
Equality of Church Numerals in the Lambda Calculus

Toby Miller

13 November 2015

First we define lambda calculus notions of true and false as follows:

T
def
= λx.λy.x

F
def
= λx.λy.y

The Church numerals are defined for n ∈ N by the following induction:

Cn
def
=

{
λf.λx. x n = 0

λf.λx. f ([Cn−1 f] x) n > 0

I provide a function which takes two Church numerals and returns T if they represent the same
number, and F if they do not. The method is to instantiate the numerals with different fs (A and
B below), and set the x of one to be the lambda term consisting of a string of applications of B,
terminating in X (the x of the other numeral, also defined below). We choose A and B such that they
cancel each other in the middle of the term, leaving either a string of applications of A terminating in
X, or a string of applications of B terminating in X. By using a second argument to B we allow it to
behave one way when called by A, and another when testing for X, and in the latter case it can return
F and exit. X can also take advantage of this argument to return T when tested, but a special term
when called by A that causes the stack of As to collapse, and return F when tested. Thus the test
function Z can distinguish between a stack of applications of A terminating in an X, an X alone, and
a stack of applications of B terminating in an X. We use a fixed point helper L to aid the collapse of
the stack of applications of A.

A
def
= λx.x T

B
def
= λx.λy. ([y x] F)

L
def
= λl.λx. ([x (l l)] F)

X
def
= λx. ([x (L L)] T)

Z
def
= λx. ([x L] F)

We can now define the test for equality of Church numerals as follows:

λa.λb. Z ([a A] [(b B) X])

1

