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1 Introduction

This essay will be concerned with order types (isomorphism classes of lin-
early ordered sets). A scattered order type is one that doesn’t contain an
isomorphic copy of the rationals. A quasi-order (or QO) is a transitive and
reflexive binary relation and a well quasi-order (or WQO) is a quasi-order in
which there are no infinite antichains and no infinite descending sequences.
A better quasi-order (or BQO) is a particularly nice kind of well quasi-order.
We quasi-order the order types by embeddability.

The aim of this essay is to prove a conjecture of Fraissé [1] which states that
the class of countable order types is well quasi-ordered. This conjecture was
later extended to include scattered order types. These assertions follow from
the main theorem of this essay: the class M of countable unions of scattered
order types is better quasi-ordered.

My approach will be to follow sections 3 and 4 of Richard Laver’s paper [6]
(stating without proof Theorem 3.4). I have elaborated on Laver’s proofs
and substantially expanded some arguments to make them more accessible
to the reader.

'Full definitions will be given in section 2.
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Simpson [12] gives an alternative proof of Fraissé’s conjecture, by reformu-
lating the theory in terms of the usual (product) topology on [w]” and using
a theorem by Galvin and Prikry [2] on Borel partitions. He proves a slightly
weaker version of the theorem than the one given here: the class of scattered
order types and the class of countable order types are better quasi-ordered.

This result contributes to the aim of showing that many large classes of
mathematical objects are well quasi-ordered under natural orderings. Other
classes that have been considered are trees under tree embeddability (see
Kruskal [5] for finite trees and Nash-Williams [8] for infinite trees) and trans-
finite @-sequences where @) is a BQO (see Nash-Williams [9]). More recently,
Robertson and Seymour [11] proved that finite graphs under the graph im-
mersion relation are well quasi-ordered.

Overview

Section 2 contains definitions and some fundamental general properties of
WQOs and BQOs are proved.

In section 3 I will define a class of trees 7o whose vertices are labelled by
elements of a QO Q. 7g is quasi-ordered by embeddability. Theorem 3.4
states that () BQO = To BQO.

The next step is to define and characterise a useful class of order types 7,z
which generalise the order type of the rationals (in fact, the rationals have
order type 7,4, ). Theorem 4.4 gives some properties of the types 17,5 and
Theorem 4.5 shows that these properties suffice to describe these types up
to equivalence.

We let D,z be the class of types that strictly embed into 7,5. In Theorem
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5.14 we will want to use this class for a proof by induction, so an inductive
characterisation of D,z is given in Theorem 4.9.

Next, we define another class of types H(Q) and a quasi-ordered class Q%
containing (). We prove that ) BQO = Q* BQO. Theorem 5.10 shows that
To+ BQO = H(Q) BQO by assigning trees in 7o+ to types in H(Q).

QM is the class of countable unions of scattered order types with points
labelled by elements of (). Theorem 5.14 essentially shows that H(Q) BQO
= QM BQO.

The strongest result in the paper is Theorem 5.15 which states that () BQO
= QM BQO and is proved by combining all previously established implica-
tions. Finally, the fact that M is a BQO drops out as an easy corollary. We
conclude the essay with an application of this result.

Some preliminary definitions

An order type (or just type) is an isomorphism class of linearly ordered sets.
Letters ¢, ¢ will usually range over order types. Write tp(L) for the order
type of the linearly ordered set L. Letters L, M, N will usually range over
linearly ordered sets.

Ordinals are the order types of well-ordered sets (they will also be taken to
be well-ordered sets). The class of ordinals is denoted by On. Ordinals are
usually denoted by «, 3, v, d, k, A, & For limit ordinals A, the cofinality of
A is the least ordinal a such that A is the limit of an a-sequence of ordinals
< A and is denoted by cf(A). If cf(\) = A, A is said to be regular.

I will use the Axiom of Choice without further comment throughout the
essay. In particular, cardinals are initial ordinals. The class of cardinals is
denoted by Card. If k is a cardinal, then x* is the least cardinal greater
than x. Cardinals of the form k™ are successor cardinals. Cardinals that are
not of this form are called limit cardinals. RC is the class of infinite regular
cardinals.

If X is a set, then X is the set of sequences (z3)p<o in X and X=* = [ J,_, X*.
N={0,1,..}.

Definition 1.1. ¢ < v means that ¢ is embeddable in 9, i.e. if tp(L) = ¢



and tp(M) = 1 then there is a strictly increasing function from L into M.

Definition 1.2. 7 is the order type of Q. An order type ¢ is scattered if
n € ¢. S is the class of all scattered order types.

Definition 1.3. M is the class of countable unions of scattered types, i.e.
¢ € M < ¢ = tp(L) where L can be written as | J,_ L; with each tp(L;) € S.

For example, n = tp(Q) € M (Q is a countable union of singletons), and

On < M.

2 Basic WQO and BQO Theory

In this section I will introduce the notions of well quasi-orders and better
quasi-orders, and I will establish some elementary properties that will turn
out to be useful in the course of the essay.

The concept of WQO is not strong enough to prove our main theorem, so we
will work with BQOs. This strengthens the hypothesis and makes the proof
work. See [6] for further motivation of the definitions.

While it is often easier to prove theorems about WQOs using BQOs, the
notion of WQO is more natural and easier to apply in concrete situations.
A particularly striking example is the application of Kruskal’s theorem on
finite trees [5] to logic: H. Friedman derived special cases of the theorem that
can be expressed but not proved in first-order arithmetic (see for example
Smorynski [13]).

Definition 2.1. A quasi-order or QO is a transitive and reflexive binary
relation on a set or class (). This relation will be denoted by < (possibly
with subscripts). Quasi-orders are usually denoted by the letters @) and R.

If g1, € Q, write 1 = @2 if @ < @@ A @2 < 1 (@1 and gy are said to be
equivalent) and write ¢; < qo if 1 < g2 A g2 € ¢1. Whenever a subset Q' € Q)
is considered, ()’ is assumed to be quasi-ordered by the restricted QO of Q.

Definition 2.2. If @) is a QO, then a sequence {g; )i, in Q is said to be bad
if (Vi <j)g €¢;- A QO Q is a well quasi-order or WQO if there are no bad
sequences in Q).



Remark. This definition is equivalent to the definition given in the introduc-
tion (via Ramsey’s Theorem).

Given QOs )1, (Y2, define QOs on spaces obtained from them:

1. @1 x Q4 is quasi-ordered by
(o, ) < (B1, Ba) & (o <@, Bi A az <q, P2).
2. If Q1 n Q2 = & then Q1 U Q)5 is quasi-ordered by

a<fe ((a,feQrra<g B)v(n,feQrna<y,f)).

