UNIVERSITY OF CAMBRIDGE

MATHEMATICAL TRIPOS

Computability and Logic

Lecturer: Editor:
Dr. T.E. FORSTER H-J. WAGENAAR

Contents

(1.4 Restricted Quantifiers|

(1.5 Infinitary horn|. oo oo

2 Functions|

10
11
11

CONTENTS

[3.4 'T'he Halting Problem| 17
[Rice’s Theoreml 18

[3.5 Recursive Inseparability| 19
4__A-Calculusl 20
[4.1 Partial Computable Functions as A\-Terms| 20
(4.2 Curry-Howard Correspondence in Proots| 22

b Tennenbaum’s T'heoreml 24
[6 Incompleteness| 26
7 Well-Quasi-Orders| 28
(.1 MBS Constructionl 30
(.2 Kruskal’s Theorem| 31

[8 Degree Theory]| 33
8.1 Many-One Reducibility| 33
8.2 luring Reducibility|o 34

[9 Omitting Types| 35
(10 Examples| 37
(10.1 Example Sheet 1| 37
(10.2 Example Sheet 2| oL 42

Chapter 1

Recursion

1.1 Character

Definition. A RECURSIVE DATATYPE, also INDUCTIVELY DEFINED
SET, has founders and constructors. It is of

e FINITE CHARACTER if the constructors have finite arity.
¢ BOUNDED CHARACTER if the constructors have bounded arity.

e UNBOUNDED CHARACTER (absolutely infinite) if constructors
have unbounded arity.

Examples. The following have finite character.

(i) N has a recursive datatype declaration in the form of founders (0)
and constructors (S, the successor function).

(i) HF has founder () and if x, y € HF then z U {y} € HF.

(iii) a-lists are generated by the empty-list [| and if z € «a, [is an a-list,
then x :: [is an a-list.

The following have bounded characters, by w, constructors.
(iv) HC has founder () and constructor countable union.

(v) Borel sets have founders the open sets, and the constructors are
countable unions and the complement.

The following has unbounded character.

(vi) The class of ordinals: Ord.

. v

1.2. FIX POINT

1.2 Fix Point

N=[){X:0€XnS“X CX}
F(0) (Vn)(F(n) = F(Sn))
(Vn € N)(F(n))

This induction works for N C {n: F(n)} as required. Every inductively
defined set is the least fixed point for some nice function V' — V' for N it is
z+— U {0} US“zr. For example, the transitive closure of a relation R:

t(R)=|JR"=[{S2R:SoSCS}
neN
Transitivity, symmetry and totality are given by
(Va,y, 2)(R(z,y) A R(y, z) = R(z, 2)),
(Va, y)(R(z,y) = R(y, z)),
(Vz,y)(R(z,y) V R(y, x)).

This is also do-able for transitivity and symmetry, as they are of the form:

Definition. HORN CLAUSES are disjunction of (negations of) atomics
of which at most one disjunct is not a negation.

A HORN THEORY has axioms universal closures of Horn clauses.

An ALGEBRAIC THEORY has axioms universal closures of equations.

\
Note. A theory has universal axioms if and only if every substructure

of any model is another model of such theory.

An inductively defined set is of the form C-least set containing X and
satisfying F'. If F'is Horn, such a set is guaranteed to exist.

T is an algebraic theory if and only if the class of its models is closed
under arbitrary products, substructure and homomorphisms (Birkhoff).

Groups, rings and integral domains are Horn theories.

CHAPTER 1. RECURSION

1.3 Structural Induction

Definition. Recursive datatypes have an ENGENDERING RELATION,
defined by its constructors.

Recursive data types support STRUCTURAL INDUCTION, which is
induction on the engendering relation. Given a relation R (of arity 2,
say) it is called R-INDUCTION:

(Vo) ((Vy) (R(y,) = F(y)) = F(x))
(V) (F ()

Inductively defined sets have CERTIFICATES for its members.

A recursive data type is FREE if all elements have only one certificate.

If a recursive data type is not free and not of finite character AC is needed
to solve two problems: uniqueness and existence. For N and the language of
propositional logic, Infinity, Replacement and then Separation gives existence
and uniqueness follows by taking intersection. HC and HF are obtained
similarly as the wth and N;th stage of using P limited to subsets of size Nj.

Exercise 1.3.1 (TRrRIPOS 2006, Q. 12, QUINE’S TRICK). Let P(|z|)
be |[z\{y}| if y € X and 0 if X is empty. Define

q(n) < (VY)(n €Y A(PY CY)) 5 0€Y).

Establish that ¢(n) if and only if n is a natural number.

Theorem 1.1. The engendering relation on a recursive datatype is
well-founded.

Proof. Suppose not: (3x)(—F(x))A(Vz)((Vy)(R(y,x) = F(y)) — F(x)).
Set {x: ~Fx} = A (foregoing set-theoretical difficulties at this point):

(Vo € A)(Fy € A)(R(y,x)) A (A #D).

This has negation:

(VA Cdom(R))[A#0 — (Fz € A)(Vy € A)(=R(y,x))]. O

1.4. RESTRICTED QUANTIFIERS

1.4 Restricted Quantifiers

Definition. RESTRICTED or GUARDED QUANTIFIERS are for ex-
ample (Vx € y) which seems equivalent to (Vz)(x € y = ---).

The PRENEX NORMAL FORM is any sentence of the form a number
of quantifiers and then no quantifiers at all.

Theorem 1.2 (PNF THEOREM). Every formula is equivalent to one
in which all unrestricted quantifiers lie outside the restricted quantifiers.

Proof. The result inductively rests on QUANTIFIER PUSHING by re-
placing
(Vx € A)(Jyp)

with
(3B)(Vz € A)(3y € B)yp

where B exists by the Collection. Although we have introduced another
quantifier, it is restricted and on the right side. O

1.5 Infinitary horn

Theorem 1.3. There is no first-order theory of well-founded relation.

Proof. A simple compactness argument. n

Let L,y be a language allowing < s conjunctions or disjunctions and allowing
to bind < A variables with one block of V or 3. The normal language is L.
L,,. is important, and L,,,, allows one to express well-foundedness:

Vay, ..., 2 (R(x2w1) V 2 R(2332) V R(w321) V- -)

In full ZF we have that (powersets, €) are well-founded, yet are not a recursive
datatype.

Chapter 2

Functions

2.1 Primitive Recursion

Definition. A FUNCTION-IN-INTENSION is the algorithm /program.
A FUNCTION-IN-EXTENSION is the graph of a function.
f“X is the RANGE of f under X

Definition. A PRIMITIVE RECURSIVE FUNCTION is in extension
N* — N, constructors are:

(i) An.0, the identically zero function.

(ii) Projections functions: giving back ith member of tuple.

)
(iii) Composition.
)

(iv) Primitive recursion, if g and r are primitive recursive, then so is

f(0,7) = g(z)
f(Sn, @) =h(f(n,T),n,T).

~

Examples. (i) Predecessor function: P(0) := 0 and P(S(x)) = x.
(ii)) z=-0=zand z - S(y) = P(x ~y).
(iii) z-0=0and x-Sy =x -y + x.

i)
(iv) x A0=S5(0) and z A sy = (z AN y) - x.
(v) if-then-else: (0,z,y) = z and (S(n),z,y) = y.

