INTRODUCTION TO HYPERBOLIC
AND AUTOMATIC GROUPS

S. M. GERSTEN

1.0. Introduction. These notes comprise the revised and edited text of two hour
lectures I delivered at the CRM Summer School on Groups held at Banff in August
1996. I made no attempt at completeness, but tried to introduce the subject to
novices from the attractive drawings of M. Escher, and I made guesses from the
list of speakers about what aspects of the subject I should introduce to make my
lectures useful to them. Thus I began at the beginning, and to quote G. Baumslag,
ended very near the beginning. I have included a short bibliography of source
material on the subject along with some of my personal comments scattered in the
text about what I have found useful from these references, each of which is good
in its own way for an aspect of the subject. The reader should consult these for a
more extensive bibliography.?

1.1. We start with a comparison of two lithographs of M. Escher.
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Figure 1. Euclidean Escher picture

Partially supported by NSF grant DMS-9500769

ITheorems, examples, or exercises are indicated with an asterisk * if the proof is omitted or if
the sketch given is not in keeping with the otherwise elementary character of these notes. These
theorems so indicated can be looked up in the references, and the starred exercises or examples
ignored, if the terms are unfamiliar. I have tried to make this exposition intelligible to a reader
who has completed a year’s graduate study or has a good undergraduate background in math.
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Figure 2. Hyperbolic Escher picture

Figure 1 is part of a tiling of the Euclidean plane, which we imagine as continued
in all directions, and Figure 2 is a beautiful tesselation of the Poincaré unit disc
model of the hyperbolic plane by white tiles representing angels and black tiles
representing devils. An important feature of the second is that all white tiles are
mutually congruent as are all black tiles; of course this is not true for the Euclidean
dx? 4 dy?
One feature distinguishing the figures is immediate. There is no natural boundary
associated to the Euclidean tiling, whereas the boundary of the disc limits the
hyperbolic tiling. This circle is not part of the hyperbolic plane, which in this
model consists of points in the interior of the disc, but nevertheless it is apparent
from the model.

A second less immediate feature distinguishing them is the so-called isoperimetric
inequality. If we imagine circles of radius R drawn from a fixed center, then the
number of tiles in the Euclidean drawing in the interior of the circle of radius R for
large R is between C;R? and CyR?, where C; < C5 are positive constants. In the
hyperbolic figure, when we calculate distances and area in the Poincaré metric, we
find that the number of black and white tiles in the interior of a circle is bounded
by a constant times the area.?

metric, but holds for the Poincaré metric ds? = 4 where r? = 22 4 ¢2.2

2The irritating factor 4 is present to guarantee that the curvature is —1.

3There is a silly error in the version of this paper that got into print, where it was stated that
the number of tiles in a circle of radius R is proportional to R. The area is exponential in R in the
Poincareé metric, and what should have been stated there was the exponential growth in number
of tiles with radius, or linear growth in area. I am grateful to Michel Coornaert for pointing this
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We say that the Euclidean plane satisfies the quadratic isoperimetric inequality,
whereas the hyperbolic plane satisfies the linear isoperimetric inequality. I shall
have much more to say about isoperimetric inequalities later.

The third difference I want to point out is more subtle but is crucial for our
departure into hyperbolic groups, the property of thin triangles for the hyperbolic
plane. For this, and in general for all calculations, it is more convenient to use the
conformally equivalent model of the upper half plane H. This is the set of points
(x,y) in the Cartesian plane with y > 0 equipped with the Riemannian metric

dsg  da* +dy?
y? y2

(1.2) ds? =

where dsg is the Euclidean metric. We denote the distance between points P, )
in H by dyg(P, Q) and we recall that this is determined by minimizing the lengths
fv ds of all piecewise smooth paths v from P to () in our metric dsy.

Geodesics for this geometry are vertical lines together with arcs of circles orthog-
onal to the z-axis. Every pair of points in H is joined by a unique geodesic segment
and every geodesic segment can be extended indefinitely in both directions.

A geodesic triangle is one whose sides are segments of geodesics. There are also
the so-called ideal geodesic triangles, whose vertices in the disc model lie on the
limit circle, and in the model H lie on the z-axis, where the geodesics are considered
as extended arbitrarily far in both directions. One also says that one end point of
a vertical geodesic lies “at the point of infinity”. This corresponds to a point on
the limit circle in the disc model under the conformal equivalence, but is not visible
in H. An important property is that all ideal triangles are equivalent under the
isometry group of H.*

The property we need is the following

Theorem 1.3 (“0-thin triangles”). There is a number 6 > 0 so that for all geo-
desic triangles in H with vertices, say, A, B, and C, and all points P on side AB,
there exists a point () on at least one of the sides AC' or CB so that the distance
du(P,Q) < 6. The optimal value of § is In(1 + v/2).

Proof. Let P be on the side AB of the geodesic triangle ABC'. First note that by
moving the point C toward infinity away from P along the extension of AC, the
distance of P to the opposite two sides is only increased. Similarly, we can move
the point A to infinity and then move the point B, so we may assume the triangle
ABC is ideal. Then using the fact that all ideal triangles are equivalent, we may
assume that A = (0,0), B = (2,0), and C' is the point at infinity, so P is on the
circle of radius 1 centered at (1,0). Symmetry considerations then show that it
suffices to prove that dg(P,Q) > dy(P1, Q1) in Figure 3 below, where P = (1,1);
here PQ and P, are segments of geodesics.

out.

4This follows from the facts (1) that linear fractional transformations z +— (ax + b)(cx +d) !
act transitively on sets consisting of three distinct points of R U {co}, where a,b,c and d are
real numbers and ad — bc = 1, and (2) that each such linear fractional transformation acts as an
isometry of H.
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Figure 3. Thin triangles

But by (1.2), the homothety z — kz induces an isometry of H, where k > 0 and
where z is the complex coordinate of a point. Since P(Q) and P;(); are on circles
centered at (0,0), there is a unique value of k for which the homothety takes the
second arc onto the arc P(), where P, is a point of the arc PQ. It follows that
du(P1, Q1) = du(P2, Q) < du(P, Q).

Thus all geodesic triangles in H are 6 = dy (P, Q)-thin. It now becomes a problem
of integration to calculate 9.

1.3.1 Exercise. Carry out the calculation. (Hint: Parametrize the arc PQ on the
circle of radius v/2 by x = v/2cosf, y = v2sinf, 7/4 < 0 < 7/2, and calculate

0= [T/Zesct df =n(1+/2))

2.0. Geodesic metric spaces. A metric space (X, d) is called geodesic if for all
pairs of points x,y in X there is an isometric imbedding f : [0, d(z,y)] — X taking
the end points of the interval to x and y. The image of f is called a geodesic
segment connecting these points, or more simply, a geodesic.

2.1. A complete smooth connected Riemannian manifold with its path metric
obtained by minimizing lengths fv ds of all piecewise smooth paths v between two
points is an example of a geodesic metric space. Note that in contrast with the
terminology of Riemannian geometry, our geodesics are minimal geodesics, in the
sense that their arc length is the distance between the end points. For example the
equator of the round unit sphere is a geodesic in the sense of Riemannian geometry,
but a segment on it of length at most 7 is a geodesic segment in the sense we are
using.
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2.2. A second example of a geodesic metric space is a Cayley graph of a finitely
generated group GG. Suppose that A is a finite set of generators for GG, in the sense
that every element of G can be written as a finite product of elements of A and
their inverses. We define a graph I'g 4 whose vertex set is G and whose edges are
all triples (g, a, g’), where g,¢" € G, a € A, and ga = ¢’. This edge is considered to
originate at the vertex g and terminate at the vertex g’. The group G acts on the
left by left translation on vertices and z(g, a, g') = (zg, a,zg’) for the action of the
group element z on the edge (g,a,g’). That this makes sense is a consequence of
the associative law z(ga) = (zg)a.

