, co)—and i think we want the
range of f, to be unbounded whenever « is limit. Indeed we probably want the map
to be continuous in the sense of the order topology on the ordinals. That is to say, if
A is a limit ordinal below a then f,(4) is the lub of f,“{8 : B < A}. It’s probably true
that a nice enough construction will make this happen automatically, but it’s something
worth keeping an eye on.

The obvious candidate for f,, is the (“casting”) function that sends the ordinal num-
ber n to the real number 1| Thereafter we have two tricks we can use. If we have £,
we can construct f,.,, by “squashing” the range of f, down on [0, 1) by composing with
%arctan and then making copies to put in each interval [n,n + 1), and concatenating
them. To be slightly less hand-wavy about it, let A, be the range of f,, then f., is the
function that enumerates the points in

2

U{n + (—arctan“A,}
n

nelN

(where the notation ‘n + X’ of course denotes {n + x : x € X}.) If a is an ordinal
that cannot be reached by this method we find an increasing w-sequence (@, : n < w)
whose sup is @ and compress the ranges of the f,, into the intervals [i, i + 1), thus:

2
U{n + (—arctan“A,,}
T

nelN

Let us suppose that we have such a family (f; : @ < w;). Fix a countable ordinal
and consider the wi-sequence {f,({) : ¥ > {). It would be natural to expect this to be
a non-increasing sequence of reals. After all, the more ordinals you squeeze into the
domain of an f, the harder you have to press down on its values to fit all the arguments
in. But you’d be wrong!

REMARK 5 For each countable ordinal vy, the sequence {f,({) : y > {) is not mono-
tone nonincreasing.

Proof:

'T have the strong feeling that it’s very important to not think of this function as the identity function.
The real number 2 is not the same as the ordinal 2.
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Suppose that
(Vy <¥ < 0DV < w)(H(Q) = fr (D). (5.1

Then, for each { < wy, the sequence (f,({) : ¥ > {) of values given to  must
be eventually constant. For if it is not eventually constant then it has cf(w;) = w;
decrements, and we would have a sequence of reals of length wj in the inherited order,
and this is known to be impossible.

So there is an eventually constant value given to ¢, which we shall write ‘f({)’.
But now we have a < 8 — fo(@) < fo(B). (We really do have ‘<’ not merely <’ in the
consequent: suppose fo(@) = fo(B) happened for some « and 8; then for sufficiently
large y we would have f,(a) = f,(8) which is impossible because f, is injective). This
means that f,, embeds the countable ordinals into R in an order-preserving way, and
this is impossible for the same reasons.

So we conclude that the function (@, ) — f,(B) is not reliably decreasing in its
second argumentﬂ ﬂ

So what can possibly have gone wrong? Surely any sensible allocation of maps to
limit ordinals will be well-behaved in the sense that it obeys (5.1)? Let us step back
a bit and introduce a new gadget, one which has been lurking in the background all
along.

5.0.1 Fundamental sequences for ordinals below ¢,

Theorem [6]told us that every countable limit ordinal has cofinality w. This is of course
just the same as saying that every countable ordinal has a fundamental sequence.

I'mentioned on p ?? that for quite a lot of ordinals there is an “obvious” fundamental
sequence for that ordinal. let’s spell this out.

Fix an ordinal @ and a wellordering of that length. Every 8 < « defines a terminal
segment, and the lengths of these terminal segments decrease as 8 gets bigger, so there
must be a least one. Clearly this ‘tail’ function On — On is idempotent and nonin-
creasing. What remains to be shown is that all its values are powers of w. We do this
by showing that if 8 is not a power of w then tail(8) < S8. If 8 is not a power of w then
it has a Cantor Normal Form w?” - n + 6. If § # O then tail(8) = tail(6) <5 < B. If 6 =0
then tail(8) = tail(w”) < W’ < WY - n = L.

Next we characterise the “obvious” family of fundamental sequences for the ordi-
nals below €. Every limit ordinal below ¢, has a Cantor Normal Form y + w® for some
a, where w® is its tail. (We might need to think of n - w® as (n — 1) - w* + W to secure
this effect.) A fundamental sequence for y + w® can be obtained from a fundamen-
tal sequence (B, : n < w) for w*, namely (y + B, : n < w) for w®. So to equip every
limit ordinal < & with a fundamental sequence it will suffice to to equip every ordinal
w® < g with a fundamental sequence.

2I suspect that the the sequence { fy(©) vy > ) of values given to { describe a nonmeasurable set. I have
seen no proof of this, tho’. We needed AC to build it so it might well be nonmeasurable.

3Is it the case that if we use a Schmidt-coherent family of fundamental sequences then bad behaviour of
the f;s can be postponed as far as we like?
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Now how do we allocate fundamental sequences to ordinals w®—that are pow-
ers of w? If @ has a fundamental sequence (@, : n < w) then (W™ : n < w) will be a
fundamental sequence for w®.

This preceding text defines a recursion which reduces the problem of finding a fun-
damental sequence for w® to that of finding such a sequence for @ and—as long as
there are no @ = w® in the mix waiting to be encountered—will supply us with fun-
damental sequences for every limit ordinal, which is to say every limit ordinal below
ep—at least as long as we have one for w. But the identity function on finite ordinals is
the obvious fundamental sequenceE] Had we taken a fancy to a different fundamental
sequence for w we would have ended up with a different family of fundamental se-
quences for ordinals below €): the family is completely determined by what it does to
finite ordinals.

DEFINITION 19
A family 7 is a function sending each limit ordinal in some given initial segment of
the second number class to a fundamental sequence for that ordinal.

How do we obtain families of fundamental sequences? Suppose the order type of
the limit ordinals below « is successor, so @ = 8 + w. In those circumstances the
obvious choice for a fundamental sequence for « is {8+ n : n < w). So far so good.
Now suppose in contrast that the limit ordinals below « form a sequence of order type
B for some limit ordinal 8 < a. That is to say, there is a function g from {{ : { < S8} to
the set of limit ordinals below «. But if there is also a fundamental sequence f for 3,
then g - f will be a fundamental sequence for a.

This last step works as long as the order type of the set of limit ordinals below « is
less than a. If it isn’t then one has to do something slightly more clever. If we consider
the ordinals that are fixed points for the function that enumerates the limit ordinals—
which is the problematic case we have just identified—what might this clever thing be?
The function that enumerates the limit ordinals is @ — w - @. Let’s keep our feet on
the ground for the moment by considering its first fixed point, which is w®. A fixed
point > « for a normal function f can be obtained as sup {f"(@) : n € IN}. So w® is
immediately presented to us as the sup of {«w" : n € IN} and this gives us a fundamental
sequence for w®.

The hope is that there will always be some generalisation of this construction how-
ever far out we go. If F is a normal function On — On then whenever (5, : n € N)is a
fundamental sequence for 8 then (F(,) : n € IN) is a fundamental sequence for F(53).
We will return to this later.

We have just seen how the construction of a fundamental sequence for 8 needs as
input a bijection between IN and the set of ordinals below §. In fact we can refine the
proof of theorem [6] by exhibiting an algorithm that takes a bijection between IN and
the ordinals below S (or takes a wellordering of IN of length §) and returns a family of
fundamental sequences for limit ordinals below 8. Similarly there is an algorithm that
takes a family of fundamental sequences for the ordinals below 8 and returns a bjiecton
between IN and the set of ordinals below 3. (Really one should say that this algorithm

4A sleeper for dilators.
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accepts and outputs notations for these objects rather than the objects themselves. The
notations are genuine finite objects and we can compute with them. A countable ordinal
is not on the face of it a finite object: curiosity about how far one can go in thinking of
countable ordinals as finite objects is the energy driving interest in the material in this
tutorial.)

THEOREM 11
There is a natural map that takes a wellordering of N of length a and returns a family
of fundamental sequences for the limit ordinals below a—and vice versa.

Proof:

This is a generalisation of theorem [6}

(i) Left-to-right

Suppose we have a wellordering <, of the naturals to length «; let 8 be an arbitrary
limit ordinal below a. We will find a sequence (b, : n € IN) of natural numbers which is
of length w according to <,, and whose sup in that order is the Sth element of (IN, <, ).
We define b to be the <py-least natural number in that unique initial segment of (IN, <, )
that is of length 5. Thereafter b, is to be the <-least natural number that belongs to
that unique initial segment of (IN, <, ) that is of length 8 and is >, b,.

How do we know that the upper bound of this sequence is the Sth element of
(N, <,)? By construction the set {, : n € IN} is unbounded in <. So if nis a
natural number that lies above the (<,)-sup of {b, : n € IN} but is still below the Sth
element then it is < terminally many of the b,, and should have been chosen. Now
we take 3, to be the length of the initial segment of (IN, <,) bounded by b,,.

Clearly we can do this simultaneously for all limit ordinals 8 < a.

All i’ve exhibited so far is a natural construction of a fundamental sequence for a—
not a family of fundamental sequences for all limits below 5. However this is easy. For
any vy < a consider the initial segment of <, that is of length y. This is a wellordering
of a subset of IN to length y, and any infinite subset of IN is naturally the same size as
IN.

(ii) Right-to-left

We want to be able to construct a bijection between IN and the ordinals below S on
being given a family of fundamental sequences of limit ordinals below £.

The idea behind this proof is that the availability of fundamental sequences for
limit ordinals below 8 enables us to give—in a uniform way—a finite description of any
ordinal below . Every infinite set of finite strings over a finite alphabet is demonstrably
countable. Totally order the alphabet; then order the set of finite strings colex. It will
be of length w, as will any of its infinite subsets. So how do we get a finite notation for
an arbitrary < 87 Let {8y, : n € IN} be the fundamental sequence for §. Consider the
first member of {8y, : n € IN} that is > £. This is Sy ,,, say. Record the ng. If this g, is
actually equal to { then HALT, else step down from this ordinal to the last limit ordinal
below it (which for the moment we will call ‘@’) and record the suffix ‘i’ such that it
was fBo;. (We don’t need to record the decrement, and in any case if the fundamental
sequence for @ are sensible the @; will be limit ordinals unless @ = w - (y + n) for some
n < w). Now let {81, : n € IN} be the fundamental sequence for . Consider the first
member of {3, : n € IN} that is > {. If this ), is actually equal to { then record the
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n and HALT. Else step down from this ordinal to the last limit ordinal below it (which
for the moment we will call ‘a’ as before) and record the suffix ‘j’ such that it was
B1,j- .. (As before we do not need to record the decrement). Eventually we will find
ourselves a finite distance above a point of a fundamental sequence and this time we

I think this has become garbled do record the decrement.

and should be rewritten By this procedure we build a sequence of natural numbers. This sequence is going
to have to be finite if this construction is to be of any use to us. The reason why it
will be finite is that the sequence of ordinals that were named ‘@’ at any stage of this
process form a strictly descending sequence of ordinals and so must be finite.

So we have coded every ordinal below § by a finite string of symbols, and thence—
using standard methods—by a natural number.

Perhaps we should explain how, with the help of this notation for £, we can navigate
our way thither from 0. Given a sequence s for { we recover { as follows. First approx-
imation is By1y. Step down to the last limit ordinal below S). Second approximation
is the s(2)th member of the fundamental sequence for the last limit ordinal below Sy(1).
The last member of s (that is, s(|S|)) tells us what natural number to subtract from the
approximation-in-hand.

To do this we think of the family as a set of ordered pairs (s, s’) of these finite
sequences where (the ordinal notated by s) < (the ordinal notated by s”).

|

REMARK 6 There is no definable family of fundamental sequences for all a < w.

Proof:

Let ¥ be a family of fundamental sequences for all countable limit ordinals. We
will show that # cannot be definable.

We define by recursion on the second number class a sequence (W, : @ < w;) of
wellorderings of IN (so each is a subset of IN X IN). We fix once for all a bijection
INXxN «— NN.

0 is easy; successor steps are easy; at a limit A use the fundamental sequence ¥ 4,
to get the codes Wg,, you have already formed for each ¥ An and then piece them
all together one after the other to get a wellordering of IN X IN. Use the bijection
IN X IN «— IN to turn this into a code for X,enF An, which we will call 2’. Here we
have to be careful, because the sum of a sequence of ordinals might be bigger than
its supremum. What we want is a wellordering of IN to the sup of this set of ordinals
(which is ) not its sum (which is 2). Suppose A’ > 1. We delete from IN those naturals
that get sent to addresses after A, and we delete ordered pairs containing them from the
graph of the wellordering of IN to length A’. What’s left is a wellordering of a proper
subset IN" c IN to length A. But there is an obvious canonical bijection between IN’
and IN, and we can use it to copy the wellordering of IN’ over to a wellordering of IN
to length A as desired. None of this uses any AC.

This shows that if we have a function ¥ assigning a fundamental sequence to every
countable limit ordinal, then we have a function assigning to each countable ordinal a
wellordering of INx IN of that length, and this new function can be defined in terms of
# . But (as we saw on page[21)) any wellordering of INx N is coded by a real number so
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the existence of the new function assigning a fundamental sequence to every countable
ordinal implies 8; < 2% It is known that this is independent of ZF.

This doesn’t mean that there can be no family ¥ of fundamental sequences for all
countable limit ordinals, but it does mean that no such family can be definable; if it
were, we would have an outright proof that 8; < 280,

|

5.1 Fast-growing hierarchies

Our motive for considering fundamental sequences is that any family of fundamental
sequences can be used to extend declarations of families of functions N — IN into the
transfinite in something like the following style.

The first person to spell out a fast-growing hierarchy seems to have been Hardy
[14]. His idea was that if you could extend a fast-growing hierarchy out to all countable
ordinals then you would have an injection of the second number class into the reals. As
we have just seen, this hope is vain.

DEFINITION 20
Suppose F is a family in the sense of definition ??. Then we can declare

fg: = some function or other;

T =: do something to f,;

at+l —

70 = fir 1 n).

(Typically we will omit the ‘7 superscript).

There is also the (apparently) minor detail that in the process of constructing the
embeddings f, from initial segments of the second number class into the reals we
exploit representations of countable ordinals as sums of countably many smaller
ordinals whereas in the definition of the fast-growing hierarchies we exploit fun-
damental sequences—which are representations of limit ordinals as suprema of
w-sequences of small ordinals. I don’t think the difference matters, but one never
knows.

Declarations in the style of definition [20] are typically used to generate families of
functions where f, dominates f3 whenever § < «.

At successor stages this will be taken care of by the second clause and the purpose
of the third clause is to ensure that f; dominates (“majorises”) fz with 8 < A for 4
limit. Naturally one expects that if fy was strictly increasing then all the later f, will
be too—and that one will be able to prove this by transfinite induction. However to
arrange for strict monotonicity of all the f, it turns out one needs a condition on the
family ¥ of fundamental sequences which we will now investigate.

Stuff to fit in

Let ¥ be a counted family of functions, equipped with F : IN — . Then we can
define a supremum f, of ¥ by

Joo(n) = sup{(F jn) +1: j < n}
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This needs to be thoroughly re-
worked
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We need this in the case where {F}is {fz : § < a}

5.1.1 Schmidt Coherence

Schmidt-coherent. Build a tree out of the predecessor relation. Fundamental sequences
lie along branches of the tree. If @ <# § then f,(0) < f3(0) and (Vn > 0)(fo(n) < fp(n));
if @ < B then (Vn)(fo(n) < fz(n)).

Is the set of tails of a Schmidt-coherent family of fundamental sequences itself
Schmidt-coherent?

The idea is to prove by induction on « that f, is monotone increasing and domi-
nates all earlier fz. Let’s get the dominance out of the way first. Given the induction
hypothesis we strive to prove that f, dominates all earlier fz. The successor case is
obvious;. ..

For the limit case suppose f;, is strictly increasing for each i € IN and that later f's
dominate earlier fs.

It will suffice to show that f; dominates f;, for sufficiently large n. So we want:

for all sufficiently large n and all sufficiently large lﬂ Jatk) > fa, (k)
which is to say
for all sufficiently large n and all sufficiently large k, f,, (k) > fi, (k)

One might think that this is simply a matter, for each n, of choosing & large enough.
What is certainly true is the following:

for all sufficiently large n and all sufficiently large &, and all sufficiently
large &', fu, (K') > fa, (k)

But what is not by any means clear is that “sufficiently large k'’ is covered by
“bigger than k.

If f) is n +— f;, (n) then it dominates every f),.

How about strict monotonicity? If f, is strictly increasing so is f,+;. The hard case
is that of limit ordinals. Let A be limit and (4, : n € IN) the fundamental sequence for
it. We want

fulm) < fauln + 1). This holds iff

fi,) < fu.,(n+1). Now we do at least have
Sa,(m) < fr,(n+1)

because f), is strictly increasing by induction hypothesis. So to complete the proof it
will suffice to show

fi,(m+1) < fo, (n+1),

Observe that these quantifiers do not commute
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which by induction hypothesis is true for all sufficiently large n (f,,, dominates
fa,)- But we want it true for all n. That will follow if (VAVn)(succ(A,, 4,+1)) where
succ(a, B) is:

@ <f = (Ym)(fo(m) < fp(m)).

However when S is a limit we can be sure of the consequent of succ(a, ) only
for sufficiently large m. The construction of the f,s ensures that succ(a,S) holds
if 3 = @+ 1 orif 8is limit and @ = Sy. To be sure of succ(a,B) when @ < 8
are members of a fundamental sequence we need to specify that they are related by
the transitive closure of the union of these two relations. A family of fundamental
sequences satisfying this condition is Schmidt-coherent.

Formally:

DEFINITION 21 Let the family ¥ : A — A“ be an assignment of fundamental se-
quences to an initial segment A of the second number class. Let <¢ be the strict partial
order which is the transitive closure of B <& B+ 1 and (F B8) 0 <# B. (Schmidt [21)]
calls <g the step-down relation of F.)

Then

F is Schmidt-coherent iff

(VA € A)(A limit - (Vn e N)(F An) <¢ (F A (n+1)))).

(Schmidt calls these ‘built-up’ rather than ‘coherent’.)

It is not hard to see that, for any ¥, <# is a wellfounded (upward-branching) tree
and that all paths are of length w. One steps down at limit ordinals A by leaping down-
wards to ¥ A 0—the first member of the fundamental sequence for A, aka dy. At
successor steps one subtracts one. The way one steps down is uniquely determined by
where one is not by where one starts from. This means that two descending paths that
meet anywhere thereafter remain coincident.

Schmidt-coherence is equivalent to the condition that every fundamental sequence
lies entirely within one branch of the tree.

EXERCISE 8 Define the natural assignment of fundamental sequences to ordinals be-
low €y and check that it is Schmidt-coherent.
Do the same for the ordinals below T'y.

This completes the proof of:

THEOREM 12 (Schmidt [21l] theorem 1)

If ¥ is a Schmidt-coherent family of fundamental sequences then every function in
the fast growing hierarchy over ¥ is monotone and strictly increasing.

Proof:
The definition of Schmidt-coherence was cooked up precisely to make this work.
|
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LEMMA 6 IfF is Schmidt-coherent, A is limit and n € N then F*", defined by
FAm=:F A(m+n); FY Bm=F Bmforotherp
...is also Schmidt-coherent.

Proof:

It will suffice to show that ¥ 1 0 <gs. A. But—since ¥ is Schmidt-coherent we
have ¥ 10 <& A. Hence—by the definition of F#"—we have FA" 1 0 <zs. FP" A n.
But this last ordinal is the <gs.-predecessor of A, whence ¥ 10 <& F A n <gpa A.

LEMMA 7 Let ¥ be a Schmidt-coherent system of fundamental sequences for A an
initial segment of the second number class, and suppose o < 3 € A. Then there is a
system F P of fundamental sequenceaﬂ for A such that

1. F@P js Schmidt-coherent;
2. a <gwp [ and
3. forall § < a we have F@P§ = F6.

Proof:
(lifted brazenly from Schmidt [21]])
We define a sequence (y,, F,) as follows.
Yo=:8,Fo=F;
Thereafter
e ify, = a then y,;| =: @ too, and F,,| =: Fp;
e ify,=0+1>atheny,. =:6and F,41 = Fu;

e ify, > @ andis a limit, and m is minimal such that ¥ y,m > a then y,,; =: Fy,m
and

° — ify # vy, then ¥,.1vq =: F,vq, and
— if y =y, then F,11vq =: Fry(qg + m).

Using lemma [6]it is easy to show that
e ¥, is Schmidt-coherent,

o Yu <z, BOr Y, =,

o F,o=Foforalld <a,

oV, >a.

Now (y, : n < w) is a nonincreasing sequence, so is eventually constant, so there is
no € N such that y,,, = a. Set F@P =: 7, . n

This is my notation not hers, and i’ve put in the brackets to make it less likely that readers will confuse
it with the “F#”
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LEMMA 8 Let F be a Schmidt-coherent system of fundamental sequences for A an
initial segment of the second number class, and let A be the smallest limit ordinal not
in A. Then there is a Schmidt-coherent system F' of fundamental sequences for AU{A}.

Proof:

Let (4, : n € IN) be a fundamental sequence for . We define a sequence (F, : n € IN)
by recursion as follows. 7y =: F and thereafter 7, =: (F,)"*+ as in |7, Now—by
that lemma (itemwise!)—for each n € IN we have

1. ¥, is Schmidt-coherent;

2. Ay <7, Apsts

3. Fn0 = Fpamd forall 6 < A, and m € IN.
We can now set ¥ '3 to be

o (A,:neN)iff=24;

o FRIf B < Ao;

o FrnfBif Ay <B < Apy1.

¥ obviously assigns fundamental sequences to everything in A U {4}.

THEOREM 13 (Schmidt [21]] theorem 2)

Every proper initial segment of the second number class admits a Schmidt-coherent
family of fundamental sequences.

Proof:

We prove by induction on ‘@’ that the countable ordinals strictly below @ admit a
Schmidt-coherent family.

The successor case is easy: if « is a successor of a successor, the assertion follows

from the induction hypothesis; if @ is the successor of a limit it follows from lemma
and the induction hypothesis.

So consider the case where « is limit.

Let (@, : n € IN) be a fundamental sequence for «, and for each n € IN set o, =:
Zm<n@m. Clearly a < sup({o, : n € IN}).

By the induction hypothesis for each n € IN there is a Schmidt-coherent family 7,
for the ordinals below «,, + 1. We now define a family ¥ as follows:

Fym=:

e (if y is zero or a successor;

e 0, + (F (y — 0,)m) otherwise, where n is maximal so that o, < y.
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Now for all 4 and v such that 07, < u < 0,41 and o, < v < 0,41 We have

U <Fg u «— (u—o0,) <g, (v—o0,). Hence if y is a limit ordinal and o, <y < 0711

then y — o, is also a limit, and since ¥, is Schmidt-coherent we have F (y — o,)m <,

F(y —o,)m+ 1) foreachm € N. Thus Fym = o, + (F(y — op)m) <¢ 0, + (F(y —
o)(m+ 1)) = Fy(m+1). So F is Schmidt-coherent.

|

Can we omit ‘proper’ from the statement of theorem [I3? We proved it without any
use of AC.

Rose says that theorem [I3]is best possible, and credits Bachmann: Transfinite
Zahlen Springer, 1967. I'm sceptical about this because he also says that Schmidt,
what is this Rose reference? too, proves that it is best possible—and she doesn’t!
If it really is best possible, it’s presumably because a Schmidt-coherent family
for all countable ordinals would give us an embedding of w; into the reals, or
something like that. There can be long sequences (> w;) of functions with each
function dominating all earlier functions, but they don’t increase as fast as Wainer-
Buchholtz.

[two thoughts: To each ordinal « associate the least ordinal « such that there is a 8
such that § + @ = «. There can be only finitely many such «. Is this idempotent?

This suggests a topology on the ordinals: for each a, the set « + @ : k € On} is basic
open. Any ordinal can belong to only finitely many basic open sets]

5.2 Nathan on Schmidt-coherence

A system of fundamental sequences for a countable ordinal y is a function assigning to
each limit ordinal @ < y a sequence (@, : n € IN) with supremum «. For such a system,
we let < be the partial order generated from @ < @ + 1 and @ < « over all . We say
the system is Schmidt coherent if for any @ <y and n € IN we have @,, < @,41.

The following construction builds a Schmidt-coherent system of fundamental se-
quences for an ordinal y from an enumeration of y as {a(n) : n € IN} such that a(0) = 0.
For any n with a(n) a limit, we choose ng such that ny < n and a(ny) < a(n), and we
choose it to maximise a(ng) subject to these constraints (this is possible as there are
only finitely many m < n). Then for any i > 0 we choose n;,; to be minimal such that
a(n;) < a(niy1) < a(n). We assign to a(n) the sequence (a(n;)|i € IN), which clearly
has supremum a(n), so gives a fundamental sequence for @(n). We will now show that
the system of fundamental sequences defined in this way is Schmidt-coherent.

