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1 Introduction

This essay will be concerned with order types (isomorphism classes of lin-
early ordered sets). A scattered order type is one that doesn’t contain an
isomorphic copy of the rationals. A quasi-order (or QO) is a transitive and
reflexive binary relation and a well quasi-order (or WQO) is a quasi-order in
which there are no infinite antichains and no infinite descending sequences.
A better quasi-order (or BQO) is a particularly nice kind of well quasi-order.
We quasi-order the order types by embeddability.1

The aim of this essay is to prove a conjecture of Fräıssé [1] which states that
the class of countable order types is well quasi-ordered. This conjecture was
later extended to include scattered order types. These assertions follow from
the main theorem of this essay: the class M of countable unions of scattered
order types is better quasi-ordered.

My approach will be to follow sections 3 and 4 of Richard Laver’s paper [6]
(stating without proof Theorem 3.4). I have elaborated on Laver’s proofs
and substantially expanded some arguments to make them more accessible
to the reader.

1Full definitions will be given in section 2.
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Simpson [12] gives an alternative proof of Fräıssé’s conjecture, by reformu-
lating the theory in terms of the usual (product) topology on rωsω and using
a theorem by Galvin and Prikry [2] on Borel partitions. He proves a slightly
weaker version of the theorem than the one given here: the class of scattered
order types and the class of countable order types are better quasi-ordered.

This result contributes to the aim of showing that many large classes of
mathematical objects are well quasi-ordered under natural orderings. Other
classes that have been considered are trees under tree embeddability (see
Kruskal [5] for finite trees and Nash-Williams [8] for infinite trees) and trans-
finite Q-sequences where Q is a BQO (see Nash-Williams [9]). More recently,
Robertson and Seymour [11] proved that finite graphs under the graph im-
mersion relation are well quasi-ordered.

Overview

Section 2 contains definitions and some fundamental general properties of
WQOs and BQOs are proved.

In section 3 I will define a class of trees TQ whose vertices are labelled by
elements of a QO Q. TQ is quasi-ordered by embeddability. Theorem 3.4
states that Q BQO ñ TQ BQO.

The next step is to define and characterise a useful class of order types ηαβ
which generalise the order type of the rationals (in fact, the rationals have
order type ηω1ω1). Theorem 4.4 gives some properties of the types ηαβ and
Theorem 4.5 shows that these properties suffice to describe these types up
to equivalence.

We let Dαβ be the class of types that strictly embed into ηαβ. In Theorem
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5.14 we will want to use this class for a proof by induction, so an inductive
characterisation of Dαβ is given in Theorem 4.9.

Next, we define another class of types HpQq and a quasi-ordered class Q�

containing Q. We prove that Q BQO ñ Q� BQO. Theorem 5.10 shows that
TQ� BQO ñ HpQq BQO by assigning trees in TQ� to types in HpQq.

QM is the class of countable unions of scattered order types with points
labelled by elements of Q. Theorem 5.14 essentially shows that HpQq BQO
ñ QM BQO.

The strongest result in the paper is Theorem 5.15 which states that Q BQO
ñ QM BQO and is proved by combining all previously established implica-
tions. Finally, the fact that M is a BQO drops out as an easy corollary. We
conclude the essay with an application of this result.

Some preliminary definitions

An order type (or just type) is an isomorphism class of linearly ordered sets.
Letters φ, ψ will usually range over order types. Write tppLq for the order
type of the linearly ordered set L. Letters L, M , N will usually range over
linearly ordered sets.

Ordinals are the order types of well-ordered sets (they will also be taken to
be well-ordered sets). The class of ordinals is denoted by On. Ordinals are
usually denoted by α, β, γ, δ, κ, λ, ξ. For limit ordinals λ, the cofinality of
λ is the least ordinal α such that λ is the limit of an α-sequence of ordinals
  λ and is denoted by cfpλq. If cfpλq � λ, λ is said to be regular.

I will use the Axiom of Choice without further comment throughout the
essay. In particular, cardinals are initial ordinals. The class of cardinals is
denoted by Card. If κ is a cardinal, then κ� is the least cardinal greater
than κ. Cardinals of the form κ� are successor cardinals. Cardinals that are
not of this form are called limit cardinals. RC is the class of infinite regular
cardinals.

IfX is a set, thenXα is the set of sequences xxβyβ α inX andX α �
�
β αX

β.
N � t0, 1, ...u.

Definition 1.1. φ ¤ ψ means that φ is embeddable in ψ, i.e. if tppLq � φ
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and tppMq � ψ then there is a strictly increasing function from L into M .

Definition 1.2. η is the order type of Q. An order type φ is scattered if
η ¦ φ. S is the class of all scattered order types.

Definition 1.3. M is the class of countable unions of scattered types, i.e.
φ PMô φ � tppLq where L can be written as

�
i ω Li with each tppLiq P S.

For example, η � tppQq P M (Q is a countable union of singletons), and
On �M.

2 Basic WQO and BQO Theory

In this section I will introduce the notions of well quasi-orders and better
quasi-orders, and I will establish some elementary properties that will turn
out to be useful in the course of the essay.

The concept of WQO is not strong enough to prove our main theorem, so we
will work with BQOs. This strengthens the hypothesis and makes the proof
work. See [6] for further motivation of the definitions.

While it is often easier to prove theorems about WQOs using BQOs, the
notion of WQO is more natural and easier to apply in concrete situations.
A particularly striking example is the application of Kruskal’s theorem on
finite trees [5] to logic: H. Friedman derived special cases of the theorem that
can be expressed but not proved in first-order arithmetic (see for example
Smorynski [13]).

Definition 2.1. A quasi-order or QO is a transitive and reflexive binary
relation on a set or class Q. This relation will be denoted by ¤ (possibly
with subscripts). Quasi-orders are usually denoted by the letters Q and R.

If q1, q2 P Q, write q1 � q2 if q1 ¤ q2 ^ q2 ¤ q1 (q1 and q2 are said to be
equivalent) and write q1   q2 if q1 ¤ q2^ q2 ¦ q1. Whenever a subset Q1 � Q
is considered, Q1 is assumed to be quasi-ordered by the restricted QO of Q.

Definition 2.2. If Q is a QO, then a sequence xqiyi ω in Q is said to be bad
if p@i   jqqi ¦ qj. A QO Q is a well quasi-order or WQO if there are no bad
sequences in Q.
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Remark. This definition is equivalent to the definition given in the introduc-
tion (via Ramsey’s Theorem).

Given QOs Q1, Q2, define QOs on spaces obtained from them:

1. Q1 �Q2 is quasi-ordered by

xα1, α2y ¤ xβ1, β2y ô pα1 ¤Q1 β1 ^ α2 ¤Q2 β2q.

2. If Q1 XQ2 � H then Q1 YQ2 is quasi-ordered by

α ¤ β ô ppα, β P Q1 ^ α ¤Q1 βq _ pα, β P Q2 ^ α ¤Q2 βqq.

If Q is a QO, order
�
αPOnQ

α by embeddability, i.e. xqαyα γ ¤ xrβyβ δ ô
there is a strictly increasing f : γ Ñ δ such that qα ¤ rfpαq for all α   γ. In
particular, this induces a quasi-order on Q ω (as a subset of

�
αPOnQ

α).

A set B � N ω of strictly increasing finite sequences is called a block if for
any strictly increasing xxiyi ω P N

ω there is some n P N with xxiyi n P B.
If t, u P B we write t � u if there exist m   n, x1   ...   xn P N such
that t � xxiyi�1,...,m and u � xxiyi�2,...,n (for example p1, 2, 3q � p2, 3, 4, 5, 6q).
Given a QO Q, a function from a block to Q is called an array. An array
a : B Ñ Q is bad if t, u P B ^ t� uñ aptq ¦ apuq.