We can realize this graph as a 1-dimensional CW complex where for each abstract
edge (g,a,g’) we attach a copy of the unit interval with end points 0,1 identified
with vertices g, g’ respectively. We shall not distinguish between the graph and its
geometric realization in this exposition.

The graph I'c 4 admits a natural metric, which we now describe. If g,¢’ € G,
we set d(g, g') to be the minimum length of an edge-path connecting these vertices,
where each edge of I'g 4 has length 1. This is the same as the minimum length of a
word w in the elements of A and their inverses such that gw = ¢’ when the product
is evaluated in GG, and hence it is called the word metric on G for generators A.
This metric is extended to all pairs of points of the geometric realization by taking
the path metric induced by requiring left action of the group to be an isometric
action on the edges and requiring each edge to be isometric to the unit interval in
R. Thus each point is at distance at most % from a vertex, and the path metric
agrees with the metric already defined on pairs of vertices. With this metric the
graph I'c 4 becomes a geodesic metric space, and the left translations by elements
of G become isometries.

Figure 4. Cayley graph of S

Cayley graphs are objects of great beauty. The example above in Figure 4 is
a Cayley graph for the symmetric group S3 and a generating set consisting of a
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2-cycle and a 3-cycle.

Another example is the free group F, with free basis A = {x1,z2,...,z,}. The
Cayley graph I'g, 4 is a tree, where each vertex has valence 2n. The fact that it is
a tree is a reflection of the uniqueness of the expression of an element of F,, as a
reduced word in the generators and their inverses.

2.3. Exercise. Show conversely that if a Cayley graph I'g 4 is a tree, then the group
G is free with free basis A.

2.4. Edge-circuits in I'g 4 also have significance. Each oriented edge is equipped
with a label in AU A™!. The positive orientation of (g, a,g’) has label a whereas
if we read the edge with the opposite orientation the label is a=!. The label of an
edge-circuit y is thus a word w in A U A~! which multiplies the initial vertex of
H to itself, and hence w evaluates in G to give the identity element of G. Thus
labels of edge-circuits give relations among the generators A and their inverses,
and furthermore, given a word w in A U A~! and a vertex v, there is a unique
edge-circuit starting at v with label w. Thus up to choice of initial point, which
can be taken to be the identity element of G, there is a 1-1 correspondence between
edge-circuits of I'g_4 and relations among the generators AU A~!.

2.5. The Cayley graph and the word metric depend on the choice of generators. A
useful strategy in the search for group theoretic invariants is to define a property of
a Cayley graph and then elucidate how the property behaves with respect to change
of generators. This will be our strategy in defining the notion of hyperbolicity of a
group and in defining isoperimetric functions.

3.0. d-hyperbolicity. We say that a geodesic metric space (X, d) is é-hyperbolic,
where § > 0, if for every geodesic triangle ABC and point P on the segment AB
there exists a point @ in the union of the sides AC and BC so that d(P, Q) < 6.

3.1. Examples.

3.1.1. The hyperbolic plane H is In(1 + v/2)-hyperbolic.

3.1.2. Every simplicial tree (i.e. a 1-dimensional contractible simplicial complex
with the path metric, where each edge has length 1) is O-hyperbolic.

3.1.3. If a geodesic metric space has bounded diameter D, then it is D-hyperbolic.
3.1.4. The Euclidean plane H is not §-hyperbolic for any choice of §. For B admits
a scaling uy for each real number £ > 0 which multiplies all distances by k. Thus
if ABC'is any nondegenerate triangle and P is on side AB and at distance d > 0
from the union of the sides AC' and BC, then uy(P) is at distance kd from the
sides g (A)pr(C) U pk(B)pr (C) of the triangle pg(A)pr(B)pr(C). Letting k — oo
establishes the assertion.

3.2. We define an Hi-tree to be a O-hyperbolic geodesic metric space. Such spaces
will be considered in depth in I. Chiswell’s lectures in this volume.

3.3. We say a finitely generated group G is hyperbolic® if for some finite set of
generators A of G the Cayley graph I' 4 is d-hyperbolic. According to the strategy
proposed at the end of 2.5 to show that hyperbolicity is a group theoretic property
we must show that the Cayley graph I' 4 for any other finite set of generators A’

5The terms negatively curved and word hyperbolic and even Gromov hyperbolic have been
used to describe the same notion, but we shall say simply hyperbolic.
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of G is §'-hyperbolic for some 6’ > 0. This will be deduced as a consequence of
properties of quasi-geodesics, which we take up next.

3.4. Definition. A (), €) quasi-isometric mapping f : (X,d) — (X’,d’) between
two metric spaces (X,d), (X',d’') is a (discontinuous) function f satisfying the

inequalities
1

14 (f(2), f(y) —e < d(a,y) < M (f(2), f(y)) +e

for all z,y € X; here A > 0 and € > 0. Note that a (A, 0) quasi-isometric mapping is
just a bilipschitz mapping with lipschitz constant A > 0 and is a fortiori continuous.
It is the possibility that € > 0 in this notion that allows for discontinuity of the
map f. One can think of a quasi-isometric mapping as the view a farsighted person
with astigmatism has of the world. The curvature of the lens of the eye accounts
for the multiplicative distortion factor A in distances while the additive constant e
has the interpretation that distances closer than e are not resolved clearly.

3.5. A (A, ¢€) quasi-geodesic mapping of an interval [a,b] C R into (X,d) is called
a (A, €) quasi-geodesic. If we let a = 0, b = 400, then it is called a quasi-geodesic
ray. Often one considers a family of (), €) quasi-geodesics simultaneously; one calls
members of this family quasi-geodesics if the constants A, € are understood and are
the same for all members of the family.

3.6. Two metric spaces (X, d) and (X', d’) are quasi-isometric if there are numbers
A>0,e>0,and C >0, and (), €) quasi-isometric mappings f : (X,d) — (X', d’)
and f': (X',d") — (X,d) so that both compositions f o f’ and f’ o f are within
C' of the appropriate identity map. Thus d(f'(f(z)),x) < C for all x € X, and
similarly for the other composition.

3.7. Example. Let A, A’ be two finite sets of generators for the same group G
and consider the word metrics d, d’ on G for these sets of generators. Now each
element a € A can be written as a word in the generators A’ and their inverses,
and similarly each a’ € A’ can be written as a word in the generators A and their
inverses. Let M be the maximum lengths of these words that arise in rewriting the
members of each of the two generating sets in terms of the other generators. Then
it is easy to see that the identity map G — G is an (M, 0) quasi-isometry. If we
recall that G is the vertex set for each of the two Cayley graphs I'c 4, I'¢, 4 and
that every point of a Cayley graph is at distance at most % from a vertex, we see
that the identity map of G extends to quasi-isometric maps f : I'g .4 — I'g 4» and
f":Tg.a — I'q.a whose compositions both ways are within finite distance of the
appropriate identity maps.
3.7.1. Exercise. Verify that the numbers A = M, e = M + 1, and C = (M? +1)/2
work for the maps f, f’ just defined.

Observe that the finiteness of the generating sets A, A’ was used in the definition
of the number M. This is the only place so far where finite generation was used.

It follows from this discussion that

Proposition 3.8. Any two Cayley graphs for the same finitely generated group are
quasi-isometric geodesic metric spaces.

3.9. Definition. If A and B are two subsets of the metric space (X, d), we say that
A and B are at finite Hausdorff distance if there is a constant H > 0 so that for
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every a € A there is a point b € B with d(a,b) < H and for every b € B there is a
point a € A with d(a,b) < H. Thus B is contained in the H-neighborhood of the
set A and A is contained in the H-neighborhood of B.

The basic result connecting quasi-isometry and hyperbolicity is the following.

Theorem 3.10* (Quasi-geodesics are close to geodesics). Let X be a §-hyperbolic
geodesic metric space. Then there is a function H(\,€) > 0 so that for any two
points x,y € X, any (A, €) quasi-geodesic f : [a,b] — X with end points mapped to
x,y, and any geodesic segment v with the same end points x,y one has the image
of f and the image of v are at finite Hausdorff distance at most H(\,€) from each
other.