Let < be defined as above. We define a further relation on the natural numbers by
m < n if a(m) < a(n) and for all k with a(m) < a(k) < a(n) we have k > m.

For any n we define p(n) to be 0 if n = 0, the m with a(n) = a(m) + 1 if a(n) is a
successor and g if a(n) is a limit. Thus a(p(n)) < a(n).

LEMMA 9 Ifm < n then either m < p(n) or else m = p(n).

Proof:
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We cannot have a(n) = 0. If a(n) is a successor then it is clear that a(m) <
a(p(n)) < a(n). if a(n) is a limit then we have m < n and a(m) < a(n) so that by the def-
inition of ny we have a(m) < a(ng), so in this case we also have a(m) < a(p(n)) < a(n).
Now the result follows from the definition of <. [ ]

LEMMA 10 For any m and n with m < n we have m < n.

Proof:

Suppose not for a contradiction. For any i we have p(n) < n, so for no i can we
have p’(n) = m. Thus by Lemma@]we have for every i that m < p'(n), and in particular
pi(n) # 0. Thus (p/(n)|n € IN) is an infinite strictly decreasing sequence of ordinals,
which is the desired contradiction. ]

LEMMA 11 For each n with a(n) a limit and each i we have n; < nj,.

Proof:

First we show this in the case i = 0. By the definition of n; we have a(ny) < a(n;).
Suppose for a contradiction that there is some k < ny with a(ng) < a(k) < @(n;). Then
k < n and a(k) < a(n), so by the definition of ny we have a(k) < a(ng), contradicting
our assumptions. Thus ny < n;.

Next we deal with the case i > 0. By the definition of n;;; we have a(n;) < a(n;+1).
For any k with a(n;) < a(k) < a(n;) we have a(n;_; < a(k) and so by the definition
of n; we have n; < k,son; < kasn; # k. [ ]

It follows from the last two lemmas that if » is a limit then for any i we have
n; < ni1, so that the system is Schmidt coherent.

Is the Veblen ¢ function dominated by anything in the Doner-Tarski hierarchy?
enuff rec fn th to explain why low members of the hierarchies are prim rec.

Ok says that there is an assignment of fundamental sequences to all the ordinals
between k and «* and that the sequences cohere

Define fundamental sequences and some fast-growing hierarchies. Prove that prim-
itve rec fns come in at low levels.

The fact that dilators are uniquely determined by their action on IN is surely crucial.
Does this shed any light on the old question of whether or not AxCount. implies the
analogue for ctbl ordinals?

We’ve managed to get this far on generalities that do not depend on the precise
declaration of the fast-growing hierarchy. The time has now come to be specific. Let
¥ be a Schmidt-coherent family of fundamental sequences.

The following seems to be popular: (Buchholtz-Wainer|[3|] refer to it merely as ‘the’
fast-growing hierarchy!)
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DEFINITION 22 (Buchholtz-Wainer)
The Fast-Growing Hierarchy
fox) =2 x+1;
f(ﬁ—l(x) =: fa/x+1(-x);
Fa(x) = fiF 2 0(X).

The fast-growing hierarchy with finite subscripts is the Grzegorczyk hierarchy.
The Hardy Hierarchy (/i4]) is:

Hy(x) =2 x+1;
Hy1(x) =1 Ho(x + 1);
Hy(n) = H 1 ny(n).
Just to reassure myself that i am in familiar surroundings i shall prove
REMARK 7 For a < w, f, is primitive recursive.

Proof:
Clearly true for @ = 0. Define iter g so that iter(g,n) : m — (g"(m)) by means
of the following declaration:

iter(f,0) m =: m; iter(f,(n + 1)) m =: f(iter(f,n) m)

we see that iter(g,n) is primitive recursive as long as g is. Then

Jos1 :n = (Ater(fy,n+ 1) n)
is primitive recursive as long as f, is.

EXERCISE 9 Determine fy, fi and f>.

EXERCISE 10 (Computer Science Tripos 1991:5:10)
Ackermann’s function is defined as follows:

AQO,y)=:y+1; A(x+1,0) =: A(x, 1); A(x+ 1,y+ 1) = A(x, A(x + 1,y))

For each n define
a,(y) =: A(n, y).
Prove (¥y)(¥n € N)(a41(y) = @) (1)).

Notice that ay(x) = fo(x) = x + 1.
Then by induction on the recursive datatype of primitive recursive functions we
prove that every primitive recursive function is dominated by all sufficiently late a,,.

THEOREM 14 For every primitive recursive function f(X, n) there is a constant ¢y such
that

(Vn¥E)(f(X,n) < A(cy, max(n, X)))
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(In slang, every primitive recursive function is in O(Ackermann).)
EXERCISE 11 Complete the proof.

Notice that there cannot be a converse. This is because of the silly reason that there
are slowly growing functions that are inverses of rapidly growing ones, and are there-
fore equally hard to compute. Try the computer science tripos question 1994 paper
5 question 11 (at http://www.cl.cam.ac.uk/tripos/t-ComputationTheory.
html)

Then A(n, n) diagonalises the a, the way f,, diagonalises the f,. So A(n,n) is “at
the same level” as f,,. In fact if f is primitive recursive, then the ¢, of theorem is
precisely the level of the fast-growing hierarchy that f belongs to (I think!).


http://www.cl.cam.ac.uk/tripos/t-ComputationTheory.html
http://www.cl.cam.ac.uk/tripos/t-ComputationTheory.html
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Chapter 6

Hessenberg Sum and Product

6.1 Ranks again

6.1.1 Hessenberg sum-and-product

The Hessenberg sum arises from an attempt to give the ordinals the structure of an
additive abelian semigroup with cancellation. If @ is to have cancellation then o & 8
had better be different from a @’ for all 8’ < B and different from o’ ® for all &’ < a.
Given that thought, the obvious first stab at a definition making addition-on-the-right
injective declares @ @ S to be the least ordinal above « that is not a @ 8’ for any 8’ < 3.
Since the set of ordinals for which @ @ g is the least thing not in it is a subset of the set
of ordinals for which a + g is the least thing not in it, it follows thata ® 8 < a + .

Another way in (tho’ i don’t see how to tie this in with the foregoing) declares a ®f
to be the largest ordinal that we can obtain by interleaving a worder of otype a with a
worder of otype 8. Notice that this definition enforces commutativity, which the other
one doesn’t—at least not obviously. What might this ordinal be? How about a + 57
We might be able to improve on that if 8 absorbs-on-the-left some terminal segment of
a. So let’s think of @ as @ + (@ — @) where a; is the shortest initial segment with the
property that @ — @, is absorbed by 8. So we go for a; + 8 + (@ — ;). .. ? Is that what
we want? It’s certainly a step in the right direction. However there is the possibility
that 8 = B; + (8 —81) where a — @y absorbs 8 — 31 on the left, in which case we want to
rearrange to get 1 + 31 + (@ — @) + (8 — B1). But we might still not have reached our
goal, beco’s the (8 — (1) bit we stuck on the end might absorb a terminal segment of
the (@ — a) bit we stuck it on the end of. Key observation is that this cannot go on for
ever beco’s the sequence of subscripted as (or 8s) is decreasing. To get the connection
with CNF we need to prove a theorem about absorbtion-on-the-left and powers of w.
But this is easy: y absorbs-g-on-the-left iff y > 8- w.

We are now ready for the connection with Cantor Normal form, with its Leading
Role for powers of w. The point is that any power of w absorbs all lower powers of w
on the left.

So: to obtain the Hessenberg sum of two ordinals, express them both in CNF, and
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extract the two finite sets of terms used in those CNF. Order the union of those two
sets in decreasing order, and add them up in that decreasing order. One ordinal might
supply w® - B and the other might supply w® - y, so we have to do something with
these terms—amalgamate them somehow—to get (i think w” - (8 ® ). This makes this
definition recursive.

Now think about Hessenberg natural product. As a first attempt think of making
multiplication-on-the-right injective by defining & ® § to be the least ordinal above «
that is not @ ® §’ for any 8 < 8. But we somehow have to take cognizance of the fact
that multiplication distributes over addition. ...

Have to show both are associative. Wikipadia asserts as much

Something to think about. Hessenberg maximal sum has this intimate relation with
Cantor normal form, beco’s of the role played by @ — «w® in both cases. Are there
other binary operations related similarly to faster-growing normal functions and corre-
sponding ordinal notations?



Chapter 7

Ordinals, Fast-growing
Functions, Consistency and
Totality Proofs

Stuff to fit in

Here is a potentially useful piece of armwaving.

Inductions over longer wellorderings are stronger

One thing that anyone who has heard of Con(PA) and ordinals will be able to recite
is the fact that induction up to € is enough to prove Con(PA). Why induction up to
€ not w? It always seems to be taken for granted that it’s obvious that induction up
to g (whatever that means!) is stronger than induction up to w. I have never seen a
satisfactory explanation in any textbook of what is going on, so what follows below is
the result of my trying to explain this situation to myselifﬂ

Consider the scheme of R-induction we set out earlier:

("M(RG, x) = Y () = ¥(x)
Vo)W (x)

R-induction

We are interested in calibrating the strength of the various versions of this scheme
as R varies. Observe that any subset of (the graph of) a wellfounded relation is (the
graph of) a wellfounded relation. In particular the empty relation is wellfounded.

What happens if we remove ordered pairs from R? How does that affect the strength
of the principle of R-induction?

The assumption R(x,y) on the top line becomes stronger so

T suspect this is generally true, and that many textbooks and monographs arise from their authors’ at-
tempts to explain things to themselves.

67



68 CHAPTER 7. PROOFS AND ORDINALS

the conditional R(y, x) — ¥(y)) becomes weaker. Therefore
the condtional (Vy)(R(y, x) — ¥(y)) — ¢(x) becomes stronger, so

the inference thence to (Vx)(¥(x)) becomes weaker.

Consider in particular what the principle of R-induction tells us when R is the empty
relation. It tells us nothinﬁ!

For this to tell us literally that inductions over longer wellorderings are stronger
than inductions over shorter wellorderings we would need graphs of longer wellorder-
ings to be supersets of graphs of shorter wellorderings. That can’t be true, beco’s no
superset of a wellordering of a set can be a wellordering—at least not of the same set.
The graph of a wellordering of IN to length w isn’t literally a superset of the graph of
< but it does seem to have more ordered pairs in the sense that in < every element
has only finitely many predecessors whereas in any worder of IN of otype w? there are
lots of elements with infinitely many predecessors—infinitely many in fact.

Another way in to seeing that induction over longer wellorderings is stronger is
to consider the case of an induction over a wellordering of length w?. If we are au-
thorised only to perform induction of length n then we cannot reach points in our w?
wellordering that lie beyond the wth point.

Here’s another way of making the same point.

REMARK 8 Let X be a fixed arbitrary infinite set, with R C S two wellfounded re-
lations with domain X. They give rise to two rank functions on X—call then pg and

ps-
We claim that, for all x € X, pr(x) < ps(x).

Proof:
Clearly we are going to prove this by induction. But on what? On R? Or §? Or
even <gpj...? I am going to try doing it by induction on R.

Let x be arbitrary, and suppose that, for all x” s.t. R(x’, x), pr(x’) < ps(x’). pr(x) is
the least ordinal greater than all the pr(x’) for x” s.t. R(X’, x); po(x) is the least ordinal
greater than all the pp(x”) for x’ s.t. R(x’", x). Now ps(x’) > pr(x’) for all x s.t. R(x’, x),
and—since R € S—there may be further x” that are related to x by S but not by R, so
the sup we take to get pg(x) is taken over a potentially larger set of ordinals and may
be bigger.

|

Another fact to fit in. Suppose (X, R) and (Y, S) are binary structures and there is a
homomorphism (X, R) — (¥, S). Then

(1) If (X, R) is wellfounded so is (X, R), so R-induction imples S -induction.

(i) p((X, R)) = p(KY, S ));

If you want to prove by S -induction that ¢(y) for all y € Y, then the way to do it is
to prove by R-induction that ¢(f(x)) for all x € X.

21t tells us nothing—in the following sense. Take the statement of R-induction and replace all occurrences
of ‘R(x,y)’ by ‘L’. The resulting inference is logically valid, and we get it free.



7.1. THE ORDINAL ¢y AND THE CONSISTENCY OF PEANO ARITHMETIC 69

At some point use the apercu about the destination of w forming an w;-descending
sequence in R as we pile more and more stuff on the end and press stuff down. It pops
up!—and at places where coherence fails.

7.1 The Ordinal ¢ and the Consistency of Peano Arith-
metic

I will now sketch how to prove the consistency of Peano Arithmetic by transfinite
induction. (I have lifted this from the first edition of [18]]; this material was removed
from some later editions but has reappeared in the 6th edition.) The proof goes back to

[?].

We have a system of arithmetic in something like our natural deduction but in a
language with Vv, = and V only. In addition to the obvious rules for V and - it has an
w-rule:

't FO) TF(SQO)...T'+F(S(S0))...
I'+ (Yn)(F(n))
which serves as a kind of V-int rule. It also has a rule of “cut”:

AVB AV -B
A

The assumptions (the leaves of the proof-trees in this system) are true atomic sen-
tences of the kind ‘0 = 0°, ‘0 # S(0)’ and suchlike (no variables!) The only terms
allowed are numerals in the style S - -- S (0).

Proofs in this system can be seen as countable trees (each node [inference] might
have a countable infinity of premisses). Clearly we are not going to be interested in
proofs that have infinite paths—after all, any formula whatever can be supplied with a
proof with an infinite path. We are interested only in proofs whose corresponding trees
have no infinite paths. Such a proof can be decorated with ordinals in the standard
manner from chapter ??. How large a countable ordinal might one need to decorate a
tree of a proof in this system? There are only countably many formule in the language
of arithmetic so each node can have only countably many immediate predecessors, and
a sup of countably many countable ordinals is countable. This means that the rank of a
proof must be countablcﬂ

This invites us to consider, for a countable limit ordinal «, the collection T' (@)
of those formula that have proofs whose trees have rank < «, and where the proof
has a cut of maximal degree. (The degree of a cut is the number of connectives and
quantifiers in the cut formula). For suitable @, T (a) might be closed under the finitary
rules of inference and thereby be a set deductively closed in the usual sense, to wit: a
theoryﬂ

Theories arising from countable ordinals in this sense have the potential to be very
interesting ... particularly if they are consistent! Mendelson [18] says that T(w;) is

3There is enough structure around for us not to need countable choice to prove this.
41 shall equivocate between thinking of T'(«) as a theory and thinking of it as a body of proofs.
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the first-order theory of the standard model, and that T'(¢y) is Peano Arithmetic (or
something very like it).

When do we know that such a theory is consistent? One way of detecting that a
theory is consistent is to prove cut-elimination for it. This is because there is no cut-free
proof of L.

This is roughly the point of departure for the analysis in [L8]. The labellings of the
trees that he uses there differ slightly from the rank function on a naked tree but the
idea is the same. Decorate the proof tree by labelling endpoints with ‘0’, and the rank
of a node is the sup of rank + 1 of the nodes above it—unless the node corresponds to
a structural rule, in which case the rank is the same as the rank of its predecessor.

It turns out that we can show that for all «, if we can do transfinite recursions
of length 2%, then for any proof in 7'(a) we can find a proof in 7'(2%) with the same
conclusion and lower cut rank.

Thus, by repeating this process we can show that, for every a and every proof in
T () there is a cut-free proof in T (sup{a, 2%,2>" ...}) with the same conclusion.

EXERCISE 12 w is the first solution to the equation a = 2%. What is the next solution?

DEFINITION 23 An ordinal « is an epsilon number iff it is a solution to @ = W, or
equivalently iff the ordinals below it are closed under exponentiation.

Thus if @ is an e-number, written €, then we find that € = 2¢, so that sup{«, 2, 27 )=
a so T(supfe, 27, 2%" ..}) = T(@) and then induction/recursion up to € enables us to
show that any proof in 7'(¢) can have the cuts eliminated from it and become a proof
still in T'(e)! So we conclude that, for any e-number €, we can prove by transfinite
induction on ‘@’ that

if @ < € then every formula that has a proof of rank < « has a cut-free
proof of rank below e.

In other words

REMARK 9 For an e-number €, inductionfrecursion of length € enables us to prove the
consistency of T (€).

Proof:

If @ is an e-number and we can induct as far as « (i.e., we have a wellordering of
length @) then we can recursively eliminate cuts from proofs in 7' (@) while remaining
inside T (@) thereby proving T (@) consistent.

To be more specific:

Let n be arbitrary (so we are doing a UG on ‘n’). Let P be a proof of formula A
with degree n+ 1; we prove by induction on ‘@’ that if P has rank «, then Transform(P)
is a proof of formula A with degree n and ordinal 2~

At top level we are proving Yn something-or-other by UG on ‘n’. At each n we do
an induction on countable ordinals. This relies on “P’ = transform(P)” containing no
unrestricted quantifiers. That sounds believable-but-laborious-to-check.
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What i don’t really understand is why rank(P) = a@ — rank(Transform(P) < 2¢
needs induction on @ and doesn’t just use UG. I'm definitely in the market for some
intelligent tho’rts on that.

|

In particular, if we can induct as far as €, then this will show that T'(&) is consistent.
So: what do we know about this system 7'(gy) whose consistency we can prove if we
can induct as far as €? It turns out that 7(¢) is at least Peano Arithmetic.

(What had been worrying me here is that if the proof is infinite there may be no cut of
greatest rank, so how can we prove that the process halts? The point is that all proofs that
arise from embedding proofs of finitary arithmetic in this system are finitary and have finite cut
degree.)

7.2 The Goodstein function

The Goodstein function, known as G (for obvious reasons) is an example of a function
that is manifestly computable but very far-from-manifestly total. To discover what G(x)
is to be, we first express x as a sum of powers of 2, and then express the exponents as
sums of powers of two, and so on recursively. Thus, if we do this to—say—37, we get

32+4+1=
42241 =
2742241 =
PR, |

This is the extended base 2 representation of a number. I have written the ‘2’s in
boldface to remind us that this expression is in extended base ZE] Now replace all the
2’s by 3’s and subtract 1. This gives us 33+1 4 33, The result is still in extended base
3. Now replace all ‘3’s by ‘4’s

4
44 +1 +44

and subtract 1 to get
44 gt

But this is not in extended base 4 representation because of the minus sign, and we
have to express 4* — 1 as a sum of powers of 4 with a few 1’s left over, thus

41+1+1 +4]+]+] +4l+l+l +4l+l +41+1 +41+1 +4d+4+4+1+1+1
so the whole thing is

444+l +4l+l+l +41+1+1 +41+1+1 +4]+] +4l+l +4l+l +4+4+4+1+1+1.

Sthere is a reason for the choice of a Greek font for the first letter of ‘extended’ It’s the feed-line for a
joke that will be revealed later.
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(The ‘4’s are still in boldface to remind us that this number is being written in
extended base 4.)

Then we can replace all ‘4’s by ‘5’s, subtract 1 and continue. How long can we
continue doing this? These numbers seem to go on getting bigger and bigger!

However, if we try it on 2, the process stops: 2 becomes 3 — 1 which in extended
base 3 is 1 + 1 becomes 1 becomes 0. If we try it on 3 we get 2! + 1 becomes 3'
becomes 4! — 1 = 1 + 1 + 1 which will decay to 0 as before. We are now in a position
to announce a definition:

G(x) is the length of the sequence of terms generated in this way (if it
is defined).

Thus the Goodstein function is actually a cost function for the computable function
IN— {0} defined by

INPUT n
write n in extended base 2
i=:3
REPEAT
n =: replace ‘i’ with ‘i + 1’ in representation of n
rewrite the result in extended base i + 1 representation;
i=i+1
subtract 1
UNTIL
n=0
PRINT i

and this definition makes it clear that G is u-recursive.

Thus G(2) = 4 and G(3) = 5. G(4) is quite large but can be computed by hand.
One might think that for at least some larger numbers the sequence goes on for ever;
remarkablyﬂ this is not so: G is total computable.

THEOREM 15
If there is a wellordering of length €y then G(n) is defined for all n € IN.

Proof

The key to the proof is to spot the trick that the conjuror is playing on you. Your
attention is being directed to the apparently inexorably increasing sequence of numbers,
so that you don’t notice the thing that is actually decreasing.

Start with a number in extended base 2 representation. Consider the ordinal in
Cantor Normal Form obtained from this expression by replacing every ‘2’ by an ‘a)’
In our first example above (37), this would be w1+ w® + 1, since the extended base
2 representation of 37 was 22+ +22 4 1,

%Try proving by induction on ‘n’ that G(n) is defined; you will get nowhere.
7For these purposes we take the Cantor Normal Form of an ordinal to be the wordy, verbose version that
does not allow multiplication by naturals, so that an ordinal is a sum of powers of w.
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To every number in the sequence we are building (whose length will be G(n)) we
will make correspond an ordinal in precisely this way—(That was why I wrote the base
in boldface so that we can say:)—simply replace the boldface number by w. Numerals
not written in boldface are not replaced by ‘w’. Thus for each i the ith member of the
sequence (on the left) will correspond to the ordinal to its right:{ﬂ

2241 122 4] Wt Y+ 1
333+1 +33 ww““rl + W?

A 4353434243443 |0+ 0P 3402 34w 343
55+143.5343.5243.542 WM+ 34+wr 3+w-3+2
6 +3.6+3.62+3-6+1 | 0N+ 34w 3+w-3+1
77 4 3.3 43.7243.7 WM+ W3+ 0?3+ w3
8841 +3.83+3.8242.8+7 | 0wt +w3-3+0? - 3+w-2+7
155+ 13,153 +3.152+2-15 W+ 3+ 3w 2
169+ 43.163+3-162+16+ 15 | 0 ' +w? - 3+w* - 3+w+15

So the length of the sequence we are building will be the same length as a particular
decreasing sequence of ordinals. Why is it decreasing? The entries in the left-hand
column keep increasing as long as there are boldface numerals around, because we
increase each boldface numeral by one at each stage. In the short term, this more than
compensates for the 1 that we keep subtracting. In contrast the entries on the right have
w instead of a boldface numeral, and we do not increase the w, so there is nothing to
counteract the slow attrition of subtraction of 1.

Any decreasing sequence of ordinals must be finite, so the original sequence of
numbers was finite, so G(n) is defined. In this case the ordinals we are using are all
below ¢, so it will suffice to have a wellordering of that length. [ |

Once you understand the proof of theorem |15| you can see immediately that from
the same assumption used above—namely that the set of ordinals below ¢ is available
to us, along with its ordering, and the information that that ordering is wellfounded—
we can prove not only the totality of G but also the totality of any function computed
like G but with the tweak that we are not required to decrement every single time we
increase the base, as long as we promise, when we find ourselves at a nonzero number,
to decrement at some point. Consider what one might call the Nondeterministic Good-
stein Function where at each stage in the computation of G(n) one makes a random
choice about whether to decrement or not. Clearly an analysis analogous to the analy-
sis above will establish that any nonterminating computation of the Nondeterministic
Goodstein function has only finitely many decrements. Let us minute this fact.

81 have reverted to the style of Cantor normal form that allows multiplication by naturals in order to save
space!
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REMARK 10 [f there is a wellordering of length €, then the nondeterministic G(n) is
defined for all n € IN.

Why the odd title?

Goodstein’s paper was entitled “On the Restricted Ordinal Theorem”; “The restricted
ordinal theorem” was the name current at that time for the allegation usually expressed
nowadays by the form of words “the ordinals below ¢, are wellordered”. This is loose
talk: € is an ordinal, and for any ordinal « the ordinals below @ are wellordered: that’s
a complete triviality and cannot be used to prove anything. The bit that does the work
is the assumption that there is a wellordering of length «. For consider how the proof
would procede in a formal system: for each input to G we define a decreasing function
from IN to the ordinals below &y, and we need the range of that function to be a set, so
we need that collection to be a set, and we need the ordering on it to be a wellordering.
One might suspect that Goodstein’s purpose in devising this rather odd function was
to exhibit a computable total function whose totality is not demonstrable in Peano
arithmetic, precisely because the totality relies on an induction that is not available
in PA. Howevetﬂ the reason is more likely to do with the view—current around that
time—that g was the supremum of those ordinals that had a finite description. It can’t
be that simple beco’s the Veblen hierarchy was known at that stage, so it may instead
be something to do with the fact that the ordinals below ¢ are closed under +, X and
exponentiation, and that those three operations are the only operations in the Doner-
Tarski sequence that correspond to actual operations on wellorderings. In case you
didn’t know, o is the order type of the set of functions B — A which are 0 at all but
finitely many places, ordered colex—where otp({A, <4)) = @ and otp({B, <p)) = .
The next operation—f;, the “tower of exponents”—has no concrete representation of
this kind. This is because it grows faster than n +— IZi(n) for any £k € IN, so we
cannot find any expression R(x, y) in the language of set theory such that |y| = |f3(x, x)|.
Worth spelling out in some de- Actually it’s not the next one after exponentiation that explodes the type hierarchy but
tail a slightly later one.