If Qis a QO, order | .o, @ by embeddability, i.e. {(¢n)acy < {rg)s<s <
there is a strictly increasing f : v — ¢ such that g, < ry( for all @ <. In
particular, this induces a quasi-order on Q<“ (as a subset of | J ), @)

A set B € N=¥ of strictly increasing finite sequences is called a block if for
any strictly increasing {(z;), € N“ there is some n € N with {z;), € B.
If t,u € B we write t < u if there exist m < n,r; < ... < x, € N such
that ¢ = (-1, n (for example (1,2,3) < (2,3,4,5,6)).
Given a QO @, a function from a block to @ is called an array. An array
a:B—>Qisbad if t,ue BAt<u= a(t) €alu).

.....

Definition 2.3. A QO Q@ is a better quasi-order or BQO if there are no bad
arrays in (). In other words, there is no block B that admits a bad array

a:B— Q.

Remark. By taking B = N € N= in the definition of BQOs, it follows that
every BQO is a WQO. There are, however, WQOs that are not BQOs: see
for example Rado’s counterexample given in [10]. Hence being BQO is a
strictly stronger property than being WQO.

This combinatorial definition of BQOs only plays a small role in this essay.
Instead we use some nice basic properties of BQOs:



Theorem 2.4 (Nash-Williams [8]). (i) Q@ BQO = Q WQO.
(ii) Q well-ordered = @ BQO.

(111) Q = Q1 v Q2 and @1, Q2 BQO = Q BQO.

(iv) Q1,Q2 BQO = Q1 x Q2 BQO.

(v) Q@ BQO = Q= BQO.

Definition 2.5. For Q a QO and ¢ € @, define Q, = {re Q : ¢ £ r}.

Lemma 2.6 (Induction Principle for WQOs). If ®(Q) is an assertion about
a WQO Q such that (Vg € Q)P(Q,)) = P(Q) and P(0) holds (where 0 is
the empty quasi-order), then ®(Q) holds for all WQOs Q.

Proof. Suppose the conditions above hold and there is a WQO @ such that
®(Q) is false. Then ®(Q,,) is false for some ¢; € Q. Write QM) = Q,, .
Continue inductively: If ®(QM~Y) is false, then there is ¢, € QY such

that ®(QL™) is false. Write Q) — QY.
So we get a nested sequence of WQOs QM 2 Q® o ... and a equence
{Gnyn<w 1In @ such that for i < j we have ¢; € Q(j—l) c Q(i) _ QE;*” _
{reQi=Y.q £r}, ie ¢ £ q. S0 {(Guinew is a bad sequence. Contradic-
tion.

]

Lemma 2.7 (Homomorphism Property for BQOs). If Q is a BQO, Q' < Q,
and there is an oder-preserving surjection Q' — R (any quasi-order R), then

R s a BQO.

Proof. Suppose there is a bad array a : B — R. Define an array a’' : B — @’
with a/(z) = any element of h=!({a(x)}) (this is # & by surjectivity). If ¢’ is
good, then (Ar, s € B)r<sad/(r) < d'(s). Then a(r) = h(d'(r)) < h(d'(s)) =
a(s), contradicting the badness of a. Hence o’ is bad, contradicting @ BQO.

[]



3 Trees

This section states a theorem concerning the better quasi-ordering of a class
of trees with vertices labelled by elements of a BQO and defines all concepts
required to understand the result. Some of the definitions will be used later
in the essay.

Here a tree will be a set T', partially ordered by the relation <7, such that
{y e T :y <y z} is well-ordered by <p for any z € T. If there is a point
r e T with (Vo € T)r <r x then T is said to be rooted and the root of T is
p(T) =r. For x € T, S(x) is the set of immediate successors of z in 7. If Q
is any set or class, a Q-tree is a pair (T,1) where T is a tree and [ : T' — @Q is
a function ([ labels the vertices of T'). The branch of (T, 1) with root node z,
written briry)(x) (or just br(z)), is the Q-tree obtained from T by restricting
T to the vertices that are =7 z. 0 is the empty tree and, for ¢ € (), 19 is the
singleton tree labelled by gq.

Definition 3.1. T is the class of all rooted trees with no path of length > w.
To is the class of Q-trees (T,1) with T'e T.

Definition 3.2. If ¢ € @ and B < 7Ty, then [¢; B] denotes the @Q-tree
(T,1) € To with I(p(T)) = ¢q and {br(z) : = € S(p(T))} = B (assume a

convention where the trees in B are disjoint).

Definition 3.3. Define the following natural quasi-order on 7g:
(T1, 1) <m (T3, lo) if there is a strictly increasing function f : T} — Ty
such that (Y € T7)l;(x) < lo(f(x)).

Theorem 3.4 (Laver [6]). Q@ BQO = T BQO under <,,.

Remark. The proof of this theorem given in [6] assumes familiarity with [8].



4 Characterisation of 7,3

I will prove some preliminary lemmas before defining the types 7,3 mentioned
in the introduction. The main aim of this section is to prove some properties
of these types and show that these properties define the 7,4 up to equivalence.

The sum ¢ + 1) of two order types is tp(L) where L is the disjoint union of
linear orders Pi, Py (tp(P) = ¢, tp(Ps) = 1), linearly ordered by = <, y <
(r,ye Purnx<p y)v(r,yec Porx<py)v(reP,rye ).

If M is a linearly ordered set and, for each x € M, ¢, is an order type,
define the ordered sum ),  ,, ¢ to be tp(IN), where N is obtained from M
by replacing each point x € M by a linearly ordered set of order type ¢, and
defining the new ordering on N appropriately.

The product ¢ -1 of two order types is Y, _, ¢ where tp(L) = 1.

If ¢ is an order type (or R is a collection of order types), then we will often
express the fact that ¢ = > _; ¢,, where tp(L) = ¢ (or tp(L) € R), by
saying that ¢ is a ¢-sum (or an R-sum) of the ¢,.

If ¢ = tp(L) then the converse of ¢ is ¢* = tp(L') where L’ is a linear
order that has the same underlying set as L and =z <, y < x > y. If a is
well-ordered, then o is said to be conversely well-ordered.

0 denotes the linear order with empty underlying set, 1 denotes the linear
order with a one-element underlying set. 0 and 1 will also be used for the
corresponding order types.

The following characterisation of & will allow us to perform induction over
scattered types.

Theorem 4.1 (Hausdorff [3]). Let Sy = {0, 1} and, for § > 0, let S =
{¢: ¢ is a well-ordered or conversely well-ordered sum of membersof | J
Then S = U con Sa-

v<B

Lemma 4.2. (i) A scattered sum of scattered types is scattered.

(1) If k € RC' and k < 3,cpp @y then either k < tp(M) or k < ¢, for some
ye M.

S,



(i1i) If k € RC, A < k, L =
some ¥ < A.

(w) If k€ RC, ¢ €S, and k < Card(¢), then k < ¢ or k* < ¢.

vex Ly, and k < tp(L), then k < tp(L,) for

Proof. (i) Let tp(L) be scattered, and for each x € L let ¢, = tp(L,) be
scattered. Suppose f : Q — | J,o; Lo gives an embedding n < >, _; ¢,. For
each x € L let Q, = f~'(L,).

