
University of Cambridge

Mathematical Tripos

Computability and Logic

Lecturer:
Dr. T.E. Forster

Editor:
H-J. Wagenaar

2

Contents

1 Recursion 5

1.1 Character . 5

1.2 Fix Point . 6

1.3 Structural Induction . 7

1.4 Restricted Quanti�ers . 8

1.5 In�nitary horn . 8

2 Functions 9

2.1 Primitive Recursion . 9

Primtive Recursive Relations 10

2.2 µ-induction . 11

Ackermann Function . 11

3 Machines 12

3.1 Finite State Machines . 12

Non-Deterministic Machines 13

Recursive Ordinals . 14

3.2 General Machines . 14

Universal Machine . 15

3.3 Decidable and Semi-Decidable Sets 15

Immune Sets . 16

Semi-decidable sets in V . 17

Applications to Logic . 17

3

CONTENTS

3.4 The Halting Problem . 17

Rice's Theorem . 18

3.5 Recursive Inseparability . 19

4 λ-Calculus 20

4.1 Partial Computable Functions as λ-Terms 20

4.2 Curry-Howard Correspondence in Proofs 22

5 Tennenbaum's Theorem 24

6 Incompleteness 26

7 Well-Quasi-Orders 28

7.1 MBS Construction . 30

7.2 Kruskal's Theorem . 31

8 Degree Theory 33

8.1 Many-One Reducibility . 33

8.2 Turing Reducibility . 34

9 Omitting Types 35

10 Examples 37

10.1 Example Sheet 1 . 37

10.2 Example Sheet 2 . 42

4

Chapter 1

Recursion

1.1 Character

De�nition. A recursive datatype, also inductively defined
set, has founders and constructors. It is of

• Finite character if the constructors have �nite arity.

• Bounded character if the constructors have bounded arity.

• Unbounded character (absolutely in�nite) if constructors
have unbounded arity.

Examples. The following have �nite character.

(i) N has a recursive datatype declaration in the form of founders (0)
and constructors (S, the successor function).

(ii) HF has founder ∅ and if x, y ∈ HF then x ∪ {y} ∈ HF.

(iii) α-lists are generated by the empty-list [] and if x ∈ α, l is an α-list,
then x :: l is an α-list.

The following have bounded characters, by ω, constructors.

(iv) HC has founder ∅ and constructor countable union.

(v) Borel sets have founders the open sets, and the constructors are
countable unions and the complement.

The following has unbounded character.

(vi) The class of ordinals: Ord.

5

1.2. FIX POINT

1.2 Fix Point

N =
⋂
{X : 0 ∈ X ∩ S“X ⊆ X}

F (0) (∀n)(F (n)→ F (Sn))

(∀n ∈ N)(F (n))

This induction works for N ⊆ {n : F (n)} as required. Every inductively
de�ned set is the least �xed point for some nice function V → V , for N it is
x 7→ x ∪ {0} ∪ S“x. For example, the transitive closure of a relation R:

t(R) =
⋃
n∈N

Rn =
⋂
{S ⊇ R : S ◦ S ⊆ S}.

Transitivity, symmetry and totality are given by

(∀x, y, z)(R(x, y) ∧R(y, z)→ R(x, z)),

(∀x, y)(R(x, y)→ R(y, x)),

(∀x, y)(R(x, y) ∨R(y, x)).

This is also do-able for transitivity and symmetry, as they are of the form:∧
i∈I

ri(~x)→ S(~x).

De�nition. Horn clauses are disjunction of (negations of) atomics
of which at most one disjunct is not a negation.

A Horn theory has axioms universal closures of Horn clauses.

An algebraic theory has axioms universal closures of equations.

Note. A theory has universal axioms if and only if every substructure
of any model is another model of such theory.

An inductively de�ned set is of the form ⊆-least set containing X and
satisfying F . If F is Horn, such a set is guaranteed to exist.

T is an algebraic theory if and only if the class of its models is closed
under arbitrary products, substructure and homomorphisms (Birkho�).

Groups, rings and integral domains are Horn theories.

6

CHAPTER 1. RECURSION

1.3 Structural Induction

De�nition. Recursive datatypes have an engendering relation,
de�ned by its constructors.

Recursive data types support structural induction, which is
induction on the engendering relation. Given a relation R (of arity 2,
say) it is called R-induction:

(∀x)((∀y)(R(y, x)→ F (y))→ F (x))

(∀x)(F (x))

Inductively de�ned sets have certificates for its members.

A recursive data type is free if all elements have only one certi�cate.

If a recursive data type is not free and not of �nite character AC is needed
to solve two problems: uniqueness and existence. For N and the language of
propositional logic, In�nity, Replacement and then Separation gives existence
and uniqueness follows by taking intersection. HC and HF are obtained
similarly as the ωth and ℵ1th stage of using P limited to subsets of size ℵ0.

Exercise 1.3.1 (Tripos 2006, q. 12, Quine's Trick). Let P (|x|)
be |x\{y}| if y ∈ X and 0 if X is empty. De�ne

q(n) ⇐⇒ (∀Y)((n ∈ Y ∧ (P“Y ⊆ Y))→ 0 ∈ Y).

Establish that q(n) if and only if n is a natural number.

Theorem 1.1. The engendering relation on a recursive datatype is
well-founded.

Proof. Suppose not: (∃x)(¬F (x))∧(∀x)((∀y)(R(y, x)→ F (y))→ F (x)).
Set {x : ¬Fx} = A (foregoing set-theoretical di�culties at this point):

(∀x ∈ A)(∃y ∈ A)(R(y, x)) ∧ (A 6= ∅).

This has negation:

(∀A ⊆ dom(R))[A 6= ∅ → (∃x ∈ A)(∀y ∈ A)(¬R(y, x))].

7

1.4. RESTRICTED QUANTIFIERS

1.4 Restricted Quanti�ers

De�nition. Restricted or guarded quantifiers are for ex-
ample (∀x ∈ y) which seems equivalent to (∀x)(x ∈ y ⇒ · · ·).
The Prenex Normal Form is any sentence of the form a number
of quanti�ers and then no quanti�ers at all.

Theorem 1.2 (PNF Theorem). Every formula is equivalent to one
in which all unrestricted quanti�ers lie outside the restricted quanti�ers.

Proof. The result inductively rests on quantifier pushing by re-
placing

(∀x ∈ A)(∃ϕ)

with
(∃B)(∀x ∈ A)(∃y ∈ B)ϕ

where B exists by the Collection. Although we have introduced another
quanti�er, it is restricted and on the right side.

1.5 In�nitary horn

Theorem 1.3. There is no �rst-order theory of well-founded relation.

Proof. A simple compactness argument.

Let Lκλ be a language allowing < κ conjunctions or disjunctions and allowing
to bind < λ variables with one block of ∀ or ∃. The normal language is Lωω.
Lω1ω is important, and Lω1ω1 allows one to express well-foundedness:

∀x1, . . . , xn(¬R(x2x1) ∨ ¬R(x3x2) ∨R(x3x1) ∨ · · ·)

In full ZF we have that (powersets, ∈) are well-founded, yet are not a recursive
datatype.

8

Chapter 2

Functions

2.1 Primitive Recursion

De�nition. A function-in-intension is the algorithm/program.

A function-in-extension is the graph of a function.

f“X is the range of f under X

De�nition. A primitive recursive function is in extension
Nk → N, constructors are:
(i) λn.0, the identically zero function.

(ii) Projections functions: giving back ith member of tuple.

(iii) Composition.

(iv) Primitive recursion, if g and r are primitive recursive, then so is

f(0, x) = g(x)

f(Sn, x) = h(f(n, x), n, x).

Examples. (i) Predecessor function: P (0) := 0 and P (S(x)) = x.

(ii) x .− 0 = x and x .− S(y) = P (x .− y).