I do not know if this consideration is explicit in the literature of the 1930’s and 40’s
...it could be worth checking.

Stan Wainer says that the significance of Goodstein’s assault on €, was that it was
believed by many at the time to be a prime candidate for the role of first non-finitary
ordinal. I wondered aloud if that might be connected to the fact that it is the least
transfinite ordinal s.t. the set of its predecessors is closed under the three operations (+,

X and exp) which correspond to concrete binary operations on wellorderings. The next
Doner-Tarski operation doesn’t correspond to any binary operation on wellorderings.

Interestingly those three operations correspond to homogeneous operations on wellorder-
ings. OOps no. The first two do, but exp doesn’t unless one has IO. [spell this out] This
is beco’s there is no type-lowering ordered pair.

9Thank you Stan Wainer!
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a Conversation with Randall about type-level definitions of ordinal exponentiation

A key fact is that if we have a type-level pair then there is a definable global function f
(for the moment) s.t. if A = (A, <4) is a wellordering then f(A) is a bijection between
A and A x A. Mutatis mutandis if pairing is not type-level. This function is exploited in
the proof that 8 = N2. The uniform nature of this bijection is essential to the avoidance
of choice.

[presumably we need A to be infinite; better spell this out.]

Let a = otype(A) and B = otype(B). We seek a worder of otype 5. The idea is to
use f to design a wellordering whose carrier set is A X B and whose order type is 8.

Now the carrier set of the obvious worder of otype 8¢ is the set of functions of finite
support from A to B. Such functions are finite objects, and can be thought of as finite
subsets of B X A. Now the set of finite subsets of B X A is (definably) in 1-1 bijection
with BXxA. Now by judicious use of Cantor-Bernstein there will be a bijection between
B x A and the set of functions of finite support from A to B. Then we can copy onto
A X B the order (which we have not yet, as it happens, mentioned) that lives on the set
of functions of finite support from A to B.

Now! What about the next operation after exponentiation?

And one needs to find something sensible to say about why the next operation " "
in Doner-Tarski does not have a synthetic definition. I think the first tho’rt will be that
the number of levels needed to house/express n” “m is not a constant given by "~ but
increases with m. So this operation is certainly not anything that lives inside P*(M LIN)
for any finite k.

Have i got this definition right...?
@ 0=1; @ "B+ 1)=a@ P

Let’s check. ... One has to be more careful than with + and X, beco’s (unlike them)
exp is not commutative, so @@ A is not the same as (a”"5)® and we’d better use the
correct one. On the first account we have

" l=a? Y=ol =¢
a2 = a(o/’Ml) =Y

a” "3 = a(““2) =a*

@

This matches “tetration” (a word i have only just learnt!) on IN, so we’re looking
good.
On the second account we get
a” "0 = a (to kick things off, @ instead of 1)
a"l=(@ " 0)* =a"
Q" "2 =(a" ") = (@) = a(az)
The first definition makes o~ "w equal to a tower of as of height w, and then

a”"(w + 1) is a to the power of that tower, giving " "w = a” "(w + 1), and that
contradicts the requirement that every DT function be strictly increasing. So we want
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the second definition. What worries me about this is that it conflicts with the definition
of “tetration” on IN. This needs to be investigated.

We do need to think about after-exponentiation. a”" = vy gets translated into
the language L(€, pairing, unpairing). But since &” " has no synthetic definition the
translation is going to involve a recursion with quantifiers over sets of wellorderings.
One should really spell this out properly. .. and that’s the kind of thing i can no longer
do, what with my multiple-infarct dementia. But let’s try anyway.

a” "B = v is going to be some three-place relation with ‘(A, <4)’, (B, <p)’ and
“(C, <¢)’ occupying the three slots. Every set that contains a triple

(A, <4), (B, <p),(C", <)) with (C", <) = (", <¢r)

that is closed under something or other contains a triple of suitable zero objects.

We’d better complete Goodstein’s [putative] project by showing a converse to |10}
namely that if the nondeterministic Goodstein function is total then PA is consistent.

REMARK 11 There is a definable total ordering of IN with the property that it is of
length € if every nonterminating run of the nondeterministic Goodstein function has
only finitely many decrements.

Proof:

\ 4

\ 4

(lj\l. <) . <. +<6) <IN“<7>.,_

W <w)
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We construct the total order as a direct limit. In fact it will be not merely definable
but also actually decidable. And we can exhibit it without the assumption that the
nondeterministic Goodstein functions is total; we don’t need that assumption until we
attempt to prove that the ordering is a wellordering.

Let ((IN,;, <) : 2 < n < w) be a family of copies of (IN, <i). Define, for each 2 <
n < w, an injective homomorphism i, : IN, < IN,;; as follows. Given y € IN,,, think
of it as written in extended base n. Then replace every ‘n’ by ‘n + 1’; this number
is to be our value of i,(y). Now consider the direct limit (“colimit”) of this system,
which we will call (W, <,,). Every element of the direct limit (W, <y) is an w-sequence
of natural numbers. Indeed any such sequence is a computable function, and thus a
natural number, so W is clearly countable. (Actually—assuming countable choice—
a direct limit of countably many countable structures is always countable, but never
mind). However we will continue to think of elements of W as functions.

Thus, as per the slightly more detailed figure that follows, i, sends 1 to 1, sends 2
to3,sends3 (=2+1)to4 (=3 + 1), sends 4 (= 22) to 27 (= 3%), sends 5 (= 22 + 1) to
28 (= 3% + 1) and so on. Similarly i3 sends 1 to 1,2 (= 1 + 1) to 2, sends 3 to 4, sends

4t05,sends 9 (=3"*)to 16...
F

[257

256

16

S}

<]N%,<2)... (INg, <3)... <INT<4>...

Each member of W is a function from a terminal segment of IN, typically a proper
terminal segment. Consider IN; for example. The only numbers in IN3 that are in the
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range of i, are sums of distinct powers of 3 (since they arise by replacing ‘2’ by ‘3’ in
the extended base 2 representation of something). The sequence that is to become the
finite ordinal n in (W, <y) is a sequence that starts at IN,,,;.

If <y is illfounded there will be a descending w-sequence. (We do not need DC for
this, since the carrier set is wellordered, being a subset of IN.)

Suppose f; : i < w is a descending sequence in (W, <y ). Every f;, being a member
of W, is an w-sequence, and it starts at IN; for some i. Without loss of generality we can
pass to a subsequence of f so that the sequence of is s.t. members of the sequence start
at IN; form an increasing sequence. Recall that we are thinking of the f; as functions on
terminal proper segments of IN, so that f;(n) is not defined if f; first appears at IN; with
Jj > i. Given this family f; : i < w consider the evaluation sequence g for the modified
G function (so that g(n) € IN,, for all n) defined as follows. Set g(0) to be some natural
large enough to ensure that g(j) > fi(j), where IN; is the copy of IN where f; first
appears. The idea is that g decrements only when a new f; appears. That is to say,
g(n+1) =:i,(g(n)) unless IN,,, is one of those copies of IN at which a new f; starts, in
which case g(n + 1) =: i,(g(n)) — 1.

It may well be that, for all f,, it happens that for sufficiently large values of m
we have g(m) <, f,(m), but the values of m for which this first happens increase
monotonically with n. This means that any function f in W that lies entirely <y -below
all the f; must lie <y-below g. But, by assumption on g, f now must be the zero
element of W.

Finally we have to check that the order type of <y is indeed €. To do this, we
have to find, for any ordinal @ < €y, a sequence which is a member of W to which it
corresponds. Every ordinal @ < ¢ has a Cantor normal form €(a), which is a finite
string of characters, so there is an upper bound a on the natural numbers that appear in
C(a@). The w-sequence that will correspond to « starts in IN,.

|

Recall at this point the results of chapter ??, (for example theorem ??) where we
saw how natural assertions that certain functions are total can turn out to be unprovable.
What remark [1 1| gives us is a specific function whose totality implies the consistency
of PA.

It seems pretty obvious that the Goodstein function is monotone increasing. How-
ever we have to open a can of worms if we want to prove it. This introduces a new
topic.

7.3 Hierarchies of fast-growing functions

Need the concept of predecessor function; P,(a)

Look at the picture on page P, is the function you need if you are to obtain the
n + 1th ordinal in the right-hand column from the nth ordinal in the right-hand column:
P, of the nth ordinal in the right-hand column is the n + 1th ordinal in the right-hand
column. To be precise:
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Py(0) :=0;
P,(a+1):=a;
P, () := Py(y).

...where 4, is the nth member of the fundamental sequence for 4. Fundamental se-
quences (see for example Q 10 on Professor Leader’s second example sheet from Part
IT Logic and Set Theory in 2015) go back to Hardy [14], an article rediscovered by
Kreisel, Lob and Wainer. ‘P’ for predecessor. We need another auxilliary function:

Ho(n) := n;
Hy,(n) := HP”(oz)(n +1);
H,(n) := Hy,(n).

and a function ord: IN X IN — w, defined so that ord(n, m) is the ordinal you obtain
by writing m in extended base n and then replacing all the ‘n’s by ‘w’.

We’d better check that if we replace Hy by any strictly increasing function f : N —
IN with (Jk € IN)(Vn € IN)(f(n) < n - k) then we get the same dominance behaviour.
This could make an exercise.

The significance of H is as follows:
Evaluate Hqk2)(2). First step gives Hp,(ordk,2))(3); then we get, successively:

Hp,(pyord(k,2)))(4);
Hp,(p,(P(ordk,2)) (D);
Hp,(py(Py(Py(ord(k,2)))(0);

and this continues until we reach an n such that P,(P,_(...(ord(k,2))(n+1)...)) =
0, at which point we return the answer n+1. The ‘n’ works like a kind of count variable
that records the length of the evaluation sequence so far. Thus Hoq2)(2) is the length
of the descending sequence of ordinals in the right-hand column, starting with ord(k, 2),
which is to say, it is G(k). Hang on to this fact: it’s useful!

G(k) = Horar.2)(2).
REMARK 12 [f G is total, so too is H, for every a < &.

Proof:
We prove by induction on IN that (Va < €)(H(n)l).

Assume G is total. That is to say H,(2)|, for all @ < €. That takes care of the base
case, n = 2.

Induction step: Suppose true for all @ < ¢ that H,(n)|; we will show by UG
on ‘a’ that the same goes for n + 1. Let a be arbitrary. We want H,(n + 1)]. But
H,(n+ 1) = Hy+1(n) and the RHS is defined by induction hypothesis on ‘n’. [ |
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This is clear enough, but it involves reasoning explicitly about ordinals. What are
the chances of reproducing this proof (or anything like it) in a theory of natural num-
bers? Well, instead of ordinals-below-¢y, we can reason about (gnumbers of) character
strings for ordinals-below-¢gy. It is simple enough to define a set of natural numbers
that are codes for ordinals-below-¢j, and it is clear that this set will be decidable. We
can even define an order <’ on the codes which (seen from outside) orders them like
the ordinals below €. The tricky part is justifying induction on <’. That is to say, the
challenge is to prove all instances of

(Ym[(¥Ym <" n)(¢(m)) = $(n)] — (Yn)(¢(n))

How might we prove this? One naturally expects to use induction of some sort.
The only kind of induction that we have straightforwardly available is mathematical
induction. It is true that transfinite induction over IN> can be simulated by a nested
induction (“inner loop™) as in the second proof of totality of Ackermann (theorem ??)
but that technique offers hope only for ordinals below w®.

We cannot in fact do this in Peano Arithmetic, and the reason is that transfinite
induction up to & enables us to prove the consistency of Peano Arithmetic.

The Hardy hierarchy is a hierarchy of functions N — IN each one dominating all
previous ones. There is also . ..

DEFINITION 24 The Fast-Growing hierarchy.

F()(x) =x+1;
Foz+1(x) = Fax+](x);
F)(x) = Fig 2 (%)

(I shall use capital ‘F’ rather than lower-case ‘f” to forestall confusion with the
Doner-Tarski hierarchy from p. ??.) The fast-growing hierarchy with finite subscripts
is the Grzegorczyk hierarchy from [?]PE]

It turns out that

REMARK 13 (Va)(F, = Hye)

EXERCISE 13 (#)

Think of the fast-growing hierarchy as a function F from the second number class
to Baire space, N™. Both these spaces have natural topologies: the second number
class has the order topology and NY can be thought of as the product (with the product
topology) of countably many copies of IN (with the discrete topology).

Is F continuous with respect to these topologies?

107 want a medal for spelling this name correctly. Craig McKay (my first Logic teacher) told me that
Grzegorczyk was usually known in the West as ‘G’—not because he was a spymaster but merely in order to
sidestep the challenge to which I have just risen.
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There is an obvious possibility of proving by induction on the ordinal subscript that
every H, is total. What one has to think about is the formal system in which such a
proof might be couched.

Just to reassure myself that I am in familiar surroundings I shall prove
REMARK 14 For a < w, F, is primitive recursive.

Proof:
Clearly true for @ = 0. Define iter g so that iter(g,n) : m — (g"(m)) by means
of the following declaration:

iter(f,0) m:=m; iter(f,(n+ 1)) m := f(iter(f,n) m)
we see that iter(g, n) is primitive recursive as long as g is. Then
Foii:n > iter(Fy,n+1)n

is primitive recursive as long as F, is.
|

Indeed there is even a converse: we can show—by analogy with the proof that the
Ackermann function dominates all primitive recursive functions—that every primitive
recursive function is dominated by an F,, with n < w.

EXERCISE 14 Complete this proof sketch from Stan Wainer.

“For the primitive recursive bounding, you can show that if f(0,a) = g(a)
and f(x + 1,a) = h(x,a, f(x,a)) where both g and h are assumed to be
bounded by F,, then f(x,a) < F,(F,(F,...(Fy(a+x)...)with x+1 iterates
of F,, (or something like this). Then you get < F,F,F,...F,F, (max({x,a}))
with one extra iterate, since F,(b) > 2b forn > 0.

Since Fp1(x) = F, iterated x+1 times on x, this yields f(x,a) < F,+1(max{x, a}) <
F(max{x, a}) for max{x,a} > n. F, is a version of Ackermann, as can be
shown fairly easily by comparison with the original.”

The Goodstein function is roughly F,,. The modified version where you use base 2
not extended base 2 (so you leave the exponents alone) corresponds to Fo.

7.3.1 Good behaviour of the F,, and the Schmidt conditions

We would like to establish that every F,, is strictly increasing and F, dominates Fg
whenever @ > 3. However this is actually quite tricky, and the attempt to secure it
gives rise to very subtle conditions on fundamental sequences. It turns out that—for
ordinals below e,—all the conditions one needs are in fact satisfied by the “obvious”
system of fundamental sequences. Might it be a good idea to think

of a family of fundamental se-
EXERCISE 15 For « an ordinal, let &’ be the least ordinal that is the length of a ter- quences as a three-place rela-

minal segment of a wellordering of length a. Prove that o’ is always a power of w. tion on the ordinals?
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EXERCISE 16 (*)

1. Characterise the “obvious” system of fundamental sequences for ordinals below
€.

2. Establish that, using those fundamental sequences, F, is strictly increasing and
F, dominates Fg whenever 5 < a < &.

This will lead us to the Schmidt conditions from [21]].

7.3.2 Schmidt-coherence

Now we return to the endeavour of showing that a sequence of functions defined in
the style of definition ?? will be monotone increasing with each function dominating
all earlier ones. The idea is to prove by induction on « that f, is monotone increasing
and dominates all earlier fz. Given the induction hypothesis it’s easy to prove that f;
dominates all earlier f3. Suppose f,, is strictly increasing for each i € IN and later
fs dominate earlier fs. If f, is An.f,, (n) then it dominates every a;. Why isn’t strict
monotonicity obvious too? If f, is strictly increasing so is f,+1. The hard case is that
of limit ordinals.

‘We want
fan< filn+1). This holds iff
S n < fa,.(n+1). But

o, n< fo,(n+1)

because f;, is strictly increasing by induction hypothesis. Then to complete the proof
it will suffice to show

f, m+ 1)< fi, (n+1)
which will follow if (YAYn)(S (A, A,+1)) Where S (a, B) is:

a <f— (Ym)(fo m < fgm).

Now this clearly isn’t going to happen: otherwise what could f,(0) possibly be?
Duh! What one can ask for is that f, ,, has overtaken f;, by the time argument n + 1
comes along. This we can bring about by controlling our choices of 4,,.

The construction of the f,s ensures that S (e, ) holds if 8 = @ + 1 or if § is limit
and a = Sy. To be sure of S (a, ) when a < 8 are members of a fundamental sequence
we need to specify that they are related by the transitive closure of the union of these
two relations. A family of fundamental sequences satisfying this condition is Schmidt-
coherent.

Formally:

DEFINITION 25 Let ¥ : A — A® be an assignment of fundamental sequences to an
initial segment A of the second number class.
Define the step-down function f : A — A by
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iff=a+1thenaelse FB0

and f(0) is of course undefined.

We can think of f as a digraph, in which all paths lead to 0. If we do this then
we can see that it is actually a tree, and a tree with no infinite descending paths. Any
digraph like that is of course also the graph of a transitive relation, and if we reverse
the arrows we obtain the Hasse diagram of a wellfounded (strict) partial order.

If we zoom out a bit and show only the branches consisting entirely of limit ordinals
we get
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[1s every wellfounded partial order on a set an intersection of two wellorderings of
that set?]

This order is written <g by Schmidt [21]—who calls it the step-down relation of
7.

Then

F is Schmidt-coherent iff

VA € A)(A limit > (Vn e N)(F An) <¢ (F A (n+ 1)))).
Equivalently: every fundamental sequence lies entirely within one branch of the tree.

The first picture is < restricted to ordinals below w?. The ordinals in this picture
are a fundamental sequence for the first ordinal not so far seen, which is w2, S0 we put
w? on the end of a new sprout coming off 0, to its right. We can now put in the ordinals
below w®, as in the second picture.

Is there an identifiable wellfounded tree such that a family of fundamental se-
quences is just a decoration of this tree? branches thru’ the tree are limit ordinals.
This give a topology on the limit ordinals. Is this the same as the order topology?

EXERCISE 17 In exercise |16| you defined the natural assignment of fundamental se-
quences to ordinals below €y: check that it is Schmidt-coherent.
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Now define a natural assignment of fundamental sequences to the ordinals below
Iy, and check that that, too, is Schmidt-coherent.

We are now in a position to prove

THEOREM 16 (Schmidt, [21|] theorem 1)
Consider the conditions:

(a) Fy is strictly monotonic;

(b) if F, is strictly monotonic 5o is F o1, and Fo(0) < F4.1(0), and
Fa(x) < Fa/+l(x);

(c) Fa(n) = F,,(n) when A is limit.

If the system F defined on the initial segment A satisfies conditions (a), (b)
and (c) and is Schmidt-coherent then, for each a € A,

(i) Fy is strictly monotonic, and
(ii) if a is a limit ordinal then

Fe,(0) < F,,,(0)
and
Fo,(x) £ Fq, ().

Proof:
We show by transfinite induction on « that, for each @ € A,
(i) holds and
(iii) B <¢ @ = Fg(0) < Fo(0); B < a = Fp(x) < Fo(x)
[(ii) follows from (iii) because # is Schmidt-coherent.]

The case a = 0 is easy.

Suppose @ = y + 1: By induction hypothesis, (i) holds for y; hence, by (b), it also
holds for a.

By (b), (iii) holds if 8 = y; but 8 <# @ iff 8 = y V 8 <# v; hence, by (iii) of the
induction hypothesis, (iii) holds for all 8 <# a.

« a limit ordinal:

For each x € IN F,(x) = F, (x) < F,_,,(x) by (iii) of the induction hypothesis

< Fy,, (x + 1) by (i) of the induction hypothesis

=F,(x+1).

Hence (i) holds. Moreover, if 0 < x < w, Fy,(x) < F, (x) = Fo(x), by (iii) of the
induction hypothesis, since ¥ is Schmidt-coherent; but 8 < @ «— = ay VB <¢ ap;
hence—by (iii) of the induction hypothesis—f <& @ — Fp(x) < Fo(x).

Also, B <¢ @ — B <# ap V 8 = ap which implies Fg(0) < F,,(0) = F,(0), by (iii)
of the induction hypothesis.

Thus (iii) holds for a.

The following is from [21], but the proof is due to Nathan Bowler.
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THEOREM 17 For every proper initial segment A of the second number class there is
a [are uncountably many, in fact] Schmidt-coherent system of fundamental sequences
for the limit ordinals in A.

Proof:

Let f be a bijection N «— {8 : 8 < «a} for some countable ordinal «, satisfying
£(0) = 0. Suppose that f(k) is a limit ordinal. We define a sequence (s* : n € IN) as
follows

) sf) is that element of {i < k : f(i) < f(k)} on which the value of f is maximal.

e s° is the minimal element of {i € IN : f(sﬁ) < f@) < f(k)}.

n+l

It follows that

(a) s’é <k;

(b) For any i with f(s’(;) < f() < f(k), we have i > k;

(c) For any n € N and any i with f(s%) < f(i) < f(k), we have i > s;
(d) The sequence (f (s’,‘,) : n € IN) is strictly increasing with limit f(k).

(d) says that (f(s*) : n € Ny is a fundamental sequence for f(k). We take these
sequences as the elements of our system of fundamental sequences for the limit ordinals
below @. Let o be the corresponding step-down function, and define 6 : IN — IN so
that o - f = f - 6. Thus when k € IN is such that f(k) is limit we have 6(k) = sf). We
must show that, for any limit ordinal 8 < @ and any v in the fundamental sequence
for 3, the sequence (o (y) : n € IN) run through all lower members of that fundamental
sequence. To establish this, it will suffice to prove the following

LEMMA 12 Let k be such that f(k) is a limit ordinal, let n € IN and i € IN be such that
f(sy) < f(0) < f(k). Then 5(sy) < o (f(i).

Proof:

This is immediate if f(i) is successor, so suppose it is limit. So o (f(7)) = f(6(i)) =
f(sf)). By (c) above we have sﬁ < 1, and by assumption we have f(s’,;) < f(i), so by
definition of s} we have f(s}) < f(si) = o(f(i)). [

REMARK 15 There is no definable family of fundamental sequences for all @ < w;.

Proof:

Suppose F were such a family. We then define by recursion on w; a sequence
(W4 @ @ < wy) of wellorderings of IN (so each is a subset of INXIN). 0 is easy, successor
steps are easy; at a limit A use the fundamental sequence 7 A, to get the codes Wg,
you have already formed for each # An and then piece them all together one after the
other to get a wellordering of IN X IN. Use a bijection N X N «— IN to turn this
into a code for X,enF An—which may have overshot the mark, so take the right initial
segment and you have a code for A. (The sum of a sequence of ordinals might be bigger
than its sup). None of this uses any AC.
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This shows that if we have a function assigning a fundamental sequence to ev-
ery countable ordinal, then we have a function assigning to each countable ordinal a
wellordering of INX IN. But any wellordering of INx IN is coded by a real number so
this implies N < 2% Tt is known that this is independent of ZF. [ |

(I think that when (in [14]]) Hardy introduced the Hardy Hierarchy—of which more
later—he was trying to solve the continuum problem)

Suppose there is a function g : IN — IN that dominates all f,. Then, for eachn € IN,
let h(n) be the sup of the as such that g has permanently overtaken f, by stage n. h is
clearly nondecreasing. For every a there is n € IN s.t. h(n) > «, so h is unbounded
below wi, and is an w-sequence of countable ordinals whose sup is w;, contradicting
countable choice.

This shows that if we assume countable choice (or merely that w; is regular) then
there cannot be a Schmidt-coherent system of fundamental sequences for the whole of
the second number class.

Rose says that theorem is best possible, and credits [?] I’'m sceptical about this
because he also says that Schmidt, too, proves that it is best possible—and she
doesn’t!