The result is nontrivial. I find the proof given in the Berkeley notes [Bkly],

which is based on exponential divergence of geodesics in a hyperbolic metric space,
very accessible. An easier argument for the special case of a complete Riemannian
manifold with negative sectional curvatures bounded above by —x < 0 appears
in [Wordproc]. My understanding is that the result was first observed for the
hyperbolic plane by Marston Morse in the 20’s, although the terminology of quasi-
geodesics was only used by G. Mostow and others after the 60’s.
3.10.1. Example. The following example shows one way in which the conclusion
of Theorem 3.10 can fail in a nonhyperbolic group. Consider the group G = Z?2
with generating set A = {a = (1,0), b = (0,1)}. If n is a positive number, then
it is easy to verify that all geodesics in I'g 4 from (0,0) to (n,n) are of the form
words in @ and b which involve exactly n a’s and exactly n b’s (and no a=! nor
b=1). Two extreme geodesics are given by a™b™ and b"a™. The distance between
the vertex (n,0) on the first and (0,7) on the second is 2n, which can be arbitrarily
large. Thus geodesics segments with the same end points can be at arbitrarily large
Hausdorff distance in this example.

If we anticipate section 8 on regular languages below, the set of all geodesic

words in this example is given by the regular expression L = {a,b}* + {A,b}* +
{A,B}* +{a, B}*, where A = a=! = (=1,0) and B = b~! = (0,—1). Thus the
set of all geodesic words in this example is a regular language, but the group is not
hyperbolic.
3.10.2. Remark. An interesting converse to Theorem 3.10 was discovered by P.
Papasoglu [Papa] in the special case of Cayley graphs. He showed that if G is a
finitely generated group with finite set A of generators and if there is a number H >
0 so that all pairs of geodesic segments in I'g 4 with the same endpoints are at
Hausdorff distance at most H, then G is hyperbolic.

Theorem 3.10 will now be applied to show that the property of a finitely gener-
ated group being hyperbolic is independent of the particular finite set of generators.

Theorem 3.11 (quasi-isometry invariance of hyperbolicity). Let (X,d) and
(X', d") be quasi-isometric geodesic metric spaces. If (X,d) is 0-hyperbolic, then
there exists 0’ > 0 so that (X', d’) is §'-hyperbolic.

Proof. Suppose f: X — X’ and f': X’ — X are both (), €) quasi-isometric maps
whose compositions both ways are within C' > 0 of the appropriate identity map,
and we assume that (X, d) is d-hyperbolic. Let A’ be a geodesic triangle in X'.
Then f’(A’) is a quasi-geodesic triangle in X whose sides are (\, €) quasi-geodesics.
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It follows from Theorem 3.10 that there is a geodesic triangle A in X with the
same vertices whose sides are each within Hausdorff distance H = H (), €) of the
corresponding sides of f/(A’). It follows that f/(A’) is (2H + ¢)-thin, where we can
talk about thinness of quasi-geodesic triangles in an obvious sense. Now apply f to
get the quasi-geodesic triangle f(f/(A’)) in X, which one sees is (A(2H +6) +€)-thin
from the way quasi-isometric maps distort distances. But points on the sides of the
triangle f(f’(A’)) are at distance at most C' from the corresponding points on the
original triangle A. It follows that A is ' = (2C + A(2H + §) + €)-thin. Thus all
geodesic triangles of X’ are ¢’-thin for this value of §’, and the result is proved.

3.12. It follows from Theorem 3.11 that if the Cayley graph I'c a is d-hyperbolic,
then there exists ' > 0 so that the Cayley graph I'c ar is 6'-hyperbolic; here G is a
finitely generated group and A and A’ are finite sets of generators for G.

It follows that hyperbolicity is a property of groups. In particular although it is
defined using one finite system of generators, the property carries over to any other
finite system of generators (for a different value of ¢).

At the moment, we know from examples and exercises that finite groups and
finitely generated free groups are hyperbolic. We now prepare to state a result
which provides many more examples of hyperbolic groups.

3.13. Definition. An action of the group G on the topological space X is a mapping
G x X — X, denoted (g,x) — gz, so that X is a G-set (recall that this means
that 1z = z for all x € X and ¢'(gx) = (¢'g)z for all g,¢' € G, z € X) and so
that for each g € G the map x — gx is a homeomorphism of X onto itself. We are
considering G here to have the discrete topology.

The action is called properly discontinuous if for each compact subset K of X
the collection of groups elements {g € G | gK N K # ()} is finite. A special case of a
properly discontinuous action where all point stabilizers in G are trivial (so gz = =
for g € G, x € X, implies g = 1) is called a free action.

The action is called cocompact if the orbit space G\ X is compact.

The metric space (X, d) is called proper if all balls of finite radius are precompact,
in the sense that their closures are compact. In this case X is locally compact.

In many of the examples we shall consider, X will be a metric space and the
action will often be by isometries, so that the homeomorphisms of X given by left
translation = — gx, g € G, © € X, are isometries of X. We say such actions are
1sometric.

3.14. Exercises.

3.14.1. If 7 : Y — X is a regular covering map with covering group G, then the
action of G on Y by deck transformations is a free action. If X is compact, then
the action is cocompact.

3.14.2. The left action of the finitely generated group on its Cayley graph I'g 4 is
free and cocompact and group elements act by isometries. In addition I'g 4 is a
proper metric space.

3.14.3. Let M be a closed (and hence compact) connected Riemannian manifold
and let M be its universal cover equipped with the pull-back Riemannian metric
from the covering projection 7w : M — M. If G is the fundamental group of M, then
the action of G on M by deck tranformations is free, isometric, and cocompact,
and M is a proper geodesic metric space.
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Theorem 3.15*. Suppose that the group G acts properly discontinuously and co-
compactly by isometries on the proper geodesic metric space (X,d). Then G is
finitely generated, and G with any word metric and (X, d) are quasi-isometric met-
TiC Spaces.

A very readable account of this result is given in M. Troyanov’s article in the
Swiss notes [Swiss]. The result has some important corollaries, which we state as
exercises.

3.16. Exercises.

3.16.1. Any Cayley graph I'g, 4 of the finitely generated group G for finite set A of
generators is quasi-isometric to G with the word metric. In fact we already observed
this by direct calculation in 3.7.1.

3.16.2. If H is a subgroup of finite index of the group G, then H is finitely generated
iff G is finitely generated, and in this case H and G are quasi-isometric for their
word metrics. (Hint. The first assertion can be established by covering space theory.
As for the second, the action of H on I'g 4 obtained by restricting the left action
of G to H satisfies the hypotheses of Theorem 3.15.)

3.16.3. Let N be a finite normal subgroup of the finitely generated group G. Then
the groups G and G/N are quasi-isometric for their word metrics. (Hint. Consider
the action of G on any Cayley graph of G/N by left translation by its associated
coset modulo N.)

3.16.4. If M is a closed connected Riemannian manifold and M is the universal
cover of M with the pull-back Riemannian metric, then M is quasi-isometric to the
fundamental group of M. This result is due to Svarc and independently to Milnor
(who did not use the language of quasi-isometry to state it). They used it to relate
the growth of finitely generated groups to the growth of volumes of balls in the
universal cover.

3.17. We can now give the promised examples of hyperbolic groups. Note first
that hyperbolic n-space H" is defined as {(z1,x2,...,2,) € H* | z,, > 0} with the
Riemannian metric

dsf, w423+ 422

no__ _
dSHn == - y

2 2
2 2

where dsgr is the Euclidean metric. It has the property that every geodesic triangle
is contained in a totally geodesic isometric copy of the hyperbolic plane, so H” is
S-hyperbolic for § = In(1++/2). A (closed) hyperbolic n-manifold can be defined as
the quotient of H™ by a cocompact properly discontinuous subgroup of isometries
acting freely on H".6
3.17.1. If G is a subgroup of the group of isometries of H" which acts properly dis-
continuously and cocompactly on H", then G is (finitely generated and) hyperbolic.
This is immediate from Theorem 3.15 and remarks above.

