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1 Let’s get started

‘ZFU’ is my name for ZF with extensionality weakened to allow urelemente.
Hence the ‘U’. It’s sometimes also called ‘ZFA’, but not by me. ‘ZFA’ is some-
times used to denote ZF with the Forti-Honsell Antifoundation axiom (usually
misattributed to Peter Aczel but never mind); ‘ZFU’ is preferable here co’s it
has no other use. (The name ‘FM’ set theory is sometimes seen in this setting.
However, since it suggests both ‘base theory, point of departure for FM models’
and ‘theory of a [particular] FM model’—and I have seen both uses—its em-
ployment can only cause confusion and should be eschewed. There are, after
all, many—wildly different—FM models!)

Now, what are these urelemente? We can use either Quine atoms (x = {x})
or empty atoms; it makes no difference to the result, and they are equally easy
to add. (i) Both flavours of atoms can be got rid of, by the simple device
of considering the substructure of the model-in-hand that consists of elements
that do not have any atom in their transitive closure. And (ii) a model with
atoms of one flavour can be straightforwardly transformed to a model with
atoms of the other flavour by Rieger-Bernays permutation models1. However the
Quine atoms treatment is perhaps ever-so-slightly preferable because it admits
additional Rieger-Bernays constructions which can remove Quine atoms and
thereby give us models that lack Quine atoms but otherwise resemble the input
model very closely. I don’t think we are going to need any of those constructions
here, but their existence and availability amount to a small plus for the Quine-
atoms way of doing things and thereby explain my preference for Quine atoms.

In what follows i am going to be a bit naughty in using ‘ZFU’ to denote the
version of ZF with Quine atoms instead of urelemente (which is usually what
is meant when people talk about ZF-with-atoms) but i don’t think anyone is
going to be seriously misled. I shall follow Felgner [2] in using the expression

1The difference between Quine atoms and empty atoms matters only if we have an axiom
of complementation, for then all Quine atoms have distinct complements whereas all empty
atoms have the same complement. And of course ZFU has no axiom of complementation. I
owe thanks to Randall Holmes for pointing out to me that one can’t just add ordered pairs
to (or delete them from) the membership relation of the model
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‘FMS’ (‘S’ for ‘Specker’) to refer to FM-methods-with-Quine-atoms—at least
in settings where it is clear that what we are doing relies on the constructions
being FMS not merely FM. I shall not be following Felgner in calling Quine
atoms ‘reflexive sets’: that word ‘reflexive’ has far too much work to do already.
Forti-Honsell call them ‘autosingletons’ which is self-explanatory, but ‘Quine
atom’ is shorter and is in general use.

1.1 Definitions

We assume the reader is familiar with Rieger-Bernays methods. They almost
certainly know at least one proof using R-B (even if they don’t know that it
is a R-B construction!) namely the proof of independence of foundation from
the other axioms of ZF. You know, the proof that considers the transposition
(∅, {∅}). The fact that the model that results from that permutation satifies
the other axioms of ZF does not rely on any features of that permutation. It
works whatever permutation is used. That particular construction adds a Quine
atom. But by judicious choice of permutations one can control in some detail
what appears in the resulting model and obtain a wider variety of outcomes.
There is a detailed theory of R-B constructions but we will not need very much
of it.

DEFINITION 1

1. Symm(X) is the full symmetric group on X.

2. StabG(x) is the set of those elements of G that stabilise x. We assume
that the action of G is understood. If G is also understood we will omit
the subscript.

3. We write ‘(x, y)’ for the permutation that transposes x and y and fixes
everything else. The only other use for ‘(’ and‘)’ is punctuation.

4. A P-embedding i from A into B is an injection i : A → B for which
the power set operation is absolute. “No new members or subsets of old
sets.” If i is the identity we say B is a P-extension of A.

2 A Basis Lemma

If we use Quine atoms in our FM construction we have violated foundation, so
we cannot use ∈-induction. However, if the collection of Quine atoms satisfies
a simple condition, we can recover ∈-induction.

DEFINITION 2
Let 〈X, R〉 be a binary structure.
An R-bottomless set is a subset Y ⊆ X s.t. (∀x ∈ Y )(∃y ∈ Y )(yRx).
We say B ⊆ X is a basis if it meets every R-bottomless set.
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If R is clear from context we shall merely say “bottomless”. (Of course for
us R is going to be ∈.)

We can now prove a version of the ∈-recursion theorem.

THEOREM 3 Let 〈X, R〉 be a binary structure and

g an arbitrary (total)2 function X × V → V ;
f a (total) function B → V ;
B ⊆ X a basis for the R-bottomless sets of 〈X, R〉 (subsets of X),

Then
There is a unique total function f∗ : X → V satisfying

(i) f∗ �B = f ;
(ii) (∀x ∈ (X \B))(f(x) = g(x, f“{y : R(y, x)})).

Proof: The idea is very simple. We obtain our best candidate for f∗ by closing
the graph of f under the operation that adds ordered pairs according to the
clause that says that f(x) =: g(x, f“{y : R(y, x)}).

Now suppose (ii) fails, so the subset Y of X on which f∗ is not uniquely
defined is nonempty. This set Y is R-bottomless because f(x) =: g(x, f“{y :
R(y, x)}). So it meets B, since B is a basis. But then f∗ is defined on at least
some of Y .