If it really is best possible, it’s presumably because a Schmidt-coherent family
for all countable ordinals would give us an embedding of w; into the reals, or
something like that. There can be long sequences (> w,) of functions with each
function dominating all earlier functions, but they don’t increase as fast as Wainer-
Buchholtz.
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Chapter 8

fast-growing functions and
complex analysis

8.1 Why is there (apparently) no connection between
fast-growing functions N — IN and Complex Anal-
ysis?

For any countable ordinal we can find a system of fundamental sequences for limit
ordinals below it. With the help of AC we can find a system of fundamental sequences
for all countable ordinals. Any such system for an initial segment of the second number
class puts flesh on the definition of the functions in the Hardy hierarchy (or any of the
other hierarchies for that matter—this is only an illustration), so that we have an actual
sequence of fast-growing functions. Every set of countable ordinals can be injected into
the reals in a more-or-less smooth way (again, we need choice if we want to embed the
whole of the second number class) so we can think of the entire Hardy hierarchy as
a single function H : X X N — IN for some X € R. [Do not forget that there are
two nontrivial inputs to this: (i) the choice of a family of fundamental sequences and
(ii) the choice of an injection from the second number class into the reals] There are
surely things that can be said about what X C R must look like as a subset of R which
could have some bearing on what follows, but i can’t think of anything offhand. What
H looks like will presumably depend sensitively on the choices made under headings
(1) and (ii).

Clearly both the domain and the range of H can be naturally thought of as subsets of
the complexes, so we can think of H as the restriction of a function from the complexes
to the complexes—and probably in lots of ways. (This is where the nature of X might
matter).

Are any of these ways analytic? And might they be informative? I’m making a
fuss about the use of AC in this context beco’s the arbitrariness of the choices we make
might deny us the smoothness needed to make the extension of H to the complexes
analytic.

&9
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It is also possible to think of H as a function from the second number class to
Baire space. The second number class has the order topology, and Baire space has the
product topology. It’s a relatively simple exercise to show that H is not continuous. |
append a proof at the end of this file.

8.2 Finding analytic interpolants

REMARK 16 Every H, has an analytic continuation to a function C — C with a power
series all of whose coefficients are real.

Proof:
If H, is to be continued to an analytic function on some simply connected X 2 IN
then X might as well be the whole of C, in which case we will have a power series

Zn

(S
2aw " 5w

for such an analytic continuation, where the a(n) and the b(n) are all real. The exis-
tence of such an analytic continuation is assured by Pringsheim interpolation. We can
rearrange to

b .
> a0

nelN
7" 7"
Then E i must be zero for z € IN, so the power series E is an analytic
b(n) a(n
nelN nelN
continuation of H, with all coefficients in IR. |

There is this theorem of Carlson’s [4] that says if f : C — C is analytic and domi-
nated by an exponential function, and f“IN = {0} then f is identically zero. This means
that if H, : IN — IN has two analytic continuations f and g with |f(n) — g(n)| bounded
by an exponential then f = g. This sounds like a choice principle: being-within-an-
exponential-bound-of-each-other is an equivalence relation. Each equivalence class
contains precisely one analytic function!

If H, is to be entire then we need n +— a(n) to dominate z — 7" for every n € IN. (I
n

Z
) to converge.)

mean dominate in the sense that % tends to 0 fast enough for Z
nelN

The exponential function of course in this sense dominates z — 7" for every n € IN,
but there are plenty of functions dominated by the exponential function that still domi-
nate z — 7" for every n € IN. Observe that, for each countable ordinal a, the sequence
of coeflicients of a power-series for H, would be such a function; observe, too, that

Z}’l
a(n)

grows. Thus the endeavour to find power series for each H, commits us, at the very

the more slowly the function n +— a(n) grows the faster the function z Z
nelN
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least, to finding—for each countable «, a descending a-sequence of such functions, all
dominated by the exponential function, each dominating all later functions, and all of
them dominating z — 7" for all n € IN. The crucial point here is that there can be
no such descending w;-sequence (at least if each sequence of coeflicients is eventually
monotone) beco’s we can’t embed the second number class into IR. It would be nice to
be able to exhibit a sequence of functions such that the corresponding power series all
take naturals to naturals.

8.2.1 Diagonalisation

There is a diagonalisation step at limit ordinals in the definition of the Hardy hierarchy.
It would be nice if there were a simple-minded (diagonal!) construction of the sequence
of coefficients in the power series for H,.

This domination is an immediate echo of the definition of the Hardy hierarchy. We
certainly desire that if, for each k € IN, n — a(k, n) dominates z — z" for every n € IN,
then n — a(n, n) dominates z — z" for every n € IN. We would clearly need, for each
k € IN, that the coefficients (a(k, n))~" to be monotone increasing. TWK thinks that if
you want a power series where the coefficients are monotone decreasing then you may
be asking too much.

He says one should look for a series where almost all coefficients are zero. [why?]

Consider, for example the power series for z — 3%: the nth coefficient is (log(3))"/n!.
This sequence is not monotone decreasing: the coeflicient of z is less than the coeffi-

cient of z2. Perhaps we mean eventually strictly decreasing.
n

Z
a(n,n)

However there is no reason to suppose that the diagonal power series Z

nelN
n

Z
a(k,n)
ments in IN, for every k € IN. There is also an echo of the Schmidt conditions from
[21], in that we want the diagonal sequence n +— a(n,n) to be monotone increasing
whenever the sequence n — a(k, n) is monotone increasing for each k.

TWK makes the point that there are various diagonal arguments in connection with
convergent series, but one usually gets to choose which element of the nth series one
picks, subject to the constraint that the choices get later and later. Of course when one
diagonalises over the Hardy functions to get one with a limit subscript it oughtn’t to
matter how one diagonalises (tho’, annoyingly, it does).

Another thing: Pringsheim tells us that if we extend the Hardy hierarchy over all
countable ordinals we will have power series for every one. This means that there is no
way of making all those series nice beco’s we cannot embed the second number class
into R in an order-preserving way.

takes values in IN for arguments in IN even if Z takes values in IN for argu-
elN

I think if the a(n) are monotone increasing then the function

=)

nelN

n

a(n)

has no zeroes. The exponential function has no zeroes! So zeroes start appearing at the
stage where the @ cease to be monotone.
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8.3 Afterthoughts

Think of the fast-growing hierarchy as a function F from the second number class to
Baire space, NN, Both these spaces have natural topologies: the second number class
has the order topology and IN™ can be thought of as the product (with the product
topology) of countably many copies of IN (with the discrete topology).

Is F continuous with respect to these topologies?

Answer: No! (Thanks to Jonathan Holmes)

Suppose that F is continuous on some open interval / containing a limit ordinal A.
There is @ € I with @ = p + w for some limit u (possibly u = 0), and @ may or may not
be A.

Choose a large enough so that f,(n) > n for all n > a. *)
Let U = {g € N" : g(a) = fo(a)}.

U is open, so F~'*“U is open, and so contains an open interval J around a. Choose
e Jwitha > B > u. fz(a) = f,(a) by assumption that 8 € J.
M- Jp y p

Noting that 8 = m + 1 for some m, have fz,1(a) = ]%’”(a) where m ¢ {0, 1}.

But f1'(a) > fs(a) since fz(a) = f""" (@), fgei(a) = f™(a), and—by (*)—the
sequence f/f(a) : k € IN) is strictly increasing.
|

So the challenge is: given a strictly decreasing sequence 1/b(n) of coefficients of
an everywhere absolutely convergent power series for B(z) find a strictly decreasing
sequence 1/a(n) (which will be the coefficients of a power series for A(z)) such that

(i) B(z) < A(z) for all suff large naturals z and

(i) Z 7" /a(n) is absolutely convergent everywhere

nelN
How do we get such an a?

We have to do this in such a way that when we diagonalise we get another sequence
of coefficients of an absolutely convergent power series.

Deep Breath

What i now think is going on is this. If we want an w;-sequence of ever faster-
growing fast-growing functions then without serious loss of generality we can think
of them as R — R rather than N — IN, and as power series with real coefficients.
For each such power series think of the sequence of denominators. This should be an
increasing sequence (should it?) but the faster-growing the function the more slow-
growing the sequence of denominators.

There are two things to think about

(1) What does the operation we do to the fast growing function to get the
next fast-growing function do to the sequence of denominators? If we try
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anything like f,,(n) = f,(n*) then the new power series has lots of zero
coeflicients

(ii) At limit stages when we define F'; we have to use a fundamental se-
quence someohow. Presumably we do something similar to the seqence of
sequences of coefficients

Anyway, after a while it ceases to be possible to ensure that the fast-growing func-
tions are strictly increasing and that the denominators in the coefficients are strictly
increasing. At that point you find that the fast growing-functions have zeroes some-
where in the complex plane.

8.4 Consistency strength measured by ordinals: a quo-
tation from Quine

Any not conspicuously deficient set theory can of course prove the exis-
tence of transfinite numbers without end, but this does not mean getting
them all. What is so characteristic of the transfinite is that we then go on
iterating the iteration, iterating the iteration of the iterations, and so on, un-
til somehow our apparatus buckles; and the least transfinite number after
the buckling of the apparatus is how strong the apparatus was.

W.V.Quine: [19] pp 323-4

Maybe we should say something here about how the endeavour to achieve a com-
plete consistent system of arithmetic by transfinitely adding Gédel sentences comes
unstuck. Quite where it comes unstuck will presumably depend on the strength of the
original system. For PA it comes unstuck at &?
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Chapter 9

Recursive Ordinals and
wellorderings

Next a little lemma we shall need later.

A countable ordinal is an ordinal that is the length of a wellordering of IN or of
a subset of IN—it makes no difference. Cantor called the set of countable ordinals
the Second Number Class (the first number class is IN). A recursive ordinal is an
ordinal that is the length of a recursive [= decidable] wellordering of IN or of a recursive
[decidable] wellordering of a decidable subset of IN—it makes no difference: either
way it’s a wellordering whose graph (set of ordered pairs of natural numbers) is a
recursive (= decidable) set. A decidable relation on a decidable infinite subset of IN is
isomorphic to a decidable relation on the whole of IN because the function enumerating
the decidable subset is itself decidable. (This was exercise ?? on p. ??.)

There is a simple cardinality argument to the effect that not every countable ordinal
is recursive. Rosser’s extended axiom of counting (explain) tells us that the length
of the wellordering of all the countable ordinals has uncountable length, so there are
uncountably many (in fact N1) countable ordinals. However the set of recursive ordinals
is a surjective image of the set of all machines, and that set is countable. Clearly
every recursive ordinal is countable, so there must be countable ordinals that are not
recursive.

DEFINITION 26

The sup of the recursive ordinals is the Church-Kleene w,, aka w‘le .

A standard application of countable choice tells us that every countable set of count-
able ordinals is bounded below w;, so we know that wICK is actually a countable ordinal.

But we can do much better than that, and without using the axiom of choice.

REMARK 17 The family of recursive ordinals is a proper initial segment of the second
number class.

Proof:

95

Is this really the right point to
insert recursive ordinals?
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Suppose <g is a wellordering of IN whose graph is a decidable subset of IN x IN.
That is to say that the length of < is a recursive ordinal. Now consider any ordinal
a less than the length of R. This is the length of a proper initial segment of <z—the
length of <zl {m € IN : m <z n} for some n, say—and this initial segment of <p is
a decidable subset of IN X IN (it has the number n as a parameter) and its length is
therefore a recursive ordinal. [ |

This means that wICK is not merely the sup of the recursive ordinals but the least
nonrecursive ordinal—and this is indeed how it is usually defined.

REMARK 18 Every recursive limit ordinal has cofinality w—recursively. That is to
say: whenever R is a decidable binary relation on N that wellorders IN to a length that
is a limit ordinal there is a decidable X C N s.t. otp(R [X) = w.

Proof: Recycle the usual “picking winners” proof that countable limit ordinals have
cofinality w. It works in this context. We enumerate the members of X in increasing
order xg, x; .... We set xy := 0. Thereafter x,.; is the least natural number x such that
(xn,x) € R. There is always such an x and it is always decidable for any candidate
whether or not the candidate passes. This ensures that X is a semidecidable set which
can be enumerated in increasing order, and this makes it decidable (by exercise 2?). B

Observe that this proof is effective: there is a computable function which, on being
given the gnumber of a characteristic function of a wellordering of IN, returns the
gnumber of the characteristic function of an unbounded subset of length w.

EXERCISE 18

The class of recursive ordinals is closed under the Doner-Tarski function f, (see
definition ?? p. ??) for every recursive ordinal a.E]

Is there a sense in which one can say that wICK is not recursively of cofinality w?
We need to think a bit about what this might mean. Suppose we have a wellordering R
of IN of length a)ch . It’s not a decidable set of ordered pairs. Now suppose this worder
R had a cofinal subsequence of length w that was decidable. This chops up (IN, R) into
w segements {r,, : n € IN} where, for each n, r, € IN and R ['r,, is a worder of length
less than a)fK . This doesn’t mean that R [ r, is a decidable set of ordered pairs, but
it does at least mean that there is a decidable wellordering of IN to that length. Since
there are only countably many decidable worders of that length and they are naturally
wordered by their gnumbers pick the first one, and concatenate them all. Altho’ this
process clearly gives us a worder of length wlCK what i am now (on writing this down)
less than 100% confident is that the worder we get is decidable. The more i think about
this the less convinced i am.

Stanley,

!Come to think of it i’m not really entirely happy about this ...but Stan says it’s obvious so it must be
OK
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I think i may have answered my own question (This always happens once one sticks one’s
head above the parapet and asks a stupid question - but that’s what friends are for.)

Can there be a worder of IN of length wlCK every initial segment of which is decidable?
Suppose we have a a wellordering << of the Naturals of length w¥ s.t. every proper initial
segment of it is a recursive wellordering of some subset of IN. That subset will of course be
decidable. Suppose further that there is a computable total function that, on being given n,
returns a function f, that when it is given a pair {x, y} of naturals both << n, tells us which is
<<-first, and is undefined otherwise.

This further condition makes << decidable. For suppose we want to know which of x and
y is <<-earlier. We just zigzag across the f, until we get an answer. Sooner or later we will
calculate f,({x,y}) for some n >> max{x, y} and since << is a total order we know we will get an
answer. Also it doesn’t matter which f, is the first to halt, because they all agree.

But i suppose there might be a wellordering << of the Naturals of length w¢¥ s.t. every
proper initial segment of it is a recursive wellordering of some subset of IN, but without the extra
condition.

Hiya Thomas!

I’m pretty sure << cannot be decidable - your function f is only defined on n, < x,y >
provided x and y are both << n. And anyway, you can’t have a decidable well-ordering of length
w. You seem to be looking for a path through Kleene’s O such that every initial segment is a
decidable (or even r.e.) well-order of a subset of IN. Of course such paths do exist but they’re
fairly complex. There are I} ones, but any subrecursive hierarchy defined along them has to be
incomplete (i.e. misses out some recursive function). And you can define such complete paths,
but they can only be recursive in the set O itself. These are old results of Feferman (TAMS
around 1962). Maybe I'm missing the point ....... am [?

’Best,

Stan.

Thus a)ICK is huge. This is contrast to the corresponding ordinal for automatic
structures: the least ordinal not the ordertype of an automatic wellordering is w®, see
(?]

Something to be alert to. Do not confuse the concept of a recursive ordinal with
the concept of a recursive pseudowellordering of IN. This would be a decidable binary
relation R on IN which is a total order with the property that every decidable subset of
IN has an R-least member.

Here’s another proof (Nathan Bowler) Consider an arbitrary initial segment of
length S of a decidable total order of IN. It has a sup, n, say. Then the set of things be-
low n is a decidable subset of IN, since the graph of the order relation is decidable. So
throw away all ordered pairs that do not have both components in this initial segment.
There is a recursive bijection between this initial segment and IN. Pull back to obtain a
decidable worder of length £.

When reasoning inside a formal system of arithmetic care is needed in approaching
the concept of recursive ordinal. It’s one thing to have a definable binary relation on
IN, it is quite another to have a proof that this definable binary relation is a wellorder.
Come to think of it, how on earth can a system of first-order arithmetic (such as Peano
Arithmetic) ever prove that a binary relation is wellfounded? After all, to show that
a relation is wellfounded one has to be able to reason about all the subsets of its do-
main, and a first-order theory cannot reason about arbitrary subsets. The answer is that
whenever T (being a first order theory of arithmetic) proves that a relation R on IN is



Brief chat here about the order
topology.

Need a picture

Surely some duplication??

98 CHAPTER 9. RECURSIVE ORDINALS AND WELLORDERINGS

a wellorder what is going on is that T proves all instances of R-recursion that can be
expressed in the language of 7.

9.1 Normal functions

P(On) S P(On)
sup sup
‘Pn f n

As usual, a set is closed iff it contains all its limit points.
DEFINITION 27

A clubset is a CLosed and UnBounded set, or, alternatively, the range of a total
continuous function.

A normal function f is
(i) continuous: f(sup(A)) = sup(f“A), and
(ii) strictly increasing: @ < 8 — f(a) < f(B).

A clubset might be the range of lots of distinct continuous functions (repetitions are
allowed, after all), but it is the range of only one normal function, to wit: the function
that enumerates it. This bijection between the class of clubsets and the class of normal
functions will be very useful to us. At times it will almost feel as if we have a datatype
whose members can be thought of as clubsets and as normal functions at will. (cf page
B9

Clearly the derived set of a clubset is club.

It is easy to show that every normal function has a fixed point. If f is normal, then
sup{f"a : n € IN} is the least fixed point for f above a. In fact:

LEMMA 13 The function enumerating the set of fixed points of a normal function is
also normal.

Proof:
This needs only the observation that if f is continuous then the sup of any set of
fixed points for f is also fixed. [ |
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Notice that we can now define, in a completely straightforward way, a transfinite
sequence of normal functions from the second number class into itself—or, indeed,
from the class of all ordinals into itself. Let Cy be the set of limit ordinals in the second
number class, and C, be the limit points of C,. We say C,. is the derived set [from]
C,. Take intersections at limits. The sequence of C,s is the sequence of derived sets.
Now let f, be the function that enumerates C,. C, is club so f, is normal.

(It might be an idea to think about what these functions actually are.)

If f is a a normal function then for any ordinal @ we can define a function f¢ as
follows:

1B = 1p)
B = fFP)
B = supl{fB) : { < A}

Must check that f* is normal if f is.

There is another way of defining unary functions from ordinals to ordinals that
gives us—I was about to say functions that are more rapidly increasing. That wouldn’t
be quite correct: every function that is given by the second method is also given by the
first method, but the first method takes longer to reach it.

The second method defines Cj to be the set of limit ordinals in the second number
class as before. We take intersections at limits as before. As before f, will be the
normal function that enumerates C,. However now C,,; is defined to be the set of
fixed points of the normal function f, that enumerates C,,.

(Notice that although the first method could have started with Cy =: second number
class, the second method can’t.)

We should think a bit here about what this new series of increasing functions look
like.

There is a difference between these two ways of getting fast-growing functions that
may strike a chord with people used to type disciplines. In the first case we can think
of the ordinals that are arguments and the ordinals that are values as being two different
types: green ordinals and blue ordinals.

In both cases we are indexing, by the ordinals, a family of ever-shrinking subsets
of the ordinals. (We identify each skinny subset with the function that enumerates it).
In both caes we take intersections at limits. In the first case the next set after A is
the collection of limit points of A: we define a function from ordinals to sets of reals.
f(a + 1) is the set of limit points of f(a). Nothing in this first construction compels us
to think of the shrinking sets as shrinking sets of ordinals. Indeed in Cantor’s original
setting the derived sets are all sets of reals not sets of ordinals.

The difference between the first and second methods lies in the successor step. In
the first construction the derived set at each stage is constrained to be a subset of the
set it was derived from, so its members are objects of the same flavour that were found
in that set, and that is the only constraint on their nature. However the second method
exploits fixed points, so the functions it speaks of must have its arguments and its values
of the same type. That means that the derived set must be a set of ordinals.

The first method is strongly typed and produces functions that don’t grow very
fast. The second method produces fast-growing functions much more efficiently but is

f2(8) =7 ... 1, presumably

NB sez: if f = succ then
f¢(w) = wso f“ is not strictly
increasing and isn’t normal; tf
sez: this is because succ is
not normal! succ?(fB) is trying
very hard to be 8 + @
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less strongly typed. What we are seeing here is another instance of the way in which
relaxation of typing disciplines makes for greater strength.

9.1.1 Cantor normal form using w 77T @

One obvious generalisation of CNF replaces the base w by a different base. We ex-
ploited earlier the fact that ordinals above € but below €, can be notated by a CNF
with base €). How else can we generalise?

Something that has always puzzled me is why the discovery that Cantor Normal
form sometimes gives uninformative answers (think: &) did not prompt the reflection
that one should use the normal function after exponentiation as the gadget for a system
of ordinal notations. After all, CNF uses exponentiation to base w as a normal function
that drives a “division algorithm”, so why not just use the next normal function in the
Doner-Tarski hierarchy? (Every normal function supports a division algorithm). Let’s
try this and see what happens; perhaps we shall learn from this exercise why Veblen and
co’ escalated the struggle to notate ordinals by using this new gadget of enumerating
fixed points rather than do what seems the obvious thing.

The next Doner-Tarski operation beyond exponentiation is declared by

B1T0=p5;
B (@+ 1) =(B1Ta)f;

taking sups at limits.

Thus x 11 1 = x5 x 71 2 = (X)) = x; x 11 3 = (x*)° = x*; and presumably
xTn=x"fornelN.
And, when 8 = w.

w10 =w;
ol (@+1)=(w 1T )

taking sups at limits.

It’s worth noting that if you get it the other way round, so that the successor step is

w11 (@+1) = @M

—which looks more natural—you find that w 77T w = ¢ and w 1T (W + 1) =
W = % = g so B — w 7T B grinds to a shuddering halt, and is not strictly
increasing, let alone normal.

Then when we do the CNF thing we get.... Give me an ordinal @. Let By be
maximal such that

wTh < a <ol B+ =(1TB)"

Now let ng be maximal such that. ..

@A) < @ < @A) = @174 - (@17 o)

Now let 8; be maximal such that. ..
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(@ TT B (@ TTB1) < @ < (WTTB)" (TT Bi+1D) = (01T o) (w TT 1)

Then we find n; s.t.

(@17 o)™ (@ 1T B)" < @ < (@ 11 Bo) (@ 1T (Bi+1)) = (@ 11 Bo)-(w 11 pY"™!

The next question is: why do people not do this analysis? What is the least fixed
pointa = w 7T a?

wTTl=w"
wIT2= @M D= @) = o
w113 =112 =) =0
So presumably

w T w=w”
and
w1 @+1)= @) ="

so it’s looking as if the least fixed point @ = w TT a is €. If that’s the case then that
might help to explain why Veblen and co” went straight to the device of enumerating
fixed points. What rather bothers me is that the literature nowhere seems to explain
why the tradition took the step it did. If the reason why it moved straight to Veblen ¢s
is that using 7T, 717 and do on does nothing for us, then why was this never spelled
out?

Want to show that every function in the DT hierarchy is normal in its second argu-
ment

http://www.math.ucsb.edu/~doner/articles/.


http://www.math.ucsb.edu/~doner/articles/

102 CHAPTER 9. RECURSIVE ORDINALS AND WELLORDERINGS



Chapter 10

Appendices

10.1 Appendix 1: Prologue on Countability

This can be skipped by sophisticates. It was designed as a fairly self-contained handout
for my first-years. Sophisticates might wish to consult it for revision, or as a reality
check.

10.1.1 Preliminaries

I’m assuming that the reader knows what injections, surjections and bijections are, and
that they know what it is for a relation to be transitive and what an equivalence relation
is and what equivalence classes are, so that if ~ is an equivalence relation on a set X
then there is a surjection X — {[x]. : x € X}, the set of equivalence classes of members
of X. (The double barb on the arrow means “surjection”). I am going to assume that
the reader is happy with the gadget of disjoint union. We will also need the concept
of a congruence relation. We say = is a congruence relation “for” a function f of n
variables if [we illustrate with n = 2 to keep things readable]

x=x Ay=sy - flxy=fx,y)

For example, the equivalence relation on Z of congruence mod p is a congruence
relation for + and X. You almost certainly know this fact already, even if not under that
name. Miniexercise: take a moment to check it. Check also that congruence-mod-p is
not a congruence relation for exponentiation! (you might like to find an illustration of
this last fact).

Check that you have these prerequisites under your belt before reading fur-
ther.

