Functional Programming 1b

Thomas Forster

November 26, 2006

Some suitable tripos questions.
1991:5:9, 1993:12:9, 1994:5:10, 1994:10:12, 1995:5:10, 1995:12:12, 1996:5:9,
1996:12:11, 1997:5:11, 1998:13:10

0.0.1 A Question from John Harrison’s notes

Moscow ML version 1.40 (1 July 1996)
Enter ‘quit();’ to quit.

fun itl

| itl
val itl
fun map

| map
val map
fun C £
val C =
local £

f
in f
end;
val uni
fn £ =>
val it
it (fn
val it
[(1,

(in

ist £ [1 b=0D»
ist £ (h::t) b=f h (itlist f t b);
ist = fn : (Ca -> (b -> ’b)) -> ’a list -> ’b -> b
f0=1I
f (h::t) = (f h)::(map £ t);
=fn : (’a -> ’b) -> ’a list -> ’b list
xy=1%yx;
fn : (Ca -> (b -> ’¢)) -> ’b -> ’a -> ’c
un mem x [] = false
| mem x (h::t) = x = h orelse mem X t;
un insert x 1 = if mem x 1 then 1 else x::1
un union 11 12 = itlist insert 11 12

on = fn : ’’a list -> ’’a list -> ’’a list

fn 11 => fn 12 => itlist (union o C map 12 o f) 11 [];

fn : (Ca -> (b > ’’¢)) -> (Pa list -> (’b list -> ’’c list))
=> fn b => (a,b)) [1,2,3] [4,5,6];

o

4), (1, 8, 1, 6), (2, 4, (2, 5), (2, 6), (3, 4), (3, 5, (3, 6)]
t * int) list

1 Answers to Tripos questions

1991:5:9

We declare some A-terms as follows.
true = Axy.x; false = Azy.y; 0 = Ax.x; succ = Azf.f false z
e a We want succ (succ 0)
First we compute succ 0 = Azf.f false z Az.x
= Af.f false (Az.z). Do succ again
succ (Af.f false (Az.x))
= \yg.g false y (A\f.f false (\z.z))
= Ag.g false (Af.f false (\z.z))

e b Evaluate at false
e c Evaluate at true

e d Distinct normal forms

1993:12:9

- fun N £ x = x3;
val N = fn : ’a -> ’b -> ’b

- funPakfx=fa (k- fzx);;
val P = fn
’a => ((’a -> b => ’¢) -> ’d => ’b) > (Pa -> ’b -> ’c) -> ’d -> ’c

- funQk1fx=k£f (1 f x);;
val Q = fn : (’a => ’b -> ’c) -> (’a => ’d -> ’b) -> ’a -> ’d -> ’c

- funWak=Qk (Pak);;
val W = fn
’a -=> ((’a => ’b -> ’c) -> ’¢c -> ’b) -> (Pa -> ’b -> ’c) > ’c -> ’b

- fun Rk =k W N;;

val R = fn
((}a _> (()a _>)'b _> ’C) _> JC _>)b) _> ()a _>)b _>)C) _>)C _>)b)
-> (°d > ’e => ’e) > ’f)
-> f

Suppose further that K and L have ML definitions of the form:

val K=P al (P a2 (P a3 N ...))

val K

Pbl (Pb2 (P3N ...))

1. State the ML types of N and P.
N has type a — (8 — (). P seems to have the type:
a—= (= (B—=7)—=0—=70)—(a=(B—=7)—(0—7)) God

knows why.

2. What does the expression K f x evaluate to?

Let us start by noting that K of the form P al T for some term T. Then

K fx becomes
PalTf x by expanding K. Then expand P to get
f al (T £ %)

But now we have a task just like the one we started with, since T is an
expression of the same form as K. We repeat this step until we have T that

is in fact N. But N £ x is just x, so the result is going to be K with all the
Ps replaced by fs and the final N replaced by x.

. What does the expression Q K L f x evaluate to?

QKLTfx First expand Q to get
K f (L £ x) Next use the fact that K is of the form P a1l T as before.
PalTf (L £ x) then expand P getting

fal (Tf (L £ x))

But by now the embedded expression T £ (L f x) is clearly of the same
form as the term K £ (L £ x) we started with, so we can keep repeating
this until we get down to a T that will in fact be N. Thenf a1 (N £ (L f x))
will clearly S-reduce to £ al (L f x) which means that the result is going
to be a concatenation of the two lists!

. What does the expression R K f x evaluate to? Given that the earlier
ISWIM code in this question relates to an ISWIM implementation of lists,
it’s an obvious guess that R means Reverse. Let’s see.