Definition 2.3. A QO Q is a better quasi-order or BQO if there are no bad
arrays in Q. In other words, there is no block B that admits a bad array
a : B Ñ Q.

Remark. By taking B � N � N ω in the definition of BQOs, it follows that
every BQO is a WQO. There are, however, WQOs that are not BQOs: see
for example Rado’s counterexample given in [10]. Hence being BQO is a
strictly stronger property than being WQO.

This combinatorial definition of BQOs only plays a small role in this essay.
Instead we use some nice basic properties of BQOs:
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Theorem 2.4 (Nash-Williams [8]). (i) Q BQO ñ Q WQO.

(ii) Q well-ordered ñ Q BQO.

(iii) Q � Q1 YQ2 and Q1, Q2 BQO ñ Q BQO.

(iv) Q1, Q2 BQO ñ Q1 �Q2 BQO.

(v) Q BQO ñ Q ω BQO.

Definition 2.5. For Q a QO and q P Q, define Qq � tr P Q : q ¦ ru.

Lemma 2.6 (Induction Principle for WQOs). If ΦpQq is an assertion about
a WQO Q such that pp@q P QqΦpQqqq ñ ΦpQq and Φp0q holds (where 0 is
the empty quasi-order), then ΦpQq holds for all WQOs Q.

Proof. Suppose the conditions above hold and there is a WQO Q such that
ΦpQq is false. Then ΦpQq1q is false for some q1 P Q. Write Qp1q � Qq1 .
Continue inductively: If ΦpQpn�1qq is false, then there is qn P Q

pn�1q such

that ΦpQ
pn�1q
qn q is false. Write Qpnq � Q

pn�1q
qn .

So we get a nested sequence of WQOs Qp1q � Qp2q � ... and a sequence
xqnyn ω in Q such that for i   j we have qj P Qpj�1q � Qpiq � Q

pi�1q
qi �

tr P Qpi�1q : qi ¦ ru, i.e. qi ¦ qj. So xqnyn ω is a bad sequence. Contradic-
tion.

Lemma 2.7 (Homomorphism Property for BQOs). If Q is a BQO, Q1 � Q,
and there is an oder-preserving surjection Q1 Ñ R (any quasi-order R), then
R is a BQO.

Proof. Suppose there is a bad array a : B Ñ R. Define an array a1 : B Ñ Q1

with a1pxq � any element of h�1ptapxquq (this is � H by surjectivity). If a1 is
good, then pDr, s P Bqr�s^a1prq ¤ a1psq. Then aprq � hpa1prqq ¤ hpa1psqq �
apsq, contradicting the badness of a. Hence a1 is bad, contradicting Q BQO.
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3 Trees

This section states a theorem concerning the better quasi-ordering of a class
of trees with vertices labelled by elements of a BQO and defines all concepts
required to understand the result. Some of the definitions will be used later
in the essay.

Here a tree will be a set T , partially ordered by the relation ¤T , such that
ty P T : y ¤T xu is well-ordered by ¤T for any x P T . If there is a point
r P T with p@x P T qr ¤T x then T is said to be rooted and the root of T is
ρpT q � r. For x P T , Spxq is the set of immediate successors of x in T . If Q
is any set or class, a Q-tree is a pair pT, lq where T is a tree and l : T Ñ Q is
a function (l labels the vertices of T ). The branch of pT, lq with root node x,
written brpT,lqpxq (or just brpxq), is the Q-tree obtained from T by restricting
T to the vertices that are ¥T x. 0 is the empty tree and, for q P Q, 1q is the
singleton tree labelled by q.

Definition 3.1. T is the class of all rooted trees with no path of length ¡ ω.
TQ is the class of Q-trees pT, lq with T P T .

Definition 3.2. If q P Q and B � TQ, then rq;Bs denotes the Q-tree
pT, lq P TQ with lpρpT qq � q and tbrpxq : x P SpρpT qqu � B (assume a
convention where the trees in B are disjoint).

Definition 3.3. Define the following natural quasi-order on TQ:
pT1, l1q ¤m pT2, l2q if there is a strictly increasing function f : T1 Ñ T2

such that p@x P T1ql1pxq ¤ l2pfpxqq.

Theorem 3.4 (Laver [6]). Q BQO ñ TQ BQO under ¤m.

Remark. The proof of this theorem given in [6] assumes familiarity with [8].
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4 Characterisation of ηαβ

I will prove some preliminary lemmas before defining the types ηαβ mentioned
in the introduction. The main aim of this section is to prove some properties
of these types and show that these properties define the ηαβ up to equivalence.

The sum φ � ψ of two order types is tppLq where L is the disjoint union of
linear orders P1, P2 (tppP1q � φ, tppP2q � ψ), linearly ordered by x ¤L y ô
px, y P P1 ^ x ¤P1 yq _ px, y P P2 ^ x ¤P2 yq _ px P P1 ^ y P P2q.

If M is a linearly ordered set and, for each x P M , φx is an order type,
define the ordered sum

°
xPM φx to be tppNq, where N is obtained from M

by replacing each point x PM by a linearly ordered set of order type φx and
defining the new ordering on N appropriately.

The product φ � ψ of two order types is
°
xPL φ where tppLq � ψ.

If ψ is an order type (or R is a collection of order types), then we will often
express the fact that φ �

°
xPL φx, where tppLq � ψ (or tppLq P R), by

saying that φ is a ψ-sum (or an R-sum) of the φx.

If φ � tppLq then the converse of φ is φ� � tppL1q where L1 is a linear
order that has the same underlying set as L and x ¤L1 y ô x ¥L y. If α is
well-ordered, then α� is said to be conversely well-ordered.

0 denotes the linear order with empty underlying set, 1 denotes the linear
order with a one-element underlying set. 0 and 1 will also be used for the
corresponding order types.

The following characterisation of S will allow us to perform induction over
scattered types.

Theorem 4.1 (Hausdorff [3]). Let S0 � t0,1u and, for β ¡ 0, let Sβ �
tφ : φ is a well-ordered or conversely well-ordered sum of membersof

�
γ β Sγu.

Then S �
�
αPOn Sα.

Lemma 4.2. (i) A scattered sum of scattered types is scattered.

(ii) If κ P RC and κ ¤
°
yPM φy then either κ ¤ tppMq or κ ¤ φy for some

y PM .
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(iii) If κ P RC, λ   κ, L �
�
γ λ Lγ, and κ ¤ tppLq, then κ ¤ tppLγq for

some γ   λ.

(iv) If κ P RC, φ P S, and κ ¤ Cardpφq, then κ ¤ φ or κ� ¤ φ.

Proof. (i) Let tp(L) be scattered, and for each x P L let φx � tppLxq be
scattered. Suppose f : Q Ñ

�
xPL Lx gives an embedding η ¤

°
xPL φx. For

each x P L let Qx � f�1pLxq.

Then tppQxq ¤ φx ñ each Qx is scattered and η �
°
xPL tppQxq is a scattered

sum of scattered types. Now f order-preserving ñ each Qx is an interval in
Q, so tp(Qx) scattered ñ Qx is a singleton.

Hence η �
°
xPL tppQxq � tppLq, contradicting tp(L) scattered.

(ii) Let tppLyq � φy and let f : κ Ñ
�
yPM Ly be an embedding of κ into°

yPM φy.

Note first that

if S � κ is any subset of cardinality κ then κ ¤ S (1)

by defining an embedding g : κ Ñ S : α ÞÑ the αth element of S in the
well-ordering on S induced by κ.