The study of countability is part of cardinal arithmetic, and with cardinal arithmetic
the equivalence relation that matters is the equivalence relation on sets of being-in-
bijection-with, and it’s a congruence relation for all sorts of operations on sets. You can

103



104 CHAPTER 10. APPENDICES

think of cardinals as [arising from] equivalence classes of sets under this equivalence
relation. It’s sometimes called equipollence, and sometimes equinumerosity.

We use the double vertical bar notation for cardinals. You will sometimes see
the hash symbol used: #(x), or even (in the older mathematics literature) a double
overlining: X Objects that are | x| for some x are cardinals: |x| is the cardinal number
of the set x.

‘IX| < |Y|” means that there is an injection from X into Y;
‘IX| = |Y|” means that there is a bijection between X and Y;

‘1X| <* |Y|’ means that there is a surjection from Y onto X.

In most of the cases you will be concerned with (at least for the moment) |X| <* |Y|
implies |X| < |Y], so you may act on that assumption—at least for the time being. The
reader can check that < and <* are transitive. We will see later (remark [20] “Cantor-
Bernstein™) that < is antisymmetric.

The equivalence relation of being-in-bijection-with is a congruence relation for dis-
joint union, cartesian product, and the operation X — Y that gives you the set of all
functions from X to Y. [For your own satisfaction you might wish to check all these
allegationd']|

Thus cardinals support addition, multiplication and exponentiation. Cardinal addi-
tion arises from disjoint union, cardinal multiplication from cartesian product. Thus

IX|+ Y] = XU Y| and |X]-|Y] =X x Y|

...where x LI y is the disjoint union of x and y. Cardinal exponentiation arises from
the operation of forming the set of all functions from one set to another. How many
functions are there from X to ¥? Check that you understand why the answer is |Y|].
(“Multiply probabilities of independent events™). Check for yourself that 2 = |P(x)|.
(P(x) is the power set of x, the set of all subsets of x).

If you think about composition of functions you will have no difficulty persuading
yourself that the following hold for all cardinals «, 3, .

REMARK 19
(l)a<B—a”<p;
(2)a<B—y* <y~

The following theorem is very useful. You should know how to state it and how to
use it. .. but you can probably get away with not knowing how to prove it.

REMARK 20 “Cantor-Bernstein”

If there is an injection from A into B and an injection from B into A, then there is a
bijection between A and B.

Equivalently: the relation < on cardinals is antisymmetric.

! And do not allow yourself to be confused by the fact that equipollence is a congruence relation for the
operation X — Y that gives you the set of all functions from X to Y even though congruence-mod-p is not a
conguence relation for exponentiation: the situations are not parallel.
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You will often hear remark 20 referred to as “Schroder-Bernstein”.
| ]

You might think this is blindingly obvious: after all, if f injects A into B, and B
can be injected into A then f must have been a bijection all along. But this line of talk
works only if A and B are finite: if A and B are both infinite you can have injections
f: A= Band g : N — A neither of which is a surjection. The function that sends
the natural number 7 to the rational number /1 injects IN into Q, and the function that
sends the rational number a/b to 2¢ - 3 injects the positive rationals into IN, but neither
f nor g is a surjection.

REMARK 21 Bernstein’s lemma

y+d=a-f > a<"yVB<S

Proof:
Suppose A and B are two sets (of size a and ). Suppose further that we have split
A X B (represented by the square figure above) into two pieces, C and D (of size y and
0),sothat CND =0and CUD = A x B. Now project the C region onto the A axis.
Does it cover the whole of the A-axis? (I've tried to draw the picture so that it’s not
clear whether it does or not!) If it does, then |A| <* |C|. If it doesn’t, then there is a line
through D parallel to the B axis, whence |B| < |D)|.
|

This is quite useful. For example we can use it later to show that if X is a countable
set of reals then [R \ X| = |R|. Try it, it’s not hard. (You will need the fact that
(2N0)2 = 2%,

Do they yet know that |R| =
2809
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10.1.2 Countable sets

We define IN as the C-least set of cardinals containing 0 and closed under successor:
N=(|IC:0eCA(¥xeO)(x+1eC)).
DEFINITION 28 We write ‘Ny’ for |IN|.

(Yes there is a cardinal N;—and N, and beyond, but that’s for later.)

You are a countable set iff you are equipollent with (in 1 — 1 bijection with) IN.
Some people still use the word ‘countable’ in a wider sense that includes finite sets,
so don’t be surprised if you hear the word used in this way. In that tradition a set is
countable iff it is in bijection with some set of naturals, not necessarily with the set of
all naturals. Or, equivalently: X is countable if |X| = Ny or [X| € IN. Or |X| < N,.

Basic useful fact:

REMARK 22
No is the smallest infinite cardinal: if « is a cardinal with @ < 8y then a € NV @ = N.
Equivalently: @« € N «— a < N.

Proof:

This is because if you are a set of size < Ny then there is an injection from you
into IN, so you are the same size as a set of natural numbers. Now every set of natural
numbers is either bounded (in which case it is of size n for some n € IN) or unbounded.
If it is unbounded then it is clearly in bijection with IN—count it, using the order
structure it has in virtue of being a subset of IN! ]

In fact Ny is minimal among infinite cardinals even w.r.t. the weaker relation <*:
we can show that a surjective image of a countable set is countable. If you are the
surjective image of a countable set then without loss of generality you are a surjective
image of IN. But then it’s easy to put you in 1-1 correspondence with a set of natural
numbers: pair off each of your members with the first element of the preimage.

(To be formal about it, if f : IN — X you inject X < IN by sending each x € X to the least
natural number in f~1“{x}. ‘f~1*{x} (also written ‘f~!({x})’) is {n € N : f(n) = x}, commonly
described as a fibre of f ... you might find this terminology useful.)

This minimality of 8 is important, and it can save you a lot of time. It means that
if you want to show that a set is countable you don’t have to go the extreme lengths of
finding a bijection between it and the whole of IN: it suffices to find a bijection between
it and an infinite subset of IN.

Another manifestation of this minimality is the following fact:
REMARK 23 Fora acardinal, « = a +1 «— a > N.

Some people take “a@ = a + 17 to be the definition of a being an infinite cardinal.
The usual definition is @ ¢ Ny or—equivalently—a ¢ IN.

You might like to prove remark 23for yourself. Catchphrase: Hilbert’s Hotel. .. you
might like to google it.
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Let’s now have some examples of sets that are countable

No + 1 = 8p; Add an extra member to a countable set: the result is countable.

IN LI IN is countable, which is to say Ny + 8y = Ny. So Z is countable, co’s it’s the
union of two copies of IN: IN itself and the negative integers.

IN x IN is countable by zigzagging, so we can conclude that Ny - Ny = No.

S115 ...
N
4110 16
N N
316 11 17
N N N
213 7 12 18
N N N N
1] 1 4 8 13 19
N N N N N
0] 0 2 5 9 14 20
0 1 2 3 4 5

The fact that the cartesian product of two countable sets is countable can be very
useful. If each A; with i € IN is a countable set equipped with a counting then you can
use those countings to do the same zigzag construction that counts IN X IN to count the
union | J;en A;. The zigzag algorithm needs those countings to work on, of course, so
to say—as people often do—that this shows that a union of countably many countable
sets is countable is not straightforwardly correct. You need an axiom that says that

(VOE@F(xy) = @HVOF(x, f(X)

which will reassure you that if all your A; have countings then there is a function that,
to each A;, assigns a counting of it; you then use those assigned countings in your run
of the zigzag algorithm. This axiom is called the “Axiom of Choice” and you will be
hearing more of it later.

The following observation will turn out to be very useful:

REMARK 24 (The Prime Powers Trick)
The set of finite sequences from a countable set form a countable set.

Proof:
We map finite sequences of naturals to naturals by sending—for example—the tu-
ple (1,0,8,7,3) to 211 . 30+1 . §8+1 . 77+1 1 13+1, [ |

Then the set of finite subsets of a countable set is countable because it is a surjective
image of the set of finite sequences from that set—and we saw above that a surjective
image of a countable set is countable.
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This is an important fact with ramifications. If we think of a language as a set of
finite strings of characters chosen from a finite—or even countably infinite—alphabet
(as is the case for all the mathematical languages you are likely to encounter) then the
set of expressions that constitutes the language is countable. You may later need to
exploit the fact that the set of formul® of such a language can be enumerated ... first
formula, second formula .. .nth formula ...

We can show |Q| = Ny by injecting IN into Q (send the natural number n to the
rational number n) and injecting Q into IN X IN (send x/y—with no common factors—
to (x,y)) and then using remark@

We can think of Q as a quotient of ZXxZ\ {0}. Say (x,y) ~ (u,v)iff x-v = y-u. Then
we can think of the equivalence classes as rationals. If we think of Q that way then it
is clear that it is countable because it’s an infinite surjective image of a countable set.

10.1.3 Uncountable sets

Are there any? Yes—there are, but it’s a nontrivial fact that not all infinite sets are
countable. The key fact here is Cantor’s theorem which tells us that every set is
smaller than its power set. Or—to put it another way—a < 2% for all cardinals a.
What we actually prove is—on the face of it—slightly stronger.

THEOREM 18 Cantor’s theorem.
IPX)| £° 1X]

Proof:

Suppose f : X — P(X). We will prove that f is not surjective. Suppose per
impossibile that it were. Consider » = {x € X : x ¢ f(x)}. We will show that r cannot
be in the range of f. For suppose r were f(a). We consider the proposition (or perhaps
one should say the question)

(aer?
By definition of r this is equivalent to
a€ f(a)

but f(a) = {x € X : x ¢ f(x)} so this is equivalent to

a ¢ f(a)
but f(a) = r so this is equivalent to
aé¢r
So we have proved a € r «— a ¢ r which is self-contradictory. |

Notice that we have proved a € r «— a ¢ r (which is not explicitly a contradiction)
rather than a € r A a ¢ r (which is). It’s possible to derive the conjunction from the
biconditional but it’s a bit fiddly and unless you are a compsci student of a particularly
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theoretical cast of mind you may well feel that you can put off the task of mastering the
fiddly bits until later. However it is worth understanding this proof.. . at some point—
even if not this very minute and second—since echoes of it reappear in the proof of
the unsolvability of the Halting Problem for Turing machines, and the derivation of
Russell’s paradox, among others.

We’ve proved lots of equations, and they are all easy. There is one major theorem
in the form of an inequation, and it is easy too. It is Cantor’s Theorem.

THEOREM 19 Cantor’s theorem
Suppose f : X — P(X). Then f is not surjective.

Before we get stuck into the proof I want to identify a wee, wee assumption that we
have to make. It is this: if there is a surjection from A onto B then there is an injection
from B into A. This is another of those things (like the Cantor-Bernstein theorem) that
is obvious when A and B are finite, but not obvious otherwise. (It’s the axiom of choice
again!)

Cantor’s theorem says that that n < 2". Now if n = |X] then 2" = [P(X)|. Clearly
there is an injection X — P(X): the singleton map Ax € X.{x} is one. So to prove the
inequality all we have to prove that there is no injection £(X) — X. In fact it’s slightly
easier to prove that there is no surjection X — $(X) (which by assumption is the same
thing) and that is what we will do. (I could have left out the bit about injections from A
to B and surjections from B to A, and given instead a slightly more complicated proof
that there is no injection from £(X) to X, but that proof is displeasingly messy. If you
like, you can check and see how to do it for yourself. Determining which is easier is a
delicate calculation)

The proof is now a doddle. Suppose f were a surjection from X onto £(X). Think
about

(xeX:x¢ f(x) (10.1)



At some point we have to show
that there is a surjection from
the reals to the countable ordi-
nals.
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This is the set of those things in X that are not members of what f sends them to. Since
f sends members of X to subsets of X, asking of a member x of X whether or not it is
a member of what f sends it to is a perfectly sensible question, since x is a member of
X and f(x) is a subset of X.

If f is a surjection, this subset—I0.T—of X must be f of something, x( say. Now
(and I want you to work this out for yourselves) ask whether or not xy is a member of
{x € X : x ¢ f(x)}. Think about this a bit before proceeding to the next paragraph.

If it is, it isn’t, and if it isn’t, it is. Clearly this is an impossible situation. How did
we get into it? By assuming that f was a surjection. Evidently it wasn’t! ]

Time invested in understanding this proof is time well spent. The same argument is
used to great effect in complexity theory, and in (for example) the proof of the unsolv-
ability of the Halting problem, which you will see in 1B.

You Absolutely Must Understand This Proof.

Observe that we have made no assumptions about the size of X whatever! We
haven’t even assumed that X is nonempty, and certainly not that it is finite. In particular
there is no surjection N — P(IN). Do not waste time trying to prove Cantor’s theorem
for natural numbers by mathematical induction! (And do not try to connect this with
any ideas you might have about complex exponentiation: different beast altogether!!)

While we are about it we may as well make a note of the fact that the power set of
IN is the same size as the reals:

THEOREM 20 [R| = [P(N)| = 2N = 2%

It’s perhaps not blindingly obvious that there is a bijection between R and P(IN).
The obvious thing to try—think of a real as a binary expansion, and send it to the set
of addresses at which it has a ‘1’—doesn’t quite work, because of double counting of
dyadic rationals (rationals with denominator a power of 2) but there are various ways
round the problem. One rather neat one (due to my supervisee Jonathan Holmes) is
to reflect that every real number has at most one binary representation that contains
infinitely many Os. The set of these representations is in bijection with £(IN)! You can
also use Bernstein’s lemma, remark

I like to think that the difficulty in finding this bijection reflects the fact that R is
a continuous (“analogue”) object while P(IN) is a discrete (“digital”’) one, but I don’t
want to make toooo much of it!

10.1.4 Recognising the difference

It’s very important to get a feel for which sets are countable and which are uncountable,
and to be able to spot which is which without having to go through a laborious proof
or computation. On the face of it, if one is to prove that a set is countable one has
to show how to count it, and if one is to show that it is uncountable one has to use a
diagonal argument as in the proof of Cantor’s theorem, remark [I8] However there are
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some heuristics one can use, and I am going to tell you about one that my students have
found helpful.

When confronted with a set (as it might be, one of the suspects from the exercise
below) one of the things can one do to ascertain whether it is countable or not is to ask
“How much information do I have to give to specify a member of this set X?” If the
answer is “a finite amount” then X is countable. This is because if we have a way of
specifying every member of X then we have a surjection onto X from the set of strings
over some finite alphabet and we know that the set of such strings is countable because
of the prime powers trick, remark 24} If the answer is “an infinite amount” then the set
before you is most assuredly uncountable, and of size at least 2™ at that.

If you have any intuition around expressions like “finite precision”, “infinite pre-
cision” then you can put it to good use here. Reals are infinite precision objects: to
specify a real you need to supply a digit between 0 and 9 for each of infinitely many
decimal places—independently! The expression ‘degree of freedom’ might have some
resonance for you...a point in the plane has two degrees of freedom (“‘coordinates”);
a circle in the plane has three degrees of freedom: two to locate the centre and a third
to tell you the radius. (That’s why you can draw a circle through any three points. An
ellipse has an extra degree of freedom—the eccentricity—so you can draw an ellipse
through any four points—OK, as long as the quadrilateral is convex!) The number of
objects you get is the number of options at each parameter raised to the power of the
number of degrees of freedom (= the number of parameters).

In this sense, a real number has infinitely many degrees of freedom or—as you will
later learn to say—a real number has infinite entropy. This is enough to show that there
are uncountably many reals. You don’t really need to know why this is the case, since
what I am offering you here is a heuristic not a theorem.

In this hand-wavy sense, one can say that the natural numbers have finite entropy.
How so? How many bits of information do I need to have available if I want to transmit
a natural number to you? Now you have probably learnt that there is no probability
distribution on the natural numbers that makes them equally probable. So suppose
I pick natural number n with probability 27". How many bits do I need on average
to communicate a natural number to you? Well, half the time the number is 1, so I
need only one bit, one quarter of the time it’ll be 2, so i’ll need two bits. It’s easy to
see (sum the geometric progression) that on average I will need only two bits. So the
natural numbers (with this distribution) have an entropy of two bits. With a different
distribution you’ll get a different entropy, but you are not to worry about that [no,
really! !E]]; the point is that there is a way a finding a probability distribution for IN that
gives the naturals finite entropy, whereas there is no way of doing that for the reals.
Moral: the naturals (unlike the reals) are a countable set.

Don’t worry if this looks hand-wavy—it is; it’s a heuristic not a theorem. If it
works for you that’s cool, and if it doesn’t, don’t worry—forget the previous paragraph
entirely. [snaps fingers: wake up now!].

So how many reals are there, if you think of them in binary? You have N inde-
pendent trials (one at each binary place) and each trial has 2 possible outcomes. So
the number of reals must be 2%. (if I think of them in decimal I get 10™ and you

2If you really want to think about this, perhaps have a look at the appendix.
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can show that to be the same). Try another example: how many sets X € IN of prime
powers are there that, for every prime p, contains precisely one power of p? Clearly I
can choose my powers of p independently, so there are precisely NON" such sets. Now
observe, using remarks [20{and

Mo @ g;‘u <® (R0 — %) (0 %o

(a) and (b) both hold by remark [T9] part (1);
(c) holds because N2 = Ny.

Finally we infer

2N = R

from

2% < NSU and Ng” < 2%

by using remark 20]

10.1.5 Finite Objects

I’m going to assume that you have a concept of finite object. A set X of things is a
set of finite objects iff there is a system of notation for members of X such that every
member of X has a finite description according to that system. (Natural numbers are
finite objects; rationals and algebraics are finite objects; reals famously are not. They
are infinite precision objects.) The observant reader will complain that—according to
this definition—any object that belongs to a countable set X can be made to be a finite
object: all that one has to do is fix in advance a bijection between X and IN, and then
one can point to an object by saying that it is the nth member of X according to the
given enumeration. Of course life is not that simple. One does not want X to be just
any old random assemblage of things, one wants it to be a set in the rather stricter sense
in which one speaks of a set of spoons, or a set of plates, or a set of rules, or a chess
set: X must be a family of homologous objects admitting a uniform description (or a
union of finitely many such families). Further, the enumeration of this non-random
collection must be in some informal sense computable. Indeed there is a useful and
practical converse to this, which I impress on all my first-years. If you are presented
with a natural set (not a mere assemblage) and you want to know whether or not it is
countable: ask yourself: are its members finite objects? Do I have a uniform finitary
system of notation for its members? If I do, it’s countable—and if it doesn’t it isn’t.
This simple heuristic is a remarkably efficacious way for beginners to decide whether
or not a candidate set is countable.

The concept of finite object is not a mathematically rigorous one, but it is very im-
portant nevertheless. I have a hunch that the most sympathetic (and quite possibly the
most correct) way to understand the Hilbert programme is as an endeavour to represent
as much as possible of mathematics as the study of finite objects. Finitism started off as
a sensible idea: ideologies always do—however crazy they turn out to be later. Look at
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how much progress in Mathematics involves reducing problems to finite calculations.
Once you have any intuition of a difference between finite objects and infinite objects
you notice that finite objects are tractable and infinite objects aren’t, and progress in the
study of particular kinds of mathematical objects happens when you find ways of think-
ing of them as finite objects. (Algebraic topology etc.; Euler’s polyhedron formula is a
nice example of distillation of finite information from infinite sources. Knots.) Proofs
are finite objects; all of syntax is peopled with finite objects. It is not at all barmy to
think that mathematics is really the study of finite objects, and that a preoccupation
with trying to express everything in terms of structure of finite character is the way to
go. It may be mistaken (beco’s the aim of Mathematics is to generalise) but it certainly
isn’t barmy.

A set-of-finite-objects is a set equipped with enough structure for there to be a
system of notation that allocates everything in the suite a description containing only
finitely many symbols. The minimal conditions for this to happen seem to be for the
set to be a recursive datatype of finite character, or—to put it another way— (using an
encoding scheme) an r.e. or semidecidable set of naturals. This is why the (recursive)
axiomatisablity of First Order Logic is so important: valid sentences of First Order
Logic come equipped with proofs that are finite objects, but valid sentences of higher-
order logic do not.

Given their importance, clarifying the concept of finite object is probably a good
project. One way into it is to think about countable ordinals. We will see that the
collection of countable ordinals is itself uncountable, and so its members cannot be
thought of as finite objects. However all its proper initial segments are countable, so
the inhabitants of any proper initial segment can be thought of as finite objects. But
not uniformly! It was the thought that this nonuniformity could be an opening into
the concept of finite object that was one of the attractions for me of the project of
understanding countable ordinalsE]

On the subject of “giving someone a countable ordinal” Think about what a cer-
tificate for a countable ordinal is. If @ = 8 + 1 then a certificate for « is a suitably
decorated certificate for 8. If A is the sup of (1, : n € IN) then a certificate for A is a
function f defined on IN such that f(n) is a certificate for 1,,. But f must be a finite ob-
ject. Thus every certificate is a finite object. Observe that if @ < 8 than any certificate
for 8 has within it a certificate for @. This doesn’t make it easily decidable when two
limit ordinals are the same, beco’s i can’t know until the end of time whether or not
two sequences have the same sup.

10.1.6 Exercises
(1) (i) Check that 8o + 2% = 280,

3There is an apparent paradox here (which we shouldn’t really discuss at this point, for fear of frightening
the horses). We shall see later that, for any countable ordinal «, every countable ordinal 8 > « gives us a way
of thinking of @ (indeed of every ordinal < ) as a finite object. But there are uncountably many countable
ordinals B > « so this means that there are uncountably many finitary systems of notation for countable
ordinals. But a finitary system of notation is itself a finite object, being a finite set of rules over a countable
alphabet, so there are only countably many of them. This will be resolved later in these notes (see p[05)by
the concept of a recursive ordinal.
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(ii) Check that 8y + @ = 28 — @ = 2% (Use Bernstein’s Lemma).
(2) Which of the following sets are countable and which are uncountable?

(i) The set of complex numbers;

(i1) The set of partitions of IN into finite pieces;

(ii1) The set of partitions of IN into finitely many pieces;

(iv) The set Q — R of functions from the rationals to the reals;

(v) The set of functions f : IN — IN s.t f(n) = O for all but finitely many n;

(vi) The set of functions f : N — IN s.t f(n) = 0 or 1 for all but finitely many #;
(vii) The set of functions f : N — IN s.t f(n) = n for all but finitely many »;
(viii)The set of (“nonincreasing”) functions f : IN — IN s.t (Va)(f(n + 1) < f(n));
(ix) The set of subsets of IN with finite complement (“cofinite”);

(x) The set of algebraic numbers;

(xi) The set of nonincreasing partial functions IN — IN.

Of the sets that are uncountable say—with reasons—whether they are of
. . N, . .
size 2™ or of size 22". You need not give a rigorous proof.

(3) How many injective functions f : R < IR are there which satisfy
(Vxy)(x <y = f(x) < f(y))? Are there 2% or 2272

(4) (Mathematics Tripos 1A, 2014.4.11.7E, modified). How many w-sequences
are there from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} that agree at infinitely many
places with the decimal expansion of V2?

(5) Say two permutations of IN are equivalent if they agree at all but finitely
many arguments. What can you say about how many equivalence classes
there are?

(6) If you have done some number theory (so you can remember what a
multiplicative function is!) and are doing this for revision. . .
How many multiplicative functions IN — IN are there?
How many multiplicative functions N — C?

(7) How many finite sets of reals are there?
How many countable sets of reals?
How many uncountable sets of reals?

10.1.7 Appendix

[with thanks to Ted Harding]

Here’s a strategy for identifying a natural number uniquely using only finitely many
bits. You ask “Is it greater than 1?7, “Is it greater than 2?7, “Is it greater than 4?7, “Is
it greater than 2"?”...until you get the answer “no!”, at n = k, say. Then you have
located it in the block [2¢7!,2¥], whereupon you start asking “Is it between 2¢~! and
2k=14277; “Is it between 2K ! and 2¥-1 +47” .. so you will locate m in no more than (’;)
steps. There is no global finite bound (independent of ) on the number of questions
you might have to ask, but you only ever have to ask finitely many.

But one can always find k with k questions: “Is it 17”; “is it 2?7, “is it 37”...