(iii) x · 0 = 0 and x · Sy = x · y + x.

(iv) x ∧ 0 = S(0) and x ∧ sy = (x ∧ y) · x.
(v) if-then-else: (0, x, y) = x and (S(n), x, y) = y.

9

2.1. PRIMITIVE RECURSION

These are part of the Doner-Tarski Hierarchy.

(v)
∑

f (n) :=
∑

06x6n f(x) where f is primitive recursive.

(vi)
∏

f (n) :=
∏

06x6n f(x) where f is primitive recursive.

One solves circularity by using the function in extension: calculation: y =
f(x) by a certi�cate giving the input and outputs for inputs x′ 6 x.

(i) x | y if x = y ∨ (∃w < y)(x · w = y),

(ii) x div y is the largest z such that y · z 6 x,

(iii) x rem y is the remainder when x is divided by y,

(iv) p is a prime (∀x < p)(∀y < p)(x · y 6= p),

(v) z is a power of p if (∀w < z)(w | z → p | w).

This is in the language of ordered rings. One cannot recover the exponent.
We can encode the certi�cate by using a big enough prime and using

Oz = (O rem z) div (z/p)

to extract it again. Now the statement that there is a certi�cate for f(x, s) =
y is given by (∃I)(∃O)(∃p) and for any z < I that is a power of p,

(i) 〈Iz, Oz〉 is related by recursion for f , Oz = h(Oz/p, Iz/p, s),

(ii) I1 = 0; O1 = g(0, s),

(iii) Iz = Iz/p + 1

(iv) and there exists z such that x = Iz and y = Oz.

The current statement has (∀z < I)(∃m)(ϕ(z,m)) which can be quanti�er-
pushed to (∃w)(∀z < I)(∃m < w)(ϕ(z,m)). The four unrestricted quanti�ers
which are then at the beginning can then be grouped together by using one
unrestricted quanti�er as an upper bounded for the quadruple.

One can encode �nite sequences by using prime numbers and exponentiation.

Primtive Recursive Relations

De�nition. R(x) is a primitive recursive relation if and only
if there exists a primitive recursive function r such that r(x) = 0 if and
only if R(x).

10

CHAPTER 2. FUNCTIONS

Examples. (i) <N, 6N and = are primitive recursive.

(ii) R is primitive recursive, then ¬R is primitive recursive.

(iii) R and S primitive recursive, then so is R ∩ S and R ∪ S.
(iv) R−1 is where R is binary, and in general for permutations.

(v) Not composition.

(vi) Closed under substitution.

(vii) Restricted quanti�cation.

If R(x, y) is represented by r(x, y) then (∃x 6 z)(R(x, y)) represented by∏
06x6z

r(x, y).

2.2 µ-induction

µ-minimisation is given by (µx)(gx = y). In the general machines later, it
will only be allowed once.

Ackermann Function

Simultaneous induction does not add much. Consider

f(0, x) = g(x)

f(S(n), x) = g(f(n, x), n, x).

Particularly

A(0, n) = S(0)

A(S(m), 0) = A(m, 1)

A(S(m), S(n)) = A(m,A(S(m), n))

A is a total function by double induction or well-founded induction.

De�nition. f : N → N dominates g : N → N if there exists n such
that for all m > n, f(m) > g(m).

For every primitive recursive function f : Nk → N there is a constant cf such
that for all x, f(x) < A(cf ,max(x)). So A cannot be primitive recursive.

11

Chapter 3

Machines

3.1 Finite State Machines

De�nition. Finite state machine (FSM or DFA) consists of
�nitely many states, a transition table and a list of accepted states.

Let L ⊆ Σ∗, which is Σ<ω, �nite strings with characters from a �nite
set, M recognizes L if L = {w ∈ Σ∗ : M accepts w}.
L ⊆ Σ∗ is regular if there exists M such that M recognises L.

Regular Expressions are de�ned recursively. Any letter from Σ
is a regular expression. if X, Y are, so are XY and X | Y (= X ∪ Y)
and X∗.

Automatic structures are those computable by DFA: auto-
matic groups have multiplication table computed by a DFA.

Examples. (i) Boolean combinations of regular languages are regu-
lar.

(ii) L1L2 = {w1w2 : w1 ∈ L1, w2 ∈ L2} is regular if L1 and L2 are.

(iii) L∗ (Kleene star) if L is, closure under concatenation.

(iv) L reversed is regular if L is.

Theorem 3.1 (Kleene's Theorem). A language is regular if and
only if it is denoted by a regular expression.

12

CHAPTER 3. MACHINES

Proof sketch. ⇐= is trivial. The inductive step of the result is done on
the size of Q, a subset of the states.

For any two states q1, q2 and any subset Q of the sets of states, there is
a regular expression that captures the set of strings taking the machine
from q1 to q2 without leaving Q.

Lemma 3.2 (Pumping Lemma). Given M accepts w, and |M | <
|w|, then a state is at least visited twice. Split w = w0w1w2 such that
w1 is the inside of a repeat. Then w0(w1)

nw2 is also accepted.

Theorem 3.3 (Myhill-Nerode Theorem). A language L is reg-
ular if and only if ∼∞ has �nite index.

Proof. Consider w1 and w2 equivalent if there is no di�erence in the
language; w1 ∼∞ if w1 ∼n w2 for all n (intersection):

w1 ∼0 w2 ⇐⇒ (w1 ∈ L ⇐⇒ w2 ∈ L)

w1 ∼n+1 w2 ⇐⇒ (∀c ∈ Σ)(w1 :: c ∼n w2 :: c) ∧ w1 ∼n w2.

The quotient under ∼∞ is a machine: a state is an equivalence of words,
unique minimal machine.

Non-Deterministic Machines

NFA are non-deterministic finite automaton, it accepts w if it
�might� accept it, if the machine guesses �right�. An NFA is useful in proving
that concatenation preserves regularity. For every NFA there is a canonical
DFA that recognizes the same language: take the power set of states and set
transition table and acceptance states similarly.

PDA are Push-down Automaton, also known as context-free
languages. For example the language given by Σ = {(,)} of correctly
opened and closed braces. This cannot be captured by a regular expression:
it needs a stack on which has a pop and push, and is originally empty.
Deterministic and non-deterministic variants are not equivalent.

13

3.2. GENERAL MACHINES

Recursive Ordinals

A recursive ordinal is the order type of a well-ordering of the natural
numbers whose graph is a decidable set. αβ, given 〈N, <α〉 and 〈N, <β〉 is the
order type of f : 〈N, <α〉 → 〈N, <β〉 of �nite support (all but �nitely many
values are 0A�bottom element in the sense of <A) ordered lexicographically.

The set of recursive ordinals is closed under taking initial segments. There
are countably many computable ordinals, and there are uncountable many
ordinals. Hence ωCK1 exists, the least ordinal that is not recursive, and it is
countable. Every countable ordinal has co�nality < ω, and each recursive
ordinal has a computable co�nal sequence of length ω.

3.2 General Machines

Turing Machines. Operates on a tape, can move left, right, write, erase
or halt according to the symbol (normally 0 or 1) at the current tape
position and state using a table.

Register Machines. Finitely many registers holding natural numbers and
a program with a �nite list of instructions. Each instruction has a label
and a body. Labels are natural numbers, and a body is

• Add 1 to the contents of R and jump to instruction with label L.

• If content of R is non-zero, subtract 1 and jump to the instruction
with label L′, otherwise jump to instruction with label L′.

• Halt.

De�nition. The function-in-extension of such a machine is called par-
tial computable or partial/general recursive.

There is a Gödel numbering of machines by natural numbers.

(i) {e}(n)↓ = k if the machine coded by e halts with input n and
output k.

(ii) {e}(n)↑ if the machine coded by e does not halt with input n,
otherwise known as diverges.