If κ ¤M we’re done.

Assume κ ¦ M . Then Cardpty P M : impfq X Ly � Huq   κ, since
if this cardinality was equal to κ then κ ¤ M by equation (1). Hence
κ � Cardp

�
yPMpimpfq X Lyqq �

°
yPM Cardpimpfq X Lyq is a sum of   κ

non-zero cardinals, so by regularity of κ, pDy PMqCardpimpfqXLyq � κ. So
again by equation (1), κ ¤ Ly.

(iii) Let f : κ Ñ L be an embedding. Then by regularity of κ,
pDγ   κqCardpimpfq X Lγq � κ. So κ ¤ Lγ as before.

(iv) The proof will be by induction on the hierarchy given in Theorem 4.1.

The result is trivial for S0.

Assume it holds for
�
γ β Sγ and suppose φ P Sβ. Then φ is an α-sum or an
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α�-sum of elements of
�
γ β Sγ for some α P On. Write φ �

°
xPA φx where

tppAq � α and p@x P Aqφx P
�
γ β Sγ (the case tppAq � α� is similar). If

κ ¤ Cardpφxq for some x the we’re done by the induction hypothesis. So
assume Cardpφxq   κ for all x. Since κ ¤ Cardpφq we get κ ¤ CardpAq by
regularity of κ. CardpAq � α, so κ ¤ α ¤ φ.

Call a pair xα, βy P On � On admissible if α and β are uncountable regular
cardinals and maxtα, βu is a successor cardinal.

Given an admissible pair xα, βy we define the order type ηαβ. To do this we
first define an auxiliary type σαβ as follows:

If α � γ� and β � δ� are both successor cardinals, σαβ � γ� � δ.

If α is a limit cardinal, then α   β � δ� for some cardinal δ and
we define σαβ �

°
xPM φx where tppMq � δ, p@x P Mqφx   α�, and

for each cardinal λ   α there is some x P M with φx ¥ λ� (this last
condition is satisfiable because α ¤ δ).

If β is a limit cardinal, then σαβ � pσβαq
�.

Definition 4.3. ηαβ � tppLq where L �
�
n ω Ln and the sets L0 � L1 � ...

are chosen as follows:

(i) tppL0q � σαβ

(ii) Ln�1 is obtained from Ln by inserting a set of type σαβ into each empty
interval of Ln.

The next theorem identifies the essential properties of the types ηαβ.

Theorem 4.4. (i) ηαβ PM. (Recall definition 1.3)

(ii) α� ¦ ηαβ, β ¦ ηαβ.

(iii) If α0   α and β0   β are ordinals then α�0 ¤ tpppx, yqq and β0 ¤ tpppx, yqq
for any interval px, yq � L.

Proof. (i) Cardinals are scattered, so σαβ is a scattered sum of scattered
types. By Lemma 4.2(i), tppL0q � σαβ P S.
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Given tppLnq P S we get tppLn�1q P S by writing tppLn�1q �
°
xPLn

φx where
each φx is 1 or σαβ � 1 and applying Lemma 4.2(i). So L �

�
n ω Ln is a

countable union of scattered types.

(ii) I will prove the result for β. The case α� is similar.

First, note that β ¦ σαβ � tppL0q by the definition of L0. Suppose that, for
some n, β ¦ tppLnq but β ¤ tppLn�1q. Writing tppLn�1q �

°
xPLn

φx as in
(i) we get β ¤ tppLnq or β ¤ φx for some x by Lemma 4.2(ii) (ω   β P RC
because xα, βy is admissible). Both of these cases are impossible. Hence, by
induction, β ¦ tppLnq for all n.

Hence ω   β P RC and L �
�
n ω Ln. If β ¤ ηαβ � tppLq then Lemma

4.2(iii) ñ β ¤ tppLnq for some n, giving a contradiction.

(iii) I will prove the result for β0. The proof for α�0 is similar.

The proof uses induction on ordinals γ   β. Assume that the result holds for
all ordinals δ   γ. I will find an embedding γ ¤ px, yq. The Ln are nested,
so x, y P Lm for some m.

rx, ys � Lm has an empty subinterval pu, vq

Recall that the only countable dense order type with no endpoints is
tppQq (Theorem 4.3(i) in [4]). If there is no empty subinterval, construct
such a linear order inside rx, ys by picking points in subintervals. Then
tppQq ¤ tpprx, ysq ¤ tppLmq, contradicting the fact that tppLmq P S
which was established in theorem 4.4(i).

Hence px, yq � L contains a copy of σαβ, so all cardinals   β embed into
px, yq � L. We still need to extend the result to all ordinals   β.

cfpγq ¤ γ   β is a regular cardinal, so cfpγq ¤ px, yq. If cfpγq � γ then
γ ¤ px, yq and we’re done. So assume cfpγq   γ.

Let f : cfpγq Ñ px, yq be an embedding. Write γ as a cfpγq-sum of smaller
ordinals γτ (τ   cfpγq). By induction it is possible to embed each γτ into the
subinterval pfpτq, fpτ � 1qq � px, yq. Combining these embeddings gives an
embedding γ ¤ px, yq.
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The next theorem gives a converse to Theorem 4.4. It implies that the non-
uniqueness of the construction of ηαβ is unimportant in the sense that all
types constructed in this way are equivalent.

The proof will make use of Dedekind cuts: A Dedekind cut pL1, L2q of a linear
order L is a partition L � L1 Y L2 such that p@x P L1qp@y P L2qx  L y.

Theorem 4.5. Suppose φ � 0,1, φ � tppMq, and there are ordinals α, β
such that

(i) φ PM;

(ii) α� ¦ φ, β ¦ φ;

(iii) If px, yq is an interval of M , then tpppx, yqq ¥ α�0 (for all α0   α) and
tpppx, yqq ¥ β0 (for all β0   β).

Then xα, βy is admissible and φ � ηαβ.

Proof. By (i) I can write M �
�
n ωMn with each tppMnq P S. To show

that xα, βy is admissible, I need to check the following four conditions:

α, β are limit ordinals

I will prove it for β.

Suppose β � γ � 1. Let px, yq � M be any interval. Then (iii) gives
γ ¤ tpppx, yqq, so β ¤ tpppx, ysq ¤ φ, contrary to (ii).

α, β are regular

I will prove it for β.

Suppose cfpβq   β. Then (iii) can be used to embed β (expressed as a
cfpβq-sum of smaller ordinals) into φ in the same way as this was done
in the proof of Theorem 4.4(iii), contradicting (ii).

α, β are uncountable cardinals

I will prove it for β.
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φ � 0,1 ñ CardpMq ¥ 2. So let x � y P M and consider the in-
terval px, yq � M . CardpMq ¥ 2 ñ β ¥ 2 by (ii). Hence 1   β, so
(iii)ñ 1 ¤ px, yq. In particular, pDa P Mqx   a   y. Repeating this
process with the subinterval pa, yq gives an embedding ω ¤ φ. Now β
is a regular limit ordinal, so β is a cardinal, and hence condition (ii)
gives β ¥ ω1.

maxtα, βu is a successor cardinal

Assume that maxtα, βu � β (wlog) is a limit cardinal. By (iii), ev-
ery cardinal   β embeds into φ, so CardpMq ¥ supκ βκ � β. β
is regular and uncountable, so CardpMnq ¥ β for some n (otherwise
xCardpMnqyn ω is an unbounded ω-sequence in β). Since β P RC and
tppMnq P S, Lemma 4.2(iv) gives tppMnq ¥ β or tppMnq ¥ β� ¥ α�,
contrary to (ii).

f : N1 Ñ N is said to satisfy the Dedekind cut condition (or DCC ) if for
any Dedekind cut pN1

1 , N
2
1 q of N1 there is an interval px, yq � N such that

z P px, yq, u P N1
1 , v P N

2
1 ñ fpuq   z   fpvq.