Then tp(Q,) < ¢, = each Q, is scattered and n = Y, tp(Q,) is a scattered
sum of scattered types. Now f order-preserving = each @, is an interval in
Q, so tp(Q,) scattered = Q, is a singleton.

zeL

Hence n = >, ., tp(Qs) = tp(L), contradicting tp(L) scattered.

ii) Let tp(L,) = ¢, and let f : Kk — L, be an embedding of x into
y y yeM y

ZyeM Qby.

Note first that

if S € k is any subset of cardinality x then kK < § (1)
by defining an embedding g : kK — S : « — the ath element of S in the
well-ordering on S induced by k.

If Kk < M we're done.

Assume £ £ M. Then Card({y € M : im(f) n L, # &}) < kK, since
if this cardinality was equal to x then x < M by equation (1). Hence
= Card(,ep (im(f) N Ly)) = Xep Card(im(f) n L) is a sum of < &
non-zero cardinals, so by regularity of , (3y € M)Card(im(f) n L,) = k. So
again by equation (1), k < L,,.

(iii) Let f : K — L be an embedding. Then by regularity of s,
(3y < k)Card(im(f) n L,) = k. So k < L., as before.

(iv) The proof will be by induction on the hierarchy given in Theorem 4.1.
The result is trivial for Sy.

Assume it holds for | J,_, S, and suppose ¢ € Sg. Then ¢ is an a-sum or an

v<B
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a*-sum of elements of Uv<6 S, for some « € On. Write ¢ = >, _, ¢, where
tp(A) = a and (Vo € A)¢, € |J,.5 S, (the case tp(A) = o is similar). If
k < Card(¢,) for some x the we're done by the induction hypothesis. So
assume Card(¢,) < k for all z. Since k < Card(¢) we get k < Card(A) by
regularity of k. Card(A) =, so kK < a < ¢. O

Call a pair {«, ) € On x On admissible if & and § are uncountable regular
cardinals and max{c, 5} is a successor cardinal.

Given an admissible pair {(«a, 5) we define the order type 7,5. To do this we
first define an auxiliary type 0,4 as follows:
If « =~* and § =07 are both successor cardinals, o,5 = v* - 0.

If o is a limit cardinal, then @ < 8 = 0" for some cardinal ¢ and
we define 0,3 = Y, )y @» Where tp(M) = 6, (Vo € M)¢, < o, and
for each cardinal A < « there is some x € M with ¢, > A* (this last
condition is satisfiable because a < §).

If 5 is a limit cardinal, then 0,5 = (04)*.
Definition 4.3. 7,5 = tp(L) where L = | J
are chosen as follows:

(i) tp(Lo) = 0ap

(i) Ly+1 is obtained from L,, by inserting a set of type 0,4 into each empty
interval of L,,.

L, and the sets Lo < L, < ...

n<w

The next theorem identifies the essential properties of the types 13-
Theorem 4.4. (i) 1,3 € M. (Recall definition 1.3)

(7’2) a* $ 77045,5 $ Nag-

(111) If g < a and By < B are ordinals then of < tp((x,y)) and By < tp((x,y))
for any interval (z,y) < L.

Proof. (i) Cardinals are scattered, so 0,5 is a scattered sum of scattered
types. By Lemma 4.2(i), tp(Lo) = 0ap € S.
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Given tp(L,) € S we get tp(Lny1) € S by writing tp(Lny1) = D ,c;, ¢« Where
each ¢, is 1 or 0,3 + 1 and applying Lemma 4.2(1). So L = |, Ly is a
countable union of scattered types.

n<w

(ii) I will prove the result for 5. The case a* is similar.

First, note that 8 € 04 = tp(Lo) by the definition of Ly. Suppose that, for
some n, B € tp(Ly) but B < tp(Lpy1). Writing tp(Ly11) = 2 ,; @2 as in
(i) we get f < tp(Ly) or 5 < ¢, for some x by Lemma 4.2(ii) (w < € RC
because {«, ) is admissible). Both of these cases are impossible. Hence, by
induction, 3 € tp(L,) for all n.

Hence w < f € RC and L = |J,,_, L. If B < nos = tp(L) then Lemma
4.2(iii) = S < tp(Ly,,) for some n, giving a contradiction.

(iii) I will prove the result for fy. The proof for af is similar.

The proof uses induction on ordinals v < 8. Assume that the result holds for
all ordinals § < 7. T will find an embedding v < (z,y). The L, are nested,
so x,y € L,, for some m.

|z, y] € Ly, has an empty subinterval (u,v)

Recall that the only countable dense order type with no endpoints is
tp(Q) (Theorem 4.3(i) in [4]). If there is no empty subinterval, construct
such a linear order inside [z, y] by picking points in subintervals. Then
tp(Q) < tp([z,y]) < tp(Lm), contradicting the fact that tp(L,,) € S
which was established in theorem 4.4(3).

Hence (z,y) € L contains a copy of g,4, so all cardinals <  embed into
(x,y) < L. We still need to extend the result to all ordinals < f.

cf(y) < v < B is a regular cardinal, so cf(y) < (z,y). If cf(y) = 7 then
v < (z,y) and we’re done. So assume cf(7y) < 7.

Let f : cf(y) — (z,y) be an embedding. Write 7 as a cf(y)-sum of smaller
ordinals 7, (7 < cf(7)). By induction it is possible to embed each ~, into the
subinterval (f(7), f(t + 1)) < (z,y). Combining these embeddings gives an
embedding v < (z,y).

]
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The next theorem gives a converse to Theorem 4.4. It implies that the non-
uniqueness of the construction of 1,5 is unimportant in the sense that all
types constructed in this way are equivalent.

The proof will make use of Dedekind cuts: A Dedekind cut (L', L?) of a linear
order L is a partition L = L' U L? such that (Vx € L')(Vy € L?)z <, y.

Theorem 4.5. Suppose ¢ # 0,1, ¢ = tp(M), and there are ordinals «, [
such that

(i) p € M;
(ii) a* £ &, B £ ¢;

(iii) If (x,y) is an interval of M, then tp((x,y)) = of (for all oy < ) and
to((z,y)) = Bo (for all By < B).

Then {c, B) is admissible and ¢ = 1ap.

Proof. By (i) I can write M = |J,._ M, with each tp(M,) € S. To show
that (o, B) is admissible, I need to check the following four conditions:
a, B are limit ordinals

I will prove it for S.
Suppose = v + 1. Let (z,y) € M be any interval. Then (iii) gives

v < tp((7,y)), so < tp((z, y]) < ¢, contrary to (ii).
a, B are reqular

I will prove it for .