2.1. PRIMITIVE RECURSION

These are part of the Doner-Tarski Hierarchy.
(v) >_p(n) == > gcpcn f(x) where f is primitive recursive.

(vi) T1;(n) := [locp<n () where f is primitive recursive.

One solves circularity by using the function in extension: calculation: y =
f(z) by a certificate giving the input and outputs for inputs =’ < =.

(i) zlyifz=yV(Ew<y)(z -w=y),

(i)

(iii)

(iv) pis a prime (Vo < p)(Vy <p)(z -y # p),
(v) zis a power of pif (Vw < 2)(w |z — p | w).

x divy is the largest z such that y -z < z,

xr remy is the remainder when z is divided by v,

This is in the language of ordered rings. One cannot recover the exponent.
We can encode the certificate by using a big enough prime and using

O, = (Oremz)div (z/p)
to extract it again. Now the statement that there is a certificate for f(z,3) =
y is given by (31)(30)(3p) and for any z < [that is a power of p,
(i) (I.,0.) is related by recursion for f, O, = h(O., L./, 5),
(il) I, = 0; O; = ¢(0,3),
(i) I = L, + 1
(iv) and there exists z such that x = I, and y = O,.

The current statement has (Vz < I)(3m)(¢(z,m)) which can be quantifier-
pushed to (Jw)(Vz < I)(Im < w)(¢(z,m)). The four unrestricted quantifiers
which are then at the beginning can then be grouped together by using one
unrestricted quantifier as an upper bounded for the quadruple.

One can encode finite sequences by using prime numbers and exponentiation.

Primtive Recursive Relations

Definition. R(Z) is a PRIMITIVE RECURSIVE RELATION if and only

if there exists a primitive recursive function r such that »(Z) = 0 if and

only if R(Z).

10

CHAPTER 2. FUNCTIONS

a R
Examples. (i) <y, <y and = are primitive recursive.
(ii) R is primitive recursive, then =R is primitive recursive.

R and S primitive recursive, then sois RN .S and RUS.

(ii

(iv) R~!is where R is binary, and in general for permutations.

(vi) Closed under substitution.

i)
) R
(v) Not composition.
i)
)

(vii) Restricted quantification.
- v

If R(z,7y) is represented by r(x,7) then (Jz < 2)(R(z,7)) represented by

r(@, 7).

0<r<Lz

2.2 p-induction

p-minimisation is given by (ux)(gx = y). In the general machines later, it
will only be allowed once.

Ackermann Function

Simultaneous induction does not add much. Consider
f(0,7) = g(z)
f(S(TL),T) = g(f(n,f),n,f).
Particularly
A(0,n) = 5(0)
A(S(m),0) = A(m, 1)
A(S(m), S(n)) = A(m, A(S(m),n))

A is a total function by double induction or well-founded induction.

Definition. f: N — N DOMINATES ¢g: N — N if there exists n such

that for all m > n, f(m) > g(m).

For every primitive recursive function f: N*¥ — N there is a constant c¢; such
that for all 7, f(Z) < A(cy, max(T)). So A cannot be primitive recursive.

11

Chapter 3

Machines

3.1 Finite State Machines

Definition. FINITE STATE MACHINE (FSM or DFA) consists of
finitely many states, a transition table and a list of ACCEPTED states.

Let L C ¥* which is X%, finite strings with characters from a finite
set, M RECOGNIZES L if L = {w € ¥*: M accepts w}.

L C ¥* is REGULAR if there exists M such that M recognises L.

REGULAR EXPRESSIONS are defined recursively. Any letter from >
is a regular expression. if X, Y are, so are XY and X |Y (= X UY)
and X*.

AUTOMATIC STRUCTURES are those computable by DFA: AuTO-
MATIC GROUPS have multiplication table computed by a DFA.

"

Examples. (i) Boolean combinations of regular languages are regu-

lar.
(ii) L1Ly = {wywe: wy € Ly, wy € Lo} is regular if L; and Lo are.
(iii) L* (Kleene star) if L is, closure under concatenation.

(iv) L reversed is regular if L is.

Theorem 3.1 (KLEENE’S THEOREM). A language is regular if and
only if it is denoted by a regular expression.

12

CHAPTER 3. MACHINES

Proof sketch. <= is trivial. The inductive step of the result is done on
the size of (), a subset of the states.

For any two states ¢1, g2 and any subset () of the sets of states, there is
a regular expression that captures the set of strings taking the machine
from ¢, to g without leaving Q). O

Lemma 3.2 (PUMPING LEMMA). Given M accepts w, and |M| <
|w|, then a state is at least visited twice. Split w = wowyws such that
wy is the inside of a repeat. Then w(w;)"w, is also accepted.

Theorem 3.3 (MYHILL-NERODE THEOREM). A language L is reg-
ular if and only if ~,, has finite index.

Proof. Consider w; and wy equivalent if there is no difference in the
language; w; ~ if wy ~, wy for all n (intersection):

w1 ~o ’LU2<:>(U)1€L<:>UJQEL)

Wy ~pp1 We <= (Ve € X)(wy :: ¢~y wy i) Awy ~y, wo.

The quotient under ~, is a machine: a state is an equivalence of words,
unique minimal machine. 0

Non-Deterministic Machines

NFA are NON-DETERMINISTIC FINITE AUTOMATON, it accepts w if it
“might” accept it, if the machine guesses “right”. An NFA is useful in proving
that concatenation preserves regularity. For every NFA there is a canonical
DFA that recognizes the same language: take the power set of states and set
transition table and acceptance states similarly.

PDA are PUSH-DOWN AUTOMATON, also known as CONTEXT-FREE
LANGUAGES. For example the language given by ¥ = {(,)} of correctly
opened and closed braces. This cannot be captured by a regular expression:
it needs a STACK on which has a pop and push, and is originally empty.
Deterministic and non-deterministic variants are not equivalent.

13

3.2. GENERAL MACHINES

Recursive Ordinals

A RECURSIVE ORDINAL is the order type of a well-ordering of the natural
numbers whose graph is a decidable set. o, given (N, <,) and (N, <g) is the
order type of f: (N, <,) — (N, <) of finite support (all but finitely many
values are 0,4—bottom element in the sense of <,) ordered lexicographically.

The set of recursive ordinals is closed under taking initial segments. There
are countably many computable ordinals, and there are uncountable many
ordinals. Hence w®¥ exists, the least ordinal that is not recursive, and it is
countable. Every countable ordinal has cofinality < w, and each recursive

ordinal has a computable cofinal sequence of length w.

3.2 General Machines

Turing Machines. Operates on a tape, can move left, right, write, erase
or halt according to the symbol (normally 0 or 1) at the current tape
position and state using a table.

Register Machines. Finitely many registers holding natural numbers and
a program with a finite list of instructions. Each instruction has a label
and a body. Labels are natural numbers, and a body is

e Add 1 to the contents of R and jump to instruction with label L.

e If content of R is non-zero, subtract 1 and jump to the instruction
with label L', otherwise jump to instruction with label L'.

e Halt.

Definition. The function-in-extension of such a machine is called PAR-
TIAL COMPUTABLE or PARTIAL/GENERAL RECURSIVE.

There is a GODEL NUMBERING of machines by natural numbers.

