
Functional Programming 1b

Thomas Forster

November 26, 2006

Some suitable tripos questions.
1991:5:9, 1993:12:9, 1994:5:10, 1994:10:12, 1995:5:10, 1995:12:12, 1996:5:9,

1996:12:11, 1997:5:11, 1998:13:10

0.0.1 A Question from John Harrison’s notes

Moscow ML version 1.40 (1 July 1996)
Enter ‘quit();’ to quit.
- fun itlist f [] b = b

| itlist f (h::t) b = f h (itlist f t b);
> val itlist = fn : (’a -> (’b -> ’b)) -> ’a list -> ’b -> ’b
- fun map f [] = []

| map f (h::t) = (f h)::(map f t);
> val map = fn : (’a -> ’b) -> ’a list -> ’b list
- fun C f x y = f y x;
> val C = fn : (’a -> (’b -> ’c)) -> ’b -> ’a -> ’c
- local fun mem x [] = false

| mem x (h::t) = x = h orelse mem x t;
fun insert x l = if mem x l then l else x::l

in fun union l1 l2 = itlist insert l1 l2
end;

> val union = fn : ’’a list -> ’’a list -> ’’a list
- fn f => fn l1 => fn l2 => itlist (union o C map l2 o f) l1 [];
> val it = fn : (’a -> (’b -> ’’c)) -> (’a list -> (’b list -> ’’c list))
- it (fn a => fn b => (a,b)) [1,2,3] [4,5,6];
> val it =

[(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)]
: (int * int) list

1

1 Answers to Tripos questions

1991:5:9

We declare some λ-terms as follows.
true = λxy.x; false = λxy.y; 0 = λx.x; succ = λzf.f false z

• a We want succ (succ 0)

First we compute succ 0 = λzf.f false z λx.x

= λf.f false (λx.x). Do succ again

succ (λf.f false (λx.x))

= λyg.g false y (λf.f false (λx.x))

= λg.g false (λf.f false (λx.x))

• b Evaluate at false

• c Evaluate at true

• d Distinct normal forms

2

1993:12:9

- fun N f x = x;;
val N = fn : ’a -> ’b -> ’b

- fun P a k f x = f a (k f x);;
val P = fn
: ’a -> ((’a -> ’b -> ’c) -> ’d -> ’b) -> (’a -> ’b -> ’c) -> ’d -> ’c

- fun Q k l f x = k f (l f x);;
val Q = fn : (’a -> ’b -> ’c) -> (’a -> ’d -> ’b) -> ’a -> ’d -> ’c

- fun W a k = Q k (P a k);;
val W = fn
: ’a -> ((’a -> ’b -> ’c) -> ’c -> ’b) -> (’a -> ’b -> ’c) -> ’c -> ’b

- fun R k = k W N;;
val R = fn
: ((’a -> ((’a -> ’b -> ’c) -> ’c -> ’b) -> (’a -> ’b -> ’c) -> ’c -> ’b)

-> (’d -> ’e -> ’e) -> ’f)
-> ’f

Suppose further that K and L have ML definitions of the form:

val K = P a1 (P a2 (P a3 N ...))

val K = P b1 (P b2 (P b3 N ...))

1. State the ML types of N and P.

N has type α → (β → β). P seems to have the type:

α → (((α → (β → γ)) → (δ → β)) → ((α → (β → γ)) → (δ → γ))). God
knows why.

2. What does the expression K f x evaluate to?

Let us start by noting that K of the form P a1 T for some term T. Then

K f x becomes

P a1 T f x by expanding K. Then expand P to get

f a1 (T f x)

But now we have a task just like the one we started with, since T is an
expression of the same form as K. We repeat this step until we have T that

3

is in fact N. But N f x is just x, so the result is going to be K with all the
Ps replaced by fs and the final N replaced by x.

3. What does the expression Q K L f x evaluate to?

Q K L f x First expand Q to get

K f (L f x) Next use the fact that K is of the form P a1 T as before.

P a1 T f (L f x) then expand P getting

f a1 (T f (L f x))

But by now the embedded expression T f (L f x) is clearly of the same
form as the term K f (L f x) we started with, so we can keep repeating
this until we get down to a T that will in fact be N. Then f a1 (N f (L f x))
will clearly β-reduce to f a1 (L f x) which means that the result is going
to be a concatenation of the two lists!

4. What does the expression R K f x evaluate to? Given that the earlier
ISWIM code in this question relates to an ISWIM implementation of lists,
it’s an obvious guess that R means Reverse. Let’s see.