Suppose cf(f) < . Then (iii) can be used to embed [ (expressed as a
cf(8)-sum of smaller ordinals) into ¢ in the same way as this was done
in the proof of Theorem 4.4(iii), contradicting (ii).

a, B are uncountable cardinals

[ will prove it for S.
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¢ # 0,1 = Card(M) > 2. Solet x # y € M and consider the in-
terval (z,y) € M. Card(M) > 2 = = 2 by (ii). Hence 1 < 3, so
(ii)= 1 < (z,y). In particular, (3a € M)z < a < y. Repeating this
process with the subinterval (a,y) gives an embedding w < ¢. Now
is a regular limit ordinal, so § is a cardinal, and hence condition (ii)
gives 8 = wy.

maz{a, B} is a successor cardinal

Assume that max{«, 8} = § (wlog) is a limit cardinal. By (iii), ev-
ery cardinal < 3 embeds into ¢, so Card(M) > sup,_zx = 8. 8
is regular and uncountable, so Card(M,,) = (3 for some n (otherwise
(Card(M,,)n<. is an unbounded w-sequence in ). Since 5 € RC and
tp(M,,) € S, Lemma 4.2(iv) gives tp(M,,) = § or tp(M,,) = B* = o*,
contrary to (ii).

f: Niy — N is said to satisfy the Dedekind cut condition (or DCC) if for
any Dedekind cut (N}, NZ) of N; there is an interval (x,y) < N such that
z€ (z,y),ue N},ve N} = f(u) <z < f(v).

I will show that ¢ = 7,4 in three steps:

(1) Let N,N; be linear orders. Assume tp(Ny) € S,tp(Ny) satisfies (ii),
Card(N) > 1, and N satisfies (iii). Then there is an embedding Ny — N
satisfying DCC.

The proof will be by induction on the Hausdorff hierarchy of S. So
assume Ny € S¢ and (1) holds for all types in | J._, S¢. By Theorem
4.1 tp(N1) may be written as a d-sum or a *-sum of types in (J,_, S
for some ordinal 4. I will assume the former (the other case is similar).
Write tp(N1) = X,cp ¥z, Where tp(D) = 6, ¢, € U S¢, and ¢, =
tp(Fa)-

tp(Vy) satisfies (ii), so 0 < tp(IN7) = 6 < 5. N satisfies (iii), so there
is an embedding f : D — N, and f certainly satisfies DCC. For each
x € D, the interval (f(z), f(xr + 1)) € N satisfies (iii) and has car-

dinality > 1, so by the induction hypothesis there is an embedding
fo i Pe — (f(x), f(x + 1)) satisfying DCC. Patching together the f,

14



gives an embedding N; — N that satisfies DCC.

(2) Let N be a linear order. Card(N) > 1 A N satisfies (iii) = ¢ < tp(N)

Recall: ¢ = tp(M),M =/, Mn, M, €S.

Note that M, satisfies (ii) (since My € M and M satisfies (ii)), and
My € §. By (1) there is an embedding fy : My — N satisfying DCC.
Using the DCC this can be extended to an embedding f; : Myu M; —
N. Since every interval (z,y) € N satisfies (iii) and has cardinality
> 1, we can take f; to satisfy DCC.

Continue this process, obtaining a nested sequence of embeddings {f,, n<.-
Then f =, ., fn is an embedding M — N, ie. ¢ < tp(N).

(3) & = Nas
Nap = tp(L) satisfies (iii) and Card(L) > 1, so ¢ < 1,5 by (2).
)

Nap = tp(L) satisfies (1)-(iii), 7as # 0,1, and ¢ = tp(M) satisfies (iii)
and Card(M) > 1, so 1,3 < ¢ again by (2).

]
Corollary 4.6. Let {a, 3) be admissible. ¢ < nup <= pe M, a* £ ¢,0 < ¢.

Proof. (=) Clear from properties (i)-(iii) of 1,z.

(<) nap = tp(L), Card(L) > 1, L satisfies (iii) = ¢ < 745 by step (2) in
the proof of Theorem 4.5 (Note that the assumption that ¢ satisfies property
(iii) isn’t used in the proof of step (2), so it can be applied to this situation).

]

We now define the class D,3 and prove an alternative definition which will
allow us to perform induction on D,g.

Definition 4.7. D,s = {¢ : ¢ < nugs}-

Definition 4.8. If L is a linear order, a sequence (x,),<y is called cofi-
nal if (Vy € L)(3a < ANy < =z, The sequence is called co-initial if
(Vy e L)(Fa < Nz, < v.
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Theorem 4.9. (i) A D,z-sum of elements of Dug is in Dyg.

(it) Das = Uy <masfa,p(Pap)y, where (Dag)o = {0,1}, and for § > 0,
¢ € (Dap)s < & is an of-sum, or a Bo-sum, or an na.s,-sum (for some
ap < a, By < B) of members of |, _5(Dags)~-

Proof. (i) First note that (9.,5)> = Nap, 1€ Nag = 2.5 Nap Where
tp(L) = Tap:

Nap < (Nap)? is clear.
To show (1ag)? < Mg I will show that (n.5)? € M, a* £ (n.5)%
B £ (nap)?, and use Corollary 4.6.

Write 1,5 = tp(L) where L = |, Ln as in definition 4.3. Define
My by tp(My,) = Dvel, tp(L,). By Lemma 4.2(i), tp(M,,,) € S.
Let M =, ey Mimn- Then tp(M) = (15)* is a countable union of
scattered types, i.e. (1,5)* € M.

Suppose 8 < (ag)?. Then 8 < 1.5 by Lemma 4.2(ii) (recall that {a, 3)
admissible, so f € RC'), contradicting Theorem 4.4(ii).

a* € (Nap)? is similar.

Let > s @2 be a Dyg-sum of members of Dys. Then Y, ¢r < 14p by the
above discussion.

Suppose Nag < D en P If an interval of 7,4 is embedded into one ¢,, then
Nag < ¢y since 7,4 embeds into each of its non-empty intervals. This con-
tradicts ¢, € D,s. So the points of L (where tp(L) = 7,53) are mapped to
different ¢,’s, giving 1,5 < tp(M) and hence contradicting tp(M) € Dyp. So
D wers Gz < Map, as required.

(11) Let CCYB = U’y<max{a,,6’} (Daﬁ)’y

(1) A Cop-sum of members of Cop is in Cop

Let p = tp(M) € Cup and for each y € M, let ¢, € Cap. 1t € (Dag)-, for
some v < max{a, 8}. I will show by induction on y that }, .\, &, € Cap.
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So assume that (1) holds for all 11 € [ J;_, (Dag)e. I will show the result
in the case where p is a [Sp-sum, the cases ag, 14,3, being similar.
So write g1 = >, p, fzy, Where tp(By) = By < B and p, = tp(M,) €

Uey(Daple. Then > 1rdy = iep, 2oyens, ¢y By the induction hy-
pothesis, ZyeMz ¢y € Cqop for each x. Call these sums y,. I want to

show that Z%BO Xz € Cagp-

Each x, is in some (Dgg),, (7> < max{a,}). Let § = sup,cp,Va-
Then § < max{«, f} because Card(By) < [ and f is regular. Hence

(V& € Bo)Xa € (Dap)s = 2izep, Xo € (Dap)s+1 S Cag-

( 2) Cocﬁ - Daﬁ

Let ap < a, By < .