I will show that φ � ηαβ in three steps:

(1) Let N,N1 be linear orders. Assume tppN1q P S, tppN1q satisfies (ii),
CardpNq ¡ 1, and N satisfies (iii). Then there is an embedding N1 Ñ N
satisfying DCC.

The proof will be by induction on the Hausdorff hierarchy of S. So
assume N1 P Sξ and (1) holds for all types in

�
ζ ξ Sζ . By Theorem

4.1 tppN1q may be written as a δ-sum or a δ�-sum of types in
�
ζ ξ Sζ

for some ordinal δ. I will assume the former (the other case is similar).
Write tppN1q �

°
xPD ψx, where tppDq � δ, ψx P

�
ζ ξ Sζ , and ψx �

tppPxq.

tppN1q satisfies (ii), so δ ¤ tppN1q ñ δ   β. N satisfies (iii), so there
is an embedding f : D Ñ N , and f certainly satisfies DCC. For each
x P D, the interval pfpxq, fpx � 1qq � N satisfies (iii) and has car-
dinality ¡ 1, so by the induction hypothesis there is an embedding
fx : Px Ñ pfpxq, fpx � 1qq satisfying DCC. Patching together the fx
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gives an embedding N1 Ñ N that satisfies DCC.

(2) Let N be a linear order. CardpNq ¡ 1^N satisfies (iii) ñ φ ¤ tppNq

Recall: φ � tppMq,M �
�
n ωMn,Mn P S.

Note that M0 satisfies (ii) (since M0 � M and M satisfies (ii)), and
M0 P S. By (1) there is an embedding f0 : M0 Ñ N satisfying DCC.
Using the DCC this can be extended to an embedding f1 : M0YM1 Ñ
N . Since every interval px, yq � N satisfies (iii) and has cardinality
¡ 1, we can take f1 to satisfy DCC.

Continue this process, obtaining a nested sequence of embeddings xfnyn ω.
Then f �

�
n ω fn is an embedding M Ñ N , i.e. φ ¤ tppNq.

(3) φ � ηαβ

ηαβ � tppLq satisfies (iii) and CardpLq ¡ 1, so φ ¤ ηαβ by (2).

ηαβ � tppLq satisfies (i)-(iii), ηαβ � 0,1, and φ � tppMq satisfies (iii)
and CardpMq ¡ 1, so ηαβ ¤ φ again by (2).

Corollary 4.6. Let xα, βy be admissible. φ ¤ ηαβ ô φ PM, α� ¦ φ, β ¦ φ.

Proof. (ñ) Clear from properties (i)-(iii) of ηαβ.

(ð) ηαβ � tppLq, CardpLq ¡ 1, L satisfies (iii) ñ φ ¤ ηαβ by step (2) in
the proof of Theorem 4.5 (Note that the assumption that φ satisfies property
(iii) isn’t used in the proof of step (2), so it can be applied to this situation).

We now define the class Dαβ and prove an alternative definition which will
allow us to perform induction on Dαβ.

Definition 4.7. Dαβ � tφ : φ   ηαβu.

Definition 4.8. If L is a linear order, a sequence xxαyα λ is called cofi-
nal if p@y P LqpDα   λqy ¤ xα. The sequence is called co-initial if
p@y P LqpDα   λqxα ¤ y.
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Theorem 4.9. (i) A Dαβ-sum of elements of Dαβ is in Dαβ.

(ii) Dαβ �
�
γ maxtα,βupDαβqγ, where pDαβq0 � t0,1u, and for δ ¡ 0,

φ P pDαβqδ ô φ is an α�0-sum, or a β0-sum, or an ηα0β0-sum (for some
α0   α, β0   β) of members of

�
γ δpDαβqγ.

Proof. (i) First note that pηαβq
2 � ηαβ, i.e. ηαβ �

°
xPL ηαβ where

tppLq � ηαβ:

ηαβ ¤ pηαβq
2 is clear.

To show pηαβq
2 ¤ ηαβ I will show that pηαβq

2 P M, α� ¦ pηαβq
2,

β ¦ pηαβq
2, and use Corollary 4.6.

Write ηαβ � tppLq where L �
�
n ω Ln as in definition 4.3. Define

Mm,n by tppMm,nq �
°
xPLm

tppLnq. By Lemma 4.2(i), tppMm,nq P S.
Let M �

�
m,n ωMm,n. Then tppMq � pηαβq

2 is a countable union of

scattered types, i.e. pηαβq
2 PM.

Suppose β ¤ pηαβq
2. Then β ¤ ηαβ by Lemma 4.2(ii) (recall that xα, βy

admissible, so β P RC), contradicting Theorem 4.4(ii).

α� ¦ pηαβq
2 is similar.

Let
°
xPM φx be a Dαβ-sum of members of Dαβ. Then

°
xPM φx ¤ ηαβ by the

above discussion.

Suppose ηαβ ¤
°
xPM φx. If an interval of ηαβ is embedded into one φy, then

ηαβ ¤ φy since ηαβ embeds into each of its non-empty intervals. This con-
tradicts φy P Dαβ. So the points of L (where tppLq � ηαβ) are mapped to
different φx’s, giving ηαβ ¤ tppMq and hence contradicting tppMq P Dαβ. So°
xPM φx   ηαβ, as required.

(ii) Let Cαβ �
�
γ maxtα,βupDαβqγ.

(1) A Cαβ-sum of members of Cαβ is in Cαβ

Let µ � tppMq P Cαβ and for each y P M , let φy P Cαβ. µ P pDαβqγ for
some γ   maxtα, βu. I will show by induction on γ that

°
yPM φy P Cαβ.
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So assume that (1) holds for all µ1 P
�
ξ γpDαβqξ. I will show the result

in the case where µ is a β0-sum, the cases α�0 , ηα0β0 being similar.

So write µ �
°
xPB0

µx, where tppB0q � β0   β and µx � tppMxq P�
ξ γpDαβqξ. Then

°
yPM φy �

°
xPB0

°
yPMx

φy. By the induction hy-
pothesis,

°
yPMx

φy P Cαβ for each x. Call these sums χx. I want to
show that

°
xPB0

χx P Cαβ.

Each χx is in some pDαβqγx (γx   maxtα, βu). Let δ � supxPB0
γx.

Then δ   maxtα, βu because CardpB0q   β and β is regular. Hence
p@x P B0qχx P pDαβqδ ñ

°
xPB0

χx P pDαβqδ�1 � Cαβ.

(2) Cαβ � Dαβ

Let α0   α, β0   β.

ηα0β0 satisfies the conditions of Theorem 4.5 and ηαβ � tppLq satisfies
the conditions of claim (2) in the proof of Theorem 4.5, so ηα0β0 ¤ ηαβ.
If ηαβ ¤ ηα0β0 then β0 ¤ ηαβ ¤ ηα0β0 (by Theorem 4.4(iii), since
β0   β), contradicting Theorem 4.4(ii). So ηα0β0   ηαβ.

It is clear that α�0 , β0 ¤ ηαβ. Suppose ηαβ ¤ β0. Then tppQq � ηω1ω1 ¤
ηαβ ¤ β0 (contradiction). So β0   ηαβ and similarly α�0   ηαβ.

Hence α�0 , β0, ηα0β0 P Dαβ.

Since pDαβq0 � Dαβ we obtain Cαβ � Dαβ by induction and part (i) of
this theorem.