(i) {e}(n)} = k if the machine coded by e halts with input n and
output k.

(ii) {e}(n)T if the machine coded by e does not halt with input n,
otherwise known as DIVERGES.

(iii) {e}.(n){ halts in at most z steps.

(iv) {e}.(n)} = 2 halts in at most z steps at z.

(v) We ={n e N: {e}(n)i}.

14

CHAPTER 3. MACHINES

Universal Machine

The p-recursive functions are precisely those computed by register machines.
The key gadget is Kleene’s T-function:

T(p,i,t) = “complete course of computability” of machine with number p

run on input ¢ for ¢ steps.

T(p,i,t) is a list of core-dumps for times 0 < ¢’ < ¢ and it is primitive
recursive. So there is a machine that computes it! Suppose d is a dump:

current_instruction(d)
register,(d)
last(l) = last element of the list [.

There is a machine on given m and ¢ diverges or outputs as {m}(i):

registery(list(7'(m, i, (ut)(current_instruction(list(7'(m,i,t))) = halt))))

3.3 Decidable and Semi-Decidable Sets

Definition. A C N is SEMI-DECIDABLE if A is {n}* for some n.

Also called FINITELY RECOGNISABLE, COMPUTABLY ENUMERABLE
or RECURSIVELY ENUMERABLE.

A is DECIDABLE if A and N\ A are both semi-decidable.

A VOLCANO is a machine that runs T'(m,,t) by a bijection N — N?
and outputs whenever {m} has actually computed some output.

Theorem 3.4. For) C A C N the following are equivalent:
(i) A= {n}* for some n,
(ii) A= {n}“ for some n and {n} is total,

(iii) A = W, for some n.

Proof.[(1)] = (i)} Take {n} with {n}* = A and put it in a volcano.
Now we wrap this in a machine that on input ¢ outputs the output
of the volcano for the ith step on traversing N2, if there is no
output there, it outputs the first output, this is {n'}. As A is non-

15

3.3. DECIDABLE AND SEMI-DECIDABLE SETS

empty, we will know the volcano will output some number, so {n'}
is total, and as the volcano traverse N%, we have {n/}“=A. [

- This is clear.]
(@}

()] = [(iii)} Take {n} with {n}“ = A and put it in a volcano. Now
wrap this in a machine that on input ¢ halts (and outputs anything)
when it detects ¢ as an output in the volcano. This halts on input
i if and only if i € {n}“, so have n’ with W,, = A. O

- @ Say A = W,,, which we put in a volcano and then again,
traversing N? to ith step, if {n} has halted by these numbers of
step on this input outputs the input, otherwise it loops. O

Theorem 3.5. Let X C N*~1. Then X is the projection of a decidable

subset of N* if and only if it is semi-decidable

Proof. = Suppose X is {z: (In)(z = n € Y)} where Y C NF is

decidable.
For a candidate tuple z € N*~! it can be determined whether
z € X by testing x :: 0, z :: 1, ... for membership of Y. O]

<= Suppose X = dom(f) for some computable {n}. z € X if and only
if {m}(z){ if and only if (3y)({m},(z)!) if and only if (Jy)((z, y) €
{(z,9): {m},(2)1}). O

a D

Note. X is decidable if and only if its characteristic function is.

e v

Immune Sets

Definition. An infinite X C N is IMMUNE it has no infinite semi-

decidable subset.

A natural example is given by the following idea. Consider functions with
output finite strings of Os and 1s. There is a universal Turing machine U
which for any computable f will compute f(7) as follows: U will associate
to each such f a string ps such that for any 7, f(7) is obtained as U(py :: 7).
We say C(o) is the minimal |p; :: 7/| where f(7') = 7.

16

CHAPTER 3. MACHINES

Remark. {oc € {0,1}<¥: C(0) > |o| /2} is immune.

Proof. Suppose it has an infinite semi-decidable subset B = f“. |B| =
Ng, so B contains strings of arbitrary length. Let h, be the first string
of length > n that f puts into B.

By assumption C(hy,) > |h,| /2 > n/2. Manifestly h, can be obtained
from n by computing! So this gives C'(h,) = C(n)+ |ps| where p; is the
string that U uses to compute f’, some appropriate modification of f.
However, C'(n) < log,(n). So gives n/2 < log,(n) + |ps| which for large
n does not hold. O

Semi-decidable sets in V'
Consider f: V — V a set-like function. Then f(x) is always a set, whereas

f“x is only a set when we have Replacement, so not in Z! Similarly we can
have f“x a set, but f“z # {f“y: y € x}. Computable functions are set-like.

Applications to Logic

Definition. A theory is a deductively closed set of formulae is AX1IOM-

ATIZABLE if and only there is a semi-decidable set of axioms of which
it is the deductive closure.

The set of theorems is a projection of the set of proofs. So a decidable set of
axioms leads to a semi-decidable set of theorems, but so do semi-decidable
sets! Fortunately we have the following.

Theorem 3.6 (CRAIG’S THEOREM). Every theory with a semi-
decidable set of axioms has a decidable set of axioms.

3.4 The Halting Problem

Theorem 3.7. {(p,i): {p}(i)!} is not decidable.

17

3.4. THE HALTING PROBLEM

Proof. Suppose M such that if the input is n, code for p and i: if {p}(7)]
then “yes”, if {p}(i)T then “no”.

Modify M by trapping the output so halt if M(n)] is no, then we halt
and say ‘no”. If “yes”, then loop forever. Call this machine M*.

Modify this machine by putting a front end that accepts input = and
feeds the pair (z,z) to M*. Call this machine M**. Tt has gnumber m.
What happens when we feed M** the number m?

Then in extension we get M*(m,m) and M**(m) halts if and only if it
does not halt: h < =h]

Not the same as h A —=h: we do not need the law of the excluded middle.

Rice's Theorem

Theorem 3.8 (THE S —m —n THEOREM). There is a computable
total function S such that for all e, b, a € N we have{e}(b,a) =

{S(e, b)}a).

Corollary 3.9 (FIXED POINT THEOREM). Let h: N — N be total
computable. Then In € N with {n} = {h(n)}.

Proof. Consider the map pair(e,z) = {h(S(e,e))}(x). This is a com-
putable function, so is computable by a machine with gnumber a. Set
n:= S(a,a), now

{n}(x) = {5(a,a)}(x) = {a}(a,) = {h(S(a, a)) }(x) = {h(n)}(z). O

Theorem 3.10 (RICE’S THEOREM). Let ()

{n: Graph({n}) € A} is not decidable.

Proof. Suppose it is: x4 is computably total. Find a, b € N such that
Graph({a}) € A and Graph({b}) ¢ A. Obtain computable g such that:

g(n) = if Graph({n}) € A then b else a.

Now by the Fixed Point Theorem, there exists n with {n} = {g(n)}.

18

CHAPTER 3. MACHINES

Suppose Graph({n}) € A then Graph({g(n)}) € A. So g(n) = b,
9(g(n)) = b and g(b) = b.

Suppose Graph({n}) ¢ A then Graph({n}) ¢ A. So g(n) =a, g(g(n)) =
a and g(a) = a. O

Again we do not need the law of the excluded middle to reach the conclusion.