Naop, Satisfies the conditions of Theorem 4.5 and 71,5 = tp(L) satisfies
the conditions of claim (2) in the proof of Theorem 4.5, S0 Nay5, < Nags-
If g < Nagp, then By < Nap < Nays, (by Theorem 4.4(iii), since
Bo < ), contradicting Theorem 4.4(ii). S0 7agp, < Nagp-

It is clear that af, By < Nag. Suppose 1,5 < So. Then tp(Q) = Nuwyw, <
Nag < Po (contradiction). So By < s and similarly of < 1,s-

Hence o, Bo, Nagpgy € Pagp-

Since (Dap)o S Dap we obtain Cop € D,p by induction and part (i) of
this theorem.

The rest of the proof will demonstrate equality. Suppose that there is some
L with tp(L) S Daﬁ\Caﬁ.

(3) (V€ Cap A <1p) = € Cas

Proof by induction: ¢ € (D,p), for some 7. Assume the claim holds
for e, (Dap)e and let f be an embedding of ¢ into 9.

Write ¢ = Z%BO Y, where tp(By) = fo < 5, ¥, = tp(F,), and
(Vz € Bo)te € ey (Dap)e (the cases where ¢ is an ag-sum or an
Nagg,-SUmM are similar).

Then ¢ = 3, tp(im ()~ Py) and tp(im(£)n Py) < v € Uy, (Dag)e =
tp(im(f) N P,) € Cap by the induction hypothesis. Hence ¢ is a C,p-sum
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of members of Cng, i.e. ¢ € Cop by (1).

Define a binary relation ~ on L by setting  ~ y if tp((z,y)) € Cop and set
r~zandx ~y=1y ~ .

(4) ~ is an equivalence relation

I only need to check transitivity. Assumex ~ y,y ~ zand z <p y <p, 2.

Tléen tp((#,9)), tp((y, 2)) € Cap = tp((2,2)) = tp((z,9)) + 1 + tp((y, 2))
€ Cup, SO T ~ 2.

(5) ~ partitions L into intervals

Suppose x ~ z and x <, y <z, z. Then tp((z,y)) < tp((z,2)) € Cop =
tp((x,y)) € Cop by (3). Sox ~y ~ 2.

Let X < L be an equivalence class. Construct a co-initial af-sequence and
a cofinal fy-sequence (some g, Bp). Now tp(L) € Dos = tp(L) < nep =
a* B £ tp(L), so ap < a, By < B. Use these sequences to write tp(X) as
an (o + fp)-sum of members of C,s (subintervals of X have type in Cng by
definition of ~). Since af + By € Cap, tp(X) € Cop-

Let L' < L be a set containing one representative from each equivalence
class. Suppose some interval (u,v) < L' has tp((u,v)) € Cog. Write [z]
for the equivalence class of x € L. If (u,v) is considered as an interval of

L, then .(u,v) S Uus, o0l e tp((u,v)). < Du< we o tp([x]) Then
the previous paragraph shows that this sum is a C,g-sum of types in C,g,
so tp((u,v)) < some member of Cns. By (3), tp((u,v)) € Cup, contradicting
u # v. Hence all intervals in L' have type in Dyz\Cagp-

(6) There is an interval (xq,yo) S L' that doesn’t contain a copy of af or of
Bo (for some ay < a or By < )

L' # 0,1 and conditions (i) and (ii) of Theorem 4.5 are satisfied by L',
a, B3:

(i): tp(L') < tp(L) < Nap € M = tp(L') e M

(ii): a*, B £ mag = o, B £ tp(L) = a*, B & tp(L)
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Since tp(L') < tp(L) < nap, condition (iii) must fail. This is precisely
the statement above.

Take (z9,y0) as above and assume [y £ (xg, o) (the other case is similar).
Assume wlog that we have chosen (g, yo) in such a way that the correspond-
ing ordinal 3y is minimal in the sense that if 5; < Sy then every interval of
L’ contains a copy of 8;. Let ag (< ) be the smallest ordinal such that ag
doesn’t embed into some subinterval (z1,y1) € (xo,y0) S L. Then (z1,v1),
ap, Po satisfy the conditions of Theorem 4.5, so tp((z1,91)) = Naes, and
{ap, Poy is admissible. Now {ayg, fo) < {a, ), so tp((z1,41)) = Ny € Cas,
contradicting the fact that all intervals of L’ have type in Dys\Cop.

[]

5 The Main Theorem

In this section I will define the classes H(Q) and Q* mentioned in the intro-
duction, and I will use them to prove the chain

Q BQO = Q" BQO = Tu+ BQO = H(Q) BQO = Q™ BQO.

The main theorem of this essay asserts that M is BQO — this is an easy
corollary of Q™ being BQO.

A Q-linear ordering is a pair (L, 1), where L is a linear order and [ : L — @
is a function (the labelling function). Two Q-linear orders (L,1), (M, m)
are isomorphic if there is an order isomorphism f : L — M satisfying
(Vz e L)m(f(x)) = l(x). A Q-type is the isomorphism type of a @Q-linear
ordering. In the following, Q-types are usually denoted by capital greek
letters. tp(L,1) is the isomorphism type of the @Q-linear order (L,l). The
base of a Q-type ® = tp(L,l) is bs(®) = L. Sums and products of Q-types
are defined as for order types. 0 will denote the Q-type with base 0, 1, will
denote the Q-type with base 1 labelled by the point g € Q.

Definition 5.1. Quasi-order the class of Q-types as follows: & < W if
® = tp(L,1), ¥ = tp(M, m) and there is a strictly increasing function f : L — M
satisfying (Vo € L)l(z) < m(f(x)).
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Let Q% (or Q<?, or Q=?) be the collection of all Q-types with base ¢ (or < ¢,
or = ¢). If R is a collection of order types, Q% = | SeR Q°.

We now define (U, k)-unbounded sums and (R, a, §)-shuffles and prove some
preliminary results. These concepts will be used to define the class or types

H(Q).

Definition 5.2. If ® is a Q-type, U is a set of Q-types, and x is an infinite
cardinal, then ® is called a (U, k)-unbounded sum if & = 3 . ®, where
tp(K) =k, U = {P, : z € K}, and

(Vee K)@Y < K)(Card(Y) = A (yeY = 0, < d,)).

If tp(K') = k* instead of  in the above definition, then ® is called a (U, k*)-
unbounded sum.

Lemma 5.3. Suppose 6 € RC, k <9, ® is a (U, k)-unbounded sum, ¥V is a
(V, 6)-unbounded sum (or ® is a (U, k*)-unbounded sum and ¥ is a (V,5*)-
unbounded sum) and (VO e U)(Ix € V)O < x. Then & < .

