PROOF BY COMPLETE INDUCTION

Exercise 3.4 in the notes on the *Foundations of Computer Science* course (2000 Edition) by Larry Paulson presents a recurrence which may be expressed as:

$$T(1) = 1$$

 $T(2) = 1$
 $T(3) = 1$
 $T(n) = T(\lceil n/4 \rceil) + T(\lceil 3n/4 \rceil) + n$ for $n \ge 4$ (1)

The problem is to prove that the recurrence is $O(n \log n)$.

Preliminary Analysis

Given the recurrence as expressed above one can set up the following table:

n	$\lceil n/4 \rceil$	$\lfloor 3n/4 \rfloor$	T(n)	$n \log_2 n$
1	1	0	1	0.0
2	1	1	1	2.0
3	1	2	1	4.8
4	1	3	6	8.0
5	2	3	7	11.6
6	2	4	13	15.5
7	2	5	15	19.7
8	2	6	22	24.0
9	3	6	23	28.5
10	3	7	26	33.2
11	3	8	34	38.1
12	3	9	36	43.0
13	4	9	42	48.1
14	4	10	46	53.3
15	4	11	55	58.6
16	4	12	58	64.0

From the table, it seems that for values of n > 1 it is reasonable to conjecture that T(n) is $O(n \log n)$ and this conjecture will be proved by the method of complete induction.

Lemmas

In the proof that follows, three lemmas are assumed:

I
$$\lceil k/4 \rceil < 3k/4$$
 for integer $k \geqslant 2$
II $\lfloor 3k/4 \rfloor \leqslant 3k/4$ for integer $k \geqslant 0$
III $\lceil k/4 \rceil + \lfloor 3k/4 \rfloor = k$ for integer $k \geqslant 0$

The proof of these lemmas is left as an exercise for the reader.

Preliminary Observation

Inspection of the table suggests too little leeway between T(n) and $n \log n$ for comfort. Indeed, when n = 64 it is easy to show that T(n) = 389 and $n \log n = 384$. Accordingly, an attempt to prove that $T(n) = O(n \log n)$ by demonstrating that $T(n) \leq n \log n$ for $n \geq 2$ will fail. Fortunately it can be shown that $T(n) \leq 4 n \log n$ for $n \geq 2 \dots$

Proof by the Method of Complete Induction

The proposition is that $T(n) \leq 4 n \log n$ for $n \geq 2$.

Take as the induction hypothesis that, for any k > 2, one may assume that for all i such that $2 \le i < k$ that $T(i) \le 4i \log i$.

Now consider T(k) itself. If 1 < k < 5 it can be seen by inspection of the table that $T(k) \le 4k \log k$ holds. Now consider T(k) for $k \ge 5$:

$$T(k) = T(\lceil k/4 \rceil) + T(\lfloor 3k/4 \rfloor) + k \qquad \text{from the recurrence (1)}$$

$$\leqslant 4\lceil k/4 \rceil \log\lceil k/4 \rceil + 4\lfloor 3k/4 \rfloor \log\lfloor 3k/4 \rfloor + k \qquad \text{by hypothesis but see note below}$$

$$\leqslant 4\lceil k/4 \rceil \log(3k/4) + 4\lfloor 3k/4 \rfloor \log(3k/4) + k \qquad \text{by Lemmas I and II}$$

$$= 4k \log(3k/4) + k \qquad \text{by Lemma III}$$

$$= 4k (\log(3k/4) + \frac{1}{4})$$

$$= 4k (\log(3k/4) + \frac{1}{4} \log 2)$$

$$= 4k (\log(3k/4) + \log 2^{\frac{1}{4}})$$

$$= 4k (\log(2^{\frac{1}{4}} \cdot 3k/4))$$

$$\leqslant 4k \log k \qquad \text{given that } 2^{\frac{1}{4}} \cdot 3/4 < 1$$

Accordingly, $T(k) \leq 4 k \log k$ and since this is the induction hypothesis with i replaced by k the proof is complete.

Note on the use of the Induction Hypothesis

For a given k, the range of values of i for which the induction hypothesis applies is $2 \le i < k$. It is assumed in the proof that, by the induction hypothesis, $T(\lceil k/4 \rceil) \le 4\lceil k/4 \rceil \log \lceil k/4 \rceil$ and $T(\lfloor 3k/4 \rfloor) \le 4\lfloor 3k/4 \rfloor \log \lfloor 3k/4 \rfloor$. For these assumptions to be valid, the induction hypothesis requires $2 \le \lceil k/4 \rceil < k$ and $2 \le \lceil 3k/4 \rceil < k$.

Demanding $k \ge 5$, ensures that $\lceil k/4 \rceil \ge 2$ and that $\lfloor 3k/4 \rfloor \ge 2$. Moreover this demand ensures that $\lceil k/4 \rceil < k$ and that $\lfloor 3k/4 \rfloor < k$. Accordingly, meeting this demand ensures the validity of the induction step in the above proof.

Note that if k < 5 the condition $\lceil k/4 \rceil \ge 2$ fails (see table). Accordingly, the main part of the proof requires preliminary confirmation that the proposition holds for $2 \le n < 5$. This is achieved by inspection of the table.

F.H. King October 2009