R k f x expand R k

k W N f x expand K into P a1 k’

P a1 k’ W N f x expand P a1 k’ W N using definition of P

W a1 (k’ W N) f x expand W

Q (k’ W N) (P a1 N) f x W now has 4 arguments, so expand it

k’ W N f (P a1 N f x)

So by unpeeling the top level of the structure of k, into P a1 k’, we have
turned

k W N f x into

k’ W N f (P a1 N f x)

These two look suspiciously alike. We match k to k’, W and N to them-
selves, and P a1 N f x to x. This tells us what will happen if we repeat
what we have just done, this time on k’ instead of on k. R is indeed
Reverse!

4

1994:5:10

‘=’ between λ-terms is not (syntactic) equality, but convertibility and it is de-
fined by the following recursion

• (λx.M)N = M [x := N] (β-conversion)

• M = M

• M = N → N = M

• M = N ∧N = L → M = L

• M = N → MZ = NZ

• M = N → ZM = ZN

• M = N → λx.M = λx.N

Set true = λxy.x and false = λxy.y. Then we can define the desired terms
as follows.

cons Define cons a l = λfx.fa(lfx)

null I am assuming that the null list is λfx.x, which is false (i can’t think
what else the given definition of list could intend it to be). So null l must
be λl.(lt)true for some term t. Consideration of the null case doesn’t tell
us what t is to be.

Check this:

((λl.lt)true) false

β-reduces to (false t)true

which β-reduces to true as desired.

On the other hand a non-null list is λfx.faM for some term M containing
an occurrence of ‘x’. This will tell us what t has to be. So let’s apply

λl.l t true to λfx.faM .

λl.l t true λfx.faM .

(λfx.faM) t true.

(λx.taM) true.

This has got to β-reduce to false, and we can achieve this only by tweaking
t. Let’s take t to be K(K(false)). Then

(λx.taM) true is

(λx.K(K(false))aM) true.

(λx.false) true.

false.

So null must be λl.l (K(Kfalse)) true.

5

append Define append l1 l2 = λfx.(l1f)(l2fx)

hd can be λl.l true t for any λ-term t.

tl (Matt Grimwade says:)

The clue is in the question: ”assume λ-encodings of ordered pairs”. So
first use:

mk_pairs = λl.l(λax.pair true (pair ax))(pair false false)

to turn the list into a lot of internesting pairs, flagging the end so we’ll
know when we get there:

/\
/ \

true \
/\

/ \
a1 \

...
/\
/ \

true \
/\
/ \

am \
/\
/ \

false false

get rid of the unwanted head using snd; and convert back with:

mk_list = Y (λgpfx.if(fst p)(f(fst(snd p))(g(snd(snd p))fx)x).

In total we have:

tl = λlfx.mk_list(snd(snd(mk_pairs l)))fx.

6

1994:10:12

Recall that f o g is the function that sends x to f(g(x)). Consider the ML
definitions: fun I x = x; fun pair (f, g)(x, y) = ((fx), (gy)); fun pup (f, g)z =
((fz), (gz)); fun fst(x, y) = x; fun snd(x, y) = y;

Describe the effect of the following functions:

• pair(I, I) is the identity relation of type α× β → α× β.

• pair((f1 ◦ f2), (g1 ◦ g2)) sends (x, y) to (f1(f2(x)), g1(g2(y)))

• pup(fst, snd) is the identity relation of type α× β → α× β.

• pup(f o fst, g o snd) sends x to ((f(fst(x)), g(snd(x))). That is, it
behaves like pair (f, g) x.

Infinite lists can be represented in a functional language by triples. The triple
(a, h, t) represents the infinite list whose nth element is h(tn(a)) (for n ≥ 0).

(a) Give a representation for the infinite list n, n + 1, n + 2, . . .

This is (n, I, succ)

(b) Code in ML a map functional for this representation; given a function f
and the infinite list x0, x1, . . . xn . . ., it should yield a representation of
f(x0), f(x1), . . . f(xn) . . .,

map f (a, h, t) =: (a, (f ◦ h), t);

(c) Code in ML a zip function

zip (a, h, t) (a′, h′, t′) =: ((a, a′), pair(h, h′), pair(t, t′));

(d) Code in ML an interleave function

[HOLE !!]

• (e) Discuss

7

1995:5:10

Let

A = λxy.y(xxy)

Θ = AA

suc = λnfx.f(nfx)

true = λxy.x

false = λxy.y

The first thing to do is to demonstrate that Θ is a fix-point combinator. Let
us β-reduce Θ f . This is A A f , or

((λxy.y(xxy)) A) f
The first occurrence of A (the one i have written out in full) has two variables

at the front, ‘x’ and ‘y’. We replace ‘x’ by A and ‘y’ by ‘f ’, and lop off the
‘λxy.’ getting f(Θf).