Rk fx expand R k
kWNITEx expand K into P a1l k’
Palk’” WN f x expand P al k’> W N using definition of P
Wal (k2 WN) £ x expand W
Q (k2 WN) (P a1l N) f x W now has 4 arguments, so expand it

k? WN £ (P al N £ x)

So by unpeeling the top level of the structure of k, into P al k’, we have
turned

k WN f xinto
k? WNf (Pal N f x)

These two look suspiciously alike. We match k to k’, W and N to them-
selves, and P al N f x to x. This tells us what will happen if we repeat
what we have just done, this time on k’ instead of on k. R is indeed
Reverse!

1994:5:10

<

=’ between A-terms is not (syntactic) equality, but convertibility and it is de-

fined by the following recursion

(AM.M)N = M|z := N] (-conversion)
M=M

M=N->N=M
M=NAN=L—-M=1L
M=N->MZ=NZ
M=N-—-ZM=Z7ZN

M =N — Ax.M = z.N

Set true = Azy.x and false = Axy.y. Then we can define the desired terms
as follows.

cons

null

Define cons a | = Afz.fa(lfx)

I am assuming that the null list is Afz.z, which is false (i can’t think
what else the given definition of list could intend it to be). So null I must
be Al.(It)true for some term ¢. Consideration of the null case doesn’t tell
us what ¢ is to be.

Check this:

((Al.lt)true) false

[-reduces to (false t)true

which (-reduces to true as desired.

On the other hand a non-null list is A fz. faM for some term M containing
an occurrence of ‘z’. This will tell us what ¢ has to be. So let’s apply

Al t true to A\fx.faM.
Al.l t true Afz.faM.
(Mfzx.faM) t true.
(Az.taM) true.

This has got to S-reduce to false, and we can achieve this only by tweaking
t. Let’s take t to be K (K (false)). Then

(Az.taM) true is

(Az.K (K (false))aM) true.

(Az.false) true.

false.

So null must be Al.l (K (Kfalse)) true.

append Define append [y ls = Afx.(l1 f)(lafx)
hd can be Al.l true ¢ for any A-term ¢.

tl (Matt Grimwade says:)

The clue is in the question: ”assume A-encodings of ordered pairs”. So
first use:

mk_pairs = A.l(Aaz.pair true (pair az))(pair false false)

to turn the list into a lot of internesting pairs, flagging the end so we’ll
know when we get there:

/\
/ \
true \
/\
/ \
al \
/\
/ N\
true \
/\
/ \
am \
/\
/ \

false false

get rid of the unwanted head using snd; and convert back with:
mk_list =Y (A\gpfz.if(fst p)(f(fst(snd p))(g(snd(snd p))fx)x).
In total we have:

tl = M fz.mk_list(snd(snd(mk_pairs l)))fz.

1994:10:12

Recall that £ o g is the function that sends = to f(g(z)). Consider the ML

definitions: fun Iz =x;fun pair (f,g)(z,y) = ((fz), (gy)); fun pup (f,g9)z =
((f2),(92)); fun fst(z,y) = z; fun snd(z,y) = y;
Describe the effect of the following functions:

e pair(I,I) is the identity relation of type a x 8 — a x (3.

e pair((flo f2),(gl o g2)) sends (z,y) to (f1(f2(z)), g1(92(y)))
e pup(fst, snd) is the identity relation of type a X f — a X (.

e pup(f o fst, g o snd) sends z to ((f(fst(x)),g(snd(x))). That is, it
behaves like pair (f,g) =.

Infinite lists can be represented in a functional language by triples. The triple
(a, h,t) represents the infinite list whose nth element is h(t"(a)) (for n > 0).
(a) Give a representation for the infinite list n,n+1,n+2,...
This is (n, I, succ)

(b) Code in ML a map functional for this representation; given a function f
and the infinite list xg,z1,...x, ..., it should yield a representation of

f(@o), fz1), .. f(@n) ..,
map f (a,h,t) =: (a,(foh),t);
(¢) Code in ML a zip function
zip (a,h,t) (/W t') = ((a,d’), pair(h,h’), pair(t,t’));

(d) Code in ML an interleave function
[HOLE I

e (e) Discuss

1995:5:10

Let
A = dzy.y(zay)
0 =AA
suc = Anfz.f(nfz)
true = A\zy.x
false = \xy.y

The first thing to do is to demonstrate that © is a fix-point combinator. Let
us fB-reduce © f. Thisis A A f, or