3.5 Recursive Inseparability

Definition. Two disjoint sets X, Y are said to be RECURSIVE INSEP-
ARABLE if there is no decidable set Z with X C Z and Y N Z = 0.

Proposition 3.11. The two sets

A= {e: {e}(e)d > 0}
B ={e: {c}(e)} = 0}

are recursively inseparable.

Proof. Suppose f: N — {0, 1} is a total function for which f“A = {0}
and f“B = {1} then f is not computable. Consider n € N. We will
show that {n} is not an f as above.

{n}(n)T. {n} # f because f is total.

{n}(n)d. {n}(n){ =0. Then n € B and thus {n}(n) # f(n).
{n}(n) > 0. Then n € A and thus {n}(n) # f(n). O

19

Chapter 4

A-Calculus

In A-calculus there are the following conversion rules:
a-conversion. \z.f —, \y.f[y/x].

p-conversion. (A\z.f)g —3 flg/z].

n-conversion. A\z.fr —, f.

This leads to an equivalence relation of functions-in-extension. This allows
r = Az.not(zx)
and we have
rr = (Az.not(xzz))(Az.not(xx)) — 5 not(rr) —5 not not(rr)

which is RUSSELL’S PARADOX.

4.1 Partial Computable Functions as A\-Terms

Claim 4.1. For every p-recursive function N* — N there is a A-term
which computes that function on Church numerals.

Booleans are defined thus:

true := \xry.x

false := A\zy.y.

20

CHAPTER 4. MN-CALCULUS

Both are of type A — (B — C), they are A - (B — A) and A — (B — B)
and they are the only terms of this type. We have conditionals

if-then-else := \bxy.bxy

iszero := An.n(\x.false) true.

Pairs are defined thus:

pair := Axyf.fxy
fst := A\p.ptrue
snd := A\p.pfalse
nil := \x.true.

CHURCH NUMERALS define the natural numbers:

zero := \fr.x
once := \fx.fw
twice := \fz.f(fx)
thrice := Afx. f(f(f(x))).

For plus we use A x B — (' equivalent to A — (B — C):

succ := Anfx.f((nf)x)
plus(n,m) := Anmfz.(mf)((nf)x)
mult(n,m) := Anmfr.m(nf)ex = Anmf.m(nf).

exp(n,m) := Anmfr.mnfr = Anm.mn
Lists are pairs of heads and tails which are a list, or empty. Test for null list:
null := A\p.p(Azry. false).
Consider f: N — N defined by recursion on N, for example

fact(n) :=1if n=20
then 1
else n - fact(n — 1).
fact is fixed point for metafact of the form (N — N) — (N — N):
metafact(f,n):=if n=20
then 1
elsen- f(n—1).

21

4.2. CURRY-HOWARD CORRESPONDENCE IN PROOFS

Suppose f = metafact f then f = fact(n). The following FIX POINT
COMBINATOR satisfies Y f = f(Y f) and Y f is a fix point of f:

Y = f.(Az.f(zz))(Az f(zx)).
Consider map(f, 1), which gives a list of values of f applied to members of [:
map(f.l) := Y (Amfl.if (nulll)
then nill
else f(fst(l)) :: (m.f(snd(l)))).
Write N for the stream of naturals, a list with no end:
N := Y (ALO :: map succl).

Suppose x = map(f,N) then mu(n, z) gives the first input which gives output
n:
mune := Y (if (snd(hdx) = n)
then fst(hd z)
else mun(tl(z))).

4.2 Curry-Howard Correspondence in Proofs

Definition. One can decorate some natural deduction in constructive
proofs with A-terms, leading to a TYPED A-CALCULUS.

This is the CURRY-HOWARD CORRESPONDENCE.

Symbol Introduction Elimination
xa: A yg: B xa: A yg: B
Ta: A and yp: B
xa:A yp: B Taxp. ANDB Taxp. ANDB
A pair(za,yg): ANB fst(zaxp): A and snd(zaxp): B
[A] 18]
: : A\/B
Ta: A rp: B ¢ ¢
V pair(za,0): AV B and pair(zp,1): AV B C
[xa: A]
f5: B firA zasp: A B
—)\a:A.fB:A—>B fA:EA%B:B
L
1 A

22

CHAPTER 4. MN-CALCULUS

The law of the excluded middle (——A — A) is not in constructive logic and
so for example AV (A — L) is unprovable and does not have a A-term.

Disjunction with multiple variables can be formalized as before, then | —
A can be seen as that the empty disjunct is false and so implies everything.

V-elimination and —-introduction are not a lego block and are a pain.

dé Y
Examples. (i) A simple example is:

TA: [A]2 fA*)B: [A—) B]l

)\.’L‘AZ B
)\fA—>B$A: (A — B) — B
/\CUA~(/\fA—>B~fA—>BxA): A— ((A — B) — B)

— -int (1)

— -int (2)

(ii) A slightly more complex example is:

z: [A' y: [A—=>(B—=CO)® z:[A]' z:[A— B
yr: B—C zx: B
(yz)(z2): C
Az.(yx)(zx): A— C
Az x.(yz)(zx): (A— B) = (A— C)

— -int (1)
— -int (2

AYA—(B—C)-NeasB A (y2)(22): (A = (B = C)) = (A= B) —

(iii) The following cute result is due to Turing:

f:[(A— B) = A' z:[A— BJ?
fxr: A r: [A — BJ?
B
Me.x(fr): (A— B) —» B
M Axx(fx): (A— B)— A) - ((A— B) = B)

" v

— -int (2)

— -int (1)

23

A— C))

— -int (3)

Chapter 5

Tennenbaum’s T heorem

By the Compactness Theorem there is a non-standard model of PA, some
of which are countable. Without loss of generality the carrier set of such a
model is N. Can the structure (N, 0,4+, -, s) be computable?

Consider n € m if and only if the nth bit of m (m written in binary) is 1
and Peano Arithmetic can be seen as a fragment of second order arithmetic.

In any non-standard model, the non-standard elements are added on to the
end of N. Let M be a non-standard model of PA and M?* the corresponding
model of second order arithmetic.

Lemma 5.1. In M*, every decidable subset of the standard part of M
is €-encoded by some x € M.

Proof. Let us write x @ y for the logical or of x, y thought of as bit-
strings. @ is primitive recursive. Let P be any decidable predicate of
N. Now we define f: N — N as follows

f(0)=0
f(n+1) = if P(n) then f(n) @ 2" else f(n)

We have that
{n € M: n is standard and P(n)}

is €-encoded by f(m) for sufficiently large (non-standard) m. O

24

CHAPTER 5. TENNENBAUM’S THEOREM

Theorem 5.2 (TENNENBAUM’S THEOREM). PA has no non-standard
model in which the graphs of 4+ and - are decidable.

Proof. Suppose +, - computable in a given non-standard model. Suppose
there were m € N such that in the non-standard model, m €-encoded
the halting set (or any undecidable set).

We showed earlier that there were pairs of recursively inseparable sets.
Let A, B be a pair of recursively inseparable sets.