(iii) {e}x(n)↓ halts in at most x steps.

(iv) {e}x(n)↓ = z halts in at most x steps at z.

(v) We = {n ∈ N : {e}(n)↓}.

14

CHAPTER 3. MACHINES

Universal Machine

The µ-recursive functions are precisely those computed by register machines.
The key gadget is Kleene's T -function:

T (p, i, t) = �complete course of computability� of machine with number p

run on input i for t steps.

T (p, i, t) is a list of core-dumps for times 0 6 t′ 6 t and it is primitive
recursive. So there is a machine that computes it! Suppose d is a dump:

current_instruction(d)

register0(d)

last(l) = last element of the list l.

There is a machine on given m and i diverges or outputs as {m}(i):

register0(list(T (m, i, (µt)(current_instruction(list(T (m, i, t))) = halt))))

3.3 Decidable and Semi-Decidable Sets

De�nition. A ⊆ N is semi-decidable if A is {n}“ for some n.

Also called finitely recognisable, computably enumerable
or recursively enumerable.

A is decidable if A and N\A are both semi-decidable.

A volcano is a machine that runs T (m, i, t) by a bijection N → N2

and outputs whenever {m} has actually computed some output.

Theorem 3.4. For ∅ (A ⊆ N the following are equivalent:

(i) A = {n}“ for some n,

(ii) A = {n}“ for some n and {n} is total,
(iii) A = Wn for some n.

Proof. (i) =⇒ (ii). Take {n} with {n}“ = A and put it in a volcano.
Now we wrap this in a machine that on input i outputs the output
of the volcano for the ith step on traversing N2, if there is no
output there, it outputs the �rst output, this is {n′}. As A is non-

15

3.3. DECIDABLE AND SEMI-DECIDABLE SETS

empty, we will know the volcano will output some number, so {n′}
is total, and as the volcano traverse N2, we have {n′}“ = A.

(ii) =⇒ (i). This is clear.

(i) =⇒ (iii). Take {n} with {n}“ = A and put it in a volcano. Now
wrap this in a machine that on input i halts (and outputs anything)
when it detects i as an output in the volcano. This halts on input
i if and only if i ∈ {n}“, so have n′ with Wn′ = A.

(iii) =⇒ (i). Say A = Wn, which we put in a volcano and then again,
traversing N2 to ith step, if {n} has halted by these numbers of
step on this input outputs the input, otherwise it loops.

Theorem 3.5. Let X ⊆ Nk−1. Then X is the projection of a decidable
subset of Nk if and only if it is semi-decidable

Proof. =⇒ Suppose X is {x : (∃n)(x :: n ∈ Y)} where Y ⊆ Nk is
decidable.

For a candidate tuple x ∈ Nk−1, it can be determined whether
x ∈ X by testing x :: 0, x :: 1, . . . for membership of Y .

⇐= SupposeX = dom(f) for some computable {n}. x ∈ X if and only
if {m}(x)↓ if and only if (∃y)({m}y(x)↓) if and only if (∃y)(〈x, y〉 ∈
{〈z, y〉 : {m}y(z)↓}).

Note. X is decidable if and only if its characteristic function is.

Immune Sets

De�nition. An in�nite X ⊆ N is immune it has no in�nite semi-
decidable subset.

A natural example is given by the following idea. Consider functions with
output �nite strings of 0s and 1s. There is a universal Turing machine U
which for any computable f will compute f(τ) as follows: U will associate
to each such f a string ρf such that for any τ , f(τ) is obtained as U(ρf :: τ).
We say C(σ) is the minimal |ρf :: τ ′| where f(τ ′) = τ .

16

CHAPTER 3. MACHINES

Remark. {σ ∈ {0, 1}<ω : C(σ) > |σ| /2} is immune.

Proof. Suppose it has an in�nite semi-decidable subset B = f“. |B| =
ℵ0, so B contains strings of arbitrary length. Let hn be the �rst string
of length > n that f puts into B.

By assumption C(hn) > |hn| /2 > n/2. Manifestly hn can be obtained
from n by computing! So this gives C(hn) = C(n) + |ρf | where ρf is the
string that U uses to compute f ′, some appropriate modi�cation of f .
However, C(n) 6 log2(n). So gives n/2 6 log2(n) + |ρf | which for large
n does not hold.

Semi-decidable sets in V

Consider f : V → V a set-like function. Then f(x) is always a set, whereas
f“x is only a set when we have Replacement, so not in Z! Similarly we can
have f“x a set, but f“x 6= {f“y : y ∈ x}. Computable functions are set-like.

Applications to Logic

De�nition. A theory is a deductively closed set of formulae is axiom-
atizable if and only there is a semi-decidable set of axioms of which
it is the deductive closure.

The set of theorems is a projection of the set of proofs. So a decidable set of
axioms leads to a semi-decidable set of theorems, but so do semi-decidable
sets! Fortunately we have the following.

Theorem 3.6 (Craig's Theorem). Every theory with a semi-
decidable set of axioms has a decidable set of axioms.

3.4 The Halting Problem

Theorem 3.7. {〈p, i〉 : {p}(i)↓} is not decidable.

17

3.4. THE HALTING PROBLEM

Proof. SupposeM such that if the input is n, code for p and i: if {p}(i)↓
then �yes�, if {p}(i)↑ then �no�.

ModifyM by trapping the output so halt ifM(n)↓ is no, then we halt
and say �no�. If �yes�, then loop forever. Call this machineM∗.

Modify this machine by putting a front end that accepts input x and
feeds the pair 〈x, x〉 toM∗. Call this machineM∗∗. It has gnumber m.
What happens when we feedM∗∗ the number m?

Then in extension we getM∗(m,m) andM∗∗(m) halts if and only if it
does not halt: h↔ ¬h

Not the same as h ∧ ¬h: we do not need the law of the excluded middle.

Rice's Theorem

Theorem 3.8 (The S −m− n Theorem). There is a computable
total function S such that for all e, b, a ∈ N we have{e}(b, a) =
{S(e, b)}(a).

Corollary 3.9 (Fixed Point Theorem). Let h : N→ N be total
computable. Then ∃n ∈ N with {n} = {h(n)}.

Proof. Consider the map pair(e, x) = {h(S(e, e))}(x). This is a com-
putable function, so is computable by a machine with gnumber a. Set
n := S(a, a), now

{n}(x) = {S(a, a)}(x) = {a}(a, x) = {h(S(a, a))}(x) = {h(n)}(x).

Theorem 3.10 (Rice's Theorem). Let ∅ (A ⊆ N then
{n : Graph({n}) ∈ A} is not decidable.

Proof. Suppose it is: χA is computably total. Find a, b ∈ N such that
Graph({a}) ∈ A and Graph({b}) /∈ A. Obtain computable g such that:

g(n) = if Graph({n}) ∈ A then b else a.

Now by the Fixed Point Theorem, there exists n with {n} = {g(n)}.

18

CHAPTER 3. MACHINES

Suppose Graph({n}) ∈ A then Graph({g(n)}) ∈ A. So g(n) = b,
g(g(n)) = b and g(b) = b.

Suppose Graph({n}) /∈ A then Graph({n}) /∈ A. So g(n) = a, g(g(n)) =
a and g(a) = a.

Again we do not need the law of the excluded middle to reach the conclusion.

3.5 Recursive Inseparability

De�nition. Two disjoint sets X, Y are said to be recursive insep-
arable if there is no decidable set Z with X ⊆ Z and Y ∩ Z = ∅.

Proposition 3.11. The two sets

A = {e : {e}(e)↓ > 0}
B = {e : {e}(e)↓ = 0}

are recursively inseparable.

Proof. Suppose f : N → {0, 1} is a total function for which f“A = {0}
and f“B = {1} then f is not computable. Consider n ∈ N. We will
show that {n} is not an f as above.

