A Model Tripos Question

Thomas Forster

November 20, 2007

In a propositional language p, q, \ldots are the atomic formulæ; $\neg p$ etc. are **negatomics**; a **literal** is a formula that is an atomic or a negatomic; A, B are complex formulæ. The **dual** \hat{A} of a propositional formula A is the result of replacing every literal in A by its negation. (Notice that \hat{A} is not usually the same as $\neg A$!)

A formula A self-dual if it is logically equivalent to its own dual: that is to say that $A \longleftrightarrow \hat{A}$ is a tautology. (For example: p XOR q is self-dual—'p' and 'q' being literals—even tho' A XOR B is not self-dual in general.)

Show—by considering disjunctive normal forms or otherwise—that whenever A is a self-dual formula there is a formula B such that A is logically equivalent to $B \longleftrightarrow \hat{B}$.