The rest of the proof will demonstrate equality. Suppose that there is some
L with tppLq P DαβzCαβ.

(3) pψ P Cαβ ^ φ ¤ ψq ñ φ P Cαβ

Proof by induction: ψ P pDαβqγ for some γ. Assume the claim holds
for
�
ξ γpDαβqξ and let f be an embedding of φ into ψ.

Write ψ �
°
xPB0

ψx where tppB0q � β0   β, ψx � tppPxq, and
p@x P B0qψx P

�
ξ γpDαβqξ (the cases where ψ is an α�0-sum or an

ηα0β0-sum are similar).

Then φ �
°
xPB0

tppimpfqXPxq and tppimpfqXPxq ¤ ψx P
�
ξ γpDαβqξ ñ

tppimpfqXPxq P Cαβ by the induction hypothesis. Hence φ is a Cαβ-sum
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of members of Cαβ, i.e. φ P Cαβ by (1).

Define a binary relation � on L by setting x � y if tpppx, yqq P Cαβ and set
x � x and x � y ñ y � x.

(4) � is an equivalence relation

I only need to check transitivity. Assume x � y, y � z and x  L y  L z.
Then tpppx, yqq, tpppy, zqq P Cαβ ñ tpppx, zqq � tpppx, yqq � 1� tpppy, zqq
P Cαβ, so x � z.

(5) � partitions L into intervals

Suppose x � z and x  L y  L z. Then tpppx, yqq ¤ tpppx, zqq P Cαβ ñ
tpppx, yqq P Cαβ by (3). So x � y � z.

Let X � L be an equivalence class. Construct a co-initial α�0-sequence and
a cofinal β0-sequence (some α0, β0). Now tppLq P Dαβ ñ tppLq   ηαβ ñ
α�, β ¦ tppLq, so α0   α, β0   β. Use these sequences to write tppXq as
an pα�0 � β0q-sum of members of Cαβ (subintervals of X have type in Cαβ by
definition of �). Since α�0 � β0 P Cαβ, tppXq P Cαβ.

Let L1 � L be a set containing one representative from each equivalence
class. Suppose some interval pu, vq � L1 has tpppu, vqq P Cαβ. Write rxs
for the equivalence class of x P L. If pu, vq is considered as an interval of
L, then pu, vq �

�
u¤L1x¤L1v

rxs, i.e. tpppu, vqq ¤
°
u¤L1x¤L1v

tpprxsq. Then
the previous paragraph shows that this sum is a Cαβ-sum of types in Cαβ,
so tpppu, vqq ¤ some member of Cαβ. By (3), tpppu, vqq P Cαβ, contradicting
u � v. Hence all intervals in L1 have type in DαβzCαβ.

(6) There is an interval px0, y0q � L1 that doesn’t contain a copy of α�0 or of
β0 (for some α0   α or β0   β)

L1 � 0,1 and conditions (i) and (ii) of Theorem 4.5 are satisfied by L1,
α, β:

(i): tppL1q ¤ tppLq   ηαβ PMñ tppL1q PM
(ii): α�, β ¦ ηαβ ñ α�, β ¦ tppLq ñ α�, β ¦ tppL1q
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Since tppL1q ¤ tppLq   ηαβ, condition (iii) must fail. This is precisely
the statement above.

Take px0, y0q as above and assume β0 ¦ px0, y0q (the other case is similar).
Assume wlog that we have chosen px0, y0q in such a way that the correspond-
ing ordinal β0 is minimal in the sense that if β1   β0 then every interval of
L1 contains a copy of β1. Let α0 (  α) be the smallest ordinal such that α�0
doesn’t embed into some subinterval px1, y1q � px0, y0q � L1. Then px1, y1q,
α0, β0 satisfy the conditions of Theorem 4.5, so tpppx1, y1qq � ηα0β0 and
xα0, β0y is admissible. Now xα0, β0y   xα, βy, so tpppx1, y1qq � ηα0β0 P Cαβ,
contradicting the fact that all intervals of L1 have type in DαβzCαβ.

5 The Main Theorem

In this section I will define the classes HpQq and Q� mentioned in the intro-
duction, and I will use them to prove the chain

Q BQO ñ Q� BQO ñ TQ� BQO ñ HpQq BQO ñ QM BQO.

The main theorem of this essay asserts that M is BQO – this is an easy
corollary of QM being BQO.

A Q-linear ordering is a pair pL, lq, where L is a linear order and l : LÑ Q
is a function (the labelling function). Two Q-linear orders pL, lq, pM,mq
are isomorphic if there is an order isomorphism f : L Ñ M satisfying
p@x P Lqmpfpxqq � lpxq. A Q-type is the isomorphism type of a Q-linear
ordering. In the following, Q-types are usually denoted by capital greek
letters. tppL, lq is the isomorphism type of the Q-linear order pL, lq. The
base of a Q-type Φ � tppL, lq is bspΦq � L. Sums and products of Q-types
are defined as for order types. 0 will denote the Q-type with base 0, 1q will
denote the Q-type with base 1 labelled by the point q P Q.

Definition 5.1. Quasi-order the class of Q-types as follows: Φ ¤ Ψ if
Φ � tppL, lq, Ψ � tppM,mq and there is a strictly increasing function f : LÑM
satisfying p@x P Lqlpxq ¤ mpfpxqq.
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Let Qφ (or Q¤φ, or Q�φ) be the collection of all Q-types with base φ (or ¤ φ,
or � φ). If R is a collection of order types, QR �

�
φPRQ

φ.

We now define pU , κq-unbounded sums and pR, α, βq-shuffles and prove some
preliminary results. These concepts will be used to define the class or types
HpQq.

Definition 5.2. If Φ is a Q-type, U is a set of Q-types, and κ is an infinite
cardinal, then Φ is called a pU , κq-unbounded sum if Φ �

°
xPK Φx where

tppKq � κ, U � tΦx : x P Ku, and

p@x P KqpDY � KqpCardpY q � κ^ py P Y ñ Φx ¤ Φyqq.

If tppKq � κ� instead of κ in the above definition, then Φ is called a pU , κ�q-
unbounded sum.

Lemma 5.3. Suppose δ P RC, κ ¤ δ, Φ is a pU , κq-unbounded sum, Ψ is a
pV , δq-unbounded sum (or Φ is a pU , κ�q-unbounded sum and Ψ is a pV , δ�q-
unbounded sum) and p@Θ P UqpDχ P VqΘ ¤ χ. Then Φ ¤ Ψ.

Proof. Write Φ �
°
xPK Φx, Ψ �

°
xPD Ψy as in definition 5.2. Define an

embedding h of Φ into Ψ by induction on initial segments of κ. Suppose
h has been defined on

°
x x0

Φx and embeds that segment into
°
y y0

Ψy.
By assumption, pDy1 P DqΦx0 ¤ Ψy1 . Ψ is a pV , δq-unbounded sum, so
pDy2 ¥D y1qΨy1 ¤ Ψy2 (since the cardinality of an initial segment of δ is
  δ). So extend h to embed Φx0 into Ψy2 .

For γ   κ, a γ-limit of initial segments of δ is an initial segment of δ, since
κ ¤ δ and δ is regular. Hence this construction of the embedding h defines
it on each Φx, showing that Φ ¤ Ψ.

The argument for pU , κ�q and pV , δ�q is similar.

Definition 5.4. Let R be a set of Q-types and Ψ P Rφ (some φ), where
R is quasi-ordered as in definition 5.1: Ψ � tppL, lq where tppLq � φ and
l : LÑ R labels elements of L with Q-types. Then we define

Ψ �
¸

xPL

lpxq
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Definition 5.5. (i) If Q is any QO and Φ is a Q-type, then Φ is called
pQ,α, βq-universal if Φ P Q�ηαβ and Ψ P Q¤ηαβ ñ Ψ ¤ Φ.