A= {n: (3y)(A(n,y))}
B = {n: (3z)(B(n,z))}
where A, B are decidable. So the standard model believes
(Vn <m)Vy < m)(Vz < m)(—=A(n,y) V-B(n,z))

for any numeral m. This is universal and so must be true in every model
of PA, in particular, in M. So M believes the above for all standard
m. So it must hold for some non-standard m as well. Let e be such a
non-standard element:

ME (Vn<e)Vy <e)(Vx <e)(=A(n,y) vV -B(n,z)). (5.1)
X ={neN: M Ty <e)(A(y,n))}.

Claim. X separates A and B.

Proof. A C X because any member of A satisfies A(y,n) for some
genuine natural, and any such is < e.

BN X = () holds for similar reasons. Suppose n € B. Then there is
some m such that B(n,m) whence M |= B(n,m) and thus m < e.
So M |= (Im < e)(B(n,m)). But then, by (5.1) above n ¢ X. O

We have just shown that every non-standard model (with carrier set N)
encodes at least one undecidable set—to wit X. Thus such a model cannot
be recursive.

25

Chapter 6

Incompleteness

Theorem 6.1. {n: {n} total} is not semi-decidable.

Proof. Suppose it were semi-decidable. Let f be the total computable
function whose values are precisely the numbers of machines that com-
pute total functions. Now consider the function g;= An.{f(n)}(n) + 1.
This function is total computable and should therefore be {f(m)} for

some m. g(m) = {f(m)}(m) +17# {f(m)}(m), so g # {f(m)}. =

Theorem 6.2. Fix T, a recursively axiomatised system of arithmetic.

{n: T+ {n} total N — N} is semi-decidable, but not decidable.

Proof. Semi-decidable by enumerating proofs.

Consider a machine M that tests, for each pair (p,n) of a T-proof p and
a number n whether or not p is a T-proof that {n} is a total function
N — N. We obtain a volcano that emits all pairs (p,n) such that p is a
T-proof that {n} is total. Let v(k) be the kth such pair emitted by the
volcano. Let the T-bad function be

(Ak € N)(let v(k) = (p,n) in {n}(k) +1)

This “diagonalises our volcano” and the set of functions proved by 7' to
be total. Clearly T cannot prove that this function is total. O]

26

CHAPTER 6. INCOMPLETENESS

Definition. An arithmetic theory T is SOUND if every theorem of T
is true (in the standard model N).

Theorem 6.3. Every sound recursively axiomatisable theory of arith-
metic is incomplete.

Proof. If T is sound, then the T-bad function is total and T does not
prove this. O

Definition. If there is an algorithm which given a semi-decidable sub-
set A C X, the set of first-order arithmetic sentences true in a standard
model emits a sentence in X\ A, then X is said to be PRODUCTIVE.

Theorem 6.4 (GODEL’S (IN)COMPLETENESS THEOREM). First-
order logic is COMPLETE, however, it is not DECIDABLE if rich enough
to express the workings of a Turing machine.

Proof. The set of sentences in first-order logic that are true in all struc-
tures is semi-decidable, being the set of theorems of a recursively axiom-
atizable theory.

Given machine M and ¢ we can compute a formula ¢ which has the
property that every model of ¢ is a complete course of computation of
M(i) and has a last frame in which M has halted. If first-order logic
is decidable, we can decide whether or not ¢ has a model. So we would
be able to solve the Halting problem. O

Theorem 6.5 (TRAKHTENBROT’S THEOREM). The set of sentences

true in all finite structures is not complete.

Proof. Use the Halting problem. O

27

Chapter 7

Well-Quasi-Orders

Definition. A QUASI-ORDER (QO) (X, <) is transitive and reflexive.
An infinite sequence (z;) is

BAD. If there is no i < j € N such that z; < z;.

Goob. Ifit is not bad.

PERFECT. If i < j implies z; < ;.

A WELL-QUASI-ORDER (WQO) is a QO with no bad sequences.

Proposition 7.1. (X, <) is WQO if and only if it has no w-descending
chains and no infinite antichains.

Lemma 7.2 (PERFECT SUBSEQUENCE LEMMA). Let (X, <) be
WQO. Then every w-sequence from X has a perfect subsequence.

Proof. = trivial. O

<= Suppose (z;: i < w) is a sequence from X. Two-colour the complete
graph on N, (4,7) is 0 if ¢ < j, x; < z; and 1 otherwise. By
Ramsey there is a monochromatic infinite set. If of the second
colour, we get an infinite anti-chain. If of the first colour it is a
perfect subsequence, and thus (x;: ¢ < w) cannot be bad.]

28

CHAPTER 7. WELL-QUASI-ORDERS

Definition. Given a QO on X, it can be lifted to P(X) by X' < X" if
for all 2/ € X’ there exists 2’ € X" such that 2/ < 2”.

It can also be lifted to X< by setting /; < [(STRETCHES INTO) if:
e [y is empty.
o [< tl(ty).
e hd(l;) < hd(lp) and tl(l;) < tl(l2).

Theorem 7.3. (P(X),<") is well-founded if and only if (X, <) is a
WQO.

Proof. <= (P(X),<™) is not well-founded.

<= There exists a descending sequence Xy >1 X >T Xy >* ...,
<= There is (;);en in X such that for all i < j € N we have z; € ;.
<= X has a bad sequence.

<= X is not a WQO. O

7~

.

Example. (N, =) is well-founded, not a WQO. Lifts to (P(N), C) which
is not well-founded: ({m: m > n}: n < w) is a descending sequence.

~

29

7.1. MBS CONSTRUCTION

7.1 MBS Construction

Definition. A sequence (x;) in X is a MINIMAL BAD SEQUENCE if
z, is a minimal member of

{z: 3 bad sequence whose first n members are (x,...,ZT,_1,2)}.

Theorem 7.4. If X is well-founded but not a WQO, there is a minimal
bad sequence.

Proof. Define Xy :={z € X: (39)(S(0) =x A S is bad)} and

Xy ={zeX:(39(Sm)=7:axASisbad)}

inductively, setting z,, a minimal member of X,, using DC. O]

Lemma 7.5 (MINIMAL BAD SEQUENCE LEMMA). Let:
e (X, <) be well-founded but not WQO.
e B = <b0,b17...> a MBS.

o X'={zeX: (In)(x<b,)}
Then (X', <) is WQO.

Proof. Suppose that S = (sg, s1,...) were a bad sequence from X’. We
will prove by induction on N that nothing in S is < b,,.

Case 0. Consider s; if s; < by then the tail of S, starting at s; is bad,
contradicting the choice of by as minimal.

Case n + 1. Suppose nothing in S smaller than any of by, ..., b,, and
suppose some s; < b,1. Consider the sequence by, ..., b, and
continues s;, S;i1, ...

It cannot be bad by minimality of b,,1, and so it contains a good
pair. Both S and B are bad, so the good pair must be b; < s, with
j <nand k > 1. Consider si, we must have m with s < b,,. But
this m cannot be < n by induction hypothesis. So m > n. But
then j < n < m with b; < by,,. Contradicting badness of B. O

30

CHAPTER 7. WELL-QUASI-ORDERS

7.2 Kruskal’s Theorem

Corollary 7.6. If (X, <) is well-founded QO, so is X-lists QO when

ordered by stretching.

Proof. Suppose not, have an infinite descending sequence of X-lists un-
der stretching. They can get shorter only finitely often, so we may as-
sume that they all have the same length. The entries at each coefficient
get smaller only finitely often, so must all be eventually constant. O

Lemma 7.7 (HIGMAN’S LEMMA). If (X, <) is WQO, then
(X =¥, stretching) is WQO.