This isn’t really the same situation as the reals, co’s these binary choices are not
independent.
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10.1.8 Afterthoughts

By thinking about degrees of freedom one persuades oneself that the answer to (5)
should be “at least 2%, and there is an easy proof that it is, indeed, at least 2% but the
proof can be tricky to find. Here is a cute answer that occurred to me on my bike. [Well,
actually, the question occurred to me on my bike.] Fix a conditionally convergent
series, such as the Alternating Harmonic series, whose general term is n=D" We know
that by judiciously ordering the naturals we can get it to sum to any real that we like.
(Alice biting from the two sides of the mushroom to get her to the correct height). This
gives us an injection i : IR < the set of all permutations of IN. Now reflect that two
permutations of IN that differ on only finitely many arguments will give arrangements
that sum to the same real. This means that all the permutations that are the values of
this injection i belong to different equivalence classes. This gives us our lower bound
of 2%,

10.2 Declaring the ordinals as a higher-order rectype

The Indian Rope Trick.
10/xi/18. I now think i understand it. Ordinals i mean. The abstract datatype of
ordinals and the order on it are defined by simultaneous recursion:

0 is an ordinal,

S of an ordinal is an ordinal

0<Sx);

x < Sx);

If A and B are sets of ordinals we say A ~ B iff

MaeA)Ab e B)a<b)A(¥VbeB)(dacA)b< af]

If @ is a ~-equivalence class then sup « is an ordinal anda € A € @ —
a < sup

Then we can think of the family of isomorphism classes of wellorderings as an
implementation of this ADT. This subordinates the definition of wellordering but it
might be a clever move. OTOH i do like the old idea that there are fundamentally
TWO ways of thinking about ordinals.

One can also give a recursive definition of the class of wellorderings.

Indeed we can define IN and < by a simultaneous recursion. Probably a good
idea!

We define On, <¢, and =p, by a simultaneous recursion

“4This ensures that A and B have no top elements.
SNotice that if A is the empty set of ordinals sup (A) = 0 so we don’t really need the first clause.



116 CHAPTER 10. APPENDICES

DEFINITION 29 0 is an ordinal;

If a is an ordinal, so is succ(a@);

If X is a set of ordinals, then sup(X) is an ordinal;
0<as

a < succ(a),

Va € X)(FB € YV)(a < B) —sup(X) < sup(Y),

a € X - a <sup(X),

and various boring axioms to make trivial facts obvious:

a<f-o>BLa—>a=0
a<B-oBLy—-aly
a<fB-oB<y—-a<vy
a=f->p=y—>a=y;

a<f-oB<a— L

¥=p-opf=a

a=F—->a<p

a<fB—-oa<p

(Ma € §1)(FB € So)(@ <) — sup(S1) < sup(S»)

(I omit the—even more boring—obvious axioms to the effect that = is a congruence
relation for the other relations. Omitted too—for the moment—are axioms to charac-
terise sup: I'm thinking of things like (Va)(VS C On)((@ <sup(S)) — (B € S)(a <
) which i think is Horn.)

In the above definition < and < are a pair of partial order/strict partial order. I have
exploited both notations in order to ensure that all the clauses in the declaration are
Horn and we thereby have a legitimate datatype declaration.

The strict order < (I have omitted the subscript) is the engendering relation of the
datatype of ordinals. It is wellfounded for the usual reasons.

Once one has equipped On with a wellorder, one can use ideas like that of order
topology. Conveniently and unsurprisingly it turns out that this gives us the same no-
tion of limit as we presupposed in the extra constructor sup. The notion of continuous
function will of course be important to us.

HIATUS

Or do we define < and On by a simultaneous recursion and define = as <>?

10.3 The engendering relation on On is a wellorder

THEOREM 21 <y, is a wellorder.

Proof:
The engendering relation on ordinals is a wellfounded partial order—for the usual
reasons; the hard part is showing that it is a total order.
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The proof was discovered simultaneously and independently by Witt [28] and Weil
[2]] (tho’ neither of these two gentlemen would have described it in those termsﬁ) and
was used by them to establish that every inflationary function f from a chain-complete
poset with a bottom element into itself has a fixed point. The proof proceeds by con-
sidering the inductively defined set containing the bottom element, closed under f and
suprema of chains. The part of the proof that concerns us here is the proof that this
object is a chain. This of course is simply a proof that the ordinals are wellordered by
<. All T have done is recast their argument as a proof of this fact about ordinals.

Let us say an ordinal « is normal if

VB)(B < a@ — succ(P) < a).

If @ is normal, then we prove by induction on ‘8’ that

(VB)(B < a V succ(a) < P).

That is to say, we show that, if « is normal, then

{B:8 < aVsucc(a) <}

contains 0 and is closed under succ and sups of chains and is therefore a superset of
On. Let us deal with each of these in turn.

1. (Contains 0); By stipulation.
2. (Closed under succ); If y € {8 : B < a V succ(a) < B}, then either

(a) ¥ < a, in which case succ(y) < a by normality of @ and succ(y) € {8 :
B < aV succ(a) < B); or

(b) ¥ = a, in which case succ(a) < succ(y) so succ(y) € {8 : 8 < aV
succ(a) < B); or

(c) succ(a) <, in which case succ(a) < succ(y) (because succ is inflation-
ary) and succ(B) € {: B < a V succ(a) < S}

3. (Closed under sups of chains); Let § C {8 : 8 < @ V succ(a) < 8} be a chain.
If (VB8 € S)(B < a), then sup(S) < a. On the other hand, if there is 8 € § s.t.
B £ a, we have succ(a) < B (by normality of @); so sup(S) > succ(e) and
sup(§) € {B: B8 < aV succ(a) < B}

Next we show that everything in On is normal. Naturally we do this by induction:
the set of normal ordinals will contain 0 and be closed under succ and sups of chains.

1. (Contains 0); 0 is clearly normal.

2. (Closed under succ); Suppose @ € {y : (VB)(B <y — succ(B) < y}. We will
show (VB)(B < succ(a) — succ(B) < succ(a)). So assume 8 < succ(a). This
gives 8 < @ by normality of @. If 8 = @, we certainly have succ(8) < succ(a),
as desired, and if 8 < @, we have succ(B) < a < succ(a).

SThanks to Peter Johnstone for showing me this material.
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3. (Closed under sups of chains); Suppose S C {y : (V8 € On)(8 <y — succ(f) <
y)} is a chain. If 8 < sup(S), we cannot have (Yy € S)(B > succ(y)) for
otherwise (Vy € S)(B > ) (by transitivity of < and inflationarity of succ), so
for at least one y € S we have 8 < y. If 8 < v, we have succ(8) <y < sup(S)
since y is normal. If 8 = vy, then 7 is not the greatest element of S, so in S there
isy’ > y and then succ(8) <y’ < sup(S) by normality of y’.

If @ and S are two things in On, we have § < @ V succ(e) < S by normality of
a, so the second disjunct implies @ < 8, whence 8 < @ V @ < 8. So On is a chain as
promised,



Chapter 11

Preposterously Large Countable
Ordinals

11.0.1 A conversation with Michael Rathjen in Leeds, 1/v/2014

The following gadgetry goes back to Bachmann.

Start with a countable ordinal 8 and a ridiculously large ordinal, always written ‘QQ’
which can in fact safely be taken to be w1CK but is usually taken to be uncountable,
since that makes life much simpler.

I’m not 100% clear about the next bit but i think i have the general idea. That gen-
eral idea is to construct a C-increasing sequence of sets of ordinals, indexed by ordinals.
The first set is C(w, B) and it contains w and the ordinals less than 8. At each stage n we
announce that 6(n) is the least ordinal not in the set we have constructed at that stage.
At each stage you close under addition and Aa.w®. Apparently it’s straightforward to no, that bit is wrong
show that C(Q, 8) never exhausts all the ordinals, so that 6(«) is well-defined.

It transpires that 8(Q) is the first fixed-point e-number, aka ¢(2, 0).

0(Q + 1) is the second fixed-point e-number.

6(Q?) = Ty.

All values of 6 are less than Q.

Also the values of 6 do not depend on the choice of Q.

Every e-number below the Bachmann-Howard ordinal is a value of 6.

C(eq+1,0) [Q is the ordinals below the Bachmann-Howard ordinal

11.1 Notes of Countable Ordinals Reading Group meet-
ing on 16/v/2014

(look also at Taranovsky’s ordinalnotations.ps in my assorted-paper-archive folder)

119
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Under the guidance of Jeroen van der Meeren and Michael Rathjen I finally began
to get the first glimmers of an understanding of the use of a large ordinal in describing
initial segments of the countable ordinals. What follows is my notes of the discussion
of this topic at the meeting of the ordinals reading group on 16/v. Present were: your
humble correspondent, Professors Leader and Dawar, Arno Pauly, Philipp Kleppmann
and an unidentified Ph.D. student from the Lab. We put our heads together and made
some progress, and this file records my understanding of that progress.

Key word lurking in the background is impredicativity.
The following gadgetry goes back to Bachmann. [need a ref]

It’s probably a good idea for the reader to start off by keeping in mind the Veblen
picture of rows and rows of ordinals. The top row consists of powers of w, written in
increasing order left-to-right. Going down the page, each subsequent successor row
consists of the fixed points in the enumeration of the row immediately above it; at limit
stages the row is the intersection of all the rows above it. We assume that the reader is
familiar with this picture.

For ordinals @ and ¢ we define a set C(«, {) of ordinals and a function % : On — On,
by a simultaneous recursion on On?. The thing we are really interested in is the function
¥; the C(, {) are mere scaffolding, and they play no role in the system of notations with
which the J gadgetry will eventually furnish us.

The way to understand what is going on is to fix @ and consider C(e, 0), C(a, 1) and
so on. At these early stages it is pretty clear that £ € C(«, {) (and this is true whatever
¥ does, so we don’t need to worry just yet about what ¢ actually does). However
there may come a point at which { ¢ C(a, ). The first ordinal at which this happens
is declared to be #(a). This definition reminds me a bit of the definition of diagonal
intersection: it’s unstratified in the same way.

To construct C(a, {) you start with a set containing 0 and €, all the ordinals less
than £, and J(y) for all ¥ < «; you then close under + and @ — w®. Our first stab at
the definition of d(a) is: the least { such that £ ¢ C(a, ). Bear in mind that ¥(«) is not
defined as the least thing not in C(«, {). For one thing, it would need two arguments—
Ha, {)—not one. It’s a complex diagonalisation and you need to read the definition
carefully. Bind the ‘" somehow, and “the least ¢ such that { ¢ C(«, {)” sounds sensi-
ble. However we add a clause so that () is not the first £ s.t. { ¢ C(a,{) but rather
the first £ s.t. { ¢ C(a,{) A @ € C(a,{). It will become clear later what purpose is
served by this extra @ € C(a, {) clause, but you should not expect it to be clear at this
stage.

Here is something that threw me and it might throw you. It’s pretty clear that
Aal.C(a, {) is C-increasing in both arguments, but you mustn’t jump to the conclusion
that ¢ is strictly increasing—it isn’t! Observe also that it is not immediately clear
whether or not @ € C(w, ). It will transpire that this happens only when a has some
strong limit property.

The best way to understand what is going on is to fix a small @ and consider C(a, 0),
C(a, 1) and so on, so let’s do some of these by hand to calm our nerves. We will see
that the first few values of J are the first few e-numbers.



11.1. NOTES OF COUNTABLE ORDINALS READING GROUP MEETING ON 16/V/2014121

If @ < €q41 then @ has a CNF with base Q. That much is obvious. Let K(«) be the
set of ordinals that appear in the CNF for «, and let @* = max(K(a@)). Then we can say

Ha) < HB) iff either @ < B A a* < H(B)
or a>BANa)<p

Then
Ha)=min{{ e E:a" < ANVB<a)B < — HB) <)}

where € E means that £ is an e-number.

Compute a few values of C for small arguments to get a feel for things: you will
see that the first few values of ¢ are the first few e-numbers. Note that at these early
stages ) hasn’t been doing anything.

We note a couple of facts that might help us get oriented, and we may get round to
proving them later. ¢ is injective and all its values are e-numbers. @ < Q — @ < Ha)

C(0,0) contains 0 and €. We don’t have to put any values of ¢ into it co’s the first
argument is 0. We then close under addition and 8 — . Pretty clearly it is going to
contain everything less than €. It won’t contain ¢ itself (how could it, after all?) but
it does contain a lot of stuff beyond Q. We will see later [much later] what that stuff
does. For the moment it does nothing.

What about C(0, 1)? It’s just going to be the same set. C(0, w) is going to be the
same set, too. Observe that if { < ¢ then { € C(0, ), so all the C(0, ) are going to
be the same set all the way through all the ordinals less than €. Indeed even C(0, &) is
the same (tho” C(0, € + 1) is bigger).

The first £ such that £ ¢ C(0, ) is therefore €. The second condition on candidates
for 9(a) (the condition that requires that @ € C(«, {)) is satisfied—all it requires in this
case is that 0 € C(0, 0)—so we conclude that 1(0) is €.

Notice that there is never any need for us to compute C(0,¢) for any { > 9(0);
since the only purpose served by the C(«, {) is to enable us to calculate (), once that
is done we lose interest.

How about C(1,0)? It’s like C(0,0) except that we put #(0) (which is &) into it
before closing under the operations. This means that we get everything less than €
(think: Cantor Normal Forms for ordinals < €;). As we run through the { < € we
get nothing new in C(1,{) until we reach ¢ itself, so we conclude that #(1) = €. As
before, the condition on ¢ does nothing because all it requires is that C(1,¢) should
contain 1, and we already know it contains everything below ¢;.

Similarly we conclude that ¥(n) = ¢, for n < w. A picture emerges in which, for
small arguments, ) enumerates the € numbers. In fact Jeroen tells me that  is injective
and all its values are e-numbers.

Fixed point € numbers are sometimes called xk-numbers, so that «j is the least so-
lution to k = €. Let us think a bit about what ¥(«) might be. We start with C(«o, 0).
This set contains Q and all the e-numbers below «, and is closed under + and £ > w?.
Now, recalling what we know about Cantor Normal Forms, we can see that this act of
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closure will put into C(k, 0) every ordinal below «j (plus a lot of big rubbish beyond
Q). This immediately tells us that the sets C(ko, {) for { < o are all going to be the
same set as C(kp,0). We observe that kg ¢ C(kp, ko) so we might expect that we then
declare {(xp) to be k9. However note that kj is not only the second argument at this
stage, but also the first, so we look at the condition—"“a € C(a, {)”"—and we see that
it is not satisfied! So we have to look at a few more C(x, {) before we can say we have
reached ¥(«p). In fact we have to go as far as C(ko, € +1)-

The picture I now have is that, for @ < Q, @ enumerates the e-numbers less than
QO—except that it misses out the fixed points (that is what the condition is doing).
Another way of putting this is that it enumerates those ordinals in the first row that do
not appear in the second row; yet another way of putting it is to say that the purpose of
the clause is to prevent ¢ from having fixed points.

That was what one might call the first pass. I am assured by Jeroen that #(Q) is the
first fixed-point e-number (the first k-number)—aka ¢(2, 0)—and that $(Q + 1) is the
second fixed-point e-number.

OK, so: thus emboldened, let us check these allegation for ourselves and start by
thinking about what {¥(2) might be. We obtain C(Q, {) by starting with {}(a) : @ < Q}
and all the ordinals less than ¢ and closing under 8 — «” and +. If I was right earlier,
then we have all the e numbers less than the first «k number. So C(£, ky) contains Q but
does not contain &y so $(Q2) is going to be kq as foretold. Observe that we have now
reached a stage where all the stuff > Q that we always put into the C(a, {)s starts doing
something.

This is consonant with what the preceding paragraph is telling us, namely us that,
in the second pass, ¥ goes back and enumerates those ordinals in the second row that
do not appear in the third row. Indeed one has the impression that in the ath pass
enumerates in increasing order those ordinals in the ath row of the Veblen table that do
not appear in the @ + 1th row. Jeroen and Michael tell me that HQ?) = Ty. This would
appear to confirm what i have just been saying, because, after all, once one has made
Q passes (and thereby reached 9¥(Q?)) one should have hit every power of w below I'y.

Stuff to sort out

There now follow some observations from Jeroen and Michael that I am reassured to
find plausible but which I can’t at this stage actually prove.

Jeroen also sez @ < Q — a < Ha).

All values of ¥} are less than Q.

¥ is injective.

[These last two observations cannot both be true! What did he mean?]

The values of ¢ do not depend on the choice of Q). You can even take Q to be wICK .

Every e-number below the Bachmann-Howard ordinal is a value of 9.

C(enq+1,0) [Q is the ordinals below the Bachmann-Howard ordinal.
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All this machinery presumably supports a notational system. There is a binary ¢(-
,-) function that we can use to denote ordinals in sufficiently early levels of the Veblen
table. I would like to understand that properly.

Should say something about why all these ordinals described by this Bachmann
gadgetry are recursive. Anuj says that the ordering on the ordinals denoted by these
notations is decidable. So, for any of these ordinals—a,say—the set of [gnumbers
of] notations for ordinals below @ gives a wellordering of IN. [but why is this set of
notations for ordinals below @ a decidable set? Why isn’t it merely r.e....?]

Apparently it’s straightforward to show that C(€2, 5) never exhausts all the ordinals,
so that () is well-defined. Should find something to say about this.
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Chapter 12

Miscellaneous thoughts on
ordinals

Deeply important fact that you cannot compute an enumeration of a countable set
merely from a wellordering of it. Let (X, <x) be a wellordering, living in some model
of ZF that believes it to uncountable. In a bigger model it might become countable. If
there were an engine that could take a wellordering of a countable X and returned an
enumeration of X then clearly it couldn’t do it just by looking inside X. And it evi-
dently can’t do it by using machinery available to it by virtue of living inside a model
of ZF, co’s if it could then any set that could be made countable in a larger model could
be shown to be countable earlioer, in a smaller model.

12.1 automatic and suitable ordinals

w(l)
EXERCISE 19 The ordinal w® is the least ordinal not the length of an automatic
wellordering of IN. The Von Neumann ordinal w® is the least Von Neumann ordinal
that is not “suitable” for Basic Set Theory.

Prove these two facts and establish the connection (if any) between them (if any).

There are two texts on this, one by Delhommé and one by Gandy, but i have not
been able to get my hands on either of them, so this has become an exercise. (I don’t
want to fall foul of the parable of the talents by doing nothing). My first worry (not the
kind of thing that would bother Adrian!) is occasioned by the fact that the first property
of w® is a property of the set that is the Von Neumann implementation of it, whereas
the second is genuinely a property of the ordinal itself. This suggests to me that the
co-incidence we have noticed is a mere coincidence. But we shall see!

[Actually i have just found my photocopy of Gandy’s ms. but—as they say—I’ve
started so i’1l finish.]

125
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12.1.1 Suitable ordinals

My understanding is that a term ¢ is T-suitable iff whenever ¢(%) is Ag then so is
[t/ xilé.

There are four ways in which a term ¢ could appear in a formula ¢.

(1) r might occur in an equation ¢ = x; or on either side of an ‘€’ as in
(i) ‘x; €t or
(iii) ‘¢ € x;”. Finally

(iv) we might have restricted quantifiers ‘(Vx € £)’.

First, some preparatory work. In this section “ordinal” means “Von Neumann ordi-
nal”, and the “successor” of x is x U {x}.

Observe that “x is an ordinal” is Ag, beco’s it is “x is transitive and totally ordered
by €”. “y is the successor of 7’ is y = z U {z} whichis (VYw e yw =zVwey) Az €
yA(¥Yw € 2)(w € y) and is accordingly Ay. Consequently “x is a successor ordinal” and
“x is a limit ordinal” are both Ay.

Not only is ““y is the succcessor of x”” Ag, so too is *“y is the next limit ordinal after
x”. Ttis “yis an ordinal and x € y and everything in y \ x is a successor of a member of
¥\ x”. That will come in handy later on ...

DEFINITION 30 Let us say x is limit, if (x is an ordinal and is nonempty and) for
everyyin x there is a 7 € x with y € z and z is limit,. “limit)(x)” of course is just “x is
nonempty and not a successor”.

What about ‘x € «’? That is: x is an ordinal plus an extra condition, namely x
is the [Von Neumann] successor of one of its members and every member of x is the
successor of another member of x: (Vy € x)(dz € y)(y = z U {z}).

We can now say “x = "’ in a AIT way. It’s just

limit, (x) A (Yy € x)(=limit,(y)).

“t € x” is equivalent both to (dz)(z = t A z € x) and to (Vz)(z = t — z € x), which
means that if “# = x”" is AlT then so is “r € x”.

What about restricted quantifiers? (dx € 1)(¢), where ¢ is Ag? Well, this is both
@Ay =tA@xey)p)and (Vy)(y =t — (Ax € y)p) soit’s AIT.

So, working in the special case where 7 = BS T and assuming every A7 formula
is also ABST, we’re OK.

How about larger ordinals? w?? Everything in w® is either empty or is a successor
or is a “next limit” as above.
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12.1.2 Automatic Ordinals

An automatic ordinal is the ordertype of a countable wellordering with special proper-
ties involving finite automata. And here we need my first-year definition of a countable
set as a set for whose members we have a system of finite notation. That is, we can
think of its elements as finite strings over a finite alphabet. Very handy anyway (this is,
in my experience, by far the best way to give beginners a nose for telling which sets in
the real world are countable and which are not), but particularly so here, where we are
dealing with FSAs, which have strings for breakfast. Then it is easy to show that the
class of automatic wellorders is closed under lexicographic product.

We start with an illustration of why w is automatic. Think of a natural number 7 in
unary, as a string of of n ‘1’s capped off by an infinite string of ‘0’s, and we order these
strings lexicographically. The machine 9t we want is one that reads characters from
the 4-element alphabet {(1, 1), (1, 0), (0, 1), (0, 0)}. When the machine reads, for the kth
time, a character from this alphabet, it is looking at the pair of the two kth coordinates
of the two inputs. Mt is a three-state machine that stays in its initial state until it sees
something other than (1, 1). If it sees (0, 1) it accepts; if it sees (1, 0) it rejects. So w is
automatic. A tweak to this will show that w + w is automatic.

7 We can put all the odd numbers in increasing order before all the even numbers in
increasing order. This time the machine we want has four states. It cycles between two
states (“odd” and “even”) until it sees something other than (1, 1). Then which way it
jumps depends on whether it is an odd or an even state when it sees a pair containing a
0.

But we can do something more general, recalling that an automatic ordinal is the
order type of an automatic wellordering of a countable set, and that the countable set
doesn’t have to be IN. We can show that if two total orders (A, <4) and (B, <) are both
automatic (in virtue of two machines 9t, and 9ig) then so too are their disjoint union
and their lexicographic product. In general the product of two automatic structures is
automatic. This tells us that the set of automatic ordinals is closed under + and -.

12.1.3 Something to do with ordinals

For any countable limit ordinal « there is a bijection f : IN — {8 : 8 < a}.

Dissect {8 : B < a} into countably many copies of IN, namely the intervals starting
with limit ordinals. Then appeal to the fact that, if ((IN;, <;) : i € IN) is a sequence of
copies of (IN, <) then the IN; can be interleaved to obtain (| | IN;, <) where < is of
order-type w and < IN; =<;.

What on earth was i thinking of here?

12.1.4 Another question about ordinals

Suppose f : On x On — On. Consider the functions (for all @) fi, : B — f(@,B) and
fro B f(B,@). Can fi, and f>, both be normal for all @?
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From Andrés Caicedo, a theorem of Specker

This gives us the flavour . ..

Let’s define 7(a, 8) to be the least ordinal y such that if you two-colour the com-
plete graph on the ordinals below y then you either have a pink monochromatic set of
[inherited] order type a or a blue monochromatic set of [inherited] order type 5. We
say ¥ — (a, ). Here we are considering unordered pairs only, and in a more general
context we would make the 2 explicit in an exponent: y — (a, ).

Let @ be a countable ordinal, and consider the complete graph on the set A of all
ordinals below . A is countable, so there is a bijection between A and IN and we can
use this bijection to copy <n to a worder of A. We now have two worders on A and
we colour the edges in [A]* depending on whether or not these two orders agree on
the given edge. There will be monochromatic sets, coloured agree and disagree,
and we ask how long they can be in the order inherited from the longer order, of order
type a. Clearly no monochromatic set coloured agree can be longer than w and no
monochromatic set coloured disagree can be as long as w.

The argument of the first paragraph establishes that if @ < w; then @ / (v + 1, w).
In other words, 7(w + 1, w) < wy, and we probably have equality. .. haven’t checked.

On Mar 5 2019, Thomas Forster wrote:

The Doner-Tarski hierarchy - plus, times, exp.... on ordinals. Think of it as a
function with three arguments: DT (a,,v). It’s pretty clear that if @, 8 and y are all
countable then so too is DT (a, 8, y). It’s easy if one uses countable choice. I’'m hoping
that countable choice is not needed, but i have an awful feeling that it might be ... Do
you good people have any light to shed on this?