(ii) We say Φ is an pR, α, βq-shuffle if R � QM and Φ � Φ1 for some
pR, α, βq-universal Φ1.

Remark. Recall that QM is the class of countable unions of scattered types,
with points labelled by elements of Q.

Lemma 5.6. If Φ is a pU , α, βq-shuffle, Ψ a pV , γ, δq-shuffle, xα, βy ¤ xγ, δy,
and p@Θ P UqpDχ P VqΘ ¤ χ, then Φ ¤ Ψ.

Proof. Ψ is a pV , γ, δq-shuffle: Ψ � Ψ1 where Ψ1 is pV , γ, δq-universal, i.e.
Ψ1 P V�ηγδ and χ P V¤ηγδ ñ χ ¤ Ψ1. Assume that Ψ1 � tppM,mq, where
tppMq � ηγδ and m : M Ñ V . Then Ψ � Ψ1 �

°
yPM mpyq.

Φ is a pU , α, βq-shuffle: Φ � Φ1, where Φ1 P U�ηαβ . Assume that Φ1 � tppL, lq,
where tppLq � ηαβ and l : LÑ U . Then Φ � Φ1 �

°
xPL lpxq.

Define l1 : L Ñ V by letting l1pxq be some χ P V such that lpxq ¤ χ (as
guaranteed by the assumptions of the lemma). Since ηαβ ¤ ηγδ it follows
that Φ1 ¤ Φ2 P V¤ηγδ where Φ2 � tppL, l1q. By pV , γ, δq-universality of Ψ1 we
get Φ1 ¤ Φ2 ¤ Ψ1, i.e. there is a strictly increasing f : L Ñ M such that
p@x P Lqlpxq ¤ mpfpxqq. So

°
xPL lpxq ¤

°
xPLmpfpxqq ¤

°
yPM mpyq, i.e.

Φ ¤ Ψ.

Definition 5.7. Define HpQq to be
�
αPOnHαpQq where

(i) H0pQq � t0u Y t1q : q P Qu and

(ii) for α ¡ 0, Φ P HαpQq ô Φ is a pU , κq-unbounded sum, or a pU , κ�q-
unbounded sum, or a pU , α, βq-shuffle for some U �

�
β αHβpQq (and some

κ P RC, some admissible xα, βy).

Definition 5.8. If Q is a quasi-ordered set or class, construct a new QO Q�

from it as follows: For each κ P RC, add elements aκ and bκ, and for each
admissible pair xα, βy, add a point cαβ to Q. Quasi-order Q� as the disjoint
union of sets Q Y taκ : κ P RCu Y tbκ : κ P RCu Y tcαβ : xα, βy admissibleu,
where

aκ ¤ aλ ô bκ ¤ bλ ô κ ¤ λ and cαβ ¤ cγδ ô xα, βy ¤ xγ, δy.
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Definition 5.9. Define a class function T : HpQq Ñ TQ� by induction on
the ’levels’ of HpQq as follows:

(i) T p0q is the empty Q�-tree, and T p1qq � 1q.

(ii) Assume T pΨq has been defined for all Ψ P
�
β αHβpQq and Φ P

HαpQqz
�
β αHβpQq. Then there is U �

�
β αHβpQq such that one of the

following three conditions holds.

(1) Φ is a pU , λq-unbounded sum for some λ P RC. Let T pΦq �
raλ; tT pΘq : Θ P Uus;
(2) Φ is a pU , λ�q-unbounded sum for some λ P RC. Let T pΦq �
rbλ; tT pΘq : Θ P Uus;
(3) Φ is a pU , γ, δq-shuffle for some admissible xγ, δy. Let T pΦq �
rcγδ; tT pΘq : Θ P Uus.

Remark. Recall that trees in TQ� are rooted and have no path of length
¡ ω. The first condition is immediate for trees T pΦq (Φ P HpQq) from the
definition of T , the second condition holds by induction. Hence T really is a
function into TQ� .

The next theorem reduces the problem of showing that HpQq is BQO to that
of showing that TQ� is BQO.

Theorem 5.10. If Φ P HαpQq and Ψ P HβpQq, then T pΦq ¤m T pΨq ñ Φ ¤
Ψ.

Proof. The proof is by induction on xα, βy. Assume the result for all xα0, β0y  
xα, βy. Let T pΦq � pT1, l1q, T pΨq � pT2, l2q, and let f : T1 Ñ T2 be an em-
bedding of T pΦq into T pΨq.

Suppose fpρpT1qq � ρpT2q. Then T pΦq ¤m brpT2,l2qpxq for some x P SpρpT2qq,
brpT2,l2qpxq � T pχq for some χ P

�
γ β HγpQq, and χ ¤ Ψ. By the induction

hypothesis, Φ ¤ χ ¤ Ψ and we’re done. So assume fpρpT1qq � ρpT2q. There
are 4 cases:

(1) T pΦq is empty or l1pρpT1qq � q for some q P Q

The theorem is clear in the first case.
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In the second case we must have l2pρpT2qq � r for some r ¥ q (recall
that the trees are labelled by Q�). Hence Φ � 1q ¤ 1r � Ψ.

(2) l1pρpT1qq � aδ for some δ P RC

We must have l2pρpT2qq � aκ for some κ ¥ δ, κ P RC.

l1pρpT1qq � aδ ñ Φ is a pU , δq-unbounded sum of members of
¤

γ α

HγpQq

ñ T pΦq � raδ; tT pΘq : Θ P Uus
ñ U � tΘ : T pΘq � brpT1,l1qpxq for some x P SpρpT1qqu

Similarly, Ψ is a pV , κq-unbounded sum where V � tχ : T pχq �
brpT2,l2qpxq for some x P SpρpT2qqu.

The function f above gives an embedding of any brpT1,l1qpxq (x P SpρpT1qq)
into some brpT2,l2qpyq (y P SpρpT2qq), i.e. p@Θ P UqpDχ P VqT pΘq ¤ T pχq.
By induction hypothesis, p@Θ P UqpDχ P VqΘ ¤ χ. The conditions of
Lemma 5.3 are satisfied, so Φ ¤ Ψ.

(3) l1pρpT1qq � bδ for some δ P RC

Similar to case (2).

(4) l1pρpT1qq � cαβ for some admissible xα, βy

We must have l2pρpT2qq � cγδ with xα, βy ¤ xγ, δy. Also, Φ is a
pU , α, βq-shuffle and Ψ is a pV , γ, δq-shuffle, where U and V are as in
case (2). As above, we get p@Θ P UqpDχ P VqΘ ¤ χ from the induction
hypothesis.

Hence the conditions of Lemma 5.6 are satisfied and it follows that
Φ ¤ Ψ, as required.

Corollary 5.11. Q BQO ñ HpQq BQO

Proof. Theorem 2.4(ii) ñ taκ : κ P RCu, tbκ : κ P RCu BQO.
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Theorem 2.4(ii),(iv) ñ tcαβ : xα, βy admissibleu BQO.

Hence Theorem 2.4(iii) ñ Q� is BQO. By Theorem 3.4, TQ� is BQO under
¤m. If a : B Ñ HpQq is an array, then the composition of a with T is an
array in TQ� which can’t be bad since TQ� is BQO. So by Theorem 5.10, a
can’t be bad. Hence HpQq is BQO.