This will save a lot of trouble later on.

• Θ suc will β-reduce to suc(Θ suc), which is λfx.f((Θ suc) f x) which is
in head normal form, tho’ clearly not in normal form.

• Θ (λx.xx) β-reduces to (Θ(λx.xx))(Θ(λx.xx))

This is going to go on getting bigger and will have no normal form.

• Θ(suc n) β-reduces (once one has relettered ‘n’ for ‘x’) to (suc n)(Θ (suc n)).
Notice that suc of anything has a head normal form. But this thing is not
going to have a normal form.

• Θ true β-reduces to

true(Θ true). But true x is always λy.x. So this is λy.(Θ true) which
has our original formula as a subformula, so this will go on for ever. It
doesn’t even have a head normal form, beco’s it never returns anything
except itself.

• Θ false β-reduces to

false(Θ false). false of anything is I.

• Θ(λx.fxx) β-reduces to (λx.fxx)(Θ(λx.fxx)) and one more β-reduction
will give

((f(Θ(λx.fxx))))(Θ(λx.fxx))

which is in head normal form.

If M has no hnf then M [N/x] has no hnf, for any N . Use this fact to prove
the following:

If M has no hnf then MN has no hnf for any N .

8

1995:12:12

The type of curry is ((α×β) → γ)) → (α → (β → γ)) and the type of uncurry
is (α → (β → γ)) → ((α× β) → γ)).

curry(fn(x,y) => x) is λxy.x.
uncurry o curry is the identity function of type ((α × β) → γ)) → ((α ×

β) → γ))
curry I is λxy.pair(x, y). To deduce this we have to specialise I to a thing

of type (α × β) → (α × β), and curry of a thing of this type must be of type
α → (β → (α× β)).

To determine what uncurry I evaluates to we must note that uncurry ex-
pects an argument of type α → (β → γ). So we must specialise I to identity of
type (β → γ) → (β → γ). Applying uncurry to this will give a result of type
((β → γ)× β) → γ and this must be

λx.((fst(x))snd(x)).

(a) fun n => n ∗ 2;

(b) If g codes the list in question we want f o g.

(c) drop f i n = f (n + i);

(d) interleave f g n = if even n then f (n div 2) else g (n div 2);

(e) fun ifilter(f,p,x,0,0) = if p(f(x)) then f(x) else
ifilter(f,p,x+1,0,0)

| ifilter(f,p,x,n,l) = if n=l then f(x-1) else
if p(f(x)) then ifilter(f,p,x+1,n+1,l)

else ifilter(f,p,x+1,n,l);;
fun filter f p x = ifilter(f,p,0,0,x);;

(Thanks to David Bradshaw)

9

1996:5:9

Consider binary trees that are either empty (written ‘leaf’) or have the
form Br x t1 t2 where t1 and t2 are themselves binary trees. Give an
encoding of binary trees in the λ-calculus, including functions isleaf,
label, left and right satisfying

isleaf leaf → false

isleaf(Br x t1 t2)→ true

label(Br x t1 t2)→ x

left(Br x t1 t2)→ t1

right(Br x t1 t2)→ t2

If you use encodings of other data structures, state the properties assumed.

[6 marks]

Consider the ML functions f and g defined to satisfy

f([],ys) = ys

f(x::xs,ys) = f(xs,x::ys)

g([],ys) = ys

g(x::xs,ys) = x :: g(xs,ys)

Using list induction, prove f(f(xs,[]), []) = xs. [14 marks]

1.0.2 A model answer from Larry Paulson

Here are the definitions:
leaf = λz.z
Br = λxt1t2.pair false (pair x (pair t1 t2))
isleaf = fst
label = λt.fst (snd t)
left = λt.fst(snd (snd t))
right = λt.snd(snd (snd t))
This assumes fst(pair x y) → x and snd(pair x y) → y; the definition

of leaf given above actually relies on fst = λp.p true. Thus isleaf leaf β-
reduces successively to (λz.z)true then to true. The other laws hold trivially.

Now for the second part.
Obviously, g is the append function. The given formula requires generaliza-

tion before induction. Perform induction on xs in
∀ys.f(f(xs, ys), zs) = f(ys, g(xs, zs)).
The result will then follow by the definition of f and by g(xs, []) = xs, itself

provable by a trivial induction.