Proof. Write ® = >, ®,, ¥ = > V¥, as in definition 5.2. Define an
embedding h of ® into ¥ by induction on initial segments of k. Suppose
h has been defined on », _ @, and embeds that segment into > _ W,
By assumption, (3y; € D)®,, < V¥,,. VU is a (V,d)-unbounded sum, so
(3y2 =p n)¥,, < ¥,, (since the cardinality of an initial segment of ¢ is
< §). So extend h to embed ®,, into ¥,,.

For v < k, a 7-limit of initial segments of § is an initial segment of §, since
k < 6 and 6 is regular. Hence this construction of the embedding h defines
it on each ®,, showing that ® < W.

The argument for (U, k*) and (V, §*) is similar.
[l

Definition 5.4. Let R be a set of Q-types and ¥ € R? (some ¢), where
R is quasi-ordered as in definition 5.1: ¥ = tp(L,[) where tp(L) = ¢ and
[ : L — R labels elements of L with )-types. Then we define

T =>1()

z€L
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Definition 5.5. (i) If @ is any QO and ® is a Q-type, then ® is called
(Q, a, B)-universal if ® € Q="# and ¥ e Q"8 = ¥ < .

(ii) We say @ is an (R,«,)-shuffle if R < QM and ® = & for some
(R, , 5)-universal @’

Remark. Recall that QM is the class of countable unions of scattered types,
with points labelled by elements of Q).

Lemma 5.6. If ® is a (U, «, B)-shuffle, ¥ a (V,~,d)-shuffle, {a, B) < {(7,0),
and (VO e U)(Ix € V)O < x, then & < .

Proof. ¥ is a (V,7,d)-shuffle: U = ¥ where ¥’ is (V,7,§)-universal, i.e.
e V= and x € V" = x < W', Assume that W' = tp(M,m), where
tp(M) =nys and m: M — V. Then ¥ =W =3\ m(y).

disa (U, o, 3)-shuffle: & = &' where &' € U="e5. Assume that ¢’ = tp(L,1),
where tp(L) =nes and [ : L > U. Then & = &' = > _, ().

Define I’ : L — V by letting I'(x) be some x € V such that I(z) < x (as
guaranteed by the assumptions of the lemma). Since 7,5 < 1,6 it follows
that ® < ®” € V<™ where ®” = tp(L,l'). By (V,7,d)-universality of U" we
get &' < " < W', ie. there is a strictly increasing f : L — M such that

(Vx € L)i(x) < m(f(@). S0 Tpep Ur) < Yoy m(F@) < Lyersmly), i
O <.

[
Definition 5.7. Define H(Q) to be |J,co, Ha(Q) where
() Ho(Q) = {0} v {1, : ¢ € @} and

(ii) for @« > 0, ® € Ho(Q) & P is a (U, k)-unbounded sum, or a (U, K*)-
unbounded sum, or a (U, a, )-shuffle for some U < | J,_, Hs(Q) (and some
k € RC, some admissible {(«, /5)).

Definition 5.8. If () is a quasi-ordered set or class, construct a new QO Q*
from it as follows: For each x € RC', add elements a, and b, and for each
admissible pair (o, #), add a point c,p to Q. Quasi-order Q% as the disjoint
union of sets Q U {a, : k € RC} U {b, : k € RC} U {cup : {a, ) admissible},

where

a, <ay < b, <by e k< and cup < 5 © (o, B) < (7,0).
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Definition 5.9. Define a class function T' : H(Q) — 7o+ by induction on
the "levels’ of H(Q) as follows:

(i) 7(0) is the empty Q*-tree, and 7'(1,) = 19.

(i) Assume T(V¥) has been defined for all ¥ e [J,_,Hs(Q) and & €
Hao(Q\Upeo Hs(Q). Then there is U < (5., Hp(Q) such that one of the

following three conditions holds.

(1) ® is a (U, \)-unbounded sum for some A\ € RC. Let T(®) =
[ax; {T'(©) : © € Uj];
(2) @ is a (U, \*)-unbounded sum for some A € RC. Let T(®) =
[0x:{T'(©) : © e U}];
(3) @ is a (U,~,0)-shuffle for some admissible {v,d). Let T(®) =
[cy;:{T(©) : © € U}].

Remark. Recall that trees in 75+ are rooted and have no path of length
> w. The first condition is immediate for trees T(®) (® € H(Q)) from the
definition of T, the second condition holds by induction. Hence T really is a
function into Tg+.

The next theorem reduces the problem of showing that H(Q) is BQO to that
of showing that 75+ is BQO.

Theorem 5.10. If ® € H,(Q) and ¥ € Hg(Q), then T(P) <, T(V) = & <
v,

Proof. The proof is by induction on {a, §). Assume the result for all {ayg, Fy) <
{a, B). Let T(®) = (T1,01), T(V) = (I3,13), and let f : T} — 15 be an em-
bedding of T(®) into T'(\V).

Suppose f(p(T1)) # p(T2). Then T(®) <, br(p, 1) () for some x € S(p(13)),
br(r, 1,)(x) = T(x) for some x € |J,.5H,(Q), and x < V. By the induction
hypothesis, ® < y < ¥ and we’re done. So assume f(p(71)) = p(T3). There
are 4 cases:

(1) T(®) is empty or l1(p(T1)) = q for some q € Q

The theorem is clear in the first case.
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In the second case we must have ly(p(T3)) = r for some r = ¢ (recall
that the trees are labelled by @*). Hence ® =1, <1, = V.

(2) li(p(T1)) = as for some § € RC

We must have ly(p(13)) = a, for some k = 4§, k € RC.

Li(p(Th)) = as = ®isa (U,d)-unbounded sum of members of U H\(Q)

= T(®) = [a5: {T(O) : © e U}]
= U ={0:T(0) = brp ,)(x) for some x € S(p(11))}

Similarly, ¥ is a (V,k)-unbounded sum where V = {x : T(x) =
br(p, 1,)(z) for some x € S(p(13))}.

The function f above gives an embedding of any br(r, ;,)(z) (z € S(p(11)))
into some br (g, 1,)(y) (y € S(p(132))),i.e. (VO eU)(Ix e V)T(O) <T(x).
By induction hypothesis, (VO € U)(Ix € V)O < x. The conditions of
Lemma 5.3 are satisfied, so & < V.

(3) li(p(T1)) = bs for some § € RC

Similar to case (2).

(4) Li(p(T1)) = cap for some admissible {c, 3)

We must have lr(p(Ts)) = ¢y with {a, ) < {(7,9). Also, @ is a
(U, a, B)-shuffle and ¥ is a (V,~, d)-shuffle, where U and V are as in
case (2). As above, we get (VO € U)(Ix € V)O < x from the induction
hypothesis.

Hence the conditions of Lemma 5.6 are satisfied and it follows that
$ < U, as required.

O
Corollary 5.11. Q BQO = H(Q) BQO

Proof. Theorem 2.4(ii) = {a, : k € RC},{b, : K € RC} BQO.
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Theorem 2.4(ii),(iv) = {cag : (o, §) admissible} BQO.