Am 05/03/2019 um 11:52 schrieb Thomas Forster:

This always happens—to me at any rate. I worry about some problem, and then
finally pluck up courage to ask an expert, and then i see the answer! I think the answer
to my question is: yes, it really is easy. All you have to do is show that, for countable
a, 3, v, the set of ordinals notated by DT (¢, ', y’) for o’ < @, < By’ <y is a proper
initial segment of the ordinals. That shouldn’t be too hard. It should be easy to prove
that it’s a countable set. That’1l do it. You don’t have to do a scary triple induction. No
countable choice needed.

Am iright? Sorry to be wasting your time like this!

Michael replies

If you have countable wellorderings X, Y, it is possible to explicitly construct or-
derings X.Y and X" (and many more) in RCA that have order-type .8 and o?, resp.,
if alpha and beta are the ordinals corresponding to X and Y, respectively. This explicit
construction is familar from ordinal representation systems (can e.g. be found in Girard
“Proof Theory and Logical complexity” 5.4.15). So I think one doesn’t need AC. How-
ever, it might be interesting to figure what background set theory one needs. I surmise
that a restricted form of KP with elementhood induction for £; formulas suffices.

Best

M.
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12.2 A Question from Peter Smith

Peter is asking me about the “synthetic” definition of ordinal exponentiation.

Let (A, <4) and (B, <p) be wellorderings of length @ and S respectively, with their
bottom elements notated ‘04’ and ‘Op’ respectively.

A function f : A — B is said to be “of “finite support” iff it sends all but finitely
many of its arguments to Op.

The idea is that if @ is the order type of (A, <4) and S is the order type of (B, <p) then
a” is the order type of the set of functions B — A of finite support, ordered “colex”—
by last difference. And let us—strictly in this environment only—write ‘B — A’ to
mean nonstandardly the set of functions from B to A of finite support (rather than—as
is customary—the set of all functions B — A).

[Why do we not take a “function of finite support” to be not a total function that
sends all but finitely many of its args to O but rather one that is undefined except at
finitely many arguments? I am not sure, but it’s perhaps beco’s it (slightly) complicates
the definition of the colex ordering. Also there is the consideration that exponentiation
of this kind is defined also between arbitrary linear order types with a bottom element,
not merely between ordinals, and it outputs linear order types. (Notice that to output
linear order types it has to restrict itself to functions of finite support; this means that
the connection to cardinals is lost). And it looks wrong that this definition of exponen-
tiation for linear order types should work only if the order type has a bottom element.
Actually this looks like a good reason for using the partial function definition!]

So let’s write out a proof that the order type of B — A [finite support version] really
is o® (where the ordinal exponentiation is defined by the usual recursion). Obviously
we fix @ (so we are doing a UG at top level) and then run a recursion on the exponent.

My students were given this exercise by Paul Russell, and they spent a lot of time
proving that the colex ordering on B — A is in fact a total ordering. This involves
a nasty hacky case analysis, which i think can be sidestepped by fixing A and a, and
then proving—by induction on S—that any B — A where otype(B) = S is of otype
a”...which is what i now propose to do.

Let’s take A to be /, and B to be Iz. (The set of ordinals < a and < § respectively).
Base case ...a" and ! can be done by hand, as it were. Let’s start with a?.

Casep =2
This matches the usual definition of « - .
Casef=y+1

Let us write ‘C” for 1, to make things readable.

To get o consider a y-shaped skeleton list, waiting to have its locations filled in
by ordinals below «, all but finitely many of them 0. Order the results colex, by last
difference. Now consider the effect of adding an additional address on the end, so there
are now y + 1 locations, no longer merely y. We get lots of new functions B — A of
finite support. For each { < a we will get a copy of all the old sequences that made up
a”. The old functions from C to A are not total functions B to A so we have to turn them
into such functions if we are to make them into members of B — A. Best to do that by
deeming them to all send y to 0. We now find that they are duplicated by new functions
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so we can simply ignore them. However we are interested in their order type, since
that is the ghost that remains. Think about the difference between the legacy functions
from C, and the new functions that send y to something other than 0. Since we are
ordering things by last difference this collection is divided into bundles according to
the last element, and each bundle is a copy of the bundle of legacy functions. Each
such bundle is of order type a” and there are @ of them, so the new collection is of
order type a”*! = of as desired.

Case: (3 is limit.

The key observation here is that every function in o#*! appears on the end of ev-
erything in @® so we are talking end-extensions, which makes everything continuous.
The point is that it is standard that whenever ('W; : i € I) is a family of wellorderings
linearly ordered by end-extension then the order type of the union is the sup of the
order types of the W;.

It follows from the foregoing that
AP = b . P

but it might be enlightening to have a independent hand-crafted artisan proof such as
you might pick up in Camden market. Let’s have a go.

We have two wellorders By and B,, with B, concatenated on the end of By, and
a wellorder A. A function f [of finite support] from B; U B, to A can naturally be
thought of as a pair of functions f; : By —» A and f, : B, — A. We have to verify
that the lexicographic order on (B; — A) X (B, — A) is the same as the colex order on
(B; U By) — A. But that is obvious (isn’tit... ?)

12.2.1 A snippet from my supervision notes that needs to be worked
in

[a question that asks if there is an (initial) ordinal @ such that @ = w,]

Consider the sequence S = w, Wy, Wy, - . . of von Neumann ordinals. It’s supremum
(union) is obviously going to be a fixed point. However, this question is on a Set Theory
sheet not an Ordinals sheet, so you should be thinking quite hard about how we use the
resources of set theory to prove that there really is a wellordering of this length. So we
should be asking: how do we know the ordinals stretch that far? The proof is a long
road. ..

For a start, how do we even know that the sequence is even there at all for us to take
its sup? Clearly we are going to need an instance of the axiom scheme of replacement.
Whack IN with the function class that sends n to w_,, with n dots. How do we know
that this function is defined for all natural numbers? Probably by induction on naturals.
Start with w,,. How do we know that there is a wellordering of this length? Well, w,,
is the sup of w, w;, w; ..., and we know that each of these exists by Hartogs’ lemma.
Then we obtain w,, by replacement again. (And it is known that you need replacement
to prove the existence of wellorderings that long.) And how are you going to get from
Wy 10 Wy, ?
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Bill,

I’ve been thinking about that nice stuff about diagonal intersections that your mate
The Wrong Ramsey turned up, and i don’t like what i’'m finding.

Consider a family {X; : i € IN} of subsets of w; or IN; (it won’t much matter
which). We want a diagonal intersection for it. Well, we pick the first thing—which
we call x;—in X;; then for x, we pick the first thing > x; that is in X; N X, then for x3
we pick the first thing > x, that is in X; N X, N X3 .... That way, from x, on (which
is to say cofinitely often) everything is in X; N ... X,. This ensures that the collection
{x, : n € IN} really is almost-below every X;. (By “A almost-below B’ i mean of course
that A \ B is finite (if i was working on subsets of IN) or countable (if i was working on
subsets of wy).

Obvious question: does this depend on how we order the set of X;? Another obvious
question: what happens if we add not one x at each stage but finitely many? Do we get
anything different? The answer to the second question, at least is: yes.

Consider the family {{k - 2" : n € IN} : k € IN} of subsets of the naturals. If we
do the construction i have just outlined above we obtain as our “diagonal intersection”
the set {2" : n € IN}. But suppose now we add at each stage not just the first available
thing, but the first three. That way we put into the diagonal intersection first 1, 2 and
3. At stage two we add 2, 4 and 6; at stage three we add 4, 8 and 12; at stage four we
add 8, 16 and 24. The difference between this set and the old one we constructed was
that this one contains all naturals of the form 3 - 2"”. And there are infinitely many of
them. The worst part of this is that we could decide at each stage to add the first five
available, or the first seven, and so on. So there is no diagonal set we can construct that
is maximal wrt almost-inclusion.

What this is telling us is that the quotient algebra P(IN)/ ~ (where x ~ y iff the
symmetric difference xAy is finite) is not a complete boolean algebra. I seem to re-
member that the boolean algebra P(X)/ ~; where x ~; y iff the symmetric difference
xAy is in the ideal /) is k-complete as long as the ideal [ is k-saturated—whatever that
is. Mind you, we can work out what it is from this theorem!

Dear Richard, David, Dugald and John,

Sorry to trouble you gentlemen, but I have a question about automorphisms of set
theory and countable ordinals that you might know something about, and it just might
pique your fancy. (Harold and I are giving a minicourse about countable ordinals in the
computer lab at the end of this month and it has set me thinking)

The background to these thoughts is that in any axiomatic development of set theory
(which is the obvious context for thinking about countable ordinals) there is always the
possibility of the models we work in being nonstandard. Nobody is freaked out by
the thought of nonstandard naturals. But of course if there are nonstandard naturals
then there are nonstandard countable ordinals too. After all, if n is a nonstandard
natural, then w + n is a nonstandard countable ordinal. This is just an illustration of the
fact that any system of notations for countable ordinals will—if there are nonstandard
naturals—engender lots of nonstandard countable ordinals too. More of that later.
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Of course there are not only models with nonstandard integers but (by Ehrenfeucht-
Mostowski for example) there are models with automorphisms that move them! Of
course if we are doing this development in set theory (which we probably are) then
these automorphism quite possibly act on the rest of the universe as well, and they will
certainly act on the countable ordinals as illustrated above. o of w + n will have to be
o(w) + o(n). w is definable so o (w)= w. So o(w + n) will have to be w + o(n).

OK, so suppose we have a nonstandard model of set theory, with an external au-
tomorphism o that moves some naturals. Clearly it moves some countable ordinals
as well, by virtue of the systems of notations we have for countable ordinals. If i un-
derstand the literature properly then for any countable ordinal @ whatever there is a
bijection between the ordinals below @ and some family-or-other of finite trees deco-
rated by natural numbers, and this bijection preserves enuff structure for us to think of
it as a system of notations for ordinals below «. If I understand this correctly, then any
automorphism of the naturals can act on the second number class in N; different ways.

The question this is leading us to is as follows: how informative is this availability
of systems of notations for initial segments of the countable ordinals? Does it enable us
to calculate precisely what o does to the countable ordinals once we know what it does
to the naturals? For example (and this is actually the particular example I am after) if
we know that n > o(n) for n a natural number, does it follow that @ > o(a) for @ an
arbitrary countable ordinal?

Put like this, it becomes a general question about the relation between Aut(countable
ordinals) and Aut(naturals) in an arbitrary nonstandard model of ZF. How different can
two automorphisms of the second number class be if they agree on the naturals?

Joe Shipman writes:

A better example of double exponential growth comes from Conway: the finite
ordinals which form a field under nim-addition and nim-multiplication are those of the
form 2%

Postscript for those who don’t have ”On Numbers and Games”:

Nim-addition = adding base 2 without carrying; the Nim-product of x and y is most
simply defined by the following rules:

1. if x < yand yis 2%, x#y = xy
2. ify = 2%, y#y = (3y/2);
3. use associative and distributive laws to derive the rest

The infinite ordinals which are fields under the Nim operations are much more in-
teresting. w®” is the first algebraically closed field under the Nim-operations (that is,
the ordinal w®” is the first ordinal transcendental over the earlier ones); the next tran-
scendental is very large, and Conway leaves as an open question what its relationship
is to the first impredicative ordinal I['y.

John Baez writes:
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Gentzen proved the consistency of Peano arithmetic in 1936:

3) Gerhard Gentzen, Die Widerspruchfreiheit der reinen Zahlentheorie, Mathema-
tische Annalen 112 (1936), 493-565. Translated as "The consistency of arithmetic” in
M. E. Szabo ed., The Collected Works of Gerhard Gentzen, North-Holland, Amster-
dam, 1969.

Goodstein’s theorem came shortly afterwards:

4) R. Goodstein, On the restricted ordinal theorem, Journal of Symbolic Logic, 9
(1944), 33-41.

but Kirby and Paris proved it independent of Peano arithmetic only in 1982:

5) L. Kirby and J. Paris, Accessible independence results for Peano arithmetic,
Bull. London. Math. Soc. 14 (1982), 285-93.

That marvelous guy Alan Turing wrote his PhD thesis at Princeton under the logi-
cian Alonzo Church. It was about ordinals and their relation to logic:

6) Alan M. Turing, Systems of logic defined by ordinals, Proc. London Math. Soc.,
Series 2, 45 (1939), 161-228.

This is regarded as his most difficult paper. The idea is to take a system of logic
like Peano arithmetic and throw in an extra axiom saying that system is consistent, and
then another axiom saying *that* system is consistent, and so on ad infinitum - getting
a new system for each ordinal. These systems are recursively axiomatizable up to (but
not including) the Church-Turing ordinal.

These ideas were later developed much further....

But, reading original articles is not so easy, especially if you’re in Shanghai without
access to a library. So, what about online stuff - especially stuff for the amateur, like
me?

Well, this article is great fun if you’re looking for a readable overview of the grand
early days of proof theory, when Hilbert was battling Brouwer, and then Goedel came
and blew everyone away:

7) Jeremy Avigad and Erich H. Reck, ”Clarifying the nature of the infinite”: the
development of metamathematics and proof theory, Carnegie-Mellon Technical Report
CMU-PHIL-120, 2001. Also available as http://www.andrew.cmu.edu/user/avigad/Papers/infinite.pdf

But, it doesn’t say much about the newer stuff, like the idea that induction up to a
given ordinal can prove the consistency of a logical system - the bigger the ordinal, the
stronger the system. For work up to 1960, this is a good overview:

8) Solomon Feferman, Highlights in proof theory, in Proof Theory, eds. V. F. Hen-
dricks et al, Kluwer, Dordrecht (2000), pp. 11-31. Also available at http://math.stanford.edu/ fe-
ferman/papers.html

For newer stuff, try this:

9) Solomon Feferman, Proof theory since 1960, prepared for the Encyclopedia
of Philosophy Supplement, Macmillan Publishing Co., New York. Also available at
http://math.stanford.edu/ feferman/papers.html

Also try the stuff on proof theory, trees and categories mentioned in “week227”,
and the book by Girard, Lafont and Taylor mentioned in "week94”.

Finally, sometime I want to get ahold of this book by someone who always en-
livened logic discussions on the internet until his death in April this year:

10) Torkel Franzen, Inexhaustibility: A Non-Exhaustive Treatment, Lecture Notes
in Logic 16, A. K. Peters, Ltd., 2004.
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The blurb sounds nice: The inexhaustibility of mathematical knowledge is treated
based on the concept of transfinite progressions of theories as conceived by Turing and
Feferman.”

I have long suspected that we will eventually be able to expand the foundations
of mathematics by using computer technology to define larger recursive ordinals than
is possible with out such an aid. To that end I have developed and just released an
interactive command line ordinal calculator that supports ordinal notations through and
bit beyond those definable by the Veblen function.

The program can be an aid to understanding the recursive ordinals. It supports
ordinal arithmetic: (addition, multiplication and exponentiation) displaying the normal
form output in plain text and/or LaTeX format. For any ordinal notation in the system,
it can list a sequence of smaller ordinals whose union is the original ordinal. Of course,
for limit ordinals, it can only list a finite subset of the complete sequence.

This program is licensed for free use and distribution under the GPL version 2 and
can be downloaded from http://www.mtnmath.com/ord or https://sourceforge.net/projects/ord/
This is a beta (first public) release. Any and all feedback including suggested improve-
ments and problem reports will be appreciated.

The program is designed to be expandable and others are encouraged to expand
it. In addition to a 6 page user’s manual there is a second manual that describes the
program structure and gives an overview of and references for the mathematics on
which the program is based.

Paul Budnik

www.mtnmath.com

i lookd at schmidt’s paper(s). if i have it right she left open the Q whether you can
choose a ladder system such that F;isincreasing forallctblei?

i am not clear if this is now known? the only papers i can find which refer to
schmidt are

MR0963205 (89m:03053) Aoyama, Kiwamu(J-KYUSS); Kadota, Noriya(J-HROSEE)
A note on built-upness. Mem. Fac. Sci. Kyushu Univ. Ser. A 42 (1988), no. 2, 159-
165. 03F15 (03D55) More links PDF Doc Del Clipboard Journal Article Make Link

This note extends the concept of built-up systems of fundamental ordinal sequences
by D. Schmidt [Arch. Math. Logik Grundlag. 18 (1976/77), no. 1-2,47-53; MR0476462
(57 16025a)] and the authors’ concept of (n)-built-up system (“(0)-built-up” agrees
with “built-up”). The paper introduces the notion of (n)-k-diagonal-built-up systems of
fundamental sequences and shows that the canonical system of fundamental sequences
used by J. Ketonenn and R. Solovayn [Ann. of Math. (2) 113 (1981), no. 2, 267-314;
MRO0607894 (84c:03100)] is not (0)-built-up but is (1)-built-up, (1)-0-diagonal-built-
up and also (0)-1-diagonal-built-up. The L&b-Wainer system of fundamental sequences
[M. H. Lob and S. S. Wainer, Arch. Math. Logik Grundlag. 13 (1970), 39-51; ibid.
13 (1970), 97-113; MR0282922 (44 156) 8ab; correction; MR0317912 (47 6461)]
turned out not to be (n)-built-up for any n < w but the note shows that this system is
(1)-0-diagonal-built-up and also (0)-1-diagonal-built-up.

AND
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MRO0541689 (81a:04002) McBeth, Rod A note on Hardy’s persistent numbers. Z.
Math. Logik Grundlag. Math. 25 (1979), no. 4, 375-378. 04A10 (03F15)

More links

PDF Doc Del Clipboard Journal Article Make Link

In 1903, G. H. Hardy [Quart. J. Pure Appl. Math. 35 (1903), 87-94; Jbuch 34,
77] defined for each countable ordinal @ a strictly increasing sequence {ay} of pos-
itive integers, and was thus able to obtain N; distinct integer sequences. The con-
struction assumed the existence of w-fundamental sequences for each countable limit
ordinal. The author defines a “natural” fundamental sequence for each limit ordinal
a < go and an associated set of increasing functions {h,: w — w|o < &}. Proper-
ties of this particular collection of increasing sequences of integers demonstrate the
impossibility of defining such “natural” fundamental sequences for all countable limit
ordinals. Reviewer’s remarks: The impossibility of defining fundamental sequences
for all countable limit ordinals with the “natural” properties required by the author has
already been proved by H. Bachmann [Transfinite Zahlen, see p. 49, Ergeb. Math.
Grenzgeb., Band 1, Springer, Berlin, 1967; MR0219424 (36 2506)]. See also the pa-
per of Diana Schmidt [Arch. Math. Logik Grundlagenforsch. 18 (1976/77), no. 1-2,
47-53; MR0476462 (57 16025a); postscript, ibid. 18 (1976/77), no. 3-4, 145-146;
MRO0476463 (57 16025b)].

This looks like a message from James

here are the standard proofs of solovay splitting

proof 1: choose a ladder system (IE assign to each delta an increasing cofinal se-
quence a(0,n) : n < w)

i claim that there is n such that alpha(delta, n) “tends to w; modulo the club filter”,
IE there is n such that for every « there are stat many ¢ with a(6,n) > @

suppose not. then for all n there is «, such that alpha(delta, n) j= alpha-n for club

mnay delta. intrsect the clubs and take the sup alpha*o fthealpha,.then forclubmanydeltawehavethat f oreverynalpha(delta, n) <
alpha*...absurdsincewecan findsuchadelta > alpha*andthenthealpha(delta, n)arenotco final
fix such an n. now we choose by induction increasing countable ordinal beta; suchthat f oreveryitheseto f deltawithal pha(delt

beta;tochooseasuitablebeta;,[notingthatdelta : — > alpha(delta, n)isregressive!]
proof 2 (much my favourite): suppose that S can’t be split. then the ideal NS re-
striction S is saturated, in fact even more as the quotient algebra has ccc. so force with

P(omega;)/NS restructionS togetanultrafilter U ontheV—powerseto f omega,whichgivesS measureone.nowworkinV[Uto form
V————> MsubsetV[U], withomega,in j(S )andomega, = crit(j).thisisabsurdasS isaseto f countableordinals, soMthinksome

On 5/22/2011 10:02 AM, William Tait wrote:

€ has various representations. Here’s one, due to Lev Beklemishev, that should
appeal to computer programmers because the only datatypes involved are integers and
strings, no trees or other such representations of Cantor normal form.

Let w be a word over the alphabet N = {0, 1, 2, ...}

At stage m, beginning from m = 1:

If w is empty then halt;

else if the last character of w is 0 then delete it;

else {
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1. Identify the longest suffix of w all of whose characters are at least as large as the
last character of w;

2. Decrement the last character of w (and hence of the suffix).

3. Append m copies of the suffix to w.

}

So for example if initially w = 2102031 then w evolves as follows.

1: 210203030

2: 21020303

3: 21020302222

4: 21020302221(2221)*

5:210203022212221222122212220(22212221222122212220)°

and so on.

Those for whom C is clearer than English can find further disambiguation athttp:
//boole.stanford.edu/bek.c

Inhttp://www.phil.uu.nl/preprints/preprints/PREPRINTS/preprint219.
ps. gz Beklemishev argues that termination of this process for all words w is equiva-
lent to 1-consistency of PA in Elementary Arithmetic as defined there. (I'd say “shows”
instead of “argues” were his argument not well above my pay grade.) Separately he
also proves its termination by induction on &.

I would have thought termination of the above process for all w was an entirely
finitistic matter, so if it isn’t then you have my full attention.

I’d be interested to know whether his equivalence result still holds when ”m copies”
is replaced by 2 copies,” or even 1 copy,” in step 3.

Vaughan Pratt


http://boole.stanford.edu/bek.c
http://boole.stanford.edu/bek.c
http://www.phil.uu.nl/preprints/preprints/PREPRINTS/preprint219.ps.gz
http://www.phil.uu.nl/preprints/preprints/PREPRINTS/preprint219.ps.gz

Chapter 13

Answers to selected exercises

Exercise2
Part 4]
On May 18 2022, Nikita Fufaev wrote:

Hello Dr. Forster.

I am in the process of reading your draft of book, "A Tutorial on

(mainly countable) Ordinals" found here:
https://www.dpmms.cam.ac.uk/ " tf/ordinalsforwelly.pdf but i can’t seem

solve the second exercise. One of the questions asked is 4. Can you simplify
(\alpha\beta\gamma) "\omega? Disregarding the phrasing of the question
(which allows me to answer "no" and move on), what is the solution? Or at
least, what form is the solution? I saw the limerick but i still can’t

find the answer. Should it be an expression consisting of ordinary

ordinal addition, multiplication and exponential that gives value equal to
(\alpha\beta\gamma) "\omega for any choice of \alpha, \beta, \gamma from On?
Should it have less than three operations?

VVVVVVVVYVYVYVYVYV

The first thing to get straight is whether or not a¢fy can be simplified. So we want to
check whether any of these guys “multiplicatively absorb” any of the others. Specifi-
cally ask whether or not -8 > B and -y > y. If the answers to these two questions are
‘no’ then we can’t simplify afy. The other questions we want to ask are are fa = a?

and yB8 = B?

(aBy)” is of course the sup of (¢fBy)" for n < w. This directs our attention to finite
multiples like

There once was a fellow of Trinity
who raised x y z to infinity;
and then the old brute
extracted the root;
he afterwards took to Divinity.

137
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aByapyafy---afy

This is the stage at which we have to consider the equations and inequalities alluded
to above. If @ multiplicatively absorbs 8 and 8 multiplicatively absorbs y then any finite
product (eBy)" simplifies to a"By and the infinite product becomes a®.

So my best guess at this stage is that either @By simplifies or, failing that, it’s .

Exercisdl]

If every subordering of a given toset is iso to an initial segment then the toset is a
wellordering.

Let (X, <x) be a nonempty toset whose every suborder is isomorphic to an initial
segment. (If it isn’t nonempty then it’s certainly a wellordering). Since it’s nonempty
it has a singleton subordering, which must be isomprhic to an initial segment. So
(X, <x) has a bottom element. So every initial segment has a bottom element. So every
subordering has a bottom element. So (X, <y) is a wellordering.

Elementary, but important. Curiously the earliest published proof I know of is in my
book Reasoning about theoretical Entities where i proved it to demonstrate the fitness-
for-purpose of an ordinal analysis i was developing. I did that beco’s it was a standard
fact that my analysis needed to reproduce (Like Russell and Whitehead proving 1 + 1
= 2). I will be grateful to any reader who can find an earlier published proof.

Exercise

Give a recursive definition of ordinal subtraction, and prove that your definition obeys
B+(@-p) =a.