Proof. Suppose not. We know it is well-founded, so we know that there is
a minimal bad sequence (a;) of lists. Look at the heads of the lists. These
are WQO, so there must be a subsequence (b;) of (a;) by Lemma
such that the heads are perfect.

The bad sequence (b;) now has heads who are increasing. Consider the
tails. These are a WQO by Lemma [7.5 and so again we have that there
is a subsequence (¢;) of (b;) by Lemma [7.2|such that the tails are perfect.

In (¢;) the heads and tails are perfect, and so the sequence is perfect.
But it is a subsequence of a bad sequence, so bad! Contradiction. O

Definition. An X-tree has the following recursive datatype:
e A single element of X is a LEAF and a X-tree.

o A X-tree is otherwise made from an element of X and a list of
X-trees.

If X is a QO, then if T', T" are X-trees, then T < T" if:

e both are singleton trees {t} and {t'} and t </,
o T < T" for some child T” of T or

e the root of T is less than or equal to the root of 77 and the list
of children of T is less than the children of 7" by extending tree
comparison to lists thereof.

31

7.2. KRUSKAL’S THEOREM

Theorem 7.8 (KRUSKAL’S THEOREM). Finite trees over a WQO

are WQO.

Proof. X-trees ordered by the extension of a QO on X is well-founded. In
any descending sequence the skeletons are eventually constant (as they
are finite objects). Consider the sequence limited to a certain point in
the skeleton: as X is a well-order, these must eventually be constant.
As there are finitely many, the sequence is eventually constant.

Suppose not WQO. Then there is a minimal bad sequence of trees (a;).
The roots are from a WQO, so there must be an increasing subse-
quence (b;) of (a;) such that the roots of b; form a perfect sequence
by Lemma [7.2] Let [; be the list of children of b;.

These trees in the lists form WQO by Lemma [7.5] Now use Lemma
lists over this WQO are WQO (under stretching). Now put the product
order (point-wise) on (root, list of trees), and this product of WQOs is
WQO, and so this sequence cannot be bad. Contradiction. n

Theorem 7.9 (FRIEDMAN’S FINITE FOrRM). For all £, there exists

an n such that if 7%, ..., T, is a list of trees where T; has k + ¢ nodes,
then there are j <[such that T; < T;.

Proof. Consider the one-point WQO and suppose there is £ € N such
that for all n € N there exists “bad finite sequence” of trees 17", T3, T3,
ooy T with i < g <k, T o T and T has k + ¢ nodes. Then we can
find an infinite triangle of trees:

7}
T,
T TS

Since in the first column, there are only finitely many trees with £ + 1
nodes, so one tree, say T} appears infinitely many time. Now consider
the rows that start with 77, do the same with the second column. So
(T;: i € N) is a bad sequence, contradiction with Kruskal’s Theorem. [

32

Chapter 8

Degree Theory

8.1 Many-One Reducibility

Definition. B is MANY-ONE REDUCIBLE to A, B <,, A if there
exists total computable function f such that for all n € N, n € B if
and only if f(n) € A.

K = {(n,z): {n}(z))} is known as THE HALTING SET and so is
{n: {n}(n)l}. Each of these is reducible to the other.

Lemma 8.1. A <,,, K if and only if A is semi-decidable.

Proof. = Since K is semi-decidable it is the domain of a partial com-
putable g. If A <,,, K by virtue of some f then A is the domain
of g o f which makes A semi-decidable. O

<= Let A be semi-decidable. Define a binary partial function f by
f(e,xz) = if e € A then 1 else 1. By Theorem [3.§] there is now a
computable g such that Vz,e € N. {g(e)}(z) = f(e,z). From this
we get (Ve)({g(e)}(g(e))d «» e € A) thus (Ve)(e € A < g(e) € K)
so A <, K (diagonal Halting set) by virtue of g. O

33

8.2. TURING REDUCIBILITY

8.2 Turing Reducibility

Definition. Present contents of register 2 to oracle, place the result
from the oracle in register 3. We can enumerate the machines/programs
of the new architectures, {e}* without specifying the oracle.

Relative computability using oracles A <r B if we can compute x4
given xp as an oracle. These are quasi-orders, and by taking the inter-
section with its reversal we get the TURING EQUIVALENCE.

An equivalence class is a TURING DEGREE OF UNDECIDABILITY.

0 is the Turing degree of decidable sets. d’ is the Turing degree of the halting
problem for machines in d. Thus 0 is the degree of K.

Theorem 8.2 (KLEENE-POST THEOREM). There are <p-incomparab

degrees <7 0.

Proof. Let us enumerate {0,1}<“ as (n,: n € N). Think of strings as
functions from initial segments of N to {0,1}. We will find A, B such
that {e}* and {e}? are <r-incomparable. Observe:

o If {e}" (z)] then {e}“(x){ for every n, C C.

o If {¢}B(x){ then there is a € N, {e}"(z)].
We will diagonally construct A and B. We have two sequences of binary
strings. (ay,: n € N) such that o, extends o, and [J,cyi = xa.
(Bn:n €N), By extends 3, and J,.y B = xB- Set ag = fo = ().

Stage 2s + 1. Let x be the first number not in the domain of ags. If
there are any 7, that are extensions of s such that {s}"(z)]
then use the least such a, and set assy1 to be ags i1 y where y is

the least element of {0, 1}\{{s}"(x)}. And set fosi1 =1, 2 0. If
there is no such 7,, then set ags11 = s 11 0 and Bog1 = Pos i1 0.

Stage 2s + 2. Similarly, swap a <> and 2s <> 2s + 1.
At stage 2s, respectively stage 2s + 1: B # {s}?4% A # {s}B« O

Theorem 8.3 (FRIEDBERG-MUNCHNIK THEOREM). There are

<r-incomparable degrees of with representatives semi-decidable sets.

34

Chapter 9

Omitting Types

Definition. Fix language L, an n-TYPE in L is a set ¥ = {0;: i € N}
where each o; has n free variables.

Let M be a structure for L. We say M REALIZES X if and only if
there is an n-tuple ¢ such that M = 0;(¢) for each i. Otherwise, ¥

OMITS ..

A theory T LOCALLY OMITS a type X if whenever ¢ such that T+
¢ —oforall o€ X then T'F —¢p.

For O-types, we have by compactness that if for every finite subset X' C 3,
T has a model that realizes >’. Then T has a model that realizes 2.

The standard model of arithmetic omits the 1-type {n # 0,n # S0,n #
SS0,...}.

Theorem 9.1 (PROPOSITIONAL OMITTING OF TYPES). Let T be

a propositional theory and ¥ C L(T') a type. If T locally omits ¥ then
there is a T-valuation omitting X.

Proof. By contrapositive. Suppose no valuation omits 3. Then every
formula in X is a theory of T', so take ¢ to be T', T'F ¢ — o for every
o € X but T+ —p. Contraposing, if T' = —p for every ¢ such that
(Vo € £)(T F ¢ — o) then there is a T-valuation omitting . O

This can be extended to countably many types simultaneously, for proposi-
tional logic again.