Hence Theorem 2.4(iii) = Q% is BQO. By Theorem 3.4, T+ is BQO under
<. Ifa: B — H(Q) is an array, then the composition of a with T is an
array in 7o+ which can’t be bad since 75+ is BQO. So by Theorem 5.10, a
can’t be bad. Hence H(Q) is BQO.

O

Theorem 5.12. Suppose () is WQO and ® € Q<"#. Then ® is a Dyg-sum of
types 1, (q € Q) and of (R, av, Bo)-universal types (R < Q, {cv, fo) <, B)).

Proof. The theorem is trivial for ) = 0. Let @ be a WQO. By the induc-
tion principle (Lemma 2.6), it suffices to assume that the result is true for
Qg ={re@:q<£r}for each g € @ and deduce it for Q.

P e Q"8 = & = tp(L,1) for some [ : L — Q and tp(L) < 1,p.

Define a binary relation ~ on L by setting y ~ z if y < z and every subinter-
val of (y, 2z) is a Dyg-sum of types 1, (¢ € Q) and (R, ap, Bo)-universal types
(R < Q, {ag, foy < {a, f)) and by setting x ~x and x ~y =y ~ .

~ 15 an equivalence relation that partitions L into intervals

~ is transitive: Suppose r < y < z and * ~ y ~ z. Then every
subinterval of (z, z) is either a subinterval of (z,y) or a subinterval of
(y, z) or of the form (u,y)+ 1+ (y,v). All of these have the right form,
so z ~ z. Hence ~ is an equivalence relation.

If x ~zand z <y < z then £ ~ y ~ z by definition of ~. Hence the
equivalence classes are intervals.

Write [z] for the equivalence class of = € L.

Choose a co-initial y*-sequence and a cofinal d-sequence in [z] such that all
points of the former are below all points of the latter in the ordering of L.
tp(L) < 1ap, so by Theorem 4.4(ii), v < @ and § < 5. Using these sequences,
write [x] as a (v* + d)-sum of types 1, + (u,v) (some ¢ € Q, (u,v) < [z]).
V¥ 4+ 0 < Nap, 50 ¥* + J € Dyg. Since u ~ v for each subinterval of [z], [z] is
thus written as a D,g-sum of types 1, and (R, ap, f)-universal types (using
Theorem 4.9(i)).
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If L consists of one equivalence class, we're done.

So suppose (3x,y € L)z # y. 1 will show that ® itself is a (Q, «, 5)-universal
type, thereby completing the proof.

Write [L] for the set {[x] : € L} linearly ordered by [z] < [y] © = <p ¥.
Let ([z], [y]) be an interval in [L], [z] # [y].

(1) tp(([2], [y])) = 7ap

We know that tp(([z], [y])) < tp([L]) < tp(L) < 7ap-

Suppose tp(([z], [y])) < g, L. tp(([z],[y])) € Das. Then (z,y) is
a Dyg-sum of D,g-sums of 1,’s and (R, ap, fp)-universal types, so by
).

Theorem 4.9(i), x ~ y (contradlctlon

(2) (Vge Q)(3z e L)[z] € ([], [y])  I(2) = ¢
Otherwise there is ¢ € () such that

{1(z) : [zl e (2] [y} s fpe@:qkp} = Q

We are assuming the theorem for @)y, so {z : [z] € ([=], [y])} is a subset
of one equivalence class (all of @), contradicting (1).

To show that ® is (@, «, §)-universal, note first that ® € Q="# because
® e Q=" (by assumption) and bs(®) = tp([L]) = tp(([z], [y])) = 7as by
(1).

Now assume tp(M,m) € Q<"#. 1 want tp(M,m) < ®. Recall that
tp([L]) = nap and (ag)® = nap. By considering 71,5 copies of [L] it fol-
lows that there is an embedding f : M — [L] such that for each x € M there
is an interval ([y],|z]) = [L]. of [L] such that x is the only element of M
mapping into [L], and z # y = [L]|, n [L], = .

By (2), f gives rise to an embedding f° : M — L such that
(Vy € M)m(y) < I(f'(y)). So tp(M,m) < ® and ® is (@, a, §)-universal,

as required.

[]
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Lemma 5.13. x € H(H(Q)) = X € H(Q) (on the left-hand side, H(Q) is
considered to be a QO, quasi-ordered by embeddability).

Proof. The proof will be by induction on . The result is clear for v = 0,
since 1 € Ho(H(Q)) = 1o = ® € H(Q). Let x € H,(H(Q)) and assume the
result for g < . There are three cases:

(1) x is a (U, k)-unbounded sum U < s, Hs(H(Q)) and k € RC)

SupposeU = {x; i€ I}, tp(I) = K, bs(xi) = X;, and let U = {x; : i € I}.
First I will show that

X=X X%=X=).Xi (2)
iel iel
x = tp(L,1) for some [ : L — H(Q) and tp(L) = >, X;. Hence
X = Duer ) = Xies erxi l(z) = Xier Xa» as required.
Hence X is a (U, k)-sum.
Furthermore, since y; < X2 = X1 < Xz, X is a (U, k)-unbounded sum.

As all x; are in - Mg (H(Q)) it follows by the induction hypothesis
that the X; are in H(Q), so by equation 2, ¥ = > .., xi € H(Q).

(2) x is a (U, k*)-unbounded sum U = Js_, Ha(H(Q)) and x € RC)

This case is similar to case (1).

(3) x is a (U, 6,\)-shuffle (U = U, Ha(H(Q)) and {5, \) is admissible)

I will show that ¥ is a (U, d, \)-shuffle. As in case (1), it follows that
X € H(Q).

X is a (U, 0, \)-shuffle, so I may assume y = X’ where

(a) x' € U™

(b) © eUs™r = O < X',

Write ® for . I need to show that ® is a (U, , \)-shuffle, i.e. ® = &’
where
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(a’) @' € u
b)eeld™™ =0 <.

By (a) we have " = tp(L,l') for some I' : L. — U and tp(L) = ns».
Define a new labelling [ : L — U : x — I'(z). Then x = x' =Y, ., I'(2),

so by equation 2 above, & =X = 3, l'(r) = 3, l(z). Define
= Lymeld ™. Then & =3 _ I(z) =, so we have (a’).

Suppose O € Ugn‘”, ie. © = tp(M,m) for some m : M — U and
tp(M) < nsx. Define a new labelling m' : M — U that sends z € M
to some m(x) € U such that m(x) = m'(x). Define ©' =3\ 1@ €
U™ Then (b)= ©’ < y/, i.e. there is an embedding f : M — L such
that (Vo € M)m/(z) < UI'(f(z)). Hence m(x) = m/(z) < U'(f(z)) =
I(f(z)), i.e. f gives an embedding © = 3 1/ @) = 2uer Lim) = @
This is (b).

[]

Theorem 5.14 collects many of the previously proved results in one sentence.
This will then be used to prove Theorem 5.15, which is the strongest result
in this essay.