{n}(n)↑. {n} 6= f because f is total.

{n}(n)↓. {n}(n)↓ = 0. Then n ∈ B and thus {n}(n) 6= f(n).

{n}(n)↓ > 0. Then n ∈ A and thus {n}(n) 6= f(n).

19

Chapter 4

λ-Calculus

In λ-calculus there are the following conversion rules:

α-conversion. λx.f →α λy.f [y/x].

β-conversion. (λx.f)g →β f [g/x].

η-conversion. λx.fx→η f .

This leads to an equivalence relation of functions-in-extension. This allows

r := λx. not(xx)

and we have

rr = (λx. not(xx))(λx. not(xx))→β not(rr)→β not not(rr)

which is Russell's Paradox.

4.1 Partial Computable Functions as λ-Terms

Claim 4.1. For every µ-recursive function Nk → N there is a λ-term
which computes that function on Church numerals.

Booleans are de�ned thus:

true := λxy.x

false := λxy.y.

20

CHAPTER 4. λ-CALCULUS

Both are of type A→ (B → C), they are A→ (B → A) and A→ (B → B)
and they are the only terms of this type. We have conditionals

if-then-else := λbxy.bxy

iszero := λn.n(λx. false) true .

Pairs are de�ned thus:

pair := λxyf.fxy

fst := λp.p true

snd := λp.p false

nil := λx. true .

Church numerals de�ne the natural numbers:

zero := λfx.x

once := λfx.fx

twice := λfx.f(fx)

thrice := λfx.f(f(f(x))).

For plus we use A×B → C equivalent to A→ (B → C):

succ := λnfx.f((nf)x)

plus(n,m) := λnmfx.(mf)((nf)x)

mult(n,m) := λnmfx.m(nf)x = λnmf.m(nf).

exp(n,m) := λnmfx.mnfx = λnm.mn

Lists are pairs of heads and tails which are a list, or empty. Test for null list:

null := λp.p(λxy. false).

Consider f : N→ N de�ned by recursion on N, for example

fact(n) := if n = 0

then 1

else n · fact(n− 1).

fact is �xed point for metafact of the form (N→ N)→ (N→ N):

metafact(f, n) := if n = 0

then 1

else n · f(n− 1).

21

4.2. CURRY-HOWARD CORRESPONDENCE IN PROOFS

Suppose f = metafact f then f = fact(n). The following fix point
combinator satis�es Y f = f(Y f) and Y f is a �x point of f :

Y := λf.(λx.f(xx))(λx.f(xx)).

Consider map(f, l), which gives a list of values of f applied to members of l:

map(f.l) := Y (λmfl.if (null l)

then nill

else f(fst(l)) :: (m.f(snd(l)))).

Write N for the stream of naturals, a list with no end:

N := Y (λl.0 :: map succ l).

Suppose x = map(f,N) then mu(n, x) gives the �rst input which gives output
n:

munx := Y (if (snd(hdx) = n)

then fst(hdx)

else mun(tl(x))).

4.2 Curry-Howard Correspondence in Proofs

De�nition. One can decorate some natural deduction in constructive
proofs with λ-terms, leading to a typed λ-calculus.

This is the Curry-Howard Correspondence.

Symbol Introduction Elimination
xA : A yB : B

xA : A and
xA : A yB : B

yB : B

∧
xA : A yB : B

pair(xA, yB) : A ∧B
xA×B : A ∧B
fst(xA×B) : A and

xA×B : A ∧B
snd(xA×B) : B

∨
xA : A

pair(xA, 0) : A ∨B and

xB : B

pair(xB, 1) : A ∨B

[A]
...
C

[B]
...
C

A ∨B

C

→

[xA : A]
...

fB : B

λxA.fB : A→ B

fA : A xA→B : A→ B

fAxA→B : B

⊥
⊥
A

22

CHAPTER 4. λ-CALCULUS

The law of the excluded middle (¬¬A→ A) is not in constructive logic and
so for example A ∨ (A→ ⊥) is unprovable and does not have a λ-term.

Disjunction with multiple variables can be formalized as before, then ⊥ =⇒
A can be seen as that the empty disjunct is false and so implies everything.

∨-elimination and→-introduction are not a lego block and are a pain.

Examples. (i) A simple example is:

xA : [A]2 fA→B : [A→ B]1

λxA : B

λfA→BxA : (A→ B)→ B
→ -int (1)

λxA.(λfA→B.fA→BxA) : A→ ((A→ B)→ B)
→ -int (2)

(ii) A slightly more complex example is:

x : [A]1 y : [A→ (B → C)]3

yx : B → C

x : [A]1 z : [A→ B]2

zx : B

(yx)(zx) : C

λx.(yx)(zx) : A→ C
→ -int (1)

λz.λx.(yx)(zx) : (A→ B)→ (A→ C)
→ -int (2)

λyA→(B→C).λzA→B.λxA.(yz)(zx) : (A→ (B → C))→ ((A→ B)→ (A→ C))
→ -int (3)

(iii) The following cute result is due to Turing:

f : [(A→ B)→ A]1 x : [A→ B]2

fx : A x : [A→ B]2

B
λx.x(fx) : (A→ B)→ B

→ -int (2)

λf.λx.x(fx) : ((A→ B)→ A)→ ((A→ B)→ B)
→ -int (1)

23

Chapter 5

Tennenbaum's Theorem

By the Compactness Theorem there is a non-standard model of PA, some
of which are countable. Without loss of generality the carrier set of such a
model is N. Can the structure (N, 0,+, ·, s) be computable?

Consider n ∈ m if and only if the nth bit of m (m written in binary) is 1
and Peano Arithmetic can be seen as a fragment of second order arithmetic.

In any non-standard model, the non-standard elements are added on to the
end of N. LetM be a non-standard model of PA andM∗ the corresponding
model of second order arithmetic.

Lemma 5.1. InM∗, every decidable subset of the standard part ofM
is ∈-encoded by some x ∈M.

Proof. Let us write x ⊕ y for the logical or of x, y thought of as bit-
strings. ⊕ is primitive recursive. Let P be any decidable predicate of
N. Now we de�ne f : N→ N as follows

f(0) = 0

f(n+ 1) = if P (n) then f(n)⊕ 2n else f(n)

We have that
{n ∈M : n is standard and P (n)}

is ∈-encoded by f(m) for su�ciently large (non-standard) m.

24

CHAPTER 5. TENNENBAUM'S THEOREM

Theorem 5.2 (Tennenbaum's Theorem). PA has no non-standard
model in which the graphs of + and · are decidable.

Proof. Suppose +, · computable in a given non-standard model. Suppose
there were m ∈ N such that in the non-standard model, m ∈-encoded
the halting set (or any undecidable set).

We showed earlier that there were pairs of recursively inseparable sets.
Let A, B be a pair of recursively inseparable sets.

A = {n : (∃y)(A(n, y))}
B = {n : (∃x)(B(n, x))}

where A, B are decidable. So the standard model believes

(∀n < m)(∀y < m)(∀x < m)(¬A(n, y) ∨ ¬B(n, x))

for any numeral m. This is universal and so must be true in every model
of PA, in particular, in M. So M believes the above for all standard
m. So it must hold for some non-standard m as well. Let e be such a
non-standard element:

M |= (∀n < e)(∀y < e)(∀x < e)(¬A(n, y) ∨ ¬B(n, x)). (5.1)

X = {n ∈ N : M |=(∃y < e)(A(y, n))}.

Claim. X separates A and B.

Proof. A ⊆ X because any member of A satis�es A(y, n) for some
genuine natural, and any such is < e.