Theorem 5.12. Suppose Q is WQO and Φ P Q¤ηαβ . Then Φ is a Dαβ-sum of
types 1q (q P Q) and of pR,α0, β0q-universal types (R � Q, xα0, β0y ¤ xα, βy).

Proof. The theorem is trivial for Q � 0. Let Q be a WQO. By the induc-
tion principle (Lemma 2.6), it suffices to assume that the result is true for
Qq � tr P Q : q ¦ ru for each q P Q and deduce it for Q.

Φ P Q¤ηαβ ñ Φ � tppL, lq for some l : LÑ Q and tppLq ¤ ηαβ.

Define a binary relation � on L by setting y � z if y   z and every subinter-
val of py, zq is a Dαβ-sum of types 1q (q P Q) and pR,α0, β0q-universal types
(R � Q, xα0, β0y ¤ xα, βy) and by setting x � x and x � y ñ y � x.

� is an equivalence relation that partitions L into intervals

� is transitive: Suppose x   y   z and x � y � z. Then every
subinterval of px, zq is either a subinterval of px, yq or a subinterval of
py, zq or of the form pu, yq�1�py, vq. All of these have the right form,
so x � z. Hence � is an equivalence relation.

If x � z and x   y   z then x � y � z by definition of �. Hence the
equivalence classes are intervals.

Write rxs for the equivalence class of x P L.

Choose a co-initial γ�-sequence and a cofinal δ-sequence in rxs such that all
points of the former are below all points of the latter in the ordering of L.
tppLq ¤ ηαβ, so by Theorem 4.4(ii), γ   α and δ   β. Using these sequences,
write rxs as a pγ� � δq-sum of types 1q � pu, vq (some q P Q, pu, vq � rxs).
γ� � δ   ηαβ, so γ� � δ P Dαβ. Since u � v for each subinterval of rxs, rxs is
thus written as a Dαβ-sum of types 1q and pR,α0, β0q-universal types (using
Theorem 4.9(i)).
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If L consists of one equivalence class, we’re done.

So suppose pDx, y P Lqx � y. I will show that Φ itself is a pQ,α, βq-universal
type, thereby completing the proof.

Write rLs for the set trxs : x P Lu linearly ordered by rxs ¤rLs rys ô x ¤L y.
Let prxs, rysq be an interval in rLs, rxs � rys.

(1) tppprxs, rysqq � ηαβ

We know that tppprxs, rysqq ¤ tpprLsq ¤ tppLq ¤ ηαβ.

Suppose tppprxs, rysqq   ηαβ, i.e. tppprxs, rysqq P Dαβ. Then px, yq is
a Dαβ-sum of Dαβ-sums of 1q’s and pR, α0, β0q-universal types, so by
Theorem 4.9(i), x � y (contradiction).

(2) p@q P QqpDz P Lqrzs P prxs, rysq ^ lpzq ¥ q

Otherwise there is q P Q such that

tlpzq : rzs P prxs, rysqu � tp P Q : q ¦ pu � Qq.

We are assuming the theorem for Qq, so tz : rzs P prxs, rysqu is a subset
of one equivalence class (all of Qq), contradicting (1).

To show that Φ is pQ,α, βq-universal, note first that Φ P Q�ηαβ because
Φ P Q¤ηαβ (by assumption) and bspΦq ¥ tpprLsq ¥ tppprxs, rysqq � ηαβ by
(1).

Now assume tppM,mq P Q¤ηαβ . I want tppM,mq ¤ Φ. Recall that
tpprLsq � ηαβ and pηαβq

2 � ηαβ. By considering ηαβ copies of rLs it fol-
lows that there is an embedding f : M Ñ rLs such that for each x PM there
is an interval prys, rzsq � rLsx of rLs such that x is the only element of M
mapping into rLsx and x � y ñ rLsx X rLsy � H.

By (2), f gives rise to an embedding f 1 : M Ñ L such that
p@y P Mqmpyq ¤ lpf 1pyqq. So tppM,mq ¤ Φ and Φ is pQ,α, βq-universal,
as required.
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Lemma 5.13. χ P HγpHpQqq ñ χ P HpQq (on the left-hand side, HpQq is
considered to be a QO, quasi-ordered by embeddability).

Proof. The proof will be by induction on γ. The result is clear for γ � 0,
since 1Φ P H0pHpQqq ñ 1Φ � Φ P HpQq. Let χ P HγpHpQqq and assume the
result for β   γ. There are three cases:

(1) χ is a pU , κq-unbounded sum (U �
�
β γ HβpHpQqq and κ P RC)

Suppose U � tχi : i P Iu, tppIq � κ, bspχiq � Xi, and let U � tχi : i P Iu.
First I will show that

χ �
¸

iPI

χi ñ χ �
¸

iPI

χi (2)

χ � tppL, lq for some l : L Ñ HpQq and tppLq �
°
iPI Xi. Hence

χ �
°
xPL lpxq �

°
iPI

°
xPXi

lpxq �
°
iPI χi, as required.

Hence χ is a pU , κq-sum.

Furthermore, since χ1 ¤ χ2 ñ χ1 ¤ χ2, χ is a pU , κq-unbounded sum.

As all χi are in
�
β γ HβpHpQqq it follows by the induction hypothesis

that the χi are in HpQq, so by equation 2, χ �
°
iPI χi P HpQq.

(2) χ is a pU , κ�q-unbounded sum (U �
�
β γ HβpHpQqq and κ P RC)

This case is similar to case (1).

(3) χ is a pU , δ, λq-shuffle (U �
�
β γ HβpHpQqq and xδ, λy is admissible)

I will show that χ is a pU , δ, λq-shuffle. As in case (1), it follows that
χ P HpQq.
χ is a pU , δ, λq-shuffle, so I may assume χ � χ1 where

(a) χ1 P U�ηδλ

(b) Θ P U¤ηδλ ñ Θ ¤ χ1.

Write Φ for χ. I need to show that Φ is a pU , δ, λq-shuffle, i.e. Φ � Φ1

where
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(a’) Φ1 P U�ηδλ

(b’) Θ P U¤ηδλ ñ Θ ¤ Φ1.

By (a) we have χ1 � tppL, l1q for some l1 : L Ñ U and tppLq � ηδλ.
Define a new labelling l : LÑ U : x ÞÑ l1pxq. Then χ � χ1 �

°
xPL l

1pxq,

so by equation 2 above, Φ � χ �
°
xPL l

1pxq �
°
xPL lpxq. Define

Φ1 �
°
xPL 1lpxq P U�ηδλ

. Then Φ1 �
°
xPL lpxq � Φ, so we have (a’).

Suppose Θ P U¤ηδλ
, i.e. Θ � tppM,mq for some m : M Ñ U and

tppMq ¤ ηδλ. Define a new labelling m1 : M Ñ U that sends x P M
to some mpxq P U such that mpxq � m1pxq. Define Θ1 �

°
xPM 1m1pxq P

U¤ηδλ . Then (b)ñ Θ1 ¤ χ1, i.e. there is an embedding f : M Ñ L such
that p@x P Mqm1pxq ¤ l1pfpxqq. Hence mpxq � m1pxq ¤ l1pfpxqq �
lpfpxqq, i.e. f gives an embedding Θ �

°
xPM 1mpxq Ñ

°
xPL 1lpxq � Φ1.

This is (b’).

Theorem 5.14 collects many of the previously proved results in one sentence.
This will then be used to prove Theorem 5.15, which is the strongest result
in this essay.

Theorem 5.14. If Q is a BQO and Φ P Q¤ηαβ then Φ is a finite sum of
members of HpQq.

Proof. The proof is by induction on admissible xα, βy. So assume the theorem
holds for all admissible xα0, β0y   xα, βy.