35

Theorem 9.2 (EXTENDING OMITTING TYPES THEOREM). Let

T be a propositional theory, and for each ¢ € N let ¥; be a type. If T
locally omits each o; then there is a T-valuation omitting all the ;.

Proof. We will show that, whenever T'U {—A, —A,,...,—A;} is consis-
tent, where A, € 3, for n < i, then we can find A;,; € ¥, 1 such that
TU{—-A;,...,—A;, A1} is consistent.

Suppose not. Then T + (Aléjéi A;) = Ajyq for every Ay € ¥;44. But,
by assumption, T' locally omits >;,; so we must have T - — /\1<j<z' A,
contradicting the consistency of A;.

Now, as there is an enumeration of L(T) we can start an structural
process where, at each stage, we pick for A;,; the first formula in ;4
such that T U {—A,...,—A;,~A;11} is consistent.

This gives a theory TU{—A;: i € N} which is consistent by compactness.
Any valuation making this theory true omits every ;. O]

36

Chapter 10

Examples

10.1 Example Sheet 1

7

Exercise 10.1.1. Is there any significant difference between a natural
number and its certificate? A countable ordinal and its certificate?

~

Solution. There need not be: if we have no extraneous information and
the definition of certification and natural numbers are compatible.

A certificate of a countable ordinal can skip some at say limits.

Exercise 10.1.2 (RECURSION THEOREM). If (X R) is a well-founded
structure and G: X x V. — V then there is a unique f satisfying

(Ve € X)(f(x) = Gz, {f(y): Ry, x)})).

~

Solution. Consider attempts: f with dom f C X and transitive and
whenever € dom f, then f(z) = G(x,{f(y): R(y,z)}). If f, g are
attempts, and x € dom f Adom g then if f(x) # g(z) there is least such,
but then by definition of attempt f(z) = g(x). So uniqueness evident.

If (fi: i € I) are attempts in a chain, so is J,., fi- So if there is x such
that f is not in an attempt there is least such, but then we can take the
union of g with dom g a subset of the transitive closure of {z}, and set
f(x) =Gz, {f(y): R(y,x)}). So we arrive at a contradiction.

So such f exists and is unique by taking the union of such attempts.

37

10.1. EXAMPLE SHEET 1

Exercise 10.1.3. (i) Consider the rectype of a-lists.
(a) What is primitive recursion on a-lists?
(b) Define stretching for a-lists by primitive recursion.
(ii) Consider the rectype of a-trees.
(a) Give a rectype declaration for the rectype of a-trees.

(b) What is primitive recursion on a-trees?
(¢) Define stretching for a-trees by primitive recursion.

Solution. (i) (a) Initalize f(Z,0) = z(T) and set
f(@,a:l)=h(z, ol f(T,10).
(b) f(l2,11) = 11if Iy stretches into /; and 0 otherwise by

f(l2,0) :=if Il = () then 1 else 0
floyx::ly) :=if I = () then 1 else
if x <y then f(l},15) else f(ly,x = 1y)

where I, =y :: l5.

(ii) (a) Every x € X is a tree. If x € X then z is a tree and [is a
list of X-trees, then z.l is a tree with root x and litter [.

(b) Initialize f(Z,«) = z(T,) and set
f@ al)=hz ol (f(T,1),..., [T 1))
(¢) g(ta,t1) = 1if Iy stretches into [; and 0 otherwise by

g(ta, 1) :=1if © <y =ty then 1 else 0
g(te,y 2 1) :==1if y = t5 then 0 else
if r <y then f(15, 1) else f(lo, [2.11])

where to = y.ls and [x.[1] is the (X-tree)-list with one element
I.ll.

38

CHAPTER 10. EXAMPLES

Exercise 10.1.4. Say that a machine LOOPS if and only if it repeats a
configuration. Let LOOP C N be the set of all indices of machines that
loop on input 0. What can you say about the decidability of LOOP?

~

Solution. Fix a computable bijection f: N — N2 and consider a machine
M that and on input n:

(i) Set ¢:=0.

(ii) Compute (t,7) := f(c).
(iii) Detect if a loop has occurred in {n}(i) by tth step, if so, halt.
(iv) Set c:=c+ 1.

(v) Go to step

Step is possible due to the existence of a universal Turing machine
and the possibility to compute data dumps. M halts if and only if
n € LOOP and so LOOP is semi-decidable.

Suppose LOOP is decidable, fix M’ such that M’ in extension is xr.oop.
Consider M” that on input n:

(i) Computes m such that {m} is {n}(n) in intension for all inputs.
1 halts

(i) M'(m) =
0 loops

Note in particular, m € LOOP if and only if {n}(n) loops and so M"(n)
halts if and only if {n}(n) loops.

M" = {n} for some n € N. Now {n}(n) halts if and only if {n}(n)
loops, contradiction. So LOOP is not decidable.

39

10.1. EXAMPLE SHEET 1

e

\

Exercise 10.1.5. Turing machines are very robust under modification
of their definition. Consider a TM with input, work and output that
over alphabet {0, 1} that can only write 1, but cannot write 0. Assume
that output and work tape start with all 0s. Is this model as powerful
as standard TMs?

Solution. Given a Turing machine in the original language. Any bit in
the original is turned into 4 bits, set depending on whether:

(i) itis 0 or 1,
(ii) it is the start,
(iii) it is the end
(iv) it is copied already.

If a 0 is written in the original where there is currently a 1, or it tries to
move to a place on the tape that is marked with "end" the following is
a heuristic description of what the new Turing Machine does:

(i) remember current position and instruction somewhere to the right
of the current end,

(ii) from the current position, go left until you reach the start,

(iii) iteratively copy each bit (except the 1 if we are in the “write 0”
case) from the start until the end into a contiguous block to the
right of the end with four empty bits in between,

(iv) in the new data, refind the original position and instruction, con-
tinue computation.

The original instructions are changed such that computation goes as
normal, bar taking into account that moves need to be multiplied by 4.

40

CHAPTER 10. EXAMPLES

Definition. We define a partial function §: dom(d) — Cord (where
COrd is the set of countable ordinals) as follows:

(i) 0(0) =0,
(i) 8(3") = d(n) + 1,

(iii) 6(5") = sup;en 0({n}(7)), if {n} is total and for all i, {n}(i) €
dom(9).

We call @ € COrd is a COMPUTABLE ORDINAL, if and only if 3n: §(n) =

Q.

Exercise 10.1.6. Is there a partial computable function p: dom(d)? —
N such that whenever n, m € dom(¢), then §(p(n,m)) = d(n) + d(m)?

Is there a recursively enumerable set A such that if n € dom(d) then
n € A if and only if 6(n) is a successor ordinal?

Solution. Define p(n, m) by recursion as in the following pseudo-code:
(i) If m = 0 then return n.
(i) If m = 3™ then return 3P,
(iii) Set m’ such that m = 5™
(iv) Return m” such that {m”}(i) = p(n, 3tm®),

This last step is possible, since this {m”} in a computer language allow-
ing abstractions is computable without knowing the values of p. This
shows it is Turing-computable by the Church-Turing Thesis.

The problem that remains is whether it halts for n, m € dom(9). By
recursion it does: let H C dom(d) be the m for which it halts. 0 € H. If
m € H then 3™ € H. Suppose m € H and 5™ € dom(¢), then 3™} ¢
H for all i by definition and so {m'}(i) = p(n, 31™) is satisfiable by a
computable function that can be computed.