B ∩X = ∅ holds for similar reasons. Suppose n ∈ B. Then there is
some m such that B(n,m) whenceM |= B(n,m) and thus m < e.
SoM |= (∃m < e)(B(n,m)). But then, by (5.1) above n /∈ X. �

We have just shown that every non-standard model (with carrier set N)
encodes at least one undecidable set�to wit X. Thus such a model cannot
be recursive.

25

Chapter 6

Incompleteness

Theorem 6.1. {n : {n} total} is not semi-decidable.

Proof. Suppose it were semi-decidable. Let f be the total computable
function whose values are precisely the numbers of machines that com-
pute total functions. Now consider the function g; = λn.{f(n)}(n) + 1.
This function is total computable and should therefore be {f(m)} for
some m. g(m) = {f(m)}(m) + 1 6= {f(m)}(m), so g 6= {f(m)}.

Theorem 6.2. Fix T , a recursively axiomatised system of arithmetic.
{n : T ` {n} total N→ N} is semi-decidable, but not decidable.

Proof. Semi-decidable by enumerating proofs.

Consider a machineM that tests, for each pair 〈p, n〉 of a T -proof p and
a number n whether or not p is a T -proof that {n} is a total function
N→ N. We obtain a volcano that emits all pairs 〈p, n〉 such that p is a
T -proof that {n} is total. Let v(k) be the kth such pair emitted by the
volcano. Let the T -bad function be

(λk ∈ N)(let v(k) = 〈p, n〉 in {n}(k) + 1)

This �diagonalises our volcano� and the set of functions proved by T to
be total. Clearly T cannot prove that this function is total.

26

CHAPTER 6. INCOMPLETENESS

De�nition. An arithmetic theory T is sound if every theorem of T
is true (in the standard model N).

Theorem 6.3. Every sound recursively axiomatisable theory of arith-
metic is incomplete.

Proof. If T is sound, then the T -bad function is total and T does not
prove this.

De�nition. If there is an algorithm which given a semi-decidable sub-
set A ⊆ X, the set of �rst-order arithmetic sentences true in a standard
model emits a sentence in X\A, then X is said to be productive.

Theorem 6.4 (Gödel's (In)completeness Theorem). First-
order logic is complete, however, it is not decidable if rich enough
to express the workings of a Turing machine.

Proof. The set of sentences in �rst-order logic that are true in all struc-
tures is semi-decidable, being the set of theorems of a recursively axiom-
atizable theory.

Given machine M and i we can compute a formula ϕ which has the
property that every model of ϕ is a complete course of computation of
M(i) and has a last frame in which M has halted. If �rst-order logic
is decidable, we can decide whether or not ϕ has a model. So we would
be able to solve the Halting problem.

Theorem 6.5 (Trakhtenbrot's Theorem). The set of sentences
true in all �nite structures is not complete.

Proof. Use the Halting problem.

27

Chapter 7

Well-Quasi-Orders

De�nition. A quasi-order (QO) 〈X,6〉 is transitive and re�exive.
An in�nite sequence 〈xi〉 is
Bad. If there is no i < j ∈ N such that xi 6 xj.

Good. If it is not bad.

Perfect. If i 6 j implies xi 6 xj.

A well-quasi-order (WQO) is a QO with no bad sequences.

Proposition 7.1. 〈X,6〉 is WQO if and only if it has no ω-descending
chains and no in�nite antichains.

Lemma 7.2 (Perfect Subsequence Lemma). Let 〈X,6〉 be
WQO. Then every ω-sequence from X has a perfect subsequence.

Proof. =⇒ trivial.

⇐= Suppose 〈xi : i < ω〉 is a sequence fromX. Two-colour the complete
graph on N, 〈i, j〉 is 0 if i < j, xi 6 xj and 1 otherwise. By
Ramsey there is a monochromatic in�nite set. If of the second
colour, we get an in�nite anti-chain. If of the �rst colour it is a
perfect subsequence, and thus 〈xi : i < ω〉 cannot be bad.

28

CHAPTER 7. WELL-QUASI-ORDERS

De�nition. Given a QO on X, it can be lifted to P(X) by X ′ 6 X ′′ if
for all x′ ∈ X ′ there exists x′′ ∈ X ′′ such that x′ 6 x′′.

It can also be lifted to X<ω by setting l1 6 l2 (stretches into) if:

• l1 is empty.

• l1 6 tl(t2).

• hd(l1) 6 hd(l2) and tl(l1) 6 tl(l2).

Theorem 7.3. 〈P(X),6+〉 is well-founded if and only if 〈X,6〉 is a
WQO.

Proof. ⇐⇒ 〈P(X),6+〉 is not well-founded.
⇐⇒ There exists a descending sequence X0 >

+ X1 >
+ X2 >

+ · · · .
⇐⇒ There is (xi)i∈N in X such that for all i < j ∈ N we have xi 66 xj.

⇐⇒ X has a bad sequence.

⇐⇒ X is not a WQO.

Example. 〈N,=〉 is well-founded, not a WQO. Lifts to 〈P(N),⊆〉 which
is not well-founded: 〈{m : m > n} : n < ω〉 is a descending sequence.

29

7.1. MBS CONSTRUCTION

7.1 MBS Construction

De�nition. A sequence 〈xi〉 in X is a minimal bad sequence if
xn is a minimal member of

{x : ∃ bad sequence whose �rst n members are 〈x0, . . . , xn−1, x〉}.

Theorem 7.4. If X is well-founded but not a WQO, there is a minimal
bad sequence.

Proof. De�ne X0 := {x ∈ X : (∃S)(S(0) = x ∧ S is bad)} and

Xn := {x ∈ X : (∃S)(S(n) = x :: x ∧ S is bad)}

inductively, setting xn a minimal member of Xn using DC.

Lemma 7.5 (Minimal Bad Sequence Lemma). Let:

• 〈X,6〉 be well-founded but not WQO.

• B = 〈b0, b1, . . . 〉 a MBS.

• X ′ = {x ∈ X : (∃n)(x < bn)}.
Then 〈X ′,6〉 is WQO.

Proof. Suppose that S = 〈s0, s1, . . . 〉 were a bad sequence from X ′. We
will prove by induction on N that nothing in S is < bn.

Case 0. Consider si if si < b0 then the tail of S, starting at si is bad,
contradicting the choice of b0 as minimal.

Case n+ 1. Suppose nothing in S smaller than any of b0, . . . , bn, and
suppose some si < bn+1. Consider the sequence b0, . . . , bn and
continues si, si+1, . . .

It cannot be bad by minimality of bn+1, and so it contains a good
pair. Both S and B are bad, so the good pair must be bj 6 sk with
j 6 n and k > i. Consider sk, we must have m with sk < bm. But
this m cannot be 6 n by induction hypothesis. So m > n. But
then j 6 n < m with bj 6 bm. Contradicting badness of B.

30

CHAPTER 7. WELL-QUASI-ORDERS

7.2 Kruskal's Theorem

Corollary 7.6. If 〈X,6〉 is well-founded QO, so is X-lists QO when
ordered by stretching.

Proof. Suppose not, have an in�nite descending sequence of X-lists un-
der stretching. They can get shorter only �nitely often, so we may as-
sume that they all have the same length. The entries at each coe�cient
get smaller only �nitely often, so must all be eventually constant.

Lemma 7.7 (Higman's Lemma). If 〈X,6〉 is WQO, then
〈X<ω, stretching〉 is WQO.

Proof. Suppose not. We know it is well-founded, so we know that there is
a minimal bad sequence 〈ai〉 of lists. Look at the heads of the lists. These
are WQO, so there must be a subsequence 〈bi〉 of 〈ai〉 by Lemma 7.2
such that the heads are perfect.

The bad sequence 〈bi〉 now has heads who are increasing. Consider the
tails. These are a WQO by Lemma 7.5, and so again we have that there
is a subsequence 〈ci〉 of 〈bi〉 by Lemma 7.2 such that the tails are perfect.