It follows that the symmetry group of the Escher diagram in Figure 2 is a hy-
perbolic group.
3.17.2.* If G is the fundamental group of a closed Riemannian manifold M all of
whose sectional curvatures are strictly negative, then G is hyperbolic. This is an

6This is equivalent to the usual definition in Riemannian geometry of a hyperbolic manifold
as a closed Riemannian manifold which admits a metric with constant sectional curvatures —1.
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application of the comparison theorems of differential geometry. There is an upper
bound —k, for some k > 0, on the sectional curvatures of M, by the compactness
of M. Then the comparison theorem of Toponogov says that geodesic triangles in
M are at least as thin as those in the plane with metric of constant curvature —k.
However in this latter space triangles are scaled copies of triangles in H and hence
are uniformly thin.
3.17.3. If H is a subgroup of finite index of the finitely generated group G, then H
is hyperbolic iff G is hyperbolic.
3.17.4. Virtually finitely generated free groups are hyperbolic. Here, if P is a
property of groups (so P is a proper class of groups closed under isomorphism),
then a group is called virtually P if it has a subgroup of finite index which is in P.
It is amusing to note that finite groups can be characterized as virtually trivial
groups.
3.17.5.* Fundamental groups of closed orientable surfaces of genus at least 2 or
closed nonorientable surfaces of (nonorientable) genus at least 3 are hyperbolic.”
This follows from the uniformization theorem, which in this context states that
these surfaces admit hyperbolic structures. A more combinatorial proof of this
result will be given in §6.
3.17.6. Triangle groups.” Let 2 < m < n < p be integers such that 1/m+1/n+1/p <
1. Then one shows there exists a geodesic triangle A in H with angles 7/m,7/n,
and 7 /p. Consider the pattern generated by reflecting the triangle in its sides, and
the resulting figure in all its sides, and so on. It follows from a nontrivial theorem
of Poincaré’s that the resulting pattern tesselates H by congruent copies of A with
disjoint interiors. A readable account of this result is given in [Beard]. The full
isometry group of this tesselation is a properly discontinuous cocompact subgroup
of isometries of H. It is generated by reflections in the sides of the original triangle A
and is called the triangle group A(m,n,p). It is hyperbolic by Theorem 3.15.

There are other important examples of hyperbolic groups, including the
CAT(—1)-groups and uniform lattices in rank 1 Lie groups, which time consid-
erations did not permit me to discuss. I shall discuss the important examples of
small cancellation groups in §6 below.

4.0. The boundary of a hyperbolic group. This notion never came up in the
other lectures at the conference, so I shall be brief.
4.1. Let I'g 4 be the Cayley graph for the finitely generated group G' with finite
set A of generators. Assume that I'¢ 4 is d-hyperbolic. If R and R’ are geodesic
rays (i.e. (1,0) quasi-geodesic rays, see 3.5), then we write R ~ R’ if they are in a
Hausdorff neighborhood of each other. This is clearly an equivalence relation and
the boundary 0G of G is the set of equivalence classes of geodesic rays under this
equivalence relation.
4.1.1. Every quasi-geodesic ray is in a Hausdorff neighborhood of a geodesic ray.
Hence OG could have been defined in an equivalent manner as the set of equiv-
alence classes of quasi-geodesic rays, where two quasi-geodesic rays are equivalent
if they are in Hausdorff neighborhoods of each other.

7An orientable surface has genus g if it is the connected sum of n tori and a nonorientable
surface has genus g if it is the connected sum of g projective planes.
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4.1.2. Consider the disc model for the hyperbolic plane. Show that every geodesic
ray determines a unique point on the limit circle and that two rays are equivalent
iff they determine the same point.

4.1.3.* Given any point v in I, 4 and geodesic ray R there exists a geodesic ray R’ so
that R'(0) = v and R ~ R’. In fact one considers geodesic segments vR(t) and one
shows, using the Ascoli theorem, that these subconverge on compact subintervals
of [0,00) to a geodesic ray. For full details consult [Stras| Chapter 2.

4.2. There is a natural topology on OG for which it is a compact finite dimensional
metrizable space [Bndry], called the visual topology. To describe the topology, it is
convenient to choose a base point v. Every ray is equivalent to one starting at v,
so choose a ray R with R(0) = v. If t,e > 0 let N.(R,t) be the set of equivalence
classes of rays S starting at v such that d(R(t), S(t)) < e. These sets are a subbasis
for the topology on 0G. In fact, one only needs to use one value of € = 104 to define
this topology [Bndry].

4.2.1. If G and G’ are quasi-isometric hyperbolic groups, show that their boundaries
0G and G’ are homeomorphic.

4.2.2. Show that the isometric action of G on I'g 4 defines an action on rays
preserving the equivalence relation ~. Show that this induces an action of G on
0G where each group element acts as a homeomorphism of 0G.

The boundary is one of the reasons that topologists are so interested in hyper-
bolic groups. N. Benakli showed in her thesis that the Menger and Sierpinski curves
occur naturally as boundaries of hyperbolic groups. The characterization of hyper-
bolic groups which have the circle as boundary, achieved independently by Gabai,
Casson-Jungreis, and Tukia, led to the solution of a classical conjecture of Seifert’s,
that closed irreducible 3-manifolds containing normal infinite cyclic subgroups in
their fundamental groups are Seifert fibred. One of the outstanding problems of
3-dimensional topology is the conjecture that a closed irreducible 3-manifold with
an infinite hyperbolic fundamental group admits a Riemannian metric of constant
negative curvature. As a result of the work of Bestvina and Mess, it is known that
the boundary of such a group is homeomorphic to the 2-sphere.

5.0. Finite presentability of hyperbolic groups.

Let G be a finitely generated group with Cayley graph I'¢ 4 for finite set A of
generators and suppose that I'¢ 4 is d-hyperbolic. Suppose that v,~" are geodesics
beginning at 1 and ending at g, g’ respectively and suppose further that ¢’ = ga,
where a € A. Then we have a geodesic triangle A where one side is of length 1
and the other two sides are v and ~’. It is convenient to extend the domains of
definition of v, 7’ to all nonnegative reals by insisting they be the constant maps
after they reach their endpoints. This convention will be followed without further
mention.

Lemma 5.1. We have d(y(t),~'(t)) <2(6 + 1) for allt > 0.

Proof. If P is in the image of v, then P is at distance at most ¢ from the union of
the other two sides of A. If P is unlucky enough to be within § of the edge-side,
then it is at distance at most § + 1 from the end point of 4’. Thus in any case P is
at most § + 1 from the image of ~'.

Thus we see that for all 0 < ¢ < d(1,g) there exists an 0 < s < d(1, g’) so that
d(v(t),7'(s)) < d+ 1. But v and +" are geodesics in this range of values of their
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domains, so |t — s| < § + 1 by the triangle inequality. Now using the fact that ' is
geodesic on [0,d(1, g")] we see that d(y'(t),7'(s)) < |t —s| < é + 1. Hence by the
triangle inequality we have d(vy(t),~'(t)) < 2(d + 1), completing the proof.

5.2. Now we mark off “integer points” (i), /(i) on the geodesics v, 7', i € N.
We obtain for each i a quadrilateral ();, where two sides are geodesics chosen to
join (i) to 7/(i) and (i + 1) to /(i + 1) and the remaining two sides are edges
of ', 4 joining 7(7) to y(i + 1) and joining ~'(¢) to 7'(i + 1) (if ¢ lies beyond the
range where - is geodesic, interpret this to be the constant path at the vertex ~(7)).
The boundary label of @Q; is a word in the generators A U A~! of length at most
2(2(6 4+ 1) + 1) = 40 + 6 which evaluates to 1 in G by the discussion of 2.4. We let
R be the set of all words in AU A~! of length at most 45 + 6 which evaluate to 1
in G. Note that R is a finite set of words.