10

The base case of the induction holds by definition of f and g:
f(f([], ys), zs) = f(ys, zs) = f(ys, g([], zs)).
For the inductive step we have (mostly by definition)
f(f(x :: xs, ys), zs) = f(f(xs, x :: ys), zs)
= f(x :: ys, g(xs, zs)) (induction hypothesis)
= f(ys, x :: g(xs, zs))
= f(ys, g(x :: xs, zs))
The main difficulty lies in choosing the right generalization.

11

1996:12:11

Any recursive function f :int -> int declared like

fn =: if n = 0 then a else g(n, f(n− 1))

is a fixed point for the function F :(int -> int) -> (int -> int) declared
as

F f n =: if n = 0 then a else g(n, f(n− 1))

If F is a λ-term for F then Y F is a λ-term for f .
The displayed attempt to declare Y in ML won’t work because it won’t type-

check. Instead we should declare

fun Y f x = f (Y f) x;

val Y = fn : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b
- -

val fac = Y (fn g => fn x => if x=0 then 1 else x*(g (x-1)));
val fac = fn : int -> int

Notice that fun Y f x => f (Y f) x
doesn’t cause non-termination because ML evaluates functions only when

they have been given all their arguments (I think; I don’t believe it does any
partial evaluation). So if you evaluate fac, it goes something like this:

val fac => Y (fn g => fn x => if x = 0 then 1 else x*(g (x-1)));

fac 1 => Y (fn g => fn x => if x = 0 then 1 else x*(g (x-1))) 1

(now Y has enough arguments, so gets evaluated)

=> (fn g => fn x => if x = 0 then 1 else x*(g (x-1)))
(Y (fn g => fn x => if x = 0 then 1 else x*(g (x-1)))) 1

=> if 1= 0 then 1
else 1*(Y (fn g => fn x => if x = 0 then 1 else x*(g (x-1)))) (1-1))

=> 1*((Y (fn g => fn x => if x = 0 then 1 else x*(g (x-1)))) 0))

12

=> 1*(fn g => fn x => if x = 0 then 1 else x*(g (x-1)))
(Y (fn g => fn x => if x = 0 then 1 else x*(g (x-1)))) 0

=> 1*(if 0 = 0 then 1
else x*((Y (fn g => fn x => if x = 0 then 1 else x*(g (x-1)))) (0-1))))

=> 1*1

=> 1

Of course, we’re just pretending that it uses substitution rather than keeping
variables in store locations, but that would make what’s already rather messy
too much worse.

Anyway, the crucial things are that

• it does look at the definition of Y

• it works because the applicative order evaluation strategy doesn’t apply
to function arguments.

(Thanks to Jon Fairbairn)
Grant Warrell sez the answer that was wanted was one not using recursion,

to wit:

- val Y = (fn t=>t(T t));
val Y = fn : (’a t -> ’a) -> ’a

[HOLE ML detects failure of typechecking in cases like ‘xx’ by doing an
occurs check. What happens if we write it in PROLOG which famously doesn’t
do an occurs check? What is the class of things that suddenly become OK?]

1997:5:11

(a) [bookwork]

(b) (i) YM is λf.WWM . This is

λf.[λxλz.f(xxz) W M]

Now do two β-reductions inside the square bracket (W/x and M/z)
getting

λf.f(WWM)

which is in head normal form.

13

(ii) YM (KI) is (λf.WWM) (KI)
Using (i) this becomes λf.f(WWM)) (KI) (then do a β-reduction)
(KI)(WWM) which of course is just I.

(iii) We follow the same track as (ii) to get K(WWM). If that has a
HNF i’ll eat my hat.

(c) If a λ-term M is in HNF, then the body is of the form fN for some vbl
f and some term N . If we now ensure that f gets instantiated to KI,
we will find that (KI)N β-reduces to I as desired. As far as i can see it
doesn’t matter what the other variables get instantiated to.

The fact that YM (KI) β-reduces to I shows that YM is solvable. II is
also I so YM (KI) is solvable too.

The third one is not solvable. YM is a fixpoint combinator so YMK is a
fixpoint for K. But no fixpoint for K can possibly be solvable: whatever
you apply it to you just get back what you started with and that can’t be
I—beco’s I is not a fixed point for K!

1998:13:10

fun update(s, x, i) = if x = y then i else s(y)
fun interpret Assign(a, Expr(e)) s1 = fun update(s1, x, e(s1)))
— interpret Sequence(c1, c2) s1 = interpret(c2,interpret(c2, s1))
— interpret while_do(Expr(e), c) s1 = if not e(s1)<> 0 then interpret(c, s1)

elses1

14