In 〈ci〉 the heads and tails are perfect, and so the sequence is perfect.
But it is a subsequence of a bad sequence, so bad! Contradiction.

De�nition. An X-tree has the following recursive datatype:

• A single element of X is a leaf and a X-tree.

• A X-tree is otherwise made from an element of X and a list of
X-trees.

If X is a QO, then if T , T ′ are X-trees, then T 6 T ′ if:

• both are singleton trees {t} and {t′} and t 6 t′,

• T 6 T ′′ for some child T ′′ of T ′ or

• the root of T is less than or equal to the root of T ′ and the list
of children of T is less than the children of T ′ by extending tree
comparison to lists thereof.

31

7.2. KRUSKAL'S THEOREM

Theorem 7.8 (Kruskal's Theorem). Finite trees over a WQO
are WQO.

Proof. X-trees ordered by the extension of a QO onX is well-founded. In
any descending sequence the skeletons are eventually constant (as they
are �nite objects). Consider the sequence limited to a certain point in
the skeleton: as X is a well-order, these must eventually be constant.
As there are �nitely many, the sequence is eventually constant.

Suppose not WQO. Then there is a minimal bad sequence of trees 〈ai〉.
The roots are from a WQO, so there must be an increasing subse-
quence 〈bi〉 of 〈ai〉 such that the roots of bi form a perfect sequence
by Lemma 7.2. Let li be the list of children of bi.

These trees in the lists form WQO by Lemma 7.5. Now use Lemma 7.7:
lists over this WQO are WQO (under stretching). Now put the product
order (point-wise) on 〈root, list of trees〉, and this product of WQOs is
WQO, and so this sequence cannot be bad. Contradiction.

Theorem 7.9 (Friedman's Finite Form). For all k, there exists
an n such that if T1, . . . , Tn is a list of trees where Ti has k + i nodes,
then there are j < l such that Tj 6 Tl.

Proof. Consider the one-point WQO and suppose there is k ∈ N such
that for all n ∈ N there exists �bad �nite sequence� of trees T n1 , T

n
2 , T

n
3 ,

. . . , T nn with i < j < k, T ni 6↪→ T nj and T ni has k+ i nodes. Then we can
�nd an in�nite triangle of trees:

T 1
1

T 2
1 T

2
2

T 3
1 T

3
2 T

3
3

...
...

...

Since in the �rst column, there are only �nitely many trees with k + 1
nodes, so one tree, say T1 appears in�nitely many time. Now consider
the rows that start with T1, do the same with the second column. So
〈Ti : i ∈ N〉 is a bad sequence, contradiction with Kruskal's Theorem.

32

Chapter 8

Degree Theory

8.1 Many-One Reducibility

De�nition. B is many-one reducible to A, B 6m A if there
exists total computable function f such that for all n ∈ N, n ∈ B if
and only if f(n) ∈ A.
K = {〈n, x〉 : {n}(x)↓} is known as the Halting Set and so is
{n : {n}(n)↓}. Each of these is reducible to the other.

Lemma 8.1. A 6m K if and only if A is semi-decidable.

Proof. =⇒ Since K is semi-decidable it is the domain of a partial com-
putable g. If A 6m K by virtue of some f then A is the domain
of g ◦ f which makes A semi-decidable.

⇐= Let A be semi-decidable. De�ne a binary partial function f by
f(e, x) = if e ∈ A then 1 else ↑. By Theorem 3.8 there is now a
computable g such that ∀x, e ∈ N. {g(e)}(x) = f(e, x). From this
we get (∀e)({g(e)}(g(e))↓ ↔ e ∈ A) thus (∀e)(e ∈ A↔ g(e) ∈ K)
so A 6m K (diagonal Halting set) by virtue of g.

33

8.2. TURING REDUCIBILITY

8.2 Turing Reducibility

De�nition. Present contents of register 2 to oracle, place the result
from the oracle in register 3. We can enumerate the machines/programs
of the new architectures, {e}A without specifying the oracle.

Relative computability using oracles A 6T B if we can compute χA
given χB as an oracle. These are quasi-orders, and by taking the inter-
section with its reversal we get the Turing Equivalence.

An equivalence class is a Turing degree of undecidability.

0 is the Turing degree of decidable sets. d′ is the Turing degree of the halting
problem for machines in d. Thus 0′ is the degree of K.

Theorem 8.2 (Kleene-Post Theorem). There are6T -incomparable
degrees 6T 0′.

Proof. Let us enumerate {0, 1}<ω as 〈ηn : n ∈ N〉. Think of strings as
functions from initial segments of N to {0, 1}. We will �nd A, B such
that {e}A and {e}B are 6T -incomparable. Observe:

• If {e}ηα(x)↓ then {e}C(x)↓ for every ηα ⊆ C.

• If {e}B(x)↓ then there is a ∈ N, {e}ηa(x)↓.
We will diagonally construct A and B. We have two sequences of binary
strings. 〈αn : n ∈ N〉 such that αn+1 extends αn and

⋃
i∈N αi = χA.

〈βn : n ∈ N〉, βn+1 extends βn and
⋃
i∈N βi = χB. Set α0 = β0 = 〈〉.

Stage 2s+ 1. Let x be the �rst number not in the domain of α2s. If
there are any ηα that are extensions of β2s such that {s}ηa(x)↓
then use the least such a, and set α2s+1 to be α2s :: y where y is
the least element of {0, 1}\{{s}ηα(x)}. And set β2s+1 = ηα :: 0. If
there is no such ηa, then set α2s+1 = α2s :: 0 and β2s+1 = β2s :: 0.

Stage 2s+ 2. Similarly, swap α↔ β and 2s↔ 2s+ 1.

At stage 2s, respectively stage 2s+ 1: B 6= {s}A“, A 6= {s}B“.

Theorem 8.3 (Friedberg-Munchnik Theorem). There are
6T -incomparable degrees of with representatives semi-decidable sets.

34

Chapter 9

Omitting Types

De�nition. Fix language L, an n-type in L is a set Σ = {σi : i ∈ N}
where each σi has n free variables.

Let M be a structure for L. We say M realizes Σ if and only if
there is an n-tuple c such that M |= σi(c) for each i. Otherwise, Σ
omits Σ.

A theory T locally omits a type Σ if whenever ϕ such that T `
ϕ→ σ for all σ ∈ Σ then T ` ¬ϕ.

For 0-types, we have by compactness that if for every �nite subset Σ′ ⊆ Σ,
T has a model that realizes Σ′. Then T has a model that realizes Σ.

The standard model of arithmetic omits the 1-type {n 6= 0, n 6= S0, n 6=
SS0, . . . }.

Theorem 9.1 (Propositional Omitting of Types). Let T be
a propositional theory and Σ ⊆ L(T) a type. If T locally omits Σ then
there is a T -valuation omitting Σ.

Proof. By contrapositive. Suppose no valuation omits Σ. Then every
formula in Σ is a theory of T , so take ϕ to be T , T ` ϕ → σ for every
σ ∈ Σ but T ` ¬ϕ. Contraposing, if T ` ¬ϕ for every ϕ such that
(∀σ ∈ Σ)(T ` ϕ→ σ) then there is a T -valuation omitting Σ.

This can be extended to countably many types simultaneously, for proposi-
tional logic again.

35

Theorem 9.2 (Extending Omitting Types Theorem). Let
T be a propositional theory, and for each i ∈ N let Σi be a type. If T
locally omits each σi then there is a T -valuation omitting all the Σi.