Theorem 5.3. P = (A | R) is a finite presentation for G.

Proof. Let w be an edge-circuit in I'g 4 with w(0) = 1. We “cone” w from the base
point 1 by geodesics, so, precisely, we choose geodesics «; from 1 to w(j). For each ¢
we have the geodesic quadrilateral @);; with sides joining vertices v;(4), v;(¢ + 1),
vi+1(t + 1), vj+1(7) and back to 7;(i). These quadrilaterals fit together to form a

disc diagram filling w, as is illustrated in Figure 5 below.
w(j+1)
w(j+2)

Figure 5. Filling the circuit w

But the label of Q;; is one of the defining relators of P, and it follows that
the label of w, which is a relation among the generators, is a consequence of the
relators R. Thus P is a finite presentation for G.

5.4. Much more than finite presentability is true for hyperbolic groups. The known
finiteness conditions follow from Rips’s theorem™: if G is a hyperbolic group, then
there is a contractible finite dimensional locally finite simplicial complex P and a
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properly discontinuous cocompact simplicial action of G on P. As a consequence,
if G is torsion-free, the action of G on P is free and the orbit map P — G\P is
a covering map, so G\P is a compact Eilenberg-MacLane space of type K (G, 1).
All three references [Bkly], [Stras|, and [Swiss| give readable accounts of Rips’s
theorem.

5.5. In general, the minimum number of relators needed in a filling of a relation w
of a finite presentation P is called the area of w and is written Areap(w). It is equal
to the minimum number of factors in an expression for w as a product of conjugates
of defining relators and their inverses. The equivalence of these two expressions for
the area of w is a consequence of a lemma of van Kampen’s and was treated in S.
Ivanov’s lectures at the conference.

5.6. One can estimate the area of w in the proof of Theorem 5.3, using the fact that
the length of the geodesic v; is equal to d(1,w(j)) < j. The result is Areap(w) <

Zf(:ui)i < Cl(w)?, where £(w) is the length of the circuit w and where C is a
constant. In the terminology of §6, this shows that hyperbolic groups satisfy the
quadratic isoperimetric inequality. In fact, much more is true.

Theorem 5.7*. Let P = (A | R) be any finite presentation for a hyperbolic
group G. Then there exists K > 0 so that for all edge-circuits w in I'g 4 one
has

(5.7.1) Areap(w) < Kl(w).

Conversely, if a finitely presented group G satisfies the linear isoperimetric inequal-
ity (5.7.1) for some finite presentation P of G, then G is hyperbolic.

Both assertions in Theorem 5.7 are nontrivial. I have found the treatment in
[Bkly| to be useful. It is also worth remarking that Ol’'shanskii gave an accessible
treatment of a strengthening of the converse assertion, due originally to Gromov,
that a finitely presented group satisfying a subquadratic isoperimetric inequality is
hyperbolic [Olshan]. Papasoglu and Bowditch have also treated the question. I have
treated the question of a cohomological interpretation of the linear isoperimetric
inequality, and the final word has not yet been written on the matter.

6.0. Small cancellation groups. In this section I shall show that the classical
small cancellation groups of type C’(1/6) are hyperbolic, making use of a combi-
natorial argument I gave in the same volume where Gromov’s fundamental paper
[Gromov| appeared.

6.1. We consider in this section combinatorial cell complexes of dimension 2. Tech-
nically, this is just a finite 2-dimensional CW-complex X in which each attaching
map f of a 2-cell is a map of a circle subdivided into a finite number of intervals
such that f restricted to the interior of each such interval is a homeomorphism
onto an edge of the 1-skeleton. Thus f itself need not be 1-1, but no nondegenerate
subinterval of the circle is mapped to a point. A 2-cell F of X is called a face,
and the number of intervals into which the domain of the attaching map of F is
subdivided as above is denoted n(F).

6.1.1. Example. Let P = (z1,22,...,2p | R1,R2,...,R,) be a finite presenta-
tion. Thus each R; is a word in the free group F(z1,2,...,,) with free basis
Z1,T2,...,Tp. The 2-complex Xp canonically associated with P has one 0-cell, p
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1-cells e; in 1-1 correspondence with the generators z; each with a preferred orien-
tation or label x;, and ¢ 2-cells F; in 1-1 correspondence with the relators R;, where
the attaching map of F; spells out the word R; as a map of the circle, subdivided
into n(F;) = ¢(R;) segments, to the 1-skeleton; here ¢(R;) is the length of the free
word R;.
6.2. A corner a of a 2-cell F of X is simply one of the subdivision points of the
domain of the attaching map of F. It is better to think of o as an angle between
two adjacent sides of a polygon with n(F) sides, but this is just a convenient
visualization. A weight function on X is an assignment of real numbers w(«) to
the corners « of 2-cells of X. In this exposition we demand that w(«) > 0 but
there are situations we shall not discuss here where even this is too restrictive a
condition.
6.2.1. Example. If X is a regular n-gon in the Euclidean plane, n > 3, then X has
one 2-cell F with n(F) = n, and one can assign to each corner the Euclidean angle
(n — 2)w/n. Note that in this case the sum of the weights attached to the corners
of F is (n — 2)m, the sum of the interior angles of a convex Euclidean n-gon.

The following result is completely elementary, although the proof involves some-
what tedious calculations.

Proposition 6.3. Suppose that the 2-complex D is a topological 2-dimensional disc

equipped with a weight function w such that

(6.3.1) there is an € > 0 so that for each interior vertex v of D the sum of the
weights of corners of 2-cells incident at v is at least 2w + €, and

(6.3.2) for each 2-cell F of D the sum of the weights of corners of F is at most
(n(F) —2)m.

Then F < (1 + 27/€)Es, where F is the number of 2-cells of D and E is the

number of edges on the boundary of D.

Proof. We denote by V., Vi, Voo, E, and E;,; the number of vertices, number of
interior vertices, number of boundary vertices, number of geometric edges, and
number of geometric edges in the interior of D, respectively. Note that E = F;,,; +
Eo, V=Vt + Vs, Exoc = Vs, and V — E + F = 1, where the last two equalities
come from the calculation of the Euler characteristics of the circle and disc as 0
and 1, respectively.

Let S = ) w(e), where the sum is over all corners « of all 2-cells of D. By
(6.3.1) we have

(21 + €)Vipe = Z (2 +¢€) <SS,

v€int(D)(0)

where the sum in the middle is over vertices in the interior of D. By (6.3.2) we
have
S<Y ((F) 2w =n> n(F)-2rF,
F F

where the sums are over all 2-cells F of D. Combining the two displayed inequalities
gives

(6.3.3) (27 + )Vine <7 Y_n(F) — 20 F.
F
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Now substitute the equalities

> n(F) = 2B + Exo = 2E — Eq
‘7:'

and Vs =V — E into (6.3.3) and manipulate to obtain
V< (mn+€FEx—2n(V-—E+F)=(n+¢€FEx —2r1 < (m+¢€)E,

or

(6.3.4) V<

Next note that our assumption that w(«) > 0 for all corners o and (6.3.2) imply
that n(F) > 3 for all 2-cells F of D. Thus 3F <) n(F)=2FE - E, or

(6.3.5) (3F + E»)/2 < E.

Use Euler’s formula E — F + 1 = V again, replace E by (6.3.5) and replace V by

(6.3.4) to get
e+

(BF 4+ E)/2—F+1< E.,
and solve to get F' < (1 4+ 27/€)Es — 2 < (1 + 27/€)E, which establishes the
result.

6.4. To apply the preceding result we need the notion of a reduced disc diagram in
our 2-complex X. First, a disc diagram is a combinatorial map f : D — X, where
D is a combinatorial cell complex whose underlying space is the 2-dimensional disc
and where f is a combinatorial map, in the sense that f restricted to each open
cell of D is a homeomorphism onto an open cell of the same dimension of X. The
map f is called reduced if it is never the case that there are 2 2-cells F, F’ in D
with an oriented edge e in common so that f maps the boundaries of these cells,
read as edge-loops in X (V) beginning with the letter f (e), to the same word in the
oriented edges of X.