This is quite a good exercise. Do you fix @ and do it by recursion on 8? No, beco’s
you would need to think about deleting the first member of a wellordered set, and that
is ungainly. You fix 8 and declare it by recursion on &

DEFINITION 31 [fa < S8 then O; else

succ(a) — 8 = succ(a — ),
sup(A) - B =supfa—-B: a € A}

Exercised

1. Write down subsets of R of order types w + w, w* and w?® in the inherited order.

For w+w one of my students came up with {1-1/n: n € NJu{10—-1/n: n € IN}.
Why that rather than {1 — 1/n: n € N}U{2 - 1/n: n € IN}, i wondered. . EP His
answer is the range of an order-preserving map from the ordinals below w + w

2 Actually it has just occurred to me that his ‘10’ is binary!!
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into R. My preferred answer is the range of a continuous order-preserving map
from the ordinals below w + w into R. [What is the topology on the ordinals in
virtue of which this map is cts?]

w? is not that hard: {n — 1/m : n,m € IN}, but > requires a bit of work. The key
observation is that, in each copy of w, the gap between the mth and the m + 1th
point is wide, so if you want to squeeze an extra copy of w in there you
do

1
m(m+1)

_1_ 1
m  km(m+1)

{n :n,m,k € IN}

Actually an answer i have just seen from one of my students (thank you Louie
Gabriel!) suggests that you can get " by continued fractions of length n. I
think that works, and that the key is to show that the set of continued fractions
of length n with coefficients from IN\{0}, (using subtraction not addition!) is
legicographically ordered to order type w":

1
ag — (CF1)

ay —

For example:

1
{ap — Cl_l tag,a; € IN\ {0}} (CF2)

gives w?.

Key observation: multiplicative inversion and additive inversion are both order-
reversing, so their composition is order-preserving, with the effect that expres-
sions like (CF1) and (CF2) above are monotone increasing in all the a;. We can
make this explicit by rearranging ag — % to (ap-ay —ay)/a; and ((ag—1)-ay)/ay;
finally ignoring the denominator since is it positive and doesn’t affect the order
(and ignore the ‘-1’ similarly) to get ag - a; which looks like IN x IN.

So the next term we want is )

1
al—a

(CF3)

which is (ag-aj -a; — 1 —ay)/(a; - a, — 1) which we can analogously process into
(ap - a; — 1) - ap which looks like N3

If the order is genuinely to be lexicographic we need to know that altering a;
ad lib cannot have as much effect as altering a; by even 1. And this is clear:
however small we make a, (and it cannot be smaller than 2) we cannot get the
effect of altering a;.
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So the claim is that

{ao — ———— a0, a1,a2,a3 € N\ {0}

ay — PRnE

is a subset of Q of order type w* in the inherited order. And so on!

I think it’s pretty clear that this works for continued fractions of this (rather
restricted) style for all n, so we get—for each n € IN—a set of rationals of length
«" in the inherited order. Let us call the nth subset of the rationals thus obtained
W,., so that the displayed set is Wj.

Notice that we do not have W,, € W,,,;! This is an infelicity rather than a bug.
When we replace W,, by W,,,; we do not so much put a copy of IN at each place
where we had a point before, as delete that point and then insert a copy of IN
after the hole we have just made. W, contains all the natural numbers, but W,
doesn’t contain any natural numbers. So really the representation of w” that we
want is not so much W, as J,,<, Win.

I don’t think there is any real mathematics in this, but it is quite cute.

It is natural to expect that if we redefine W, in this way then the order type of the
union must be w®. A word of warning is perhaps in order here. It is not generally
clear that the union of a nested family of wellorderings is a wellordering. After
all, the negative integers is the union of the nested finite wellorderings [—n, 0].

In fact we do not get w®. This is because lots of things have stuff inserted below
them at later stages, so one obtains infinite descending sequences in the union.
There is an old tripos question about this is which it will do you no harm to
look at: 2009 paper 3 16G. I have a discussion answer to this question which
is linked from my home page. https://www.dpmms.cam.ac.uk/~tf/cam_
only/oldLSTtriposquestions.pdf]

. Let @, B and y be ordinals.

If @ < B, must we have @ +y < B+ y?

If @ < B, must we have @ +y < S+ y?

The first thing to do is to recall lemma[I]to the effect that the two definitions of
< for ordinals are equivalent.

Does a picture serve for a proof for questions like these? Depends partly on
whether you are (i) trying to persuade yourself of the truth of the allegation
(by gaining understanding) in which case it’s probably all right, or (ii) trying to
remove all doubt, in which case it might not be.

In any case, the way to understand these questions is by thinking of ordinals

as isomorphism classes of wellorderings. Don’t even think about trying to prove
them by reasoning about von Neumann ordinals. There are many reasons for this.


https://www.dpmms.cam.ac.uk/~tf/cam_only/oldLSTtriposquestions.pdf
https://www.dpmms.cam.ac.uk/~tf/cam_only/oldLSTtriposquestions.pdf
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One fairly compelling one is that there is no corresponding way of concretising
order types of total orders that don’t happen to be wellorderings. So if you think
of ordinals as von Neumann ordinals not only do you burn in hell for all eternity
but you lose the connection with order types in general.

A C D B
-~ P P

AC is of length «;
AD is of length ;
DB is of length v.

This picture makes it obvious that the answer to the first part is ‘yes’; so of course
you expect the answer to the second part to be ‘no’, and you are correct: 1 < 2
butl +w=2+w=uw.

Notice that adding on the right preserves strict inequality: w + 1 < w +2

. Show that the inductive and synthetic definitions of ordinal multiplication agree.
This question goes to the heart of how to think of ordinals.

The correct way to prove that the two definitions are equivalent is to fix @ and
prove by induction on 8 that the two definitions agree on « - 5.

Well it’s obviously true for S = 0! (OK, it’s trivial, but at least it’s a start.)

Suppose 8 = y + 1. Then the recursive definition tells us thata - § = @ - y + a.
But this is clearly the length of a wellorder (any wellorder) obtained by putting
a wellorder of length a on the end of a wellorder of length 3 - y.

It’s at the limit stage that we have to do some work. So suppose the inductive
and synthetic definitions of « - y agree for all y < 8. Consider a wellorder that is
of length « - B according to the synthetic definition. Up to isomorphism we can
think of it as the lexicographic product of (A, <4) X (B, <g) for two wellorderings
(A, <4) and (B, <p) of lengths a and 8. Now let y be an ordinal below 8. Every
such ordinal is the order type (length) of a unique initial segment of (B, <p); let
us write this as (B, <p) I'v. Our lexicographic product (A, <4) X (B, <p) is now a
colimit of all the (A, <4) X (B, <g) Iy for y < 8. Each (A, <4) X (B, <p) [y is of
length « - y—and that is according to either definition, by induction hypothesis.
So the length of (A, <4) X (B, <g) must be the supremum of {& -y : v < 8}, and
this is the recursive definition of @ - .

. Is there a non-zero ordinal a with aw = a? What about wa = a?

These are easy if you have correctly understood the (synthetic definition) of or-
dinal multiplication. Just in case you need a reality check, there is no « s.t.
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a - w = @, whereas there are lots of @ s.t. w-a = a. Let 8 be any ordinal s.t.
1+8=p Then o =" =w- b

Why is there no ordinal @ s.t. @ = @ - w? Various ways of seeing this. You can
argue that, beco’s « is an ordinal, you have ¢ < @ + 1 < @ - w. Or you can do
this:

Suppose « is a linear (aka total) order type satisfying @ = @ - w. Then there is
a linear order (A, <4) which is isomorphic to a proper initial segment of it. Let
7 be the isomorphism. Consider any x € A \ 7“A. We must have m(x) <4 x, so
X >4 m(x) >4 72(x)...1s a subset of A lacking a least member. So (A, <4) is not
a wellorder, so « is not an ordinal.

Moral: no wellordering can be isomorphic to a proper initial subset of itself.

I am making two points here. One is that when it comes to proving things about
ordinals that rely on the things being ordinals you don’t absolutely have to do
induction; there may be another way of exploiting the fact that these things are
ordinals. The other point is that some of things that don’t happen with ordinals
might happen with other order types: @ = @ - w can happen if @ is not an ordinal.

(Can you find an example?)

. Let @, B,y be ordinals.

Must we have (@ + B)y = ay + By?
Must we have a(B +y) = o8 + ay?

The first is false and the second is true. Remember what multiplication is: a - is
the order-type of a thing that is 8 copies of thing of length a—not the other way
round. The definition is not symmetrical so you shouldn’t expect multiplication
of order types to be commutative. The only sane way to prove this is by using
the synthetic definition. In fact it is always best to prove facts about ordinals
synthetically (wherever possible) rather than by induction. Let me say a bit about
why this is so. Doing it by induction relies on the three order-types being ordinals
(or at last one on which you are doing the induction being an ordinal) but that’s
not why it’s true. It’s true for arbitrary linear order types; the fact that o, 8 and y
are ordinals is irrelevant and shouldn’t be exploited!

If you want to do it by induction there are some things you should think about.
For a start there are two kinds of induction you can do over the ordinals. There is
structural induction, where you consider three cases: (i) @ = 0, (ii) a successor,
and (iii) @ limit. Then there is wellfounded induction where you prove that « is
F as long as every smaller ordinal is F. These correspond to the two kinds of
induction you can do over IN, and they are of course equivalent—just as those
two kinds of induction over IN were. But in practice of course it’s sometimes
much easier to do it one way rather than the other.

Now suppose you are trying to prove that ¢(e, ) holds for all ordinals @ and 3.
There are six ways you could do it.
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(i) Say: “let @ and S be arbitrary”, reason about them, conclude the things
you want;

(i) You could fix a, and prove by induction on S that (V8)(¢(a, 8)), where
your induction hypothesis is ¢(«, 8); then say “but & was arbitrary...”

(iii) You could fix 8, and prove by induction on « that (Va)(¢(e, B8)) where
your induction hypothesis is ¢(e, 8); then say “but § was arbitrary...”

(iv) You could prove by induction on « that (V8)(¢(a, 8)) where your
induction hypothesis is (Y8)(¢(a, B));

(v) You could prove by induction on S that (Va)(¢(a, 5)) where your
induction hypothesis is (Ya)(¢(a, 5));

(vi) You could perhaps do a wellfounded induction on the lexicographic
product . .. infer ¢(a, B) from the assumption that ¢(a’,8")
holds for all pairs o’, 8’ below @, 8 in the lexicographic product.

That’s bad enough. The thing we are challenged to prove here has three variables
in it. We need a rule of thumb. One of my students made a rather good remark
about this. He says: “always do the induction on the rightmost variable”. Admit-
tedly this sounds a bit hand-wavy but it looks to me like good adviceﬂ The point
is that the recursions for + and X and exp all work on the rightmost variable.

Some thoughts and advice is in order on this first crop of questions on ordinals
and order types. You will encounter questions about equations and inequations,
and invited to prove the true ones and find counterexamples to those that are
false. Some of the true ones (like distributivity on the right of X over +, and
associativity of X and +) work for arbitrary linear order types and therefore can
be proved by hand and you don’t need induction. Don’t use induction if you
don’t have to! Some of them work only for ordinals and then you need to exploit
the fact that you are dealing with ordinals. @ + 1 > « is true for ordinals but not
for arbitrary linear order types (think of w*) so you have to exploit somehow the
fact that « is an ordinal. Exploiting the fact that the characters in your play are
ordinals doesn’t necessarily mean you have to be doing an induction ...tho’ it
usually does.

6. Find two totally ordered sets such that neither is isomorphic to a subset of the
other. Can you find three such sets?

You want three tosets none of which embeds in either of the others? Piece of
cake. The rationals, the countable ordinals and the countable ordinals turned
upside-down. In fact with a little work you can show—just using lots of copies of
IN and IN upside-down (the negative integers)—that you can get finite antichains
as wide as you like. Here’s how to get an antichain of width 2". Take all your

3 Always learn from your students!
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n-bit words, and in each replace the Os by w and the 1s by w* (recall that w*
is the order type of the negative integers) , and concatenate them. Thus, when
n = 2, you get the 22 order types: w + w, w + w*, w* + w and w* + w* which
form an antichain. Can you get infinite antichains? Think about what happens
if you have things like this made from w pieces strung together. You don’t get
an infinite antichain! Yes, you can get infinite antichains, but in every infinite
antichain there must be at least one total ordering of an uncountable set (so,
in fact, infinitely many, if you think about it). This is corollary of a beautiful
theorem of the late and much lamented Richard Laver. If you want to have a
look at it (and it is very nice) then point your search engine at Laver’s proof of
the Fraissé conjecture.

7. Let a, B and 7y be ordinals.
(i) Must we have &®*Y = of - a??
(ii) Must we have & = o#7?
(iii) Must we have (a - B)Y = a” - §7?
Make sure you really understand ordinal exponentiation before you tackle this
question ...it’s deceptively hard.
The first is pretty obviously true, and you prove it by induction (on “y’).

It may be worth pointing out that the true equations concerning exponentiation
also work for arbitrary linear order types and can be proved synthetically us-
ing the synthetic definition of ordinal exponentiation ... which you haven’t been
given. So you will have to use induction!

Part (ii) is true and you prove it by induction on “y’.

Part (iii) is false; takea = 8 =2 and y = w.

Exercise

“Let (X, R) be a wellfounded binary structure, with rank function p. Prove that

(Vx € X)(Va < p(x) Ty € X)(p(y) = ).

You’re obviously going to do this by induction; but is it by induction on R or on
<on””
You do it by induction on R. The assertion to prove for all x € X is that

(Va < p(x)Ty € R){xH(p(y) = @) (%)

The rather strange-looking existential quantifier is saying that there is a y related to
x by the transitive closure #(R)) such that ....

Suppose (**) holds for all z s.t. zRx, and let @ < p(x). If p(x) is successor, life is
easy; if p(x) is limit then & < p(z) for some z s.t. zRx. But then there is a witness to the
‘Jy € #(R)*“x}) by induction hypothesis.

|
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Exercise

Show that w“' = w;.
Is w; the least ordinal @ such that w* = a?
[You may use standard facts about ordinal arithmetic.]

w*' is of course sup{w” : @ < w;} and we want this to be no more than w;.
It’s clearly no less than w; because @ < w® always and the @ we are summing over
are unbounded below w; for it to be no greater than w; we need w® to be countable
whenever « is. If we try to do this by induction on @ we have no problem at successor
ordinals of course, co’s we’re just multiplying by w, but at limit stages we are liable to
find ourselves appealing to the principle that a union of countably many countable sets
is countable. Why is w" countable? Well, if A is countable limit it is sup{d, : n € N)
and each (von Neumann ordinal) w" is [a] countable [set] by induction hypothesis, so
the (von Neumann ordinal) w* is [a] countable [set] by countable-union-of-countable-
sets-is-countable. This use of countable choice seems to be unavoidable.

However, if we use the synthetic definition of ordinal exponentiation we obtain a
set (the set of all those functions from a wellordering of length @ to IN that take the
value 0 at all but finitely many arguments) equipped with a natural wellordering that
is of order type w®. This set can be shown to be countable, as follows. Each such
function can be thought of as a finite set of ordered pairs of ordinals-below-a paired
with naturals. There are countably many such pairs and therefore only countably many
finite sets of such pairs.

I may yet be prodded into explaining why this second argument doesn’t require
Choice. I can imagine that it’s not obvious!

Exercise

PTJ comments:

[The original question worked with w-continuous functions, for which one has a much
easier proof of the existence of fixed points, but the question itself becomes harder
because you have to verify that every function in sight is w-continuous. As it stands, it
should be pretty easy, except for the proof that m is order-preserving (needed to show
that f is order-preserving): for this, observe that if x| < x; then m(x,) is a ‘post-fixed
point’ of gy, (that is, m(xp) > gx,(m(xy))), and so {y € Q : y < m(xp)} is a ‘closed set’
in the sense used in the construction of the least fixed point m(x1) of g, .]
And my discussion. ..

1. Given x € P, suppose y; < y, € Q. Then (x,y;) < (x,y2) so h({x,y1)) <
h((x, y2)) 80 gx(y1) = ha({x, y1)) < ha((x, y2)) = 8x(¥2), S0 gy is order-preserving.
2. mis order-preserving. Proof:
Suppose x; < xp € P. SetY ={y € Q : y < m(xp)}. Fory € Y we have
8x (¥) = ha(€x1, ) < ha({x2,y)) = m(x2) 50 gy, acts on Y.
Now if C C Y is a chain then its sup is below m(x;) so Y is chain-complete,

whence g,, 'Y has a fixed point yo € Y with m(x;) < yo < m(x;) and m is
order-preserving.
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Now suppose x; < x, € P again. Then (x|, m(x;)) < (x,m(x)). So f(x1) <
f(x2) and f is order-preserving.

. h(xp, m(x0)) = {f(x0), &x,(M(x0))) = (X0, m(x0)) 0 (X0, m(xp)) is a fixed point of

h. Let (x, y) be the least fixed point of 4. Then g.(y) =y soy > m(x).

. LetZ ={{a,b) e PX Q :{a,b) < (x,m(x)))}

For (a, b) € X:

h(a,b) < h(x,m(x)) < (hi(x,y), ho(x,m(x))) = {(x,m(x)) so h acts on Z. Fur-
thermore, Z is chain-complete and has a least element, similar to claim above.
So h has a fixed point (x',y") € Z. Now (x,y) < (¥',y) < (x,m(x)). But
(x,y) 2 (x,m(x)) so (x,y) = (x,m(x)).

So x is a fixed point for f, whence x > xy. But m is order-preserving so y =
m(x) > m(xp). So {x,y) > (xg, m(xg)) and {xo, m(xp)) is the least fixed point of A.
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13.1 Stuff to fit in

Any system ¥ of fundamental sequences for an initial segment I" of the second number
class will give a bijection between I" and IN. If ¥ is nice then the bijection should send
every fundamental sequence in ¥ to a strictly increasing sequence IN — TI'. Is it always
the case that, given I" and # there is a bijection IN «— I’ according to which every
fundamental sequence is increasing?

Let’s try. We have countably many fundamental sequences from . All we have to
do is interleave them. Doesn’t that do it? It does if the fundamental sequences provide
a partition of I'. They don’t, at least not straightforwardly. w is the first member of a
fundamental sequence for w - 2 and also the first member of a fundamental sequence
for w?. We’d better check that there is a safe way of excluding the double counting.

Here’s how. You enumerate all the limit ordinals in I' in order-type w and line
up all the fundamental sequences. You the delete from any fundamental sequence any
ordinal that appears in an earlier sequence. Assuming that the intersection of the ranges
of two fundamental sequences is of size 1 at most this ensures that there is no double
counting. Is everything covered? Yes, every successor ordinal gets hit beco’s every
successor ordinal is in some interval (4,4 + w) and that of course is a fundamental
sequence. But actually it doesn’t matter if not everything is covered. If there are things
not in the union of all the fundamental sequences then you just order them in otype w
and interleave them like all the others.

So we have proved:

REMARK 25 For every initial segment I of the second number class and every system
F of fundamental sequences for T there is a bijection between I and IN which turns
every fundamental sequence into a strictly increasing sequence of naturals.

Can we do it the other way round? Given I' and an enumeration of it can we find
so that all fundamental sequences in ¥ are increasing sequences? This is even easier.
Given I and the bijection I' «— IN we build ¥ with complete freedom. You want a
fundamental sequence for @? There are infinitely many ordinals less than it. You then
procede as in the proof that every countable limit ordinal has cofinality w. So you can
do it for all @ independently and simultaneously. But of course there is no guarantee
that the fundamental sequences you obtain will be disjoint. To do that you have to
enumerate the limit ordinals in I" in otype w and make sure you don’t re-use anything.

Harold’s ever-increasing functionals

Sn=n+1
an — fn+11
KJfn=J""f1

LKJfn= K" Jfl1
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(i) N; < 2™ cannot be done without (at least some) choice.

(ii) Second number class cannot be injected into (IR, <r) at all! even with
Choice.

Recall the discussion earlier of the various injections of proper initial segments
of the second number class into IR; how the destinations of w do not form a nice
descending sequence.

Which of these two lies behind the Schmidt conditions?

LEMMA 14 The ordinals < « are totally ordered by <.

Proof:

We do this by induction on @. The base case is immediate; the succ case is just like
the inductive proof that <y is a total order. For the limit case we exploit (Va)(VS C
On)((a <sup(s)) = (B € S)(a@ < B)).

If @; < sup(S) and @, < sup(S) then there is 8 € § with ; < B and a; < 8.
(Indeed, by lemma ??, 5 can be taken to be a; + a; or @, + @;.) But then @ and a, are
comparable by induction hypothesis.

|

COROLLARY 5 <, is a wellorder.

Proof:

It’s wellfounded because it is the engendering relation of a rectype. To show it’s
a total order consider two arbitrary ordinals @ and 5. By lemma 2| @ and g are both
< @ + B. Then by lemma|[I4]the ordinals below a + f3 are totally ordered. ]

This proof of corollary [5]is mine, though it may well have been anticipated. If so, I
hope my readers will tell me. There is a proof concealed in the papers of Bourbaki [2]]
and Witt [28]] (See Appendix 1).

It now seems to me that one can give a much shorter proof that < is a total order.
We know it is wellfounded. Consider a minimal member «; of X = {a : (AB)(« #
B # a # B)}, and then a minimal member o, of {&@ : @ # a; # a # «;}. Thus
a; and a, are incomparable minimal elements of X. The ordinals below a form a
chain A, and the ordinals below a, form a chain A,. Now these must be the same
chain, so we call it A. If A has a top element—«, say—then «, and @, must both
be succ(a). If not, they must both be sup(A). Either way, they are the same.

Quite how useful this fact is when dealing with an arbitrary ordinal g will depend on
B. After all, if 8 = «” then—if we run the algorithm with w and f/—all Cantor’s normal
form theorem will tell us is that this is, indeed, the case. Ordinals 8 s.t. 8 = P are
around in plenty. They are called e-numbers. They are moderately important because
if B is an e-number then the ordinals below S are closed under exponentiation. The
smallest e-number is called ‘g,’. For the moment what concerns us about ¢, is that if
we look at the proof of Cantor’s Normal Form theorem in the case where (3 is an ordinal
below €, and @ = w the result is something sensible. This is because, € being the least
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fixed point of @ - w?, if we apply the technique of remark[3]to some & < €, the output
of this process must be an expression containing ordinals below a.

Now we must ask a very mathematical question, one that might have occurred to
you already. On what features of multiplication, exponentiation and addition does this
construction actually rely? Suppose we have a family (f; : i € On) of functions of two
arguments defined in the manner of definition §]so that

fn+l(a»y + 1) = f;l(fn-%—l(aa 7), CY). (131)

(and we require y — f,+1(e, ) to be continuous at limit y. We’ll worry later about
what to do when the subscript is limit!).

Suppose we want to express a given § in terms of a given @ and n. What do we
need? We want the various f, to be normal in at least one argument. That is to say,
for each n and every ¢, the function 7 — f,,({, 7) must be normal. That way we can be
sure—to return to our given S, @ and n—that there is a last y so that

Jala,y) < B
which is to say, there is a y so that
Jala,y) < B < fula,y + 1)
Of course if f,(a,y) = S we stop. Otherwise we have
Jal@,y) <B < fula,y + 1) = furr(ful@, y), @)
Now, by normality of £ — f,—1((fu(@,¥), (), there will be a last ¢ such that
Jo1((ful@, 7). 0) < B

and we repeat the process.
Notice that addition, multiplication and exponentiation are related as successive
members of precisely this kind of sequence of functions:

fol@,B) =a+1

file,p) =a+p

fle.p)=a-B
fi@.p) = a’

So the definitions from definition [§] give rise to a system of ordinal notations.
The following old tripos question (which had an afterlife on PTJ’s example sheet 4
for Part II Set theory and Logic) can be profitably reviewed here.

EXERCISE 20 (Tripos IIA 1995 Paper 4 question 8, modified).

Let P = (P, <) and Q = {Q, <) be chain-complete posets with least elements, and
leth: PXxQ — PXQ be amap which is order-preserving with respect to the pointwise
product ordering. Let the two components of the ordered pair h(x,y) be hi(x,y) and
hy(x,y) respectively.
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1. Show that, for each fixed x € P, the mapping g, : Q — Q defined by g,(y) =
hy(x,y) is order-preserving. Let m(x) be its least fixed point.

2. Show that the map [ : P — P defined by f(x) = hi(x, m(x)) is order-preserving.
Let xq be its least fixed point.

3. Show that {xo, m(xg)) is the least fixed point of h.
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