((Azy.y(zzy)) A) f
The first occurrence of A (the one i have written out in full) has two variables
at the front, ‘z’ and ‘y’. We replace ‘¢’ by A and ‘y’ by ‘f’, and lop off the

‘Azy.” getting f(Of).
This will save a lot of trouble later on.

e O suc will B-reduce to suc(® suc), which is Afz.f((© suc) f x) which is
in head normal form, tho’ clearly not in normal form.

e O (\x.zx) B-reduces to (O(Ax.zx))(O(Az.zx))

This is going to go on getting bigger and will have no normal form.

e O(suc n) f-reduces (once one has relettered ‘n’ for ‘z’) to (suc n)(O (suc n)).
Notice that suc of anything has a head normal form. But this thing is not
going to have a normal form.

e O true (-reduces to
true(O true). But true z is always Ay.z. So this is A\y.(© true) which
has our original formula as a subformula, so this will go on for ever. It
doesn’t even have a head normal form, beco’s it never returns anything
except itself.

e O false (3-reduces to
false(O false). false of anything is I.

e O(Ax.fxx) [-reduces to (Ax.fzz)(O(Ax.frz)) and one more S-reduction
will give
(f(O(2.fr2)))) (O fr))

which is in head normal form.

If M has no hnf then M[N/xz] has no hnf, for any N. Use this fact to prove
the following:

If M has no hnf then M N has no hnf for any N.

1995:12:12

The type of curry is ((a X 8) — 7)) — (o — (8 — 7)) and the type of uncurry
is (@ = (8 = 7)) = ((ax) = 7))

curry(fn(x,y) => x) is Azy.z.

uncurry o curry is the identity function of type ((a x 8) — 7)) — ((a %
8) =)

curry Iis Azy.pair(zx,y). To deduce this we have to specialise I to a thing
of type (o x) — (a x), and curry of a thing of this type must be of type

a— (8 = (axp)).

To determine what uncurry I evaluates to we must note that uncurry ex-
pects an argument of type o — (8 — 7). So we must specialise I to identity of
type (8 — v) — (8 —). Applying uncurry to this will give a result of type
((B — ~) x 8) — v and this must be

Az.((fst(x))snd(x)).
a) funn =>n*2;
b) If g codes the list in question we want £ o g.
(c
d

(e

(
(
(

interleave f g n = if even n then f (n div 2) else g (n div 2);

)
)
) drop fin=f (n+1i);
)
)

fun ifilter(f,p,x,0,0) if p(£(x)) then f(x) else
ifilter(f,p,x+1,0,0)
if n=1 then f(x-1) else
if p(£(x)) then ifilter(f,p,x+1,n+1,1)
else ifilter(f,p,x+1,n,1);;
fun filter f p x = ifilter(f,p,0,0,x);;

| ifilter(f,p,x,n,1)

(Thanks to David Bradshaw)

1996:5:9

Consider binary trees that are either empty (written ‘leaf’) or have the
form Br = t; t2 where t; and t2 are themselves binary trees. Give an
encoding of binary trees in the A-calculus, including functions isleaf,
label, left and right satisfying

isleaf leaf — false
isleaf(Br x t1 t2) — true
label(Br x t1 t2) —
left(Br = t1 t2) — t1
right(Br = t1 t2) — t2

If you use encodings of other data structures, state the properties assumed.

[6 marks]
Consider the ML functions £ and g defined to satisfy
£([1,ys) = ys
fx::xs,ys) = f(xs,x::ys)
g([1,ys) = ys
g(x::xs,ys) = x :: g(xs,ys)
Using list induction, prove £ (f(xs, [1), [1) = xs. [14 marks]

1.0.2 A model answer from Larry Paulson

Here are the definitions:

leaf = Az.z

Br = \ztito.pair false (pair z (pair t1 t2))

isleaf = fst

label = M\t.fst (snd t)

left = At.fst(snd (snd t))

right = \t.snd(snd (snd t))

This assumes fst(pair z y) — « and snd(pair = y) — y; the definition
of leaf given above actually relies on fst = Ap.p true. Thus isleaf leaf [-
reduces successively to (Az.z)true then to true. The other laws hold trivially.

Now for the second part.

Obviously, g is the append function. The given formula requires generaliza-
tion before induction. Perform induction on xs in

Vys.f(f(xs,ys), zs) = f(ys, g(ws, 25)).

The result will then follow by the definition of f and by g(xs,[]) = s, itself
provable by a trivial induction.