6.5. We can now introduce the small cancellation condition on X. Let f: D — X
be a reduced disc diagram. Let D be obtained from D by removing all interior
vertices of valence 2 (so the boundary of D is unchanged). Let F be the face of
D corresponding to the face F of D and let n(F) be its number of corners (this
is just n(F) reduced by the number of vertices in the boundary of F which are
of valence 2 in the interior of D). Give the corners of F the weights of a regular
Euclidean n(F)-gon (cf. 6.2.1). This puts a weight function w on the corners of D.
We say that X satisfies the small cancellation condition if this weight function w
satisfies conditions (6.3.1) and (6.3.2) for one fixed e and all choices of f.%

8] have called this the condition of negative curvature in print. However that term is getting
somewhat overworked and suggests some connection with geometry, whereas our weights have no
a priori connection with geometry.
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6.6. Exercise. Show that if P is a finite presentation satisfying the small cancella-
tion condition C’(1/6) introduced in S. Ivanov’s lectures,® then the 2-complex Xp
satisfies the small cancellation condition. The number € in this case can be taken
to be 7/7; this minimum is achieved with 3 7-gons meeting at an interior vertex
of D.

Theorem 6.7. Let P be a finite presentation satisfying the small cancellation con-
dition C'(1/6). Then every reduced disc diagram f : D — Xp satisfies the linear
1soperimetric inequality

F <15FE.

Proof. This is immediate from Proposition 6.3 and Exercise 6.6.

Corollary 6.8. If a group G admits a finite presentation satisfying the small can-
cellation condition C'(1/6), then G is hyperbolic.

Proof. This is immediate from Theorems 6.7 and 5.7.

6.9. Show that the standard presentations of fundamental groups of closed ori-
entable surfaces of genus at least 2 satisfy the small cancellation condition C’(1/6).
This gives another proof (cf. 3.17.5) that these groups are hyperbolic.

Let us also mention the following result proved by the same method.

Theorem 6.10. Suppose that the finite 2-complex X is such that there is a num-
ber € > 0 such that every reduced disc diagram f : D — X has a weight satisfying
(6.3.1) and (6.3.2) for this number €. Then the fundamental group of X is hyper-
bolic. O

6.11. Example. Consider the presentation P = (x,y, z | 22y?2?) for the fundamen-
tal group of the nonorientable surface of genus 3. This does not satisfy condition
C’(1/6) since each piece is exactly one-sixth the length of the defining relator. How-
ever an assignment of weight 7/2 to all corners in a reduced disc diagram satisfies
(6.3.1) and (6.3.2), as the reader should check, and it follows that the group of P
is hyperbolic.

6.12. Example.* If P is a finite presentation satisfying the small cancellation condi-
tion C’(1/6) and such that that no relator of P is a proper power in the free group
on the generators of P, then the group G of the presentation is torsion-free. For
let @ be the presentation obtained from P be choosing precisely one representative
from each cyclic conjugacy class of relator or its inverse and let X = Xo. Note
that the group of Q is also G. The small cancellation condition implies that 7o (X)
is generated as a m1(X)-module by classes of 2-faced spherical diagrams, where a
spherical diagram is a combinatorial map of a cell structure on the 2-sphere into
X. But the condition that no relator is a proper power means all 2-faced spherical
diagrams are null-homotopic, so it follows that m5(X) = 0. Thus, X is aspherical
in the sense that it is a K(G,1). It follows from the P. A. Smith theorem (which

9This means each relator of P is cyclically reduced, and the length of every piece of a relator
is strictly less than one-sixth the length of that relator, ¢f. [L-S]. Recall that a piece is the label
of an arc in the interior of a reduced 2-faced disc diagram. The convention of [L-S] also requires
that P contain all cyclic conjugates of every relator and its inverse.
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states that a group G with a finite dimensional K (G, 1) is torsion free) that G is
torsion-free.

6.13. A theorem of Rips’s [Rips]| states that given any finitely presented group G
there is a short exact sequence of groups

1—-—N—-F—-G—1

where F has a finite presentation satisfying the small cancellation condition C’(1/6)
and where N is a normal subgroup which is finitely generated as a group. In Rips’s
construction the group N is never finitely presented except in trivial cases, so this
gives examples of finitely generated subgroups of hyperbolic groups which are not
finitely presented. I showed in [Gerst2] that all finitely presented subgroups of
C'(1/6)-groups G (and of certain other hyperbolic groups G like those of coho-
mological dimension 2) were hyperbolic. Recently N. Brady [Brady| has given an
example of a finitely presented subgroup H of a hyperbolic group G of cohomolog-
ical dimension 3 where H is not hyperbolic. Beyond these results there is almost
nothing known about the subgroup structure of general hyperbolic groups.

7.0. Isoperimetric functions and Dehn functions. In this section I want
to digress on isoperimetric inequalities, both as a bridge between hyperbolic and
automatic groups, and because I consider these to offer an important new outlook
on finitely presented groups.

7.1. Let P be a finite presentation with G = G(P) the group determined by the
presentation. An isoperimetric function for P is a function h : N — N such that
for all relations w of length at most n one has Areap(w) < h(n). There exists a
minimal isoperimetric function for P called the Dehn function fp, where

fr(n) = max{Areap(w) | {(w) <n, w=1in G}.

Note that there are only a finite number of relations w among the generators of
length at most n, so fp(n) is a well-defined integer.

7.2. To state in what sense the Dehn function is an invariant, it is necessary to
introduce an equivalence relation on functions from N to N. If f,g : N — N we
write f < g if there exist A, B,C, D, E > 0 so that f(n) < Ag(Bn+C)+Dn+ E
for all n € N. We write f ~ ¢ if both f < g and g < f. It is clear that ~ is an
equivalence relation.

7.3.* If P and Q are finite presentations for isomorphic groups, then fp ~ fo, so
their Dehn functions are equivalent. I established this result in [Gerst], and it was
generalized in [Alon] to show that if P and Q are finite presentations whose Cayley
graphs are quasi-isometric, then their Dehn functions are equivalent.

7.4. Show that if d,d’ > 1 and if the functions 2% ~ 2%, then d = d’. Thus it
makes sense to say that the Dehn function is polynomial, polynomial of degree d,
exponential, recursive, etc. It is not too difficult to show that a finite presentation
has a solvable word problem iff its Dehn function is recursive.

7.5. The Dehn function “landscape”.

7.5.1. It follows from the theorem of Gromov-Ol’shanskii [Olshan] that a sub-
quadratic isoperimetric function implies the group is hyperbolic. 1 showed in
[Gerst2] that if the Cayley graph is not a tree, then the Dehn function grows
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at least linearly. Thus, for finite presentations of hyperbolic groups whose Cayley
graphs are not trees, the Dehn function is equivalent to x, the identity function.
There is no Dehn function equivalent to x® where 1 < o < 2.

7.5.2. “The quadratic zoo”. The following groups are known to have isoperimetric
functions equivalent to 22 (so for their Dehn functions fp we have fp =< z?):
automatic groups, CAT(0)-groups, and the (2n+1)-dimensional integral Heisenberg
groups for n > 2. I shall prove that automatic groups have quadratic isoperimetric
functions in §9 below (a theorem of Thurston’s).

The integral (2n + 1)-dimensional Heisenberg group is the group of integral
uppertriangular (n + 2)-by-(n 4+ 2) matrices with 1’s on the main diagonal and
otherwise the only other nonzero entries are in the first row and last column. It
was conjectured by Thurston that for n > 2 these groups had quadratic Dehn
functions, and this has recently been established by D. Allcock.

Thurston also conjectured that S, (H) for n > 4 has a quadratic Dehn function,
but to my knowledge this is still open.