Proof. We will show that, whenever T ∪ {¬A,¬A2, . . . ,¬Ai} is consis-
tent, where An ∈ Σn for n 6 i, then we can �nd Ai+1 ∈ Σi+1 such that
T ∪ {¬A1, . . . ,¬Ai,¬Ai+1} is consistent.
Suppose not. Then T ` (

∧
16j6iAj)→ Ai+1 for every Ai+1 ∈ Σi+1. But,

by assumption, T locally omits Σi+1 so we must have T ` ¬
∧

16j6iAj
contradicting the consistency of Ai.

Now, as there is an enumeration of L(T) we can start an structural
process where, at each stage, we pick for Ai+1 the �rst formula in Σi+1

such that T ∪ {¬A1, . . . ,¬Ai,¬Ai+1} is consistent.
This gives a theory T∪{¬Ai : i ∈ N} which is consistent by compactness.
Any valuation making this theory true omits every Σi.

36

Chapter 10

Examples

10.1 Example Sheet 1

Exercise 10.1.1. Is there any signi�cant di�erence between a natural
number and its certi�cate? A countable ordinal and its certi�cate?

Solution. There need not be: if we have no extraneous information and
the de�nition of certi�cation and natural numbers are compatible.

A certi�cate of a countable ordinal can skip some at say limits.

Exercise 10.1.2 (Recursion Theorem). If 〈X,R〉 is a well-founded
structure and G : X × V → V then there is a unique f satisfying
(∀x ∈ X)(f(x) = G(x, {f(y) : R(y, x)})).

Solution. Consider attempts: f with dom f ⊂ X and transitive and
whenever x ∈ dom f , then f(x) = G(x, {f(y) : R(y, x)}). If f , g are
attempts, and x ∈ dom f ∧dom g then if f(x) 6= g(x) there is least such,
but then by de�nition of attempt f(x) = g(x). So uniqueness evident.

If 〈fi : i ∈ I〉 are attempts in a chain, so is
⋃
i∈I fi. So if there is x such

that f is not in an attempt there is least such, but then we can take the
union of g with dom g a subset of the transitive closure of {x}, and set
f(x) = G(x, {f(y) : R(y, x)}). So we arrive at a contradiction.

So such f exists and is unique by taking the union of such attempts.

37

10.1. EXAMPLE SHEET 1

Exercise 10.1.3. (i) Consider the rectype of α-lists.

(a) What is primitive recursion on α-lists?

(b) De�ne stretching for α-lists by primitive recursion.

(ii) Consider the rectype of α-trees.

(a) Give a rectype declaration for the rectype of α-trees.

(b) What is primitive recursion on α-trees?

(c) De�ne stretching for α-trees by primitive recursion.

Solution. (i) (a) Initalize f(x, ∅) = z(x) and set

f(x, α :: l) = h(x, α, l, f(x, l)).

(b) f(l2, l1) = 1 if l2 stretches into l1 and 0 otherwise by

f(l2, ∅) := if l2 = ∅ then 1 else 0

f(l2, x :: l1) := if l2 = ∅ then 1 else

if x 6 y then f(l′2, l2) else f(l′2, x :: l1)

where l′2 = y :: l2.

(ii) (a) Every x ∈ X is a tree. If x ∈ X then x is a tree and l is a
list of X-trees, then x.l is a tree with root x and litter l.

(b) Initialize f(x, α) = z(x, α) and set

f(x, α.l) = h(x, α, l, (f(x, l0), . . . , f(x, ln))).

(c) g(t2, t1) = 1 if l2 stretches into l1 and 0 otherwise by

g(t2, x1) := if x < y = t2 then 1 else 0

g(t2, y :: l1) := if y = t2 then 0 else

if x 6 y then f(l′2, l2) else f(l2, [x.l1])

where t2 = y.l2 and [x.l1] is the (X-tree)-list with one element
x.l1.

38

CHAPTER 10. EXAMPLES

Exercise 10.1.4. Say that a machine loops if and only if it repeats a
con�guration. Let LOOP ⊆ N be the set of all indices of machines that
loop on input 0. What can you say about the decidability of LOOP?

Solution. Fix a computable bijection f : N→ N2 and consider a machine
M that and on input n:

(i) Set c := 0.

(ii) Compute (t, i) := f(c).

(iii) Detect if a loop has occurred in {n}t(i) by tth step, if so, halt.

(iv) Set c := c+ 1.

(v) Go to step (ii).

Step (iii) is possible due to the existence of a universal Turing machine
and the possibility to compute data dumps. M halts if and only if
n ∈ LOOP and so LOOP is semi-decidable.

Suppose LOOP is decidable, �xM′ such thatM′ in extension is χLOOP.
ConsiderM′′ that on input n:

(i) Computes m such that {m} is {n}(n) in intension for all inputs.

(ii) M′(m) =

{
1 halts

0 loops

Note in particular, m ∈ LOOP if and only if {n}(n) loops and soM′′(n)
halts if and only if {n}(n) loops.

M′′ = {n} for some n ∈ N. Now {n}(n) halts if and only if {n}(n)
loops, contradiction. So LOOP is not decidable.

39

10.1. EXAMPLE SHEET 1

Exercise 10.1.5. Turing machines are very robust under modi�cation
of their de�nition. Consider a TM with input, work and output that
over alphabet {0, 1} that can only write 1, but cannot write 0. Assume
that output and work tape start with all 0s. Is this model as powerful
as standard TMs?

Solution. Given a Turing machine in the original language. Any bit in
the original is turned into 4 bits, set depending on whether:

(i) it is 0 or 1,

(ii) it is the start,

(iii) it is the end

(iv) it is copied already.

If a 0 is written in the original where there is currently a 1, or it tries to
move to a place on the tape that is marked with "end" the following is
a heuristic description of what the new Turing Machine does:

(i) remember current position and instruction somewhere to the right
of the current end,

(ii) from the current position, go left until you reach the start,

(iii) iteratively copy each bit (except the 1 if we are in the �write 0�
case) from the start until the end into a contiguous block to the
right of the end with four empty bits in between,

(iv) in the new data, re�nd the original position and instruction, con-
tinue computation.

The original instructions are changed such that computation goes as
normal, bar taking into account that moves need to be multiplied by 4.

40

CHAPTER 10. EXAMPLES

De�nition. We de�ne a partial function δ : dom(δ) → Cord (where
COrd is the set of countable ordinals) as follows:

(i) δ(0) = 0,

(ii) δ(3n) = δ(n) + 1,

(iii) δ(5n) = supi∈N δ({n}(i)), if {n} is total and for all i, {n}(i) ∈
dom(δ).

We call α ∈ COrd is a computable ordinal, if and only if ∃n : δ(n) =
α.

Exercise 10.1.6. Is there a partial computable function p : dom(δ)2 →
N such that whenever n, m ∈ dom(δ), then δ(p(n,m)) = δ(n) + δ(m)?

Is there a recursively enumerable set A such that if n ∈ dom(δ) then
n ∈ A if and only if δ(n) is a successor ordinal?

Solution. De�ne p(n,m) by recursion as in the following pseudo-code:

(i) If m = 0 then return n.

(ii) If m = 3m
′
then return 3p(n,m

′).

(iii) Set m′ such that m = 5m
′
.

(iv) Return m′′ such that {m′′}(i) = p(n, 3{m
′}(i)).

This last step is possible, since this {m′′} in a computer language allow-
ing abstractions is computable without knowing the values of p. This
shows it is Turing-computable by the Church-Turing Thesis.

The problem that remains is whether it halts for n, m ∈ dom(δ). By
recursion it does: let H ⊆ dom(δ) be the m for which it halts. 0 ∈ H. If
m ∈ H then 3m ∈ H. Suppose m ∈ H and 5m ∈ dom(δ), then 3{m}(i) ∈
H for all i by de�nition and so {m′}(i) = p(n, 3{m}(i)) is satis�able by a
computable function that can be computed.

The resolution of the last part is unknown.