The resolution of the last part is unknown.

41

10.2. EXAMPLE SHEET 2

10.2 Example Sheet 2

e

Exercise 10.2.1 (PAST TRIPOS QUESTION). An interleaving of two
finite words w; and ws is obtained by inserting the letters of w; into w,
in order (for example, both alb and abl are interleavings of ab and 1, but
bla is not). Let L; @ Ly denote the language containing all interleavings
of words from L; with words from L.

(i) If Ly and Lo are regular, what about L & Lo?
(ii) If Ly and Ly are computable, what about L; & Ly?

Solution. (i) e A language L is regular if and only if it is recognized
by a finite state machine. Suppose M; and M, are finite
state machines recognising L, and L, respectively.

e By considering the natural finite state machine on the power
set of the states of a non-deterministic state machine it follows
that given a non-deterministic state machine there is finite
state machine that recognizes the same language.

Consider the non-deterministic finite state machine M with: states
the Cartesian product of the states of M; and My and:

Transition Table. Transition (s, s5) — (s}, s,) allowed if

e s; = s and sy transitions to s, by character t.
e s, = s, and s; transitions to s} by character t.

Accepted States. (s, s9) accepted if s; accepted in M; and so
accepted in M.

That is, M is the machine that at any steps either progresses by
taking a step in the states of M; or Ms. By our imported results,
it only remains to show that M recognizes L @& Lo.

Suppose w in our language and fix a run of M on this input. Let
wy be the string obtained by stringing together the characters ¢
that have changed the state of the first coordinate of M in this
run. Similarly for ws and the second coordinate. By construction,
w is accepted by this run if and only if w; is accepted by M, and
wy is accepted by M.

The w; and wy that occur are exactly those that interleave to give
w, and thus w is recognized by M if and only if w is the interleaving
of wy and wy which are accepted by My, Mj respectively.

42

CHAPTER 10. EXAMPLES

(ii) Let M; and My compute Ly and L, respectively. Note that for
any word w, there are only finitely many words w; and ws it could
be an interleaving of, and these can be effectively computed, de-
noted by wy, and ws, and let N; and Ny be how many there are.
Let M be a Turing machine working as follows on input w:

)
)

) If My(wy,) = Ma(w,,,) = 1, output 1.
d) Set ny :=ny + 1.
)
)
)

Then M shows L; & L, computable.

7

Exercise 10.2.2. Will the same argument as for Trakhtenbrot’s Theo-
rem show that:

(i) The sentences true in arbitrarily large finite models,
(i)
)
)

(iii
(iv) The sentences true in all finite models that have even cardinality
and all infinite models.

The sentences true in all sufficiently large models,

The sentences true in all infinite models,

is not semi-decidable?
S

Solution. (i) Unkown.

(ii) A sentence ¢ is true in all sufficiently large models if and only if
there exists an n such that ¢,, = ¢. The consequences of ,, can be
enumerated, and so by using a bijection N> — N we can enumerate
the union of these consequences.

(iii) If ¢ is true in all infinite models then = has no infinite models; so
= does not have arbitrarily large finite models by Compactness.
So = can be refuted from the set of axioms

Op = dry ... dx,: /\xz#j

1<j

43

10.2. EXAMPLE SHEET 2

So ¢ follows from this scheme, and thus we can enumerate the
formulas with arbitrarily large finite models by enumerating the
consequences of this scheme. This is possible as the scheme itself
is enumerable.

(iv) Set

Y = dxy ... oy, /\xi#j/\V:U: \/x:xi.

1<j 7

M =), if and only if |M| = n. Can enumerate all consequences
of 1y, separately for n € N and for infinite models by . Use
another bijection N — N? to find when they have found the same
consequence, and then output this. This outputs all such sentences
at some stage.

e

\

Exercise 10.2.3. What goes wrong if finitely is removed (replaced by
infinitely) in the following?

(i) The pointwise product of finitely many WQOs is WQO.
(ii) The intersection of finitely many WQOs is WQO.
(iii) The disjoint union of finitely many WQOs is WQO.

Solution. (i) Consider the w product of the WQO on {0, 1} given by
the usual order. {0,1}* is not a WQO, as 10..., 010..., 0010...
form an infinite antichain.

(ii) Consider the WQOs <,, on {0, 1}* given by (z;) <, (y;) if x; < y;
for all i < n. <, has no bad sequences as {0, 1}" is WQO. Consider
the intersection, which is the same as the induced order on {0, 1}*
which is not a WQO.

(iii) This goes wrong in any infinite case. Given (X;: i € I) with
z; € X; WQO for all i € I and [infinite. Consider X = [[,.; X.
Without loss of generality X; C X, then {z;: i € I} is an an-
tichain. As [is infinite, X cannot be a WQO.

44

CHAPTER 10. EXAMPLES

Exercise 10.2.4 (PAST TRIPOS QUESTION). Suppose we quasi-order
finite trees as follows: T < T" if there is an injection from the vertex
set of T to the vertex set of 7" that preserves the root and preserves

adjacency. Is this a WQO?

Solution. Let T, be a tree with n + 3 vertices. The vertices are vy, ...,
Unt2 With vy being the root. The edges are exactly: v;v;41 for 0 <i < n
and v,v,42. So for example T5 is:

Vo

U1

|
I

U3 U4

Consider an injection of vertices vy, from T; to vertices wy, from T} for
t < j that preserves the root and adjacency. By preserving root we
have that vy — wgy. By preserving adjacency we find by induction that
v — wi for 0 < k < 7+ 1. By injectivity, vg,o needs to be mapped
to wy for i + 1 < k, however none of these are adjacent to w; and thus
adjacency cannot be preserved. Contradiction.

Thus T, is a bad sequence, and thus this order cannot be a WQO.

a D

Exercise 10.2.5. We say that a function f: N — N grows too fast to
be computable, if for any function g: N — N we find that if f(n) < g(n)
eventually then g is not computable. Give an explicit construction of a
function that grows too fast to be computable, or prove that there is no
such function.

Solution. Enumerate the total computable functions f;, ... then set

F(n) = max fi(n) + 1.

1<i<n

Then f;(n) < f(n) eventually for all i. Thus f(n) < g(n) eventually
implies g(n) not computable.

45

	Recursion
	Character
	Fix Point
	Structural Induction
	Restricted Quantifiers
	Infinitary horn

	Functions
	Primitive Recursion
	Primtive Recursive Relations

	-induction
	Ackermann Function

	Machines
	Finite State Machines
	Non-Deterministic Machines
	Recursive Ordinals

	General Machines
	Universal Machine

	Decidable and Semi-Decidable Sets
	Immune Sets
	Semi-decidable sets in V
	Applications to Logic

	The Halting Problem
	Rice's Theorem

	Recursive Inseparability

	-Calculus
	Partial Computable Functions as -Terms
	Curry-Howard Correspondence in Proofs

	Tennenbaum's Theorem
	Incompleteness
	Well-Quasi-Orders
	MBS Construction
	Kruskal's Theorem

	Degree Theory
	Many-One Reducibility
	Turing Reducibility

	Omitting Types
	Examples
	Example Sheet 1
	Example Sheet 2