A CAT(0)-group is a group which acts properly discontinuously and cocompactly
on a proper geodesic metric space (X, d) which satisfies the CAT(0) inequality. The
CAT(0) inequality means the following. Let ABC be a geodesic triangle in X. Form
a comparison triangle A’ B’C” in the Euclidean plane B whose respective side lengths
are equal to those of ABC, so d(A, B) = dg(A’, B'), etc. Let P be a point on the
side BC and let P’ be the corresponding point on B'C’, so d(B, P) = dg(B’, P').
Then it should be the case that d(A, P) < dg(A’, P').

I call this a zoo, because I am unable to see any pattern in this bestiary of groups.
It would be striking if there existed a reasonable characterization of groups with
quadratic Dehn functions, which was more enlightening that saying that they have
quadratic Dehn functions.
7.5.2.5. There is no example known of a group whose Dehn function is equivalent
to %, where 2 < a < 3 and it is an interesting open question whether such a group
can exist.

7.5.3. The 3-dimensional integral Heisenberg group has Dehn function equivalent
to 23. This is established in [Wordproc] and I give a different proof in [Gerst].
7.5.4. Exactly which real numbers o > 2 are such that z® is equivalent to the Dehn
function of a finitely presented group is an open question at the time of writing. A
step in this direction was taken by M. Bridson, who showed that there are infinitely
many fractions a > 3 so that there exist finite presentations with Dehn functions
equivalent to x©.

7.5.5. There are many examples of groups with exponential isoperimetric functions.
Among them are Sl3(H) and the Baumslag-Solitar groups B,, , for 1 < p < ¢, where
By, = (x,y | yz? = 2%). These results are proved in [Wordproc| and I gave a
different proof for B, , in [Gerst].

7.5.6. I showed in [Gerst] that the Dehn function for the 1-relator presentation
(z,y | z*") = 2?) grows faster than any iterated exponential. Here z¥ = y~lxy.
This is the world record growth so far for 1-relator groups. It can be shown that
Ackermann’s function, which is recursive but not primitive recursive, is an upper
bound for the equivalence class of Dehn functions of all 1-relator groups, but my
example has much slower growth than Ackermann’s function. It is quite possible
that my example is the fastest and indeed this has been announced to me in a
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private communication. This would make an interesting complement to Magnus’s
result that 1-relator groups have a solvable word problem.

7.5.7. Tt has been shown that every recursive function appears as a lower bound for
the Dehn function of some finite presentation with a solvable word problem [BMS]
Corollary 18. Thus the equivalence classes of Dehn functions of finite presentations
with solvable word problems have no recursive upper bound under the relation <.

8.0. Automata and Cannon’s Theorem. In this section I introduce finite state
automata and regular languages and state the theorem of Cannon.
8.1. Let A be a finite set and let A* be the free monoid on the set A. Thus A*
consists of all words (i.e. finite concatenations of letters) of the alphabet A including
the empty word, which I denote by “1”. The monoid operation is concatenation of
words. A subset L of A* is called a language, and, in general, if L is a language,
then L* is by definition the submonoid generated by L. If L and L’ are languages,
then L + L’ denotes their union L U L/, and LL’ is the set of words ww’ where
w € L and w’ € L. In case L consists of a single letter a € A, it is traditional to
denote L* by a* rather than by the cumbersome but correct {a}*.

Of particular interest are the regular languages, which are those recognized by
finite state automata, which we now define.
8.2. A finite state automaton (FSA) is a 5-tuple A = (T, sg, 4, \,Y) where

(1) T is a finite directed graph, with vertex set V(I') and edge set E(I'); the
vertices are called “states” and the directed edges are called “transitions”;

(2) sg is a distinguished vertex of I' called the “start state”;

(3) A is a finite alphabet;

(4) A: E(I') — A is a function which we think of as labelling the edges of " by
letters of the alphabet A; and

(5) Y C V(I') is a set of states, possibly empty, called “accept states”.

8.2.1. A simple example may help fix notions. Consider the directed graph shown
below in Figure 6.

h t
Figure 6. A Finite State Automaton

The alphabet A = {a,c,e, h,t}, Y = {y}
8.3. The language L(.A) recognized by the FSA A = {T', sg, A, A\, Y} is by definition
the set of labels A(p) of all directed paths p of I" which begin at the start state sq
and end at any state of Y; here \(p) is the concatenation of the labels of the edges
of p in order. A sublanguage L of A* which is of the form L(A) for some FSA A
with alphabet A is called a regular language.
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For example, in the FSA of Figure 6, we have L(A) = ch*att*e* = {ch™at"eP |

m,n,p > 0}.
8.4. Before stating the theorem of Cannon, it is necessary to say some words
about generators. Previously we used a set of group theoretic generators to define
the edges of Cayley graph, but even there we needed inverses to generate enough
paths to connect vertices. For example, if we take an infinite cyclic group (t) with
generating set {t}, then there is no edge-path beginning at the vertex t2, ending at
the vertex ¢, and labelled by positive powers of . However in discussing languages,
we are discussing subsets of free monoids which only involve positive expressions in
the free generators.

To remedy the problem, we let X be a finite set of group theoretic generators
for the finitely generated group G and let A = X U X!, a finite set of semigroup
generators for G. Let A* be the free monoid on the set A and let i : A* — G be the
evaluation map, which takes a word and evaluates it using the product operation
in G. The map p is surjective precisely because A was constructed as a set of
semigroup generators for G.

Theorem 8.5* (J. W. Cannon). Let X be a finite set of generators for the hyper-
bolic group G and let A = X UX 1. Let L be the set of geodesic words of A*, so
L s the set of labels of geodesic edge-paths in the Cayley graph I'q x. Then L is a
reqular sublanguage of A*.

A short and very readable proof of this result which is patterned after an argu-
ment due to Thurston can be found in [BGSS] Theorem 6.2.
8.5. Example. Let F' = F(c¢,d) be the free group with free basis {c,d}. Let
A ={c,C,d,D} and let u : A* — F be given by ¢ — ¢, C +— ¢~ !, d — d, and
D — d~'. The geodesic words in the alphabet A are just the reduced words, where
a word is called reduced if it contains no subword of the form c¢C, Cc, dD, or Dd.
A FSA with alphabet A whose language is the set of reduced words is shown below
in Figure 7. In this example every state is an accept state.

Figure 7. Automaton generating all reduced words

8.6. If G is a hyperbolic group and X is a finite set of generators for GG then the
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Cayley graph I'g x is 6-hyperbolic for some § > 0. If A = XUX ~!, we have already
seen that if v,~" are geodesic words in A* considered as paths beginning at 1 in
I'c x and if the end points of these geodesics are at most a unit apart, then there
exists k > 0 so that d(y(i),7'(i)) < k for all i € Z. In fact we can take k = 2(5 + 1)
by Lemma 5.1. This property of geodesics is called the k-fellow traveller property.
These properties of hyperbolic groups, a regular language of normal forms for
all group elements possessing the k-fellow traveller property for some k£ > 0, will be
abstracted to define the notion of an automatic structure in the next section.

9.0. Automatic groups.
9.1. Definition. An automatic structure (A, L) on a finitely generated group G is

(9.1.1) a finite set A of semigroup generators, so the evaluation map pu : A* — G
is surjective, and a regular language L C A* so that u(L) = G, such that

(9.1.2) there exists a number k > 0 so that if p, p’ € L are such that d(u(p), u(p')) <
1 in the word metric d of the Cayley graph I 4, then p and p’, thought of
as labels of paths starting at the same vertex of I'g 4, satisfy the k-fellow
traveller property.

We can think of L as a set normal forms for elements of G, and (9.1.1) says we
have a regular language of normal forms for all group elements. By (9.1.2) if
the paths p,p’ € L begin at the same vertex and end at most a unit apart, then
d(p(i),p'(i)) < k for all i € Z (recall the convention 5.0 about extending the domain
of edge-paths to Z). In particular, there may be many normal forms for the same
group element, but all such are k-fellow travellers.

9.2. Examples

9.2.1. The theorem of Cannon assures us that if A is a symmetric set of generators
for the hyperbolic group G, then the set L of those words in A* which are labels of
geodesics in I'g 4 is an automatic structure on G.