I will first prove the theorem for Φ P Q ηαβ � QDαβ by induction on the hier-
archy for Dαβ given in Theorem 4.9(ii). The result is trivial for Φ P QpDαβq0

(as bspΦq is finite). So assume the result for δ   γ and let Φ P QpDαβqγ .
There are three cases to be considered:

(1) bspΦq is a β0-sum (β0   β)

Suppose the theorem fails for Φ. Then it fails for some Θ P QpDαβqγ ,
where Θ is a λ-sum of types in Q

�
δ γpDαβqδ with λ minimal (in par-

ticular, λ ¤ β0). In other words, Θ is not a finite sum of members of
HpQq, but Θ �

°
xPL Θx where tppLq � λ and each Θx is a finite sum

of members of HpQq by induction hypothesis.
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Clearly, λ must be an infinite limit ordinal. I will show that λ is regular.
Hence λ is a cardinal and λ P RC. To show that λ is regular, write Θ
as a cfpλq-sum

°
yPM Θy (tppMq � cfpλq), where each Θy is a   λ-sum

of types Θx (x P L). Each Θy is a finite sum of members of HpQq by
minimality of λ. Again by minimality of λ, cfpλq � λ, as required.

Now Θ is a λ-sum of finite sums of members of HpQq, so Θ can be
written as

°
xPL Θ1

x where each Θ1
x P HpQq and tppLq � λ. Claims:

(1.1) pDx0 P Lqp@y, z P Lqpx0 ¤L y ¤L z ñ pDu P Lqpz ¤L u ^
Θ1
y ¤ Θ1

uqq

Suppose this is false, i.e.

p@x0 P LqpDy, z P Lqpx0 ¤L y ¤L z^p@u P Lqpz ¤L uñ Θ1
y ¦ Θ1

uqq.

This means that for arbitrarily large y P L, pDz P Lqpy ¤L z^p@u P
Lqpz ¤L u ñ Θ1

y ¦ Θ1
uqq. Hence it is possible to choose an

increasing ω-sequence xynyn ω in L such that m   n ñ Θ1
ym ¦

Θ1
yn , contradicting the fact that HpQq is BQO (by Corollary 5.11,

since Q is BQO) and hence WQO (by Theorem 2.4(i)).

Fix the point x0 given in (1.1).

(1.2)
°
x¥x0

Θ1
x is a ptΘ1

x : x ¥ x0u, λq-unbounded sum

T � tx P L : x ¥ x0u is a terminal segment of the regular cardinal
λ, so tppT q � λ. I still need to show unboundedness:

p@x ¥ x0qpDY � LqpCardpY q � λ^ py P Y ñ Θ1
x ¤ Θ1

yqq.

By (1.1) there is an unbounded (in λ) set Y that satisfies y P Y ñ
Θ1
x ¤ Θ1

y. λ is regular, so CardpY q � λ and we are done.

Now each Θ1
x P HpQq by definition, so

°
x¥x0

Θ1
x P HpQq. Note that

I � tx P L : x   x0u is an initial segment of λ, so I   λ. By minimality
of λ,

°
x x0

Θ1
x is a finite sum of members of HpQq. hence

°
xPL Θ1

x is a
finite sum of types in HpQq, contradicting the definition of λ and hence
giving case (1).

(2) bspΦq is an α�0-sum (α0   α)

This case is similar to (1).
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(3) bspΦq is an ηα0β0-sum (xα0, β0y   xα, βy)

By the induction hypothesis on Dαβ, Φ is an ηα0β0-sum of finite sums of
members of HpQq. So Φ is a φ-sum of types in HpQq, where φ � ηα0β0

because ω�ηα0β0 ¤ pηα0β0q
2 � ηα0β0 . Hence Φ can be written as

°
xPF Φx,

where tppF q � φ and Φx P HpQq. Define χ �
°
xPF 1Φx P HpQq�ηα0β0

and note that χ �
°
xPF Φx � Φ.

HpQq is BQO by Corollary 5.11 and we are assuming the theorem for
all admissible xα0, β0y   xα, βy and arbitrary BQOs. Replacing Q by
HpQq in the statement of the theorem and recalling that

χ P HpQq�ηα0β0 � HpQq¤ηα0β0 (3)

we get that χ is a finite sum of members of HpHpQqq, i.e. χ �
°
i n χi

for some n   ω and χi P HpHpQqq. By Lemma 5.13, Φ � χ �
°
i n χi

is a finite sum of members of HpQq, as required.

These three cases complete the theorem in the case that Φ P Q ηαβ .

Now consider the general case where Φ P Q¤ηαβ . By Theorem 5.12, Φ is a φ-
sum of types 1q (q P Q) and pR, γ, δq-universal types (R � Q, xγ, δy ¤ xα, βy),
and φ P Dαβ. I will show that pR, γ, δq-universal types are in HpQq. Hence
Φ is a φ-sum of members of HpQq.

Let χ be an pR, γ, δq-universal type (R � Q, xγ, δy ¤ xα, βy). I will
show that χ P H1pQq � HpQq by proving that χ is an pR, γ, δq-shuffle
for some R � H0pQq. In fact, R � R1 � t1r : r P Ru will do.

χ is pR, γ, δq-universal: χ P R�ηγδ and Ψ P R¤ηγδ ñ Ψ ¤ χ. So we can
write χ �

°
xPE 1lpxq where tppEq � ηγδ and l : E Ñ R is the labelling.

Define a new labelling l1 : E Ñ R : x ÞÑ 1lpxq and let χ1 �
°
xPE 1l1pxq.

Since 1a ¤ 1b ô a ¤ b we have Ψ P R¤ηγδ ñ Ψ ¤ χ1 by the cor-
responding property of χ. Hence χ1 is pR, γ, δq-universal. Note that
R � R1 � QM and χ1 �

°
xPE l

1pxq �
°
xPE 1lpxq � χ, so χ is indeed

an pR, γ, δq-shuffle.

As in case (3) above, there is some χ P HpQqφ such that χ � Φ. As HpQq
is BQO and bspχq � φ P Dαβ, the first part of this proof shows that χ is a
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finite sum of members of HpHpQqq. As in case (3), Lemma 5.13 gives that
Φ � χ is a finite sum of types in HpQq, as we wanted.

Remark. The following theorem uses Theorem 5.14, and for this use it would
suffice to prove Theorem 5.14 only for the case Φ P Q ηαβ . However, the last
part of the proof is still necessary to make the induction step at equation (3)
go through.

Theorem 5.15. Q BQO ñ QM BQO.

Proof. If Φ P QM then Corollary 4.6 ñ bspΦq ¤ ηαβ for some α, β. Define
a homomorphism f : pHpQqq ω Ñ QM : xΦiyi n ÞÑ

°
i n Φi. Theorem 5.14

ñ f is surjective. Now Corollary 5.11 ñ HpQq BQO, so Theorem 2.4(v)
ñ pHpQqq ω BQO. Hence Lemma 2.7 (the homomorphism property) ñ QM

BQO.

By letting Q be a singleton BQO we get the main theorem:

Corollary 5.16. M is BQO.

An immediate consequence of Theorem 5.15 is the main result of Nash-
Williams’ paper [9], which states that if Q is BQO, then so is the class
of transfinite Q-sequences

�
αPOnQ

α:

Q BQO ñ QM BQO ñ QOn �
¤

αPOn

Qα BQO (since On �M).

The fact that On is an important subclass of M gives rise to questions
concerning the generalisation of properties of the ordinals to members of M.
In [7], Richard Laver investigates the generalisation of combinatorial results
about the ordinals and gives some sample applications to partition relations
and decompositions.
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