Theorem 5.14. If Q is a BQO and ® € Q"¢ then ® is a finite sum of
members of H(Q).

Proof. The proof is by induction on admissible {a, 8). So assume the theorem
holds for all admissible {ag, fy) < {«, ).

I will first prove the theorem for ® € Q=<"=¢ = QP=# by induction on the hier-
archy for D4 given in Theorem 4.9(ii). The result is trivial for ® € Q(Pas)o
(as bs(®) is finite). So assume the result for § < 7 and let & € QPas)r,
There are three cases to be considered:

(1) bs(®) is a Bo-sum (Bo < )

Suppose the theorem fails for ®. Then it fails for some © € QPas)v,
where © is a A-sum of types in QUs<(Pes)s with \ minimal (in par-
ticular, A < fp). In other words, © is not a finite sum of members of
H(Q), but © = > ; ©, where tp(L) = A and each ©, is a finite sum
of members of H(Q) by induction hypothesis.
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Clearly, A must be an infinite limit ordinal. I will show that A is regular.
Hence A is a cardinal and A € RC. To show that A is regular, write ©
as a cf(A)-sum > ., ©% (tp(M) = cf(})), where each ©¥ is a < A-sum
of types O, (z € L). Each ©Y is a finite sum of members of H(Q) by
minimality of X\. Again by minimality of A, cf(A) = A, as required.
Now O is a A\-sum of finite sums of members of H(Q), so © can be
written as ), _, ©) where each ©/ € H(Q) and tp(L) = A. Claims:
(1.1) (3zp € L)(Vy,z € L)(vg <p y < 2 = (Fu € L)(z < u A
0, <6,))

Suppose this is false, i.e.
(Voo € L)(3y, 2 € L) (w0 <p y <p 2A(Vue L)(z <L u= 0, £ 0,)).

This means that for arbitrarily large y € L, (3z € L)(y < 2A(Vu €
L)(z <, uw = O, € ©,)). Hence it is possible to choose an
increasing w-sequence (Y, )n<w in L such that m < n = O £
©,,., contradicting the fact that H(Q) is BQO (by Corollary 5.11,
since @ is BQO) and hence WQO (by Theorem 2.4(i)).

Fix the point zy given in (1.1).
(1.2) 3 onn, O 35 @ ({0, 1 x = 20}, A)-unbounded sum

T ={xeL:x=>mx}is aterminal segment of the regular cardinal
A, 80 tp(T') = A. I still need to show unboundedness:

(Vo = 20)(FY € L)(Card(Y) = A A (yeY = O, < O,)).

By (1.1) there is an unbounded (in ) set Y that satisfies y € Y =
O, < ©,. A is regular, so Card(Y’) = A and we are done.

Now each ©), € H(Q) by definition, so > ., ©] € H(Q). Note that
I ={x e L:x <o} is an initial segment of A, so I < A. By minimality
of A, 2 cu, ©F is a finite sum of members of H(Q). hence >} ; O} is a
finite sum of types in H(Q), contradicting the definition of A and hence
giving case (1).

(2) bs(®) is an of-sum (ap < )

This case is similar to (1).
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(3) bs(®) is an 1agp,-sum (a0, fo) <, 3))

By the induction hypothesis on D, 3, ® is an 1,,3,-sum of finite sums of
members of H(Q). So ® is a ¢-sum of types in H(Q), where ¢ = 1,5,
because Wnaesy < (Nagss)” = Naoss- Hence ® can be written as Y . .,
where tp(F) = ¢ and ®, € H(Q). Define x = >, 1e, € H(Q)Z 0%
and note that Y = > P, = .

H(Q) is BQO by Corollary 5.11 and we are assuming the theorem for
all admissible {«yg, fy) < {a, f) and arbitrary BQOs. Replacing @ by
H(Q) in the statement of the theorem and recalling that

X € H(Q)T"0% < H(Q) ot (3)

we get that x is a finite sum of members of H(H(Q)), i. =, Xi
for some n < w and x; € H(H(Q)). By Lemma 5.13, ¢ Do Xi
is a finite sum of members of H(Q), as required.

e. x
=X

These three cases complete the theorem in the case that ® € Q="5.

Now consider the general case where ® € Q<"+, By Theorem 5.12, ® is a ¢-
sum of types 1, (¢ € Q) and (R, v, §)-universal types (R < @, {v,6) < (o, §)),
and ¢ € D,g. 1 will show that (R,~,d)-universal types are in H(Q). Hence
P is a ¢-sum of members of H(Q).

Let x be an (R,~,d)-universal type (R € @, {(7,6) < {a,5)). I will
show that y € H;(Q) < H(Q) by proving that y is an (R, ~, d)-shuffle
for some R € Ho(Q). In fact, R = R = {1, : r € R} will do.

X is (R, 7, d)-universal: x € R=" and W € BRS¢ = ¥ < x. So we can
write x = > Liz) Where tp(E) = 1,5 and [ : E — R is the labelling.
Define a new labelling I : £ — R : & — 1,y and let X' = > p 1y(z)-
Since 1, < 1, & a < b we have U € RS = ¥ < ' by the cor-
responding property of x. Hence x’ is (R,~,d)-universal. Note that
R=R'cQMand X' =3,z (x) = Y,cpliz) = X, 50 x is indeed
an (R, 7, d)-shuffle.

As in case (3) above, there is some y € H(Q)? such that ¥ = ®. As H(Q)
is BQO and bs(x) = ¢ € D,g, the first part of this proof shows that x is a
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finite sum of members of H(H(Q)). As in case (3), Lemma 5.13 gives that
® =Y is a finite sum of types in H(Q), as we wanted.

]

Remark. The following theorem uses Theorem 5.14, and for this use it would
suffice to prove Theorem 5.14 only for the case ® € Q="=3. However, the last
part of the proof is still necessary to make the induction step at equation (3)
go through.

Theorem 5.15. Q BQO = Q™ BQO.

Proof. If ® € Q™ then Corollary 4.6 = bs(®) < 7,5 for some «, 3. Define
a homomorphism [ : (H(Q))™ — QM : (®,)icp — Y., ®;. Theorem 5.14
= f is surjective. Now Corollary 5.11 = H(Q) BQO, so Theorem 2.4(v)
= (H(Q))=* BQO. Hence Lemma 2.7 (the homomorphism property) = QM
BQO.

]

By letting @ be a singleton BQO we get the main theorem:
Corollary 5.16. M is BQO.

An immediate consequence of Theorem 5.15 is the main result of Nash-
Williams’ paper [9], which states that if @ is BQO, then so is the class
of transfinite Q-sequences | J ., @

Q BQO = QM BQO = Q9" = U Q“ BQO (since On < M).

aeOn

The fact that On is an important subclass of M gives rise to questions
concerning the generalisation of properties of the ordinals to members of M.
In [7], Richard Laver investigates the generalisation of combinatorial results
about the ordinals and gives some sample applications to partition relations
and decompositions.
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