9.2.2. Let G = Z? with semigroup generators ¢ = (1,0), C = (—1,0), d = (0,1),
and D = (0,—1),s0 A={c,C,d,D}. Let L = c*d* + ¢*D* + C*d* + C*D*. Then
(A, L) is an automatic structure for G. Those who know something about regular
languages will recognize that L is given by a “regular expression”, which defines a
regular language. However it is easy enough to see that L is the language recognized
by the FSA in Figure 8 below; Y is the set of all states in this machine.

d

O O O

d d
c
So
D D D

Y Q0

D

Figure 8. Automatic language for Z?
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In terms of the square lattice lattice in R?, the language L can be described
as the language of geodesics doing all horizontal movement before doing any ver-
tical movement. Note that each group element has a unique normal form in this
language.

It remains to verify the k-fellow traveller property for suitable £ > 0. We shall
carry out the verification for p,p’ € L representing points is the first quadrant;
the other cases work the same way. Consider then p = ¢™d” and p' = ¢™titd»
where m,n > 0 thought of as paths from the origin. These paths agree for t < m,
then diverge. But for t =i > m, i € R, i < m + n, we have p(i) = ¢™d*~™ and
p'(i) = ¢™d=™m~1 We see that the distance in the word metric between these
group elements is 2, so the paths are 2-fellow travellers. There is also the case
p = c¢™d™ and p’ = ¢™d"*! to consider, but it is clear these paths are 1-fellow
travellers. Thus k = 2 and the language L satisfy the 2-fellow traveller property.
9.3. In order to see that the property of having an automatic structure is indepen-
dent of generators, one shows that an automatic structure (A, L) defined for one
set of semigroup generators for G can be translated into an automatic structure
for a second finite set A’ of semigroup generators. The verifications are carried
out in [Wordproc|. It is then permissible to define a finitely generated group as
being automatic if for one, and hence for every, finite set A of semigroup generators
there is a regular language L of normal forms for all group elements satisfying the
k-fellow traveller property for some k > 0.

9.4. Automatic groups are closed under the operations of taking finite index sub-
groups and finite extensions. The direct product and free product of two automatic
groups is also automatic. Curiously, it is unknown whether a direct factor of an
automatic group is automatic, although a free factor of one is always automatic.
These facts are proved in [Wordproc| and in [BGSS]. Another curiosity is that in
January 1989 we held a seminar at MSRI on automatic groups and I edited a set
of problems from that seminar which is published in [Gerst3]; all those problems
as originally posed are still open, although partial results have been obtained, and
some of the problems have been solved in the setting of biautomatic groups, which
I will not have time to treat here.

9.4.1. Example.” Consider the Euclidean Escher diagram Figure 1. The symme-
try group G of this tesselation of has a precompact fundamental domain, so it
follows from the Bieberbach theorem!? that G contains a subgroup of finite index
isomorphic to R2. It follows from 9.4 that G is automatic.

9.5. Automatic groups have been appearing sporadically in odd contexts. All
lattices in the Lie groups SO(n, 1), all Coxeter groups, and Artin groups associated
to the finite Coxeter groups are automatic. Perhaps the most striking result in the
area, due to L. Mosher, is that all mapping class groups of surfaces of finite type (i.e.
closed surfaces with a finite number of punctures) are automatic. However Out(F3)
is not automatic, as was shown by K. Vogtmann, basing her work on Thurston’s
argument that Sl3(R) is not automatic. It remains to be clarified where this notion
fits into the general problem of understanding finitely presented groups.

10This states that if G is a subgroup of the group of isometries of Euclidean space R* which
acts properly discontinuously and cocompactly, then G contains a subgroup of translations which
is of finite index in GG and is isomorphic to ™.



24 S. M. GERSTEN

9.6. Automatic groups are finitely presented. In fact, the proof I gave in §5 that
hyperbolic groups are finitely presented only used the k-fellow traveller property,
and hence applies without change to automatic groups. It follows from that argu-
ment that if (A, L) is an automatic structure for G with L satisfying the k-fellow
traveller property, then P = (A | R) is a finite presentation for G, where R is the
set of labels of all edge-loops in the Cayley graph I'g 4 of length at most 2k + 2.

It might appear that the same argument would prove the quadratic isoperimetric
inequality, but there is a sticking point. In the case of hyperbolic groups, the coning
argument in Theorem 5.3 used geodesics, and one always has a bound on the lengths
of geodesics, and hence a bound for the number of relators );; there. However if
we try to cone using the normal forms p in a regular language, we quickly find that
there is no bound in general on the length of p in terms of d(1, u(p)). I want to
spend the remaining time showing how to fix this problem and proving

Theorem 9.7. An automatic group satisfies the quadratic isoperimetric inequality.

The proof makes use of two lemmas. We say that (A, L) is an automatic sub-
structure of the automatic structure (A, L) for the group G if L’ is a regular sub-
language contained in L which is mapped onto G. If L has the k-fellow traveller
property, it follows that L’ also has the k-fellow traveller property with the same k.

Lemma 9.7.1. FEach automatic structure (A, L) for the group G contains an auto-
matic substructure (A, L"), whose language L' is mapped bijectively by the evaluation
mapping onto G.

One orders the alphabet A and takes the lexicographically least representative
for each group element in L. This defines L’ and it is clearly mapped bijectively onto
G by the evaluation mapping. For the proof that L’ is regular, see [Wordproc| 2.5
or [BGSS]| Prop. 1.3 page 255.

Lemma 9.7.2. If (A, L) is an automatic structure for the group G such that the
evaluation mapping p maps L bijectively onto G, then there exists M > 0 so that
for all pairs w,w" € L with d(p(w), p(w’)) =1 one has [{(w) — (w")] < M.

Proof. Assume the conclusion is false, so that one can find pairs of words w,w’ € L
which evaluate in G a unit apart with w’ arbitrarily longer than w. Let A be a FSA
with alphabet A which recognizes the language L, and let L satisfy the k-fellow
traveller property. If ¢(w) = n, then for all ¢ > 0 one has d(w(n),w’(n +1)) < k.
But the ball of radius k about 1 in I'g_4 is finite and there are only a finite number
of states in the FSA A, so if £(w’) > ¢(w), then there must exist integers i < j
with 0 < i < j < l(w’) —£(w) so that w’(j) and w'(7) represent the same element of
G and such that the word w’ is in the same state of the machine A at time i as at
time j. But then the string w’ makes a loop in the machine between times 7 and j
and the label of this loop is the identity element of G. However this means that
you can go around this loop any number of times and still get to an accept state of
A, thereby generating the same element p(w’) of G infinitely often. In other words,
L is not mapped bijectively onto G by p, a contradition.

It follows that the difference |¢(w) — ¢(w’)| is bounded if one considers all pairs
w,w’ € L which evaluate a unit apart in GG, and the Lemma is established.
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We can now give the proof of Theorem 9.7. By Lemma 9.7.1 there is an automatic
structure (A, L) for G where the evaluation mapping maps L bijectively onto G.
By Lemma 9.7.2 elements of L which evaluate to group elements a unit apart differ
in length by no more that some fixed constant M. Assume that L satisfies the
k-fellow traveller property.

From 9.6 we know that the set of labels of all loops in I'g 4 of length at most
2k 4+ 2 is a defining set of relations among the generators A. Suppose now that w is
an edge-loop in ', 4 with w(0) = 1. We cone from the identity element, in this case
not by geodesics, but rather we choose for each 0 < i < /(w) the unique element
p; € L which evaluates to w(i) in G. The same picture, Figure 5, applies here and
may help to visualize the argument. Using Lemma 9.7.2 and induction we see that
U(p;) < Mi for each i. It follows that the strip between p;, p;+1 and the edge of
w has area at most Mi. Thus we can fill w using at most Zf(:ué)_l Mi < Cl(w)?
defining relators, where C is a constant independent of w. This establishes the
quadratic isoperimetric inequality.
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