10

The base case of the induction holds by definition of f and g:

S ys),28) = flys,zs) = fys, g([], zs))-

For the inductive step we have (mostly by definition)

f(f(z::xs,ys),zs) = f(f(xs,x :: ys), zs)

= f(x :: ys,g(xs, zs)) (induction hypothesis)
= f(ys,z :: g(xs,zs))

= f(ys,g(x == x5, 25))

The main difficulty lies in choosing the right generalization.

11

1996:12:11

Any recursive function f :int -> int declared like
fn=:if n =0 then a else g(n, f(n—1))

is a fixed point for the function F:(int -> int) -> (int -> int) declared
as

F fn=:if n=0 then a else g(n, f(n—1))

If Fis a A-term for F then YF is a A-term for f.
The displayed attempt to declare Y in ML won’t work because it won’t type-
check. Instead we should declare

fun Y f x = f (Y f) x;

val Y = fn : ((Pa -> ’b) -> ’a -> ’b) -> ’a -> ’b

val fac =Y (fn g => fn x => if x=0 then 1 else x*(g (x-1)));
val fac = fn : int -> int

Notice that fun Y f x => f (Y) x

doesn’t cause non-termination because ML evaluates functions only when
they have been given all their arguments (I think; I don’t believe it does any
partial evaluation). So if you evaluate fac, it goes something like this:

val fac => Y (fn g => fn x => if x = 0 then 1 else x*(g (x-1)));

fac 1 => Y (fn g => fn x => if x = 0 then 1 else x*(g (x-1))) 1

(now Y has enough arguments, so gets evaluated)

=> (fn g => fn x => if x = 0 then 1 else x*(g (x-1)))
(Y (fn g => fn x => if x = 0 then 1 else x*(g (x-1)))) 1

=> if 1= 0 then 1
else 1*(Y (fn g => fn x => if x = 0 then 1 else x*(g (x-1)))) (1-1))

=> 1%((Y (fn g => fn x => if x = 0 then 1 else x*(g (x-1)))) 0))

12

=> 1x(fn g => fn x => if x = 0 then 1 else x*(g (x-1)))
(Y (fn g => fn x => if x = 0 then 1 else x*(g (x-1)))) 0

=> 1*(if 0 = 0 then 1
else x¥((Y (fn g => fn x => if x = 0 then 1 else xx(g (x-1)))) (0-1))))

=> 1x%1

Of course, we're just pretending that it uses substitution rather than keeping
variables in store locations, but that would make what’s already rather messy
too much worse.

Anyway, the crucial things are that

e it does look at the definition of Y

e it works because the applicative order evaluation strategy doesn’t apply
to function arguments.

(Thanks to Jon Fairbairn)
Grant Warrell sez the answer that was wanted was one not using recursion,
to wit:

- val Y = (fn t=>t(T t));
val Y = fn : (Ca t -> ’a) -> ’a

[HOLE ML detects failure of typechecking in cases like ‘zx’ by doing an
occurs check. What happens if we write it in PROLOG which famously doesn’t
do an occurs check? What is the class of things that suddenly become OK?]

1997:5:11
(a) [bookwork]
(b) (i) Yas is \.WWM. This is
M. [AxAz. f(zxz) W M)

Now do two S-reductions inside the square bracket (W/x and M/z2)
getting

Af.f(WW M)

which is in head normal form.

13

(i) Yar(KI)is \L.WWM) (KI)
Using (i) this becomes Af.f(WWM)) (KI) (then do a S-reduction)
(KI)(WW M) which of course is just I.

(iii) We follow the same track as (ii) to get K(WWM). If that has a
HNF i’ll eat my hat.

(c) If a A\-term M is in HNF, then the body is of the form fN for some vbl
f and some term N. If we now ensure that f gets instantiated to K1,
we will find that (KT)N [-reduces to I as desired. As far as i can see it
doesn’t matter what the other variables get instantiated to.

The fact that Y, (KI) S-reduces to I shows that Yjs is solvable. IT is
also I so Yy, (K1) is solvable too.

The third one is not solvable. Y, is a fixpoint combinator so Y, K is a
fixpoint for K. But no fixpoint for K can possibly be solvable: whatever
you apply it to you just get back what you started with and that can’t be
I—Dbeco’s I is not a fixed point for K'!

1998:13:10

fun update(s,z,i) = if z = y then i else s(y)

fun interpret Assign(a, Expr(e)) sl = fun update(sl,z,e(sl)))

— interpret Sequence(cl,c2) sl = interpret(c2,interpret(c2,sl))

— interpret while_do(Expr(e),c)sl =if note(sl)<>0then interpret(c,sl)
elsesl

14