41

10.2. EXAMPLE SHEET 2

10.2 Example Sheet 2

Exercise 10.2.1 (Past Tripos Question). An interleaving of two
�nite words w1 and w2 is obtained by inserting the letters of w1 into w2

in order (for example, both a1b and ab1 are interleavings of ab and 1, but
b1a is not). Let L1⊕L2 denote the language containing all interleavings
of words from L1 with words from L2.

(i) If L1 and L2 are regular, what about L1 ⊕ L2?

(ii) If L1 and L2 are computable, what about L1 ⊕ L2?

Solution. (i) • A language L is regular if and only if it is recognized
by a �nite state machine. Suppose M1 and M2 are �nite
state machines recognising L1 and L2 respectively.

• By considering the natural �nite state machine on the power
set of the states of a non-deterministic state machine it follows
that given a non-deterministic state machine there is �nite
state machine that recognizes the same language.

Consider the non-deterministic �nite state machineM with: states
the Cartesian product of the states ofM1 andM2 and:

Transition Table. Transition (s1, s2)
t→ (s′1, s

′
2) allowed if

• s1 = s′1 and s2 transitions to s
′
2 by character t.

• s2 = s′2 and s1 transitions to s
′
1 by character t.

Accepted States. (s1, s2) accepted if s1 accepted inM1 and s2
accepted inM2.

That is,M is the machine that at any steps either progresses by
taking a step in the states ofM1 orM2. By our imported results,
it only remains to show thatM recognizes L1 ⊕ L2.

Suppose w in our language and �x a run ofM on this input. Let
w1 be the string obtained by stringing together the characters t
that have changed the state of the �rst coordinate of M in this
run. Similarly for w2 and the second coordinate. By construction,
w is accepted by this run if and only if w1 is accepted byM1 and
w1 is accepted byM2.

The w1 and w2 that occur are exactly those that interleave to give
w, and thus w is recognized byM if and only if w is the interleaving
of w1 and w2 which are accepted byM1,M2 respectively.

42

CHAPTER 10. EXAMPLES

(ii) Let M1 and M2 compute L1 and L2 respectively. Note that for
any word w, there are only �nitely many words w1 and w2 it could
be an interleaving of, and these can be e�ectively computed, de-
noted by w1n and w2n and let N1 and N2 be how many there are.
LetM be a Turing machine working as follows on input w:

(a) Set n1 := 0.

(b) Set n2 := 0.

(c) IfM1(w1n1
) =M2(w2n2

) = 1, output 1.

(d) Set n2 := n2 + 1.

(e) If n2 6 N2 go to (b).

(f) Set n1 := n1 + 1.

(g) If n1 6 N1 go to (a).

(h) Output 0.

ThenM shows L1 ⊕ L2 computable.

Exercise 10.2.2. Will the same argument as for Trakhtenbrot's Theo-
rem show that:

(i) The sentences true in arbitrarily large �nite models,

(ii) The sentences true in all su�ciently large models,

(iii) The sentences true in all in�nite models,

(iv) The sentences true in all �nite models that have even cardinality
and all in�nite models.

is not semi-decidable?

Solution. (i) Unkown.

(ii) A sentence ϕ is true in all su�ciently large models if and only if
there exists an n such that ϕn ` ϕ. The consequences of ϕn can be
enumerated, and so by using a bijection N2 → N we can enumerate
the union of these consequences.

(iii) If ϕ is true in all in�nite models then ¬ϕ has no in�nite models; so
¬ϕ does not have arbitrarily large �nite models by Compactness.
So ¬ϕ can be refuted from the set of axioms

ϕn := ∃x1 . . . ∃xn :
∧
i<j

xi 6= j.

43

10.2. EXAMPLE SHEET 2

So ϕ follows from this scheme, and thus we can enumerate the
formulas with arbitrarily large �nite models by enumerating the
consequences of this scheme. This is possible as the scheme itself
is enumerable.

(iv) Set

ψn := ∃x1 . . . ∃xn :
∧
i<j

xi 6= j ∧ ∀x :
∨
i

x = xi.

M |= ψn if and only if |M | = n. Can enumerate all consequences
of ψ2n separately for n ∈ N and for in�nite models by (iii). Use
another bijection N→ N2 to �nd when they have found the same
consequence, and then output this. This outputs all such sentences
at some stage.

Exercise 10.2.3. What goes wrong if �nitely is removed (replaced by
in�nitely) in the following?

(i) The pointwise product of �nitely many WQOs is WQO.

(ii) The intersection of �nitely many WQOs is WQO.

(iii) The disjoint union of �nitely many WQOs is WQO.

Solution. (i) Consider the ω product of the WQO on {0, 1} given by
the usual order. {0, 1}ω is not a WQO, as 10 . . . , 010 . . . , 0010 . . .
form an in�nite antichain.

(ii) Consider the WQOs <n on {0, 1}ω given by 〈xi〉 <n 〈yi〉 if xi < yi
for all i < n. <n has no bad sequences as {0, 1}n is WQO. Consider
the intersection, which is the same as the induced order on {0, 1}ω
which is not a WQO.

(iii) This goes wrong in any in�nite case. Given 〈Xi : i ∈ I〉 with
xi ∈ Xi WQO for all i ∈ I and I in�nite. Consider X =

∐
i∈I Xi.

Without loss of generality Xi ⊆ X, then {xi : i ∈ I} is an an-
tichain. As I is in�nite, X cannot be a WQO.

44

CHAPTER 10. EXAMPLES

Exercise 10.2.4 (Past tripos question). Suppose we quasi-order
�nite trees as follows: T 4 T ′ if there is an injection from the vertex
set of T to the vertex set of T ′ that preserves the root and preserves
adjacency. Is this a WQO?

Solution. Let Tn be a tree with n + 3 vertices. The vertices are v0, . . . ,
vn+2 with v0 being the root. The edges are exactly: vivi+1 for 0 6 i 6 n
and vnvn+2. So for example T2 is:

v0

v1

v2

v3 v4

Consider an injection of vertices vk from Ti to vertices wk from Tj for
i < j that preserves the root and adjacency. By preserving root we
have that v0 7→ w0. By preserving adjacency we �nd by induction that
vk 7→ wk for 0 6 k 6 i + 1. By injectivity, vk+2 needs to be mapped
to wk for i + 1 < k, however none of these are adjacent to wi and thus
adjacency cannot be preserved. Contradiction.

Thus Tn is a bad sequence, and thus this order cannot be a WQO.

Exercise 10.2.5. We say that a function f : N → N grows too fast to

be computable, if for any function g : N→ N we �nd that if f(n) 6 g(n)
eventually then g is not computable. Give an explicit construction of a
function that grows too fast to be computable, or prove that there is no
such function.

Solution. Enumerate the total computable functions f1, . . . then set

f(n) = max
16i6n

fi(n) + 1.

Then fi(n) < f(n) eventually for all i. Thus f(n) 6 g(n) eventually
implies g(n) not computable.

45

	Recursion
	Character
	Fix Point
	Structural Induction
	Restricted Quantifiers
	Infinitary horn

	Functions
	Primitive Recursion
	Primtive Recursive Relations

	-induction
	Ackermann Function

	Machines
	Finite State Machines
	Non-Deterministic Machines
	Recursive Ordinals

	General Machines
	Universal Machine

	Decidable and Semi-Decidable Sets
	Immune Sets
	Semi-decidable sets in V
	Applications to Logic

	The Halting Problem
	Rice's Theorem

	Recursive Inseparability

	-Calculus
	Partial Computable Functions as -Terms
	Curry-Howard Correspondence in Proofs

	Tennenbaum's Theorem
	Incompleteness
	Well-Quasi-Orders
	MBS Construction
	Kruskal's Theorem

	Degree Theory
	Many-One Reducibility
	Turing Reducibility

	Omitting Types
	Examples
	Example Sheet 1
	Example Sheet 2