This modification of the recursion theorem looks trivial, but there are cases
where it is useful, such as the one before us, where we add Quine atoms to a
model of ZFC in a well controlled way so that every ∈-bottomless class contains
a Quine atom. But then any function defined on the Quine atoms can be
extended to the whole universe.

[What with this version of the recursion theorem being essential for the
Quine-atom route to FM models—as in [20]—i would imagine that it is to be
found there, but i confess i have never read it! I actually worked this out for
myself!]

Another application (which is so cute that i can’t bear to omit it even tho’ it’s
no use to us here) is the factoid that the late lamented Jon Barwise used to call
“The Solution Lemma”. (See [1] p ???). It is a consequence of the Forti-Honsell
antifoundation axiom that every system of equations in the style

x1 = {∅, x2, x3}; x2 = {{∅}, x3}; x3 = {∅, x1}

has a unique solution.

Let’s show how to add such bad sets to a model of ZF by Rieger-Bernays permu-
tations. Start with three sets x1, x2 and x3—it won’t much matter what they are, but

2Here V is the universe, so that when we say “g : X × V → V ” we mean only that we are
not putting any constraints on what the values of g (or its second inputs) are to be.
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let’s take them to be von Neumann reals, or something large and remote like that—
and consider the product of the three transpositions: (x1, {∅, x2, x3}), (x2, {{∅}, x3})
and (x3, {∅, x1}). In the resulting Rieger-Bernays permutation model x1, x2, x3 form
a solution to the system of equations.

What is the feature of interest here? There are these things we’re inventing, namely
the xs, and we are declaring them in terms of each other and some wellfounded sets.
In this new model the bad sets x1, x2, x3 form a basis. This basis B has the nice
property that TC(B) \ B is wellfounded: the bad sets are declared in terms of each
other and wellfounded sets only.

A final thought about bases before we set to work. If the Quine atoms in a model
M of ZFU form a basis for the illfounded sets then there is a permutation model Mπ

of M from which the Quine atoms have vanished—and which of course satisfies the
same stratified sentences as M.

3 Construction of a Simple FMS model

Whenever we have a model of ZFU we can consider a submodel (in fact an
“inner model” in the jargon of Set Theorists) consisting of those elements that
are fixed under a certain action of a group of permutations of the atoms of that
model. There are several degrees of freedom here, so it is a good idea to start
with a simple illustration.

We will exhibit the simplest possible FMS construction (which i think is
actually the original construction of Fraenkel [3]) in which the axiom of choice
for countable sets of pairs fails. This is just to get us started: more complicated
constructions will follow.

We start with a model M of ZF(C) + foundation, and use Rieger-Bernays
methods to obtain a permutation model with a countable set A of Quine atoms.
The permutation σ we use to achieve this is

σ =
∏
n∈ω

(n, {n})

the product of all transpositions (n, {n}) for n ∈ ω. (Here ω is the von Neumann
ω—with ∅ removed just to be on the safe side.) In Mσ the old ω has become a
set of atoms, which we will call A.

LEMMA 4 A is a basis for the illfounded sets of Mσ.

Proof: Suppose X is a bottomless set in the sense of Mσ. That is to say

(∀x ∈ X)(∃y ∈ X)(y ∈ x)σ.

this is
(∀x ∈ σ(X))(∃y ∈ σ(X))(y ∈ σ(x)).

Reletter σ(X) as X to obtain:

(∀x ∈ X)(∃y ∈ X)(y ∈ σ(x)) (bot)
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If everything in X is fixed by σ this would become (∀x ∈ X)(∃y ∈ X)(y ∈ x)
which would mean that X was bottomless in M. But M |= foundation, so there
can be no such x. So at least one thing in X is moved. So X contains either a
natural number n (in which case X contains an atom, since natural numbers in
M become atoms in Mσ), or contains a singleton {n} for some natural number
n. Sticking this singleton in for ‘x’ in expression (bot) above gives

(∃y ∈ X)(y ∈ n)

Now we exploit that fact that our natural numbers are von Neumann natu-
rals, so that the witness y which lives inside x is a natural number, so X contains
a natural number after all.

[We probably didn’t need the countable set on which σ acts to be any particular

set, but making it the von Neumann ω make life easier. Also i think that there is a

P-embedding from M into Mσ. Not that it matters.]

We are now going to forget that our model with the countably many atoms
arose as a permutation model with a permutation σ, so that we can recycle the
letter ‘σ’ ! The cardinality of the set of atoms won’t matter much either. All
that will matter is that the atoms form a basis for the illfounded sets, so that
we can use the modified version of ∈-recursion from theorem 3

DEFINITION 5 Any permutation σ of A lifts to an ∈-automorphism of the
universe (and this automorphism, too, will be written σ) by means of the recur-
sion σ(x) =: σ“x.

This is of course justified by theorem 3, the modified recursion theorem.
[Of course one can instead think of this—as Jamie Gabbay does—as the

group Symm(A) acting on the universe as a group of ∈-automorphisms. Quite
which of these two approaches is more convenient is a debatable point. Perhaps
the reading group will come down heavily on one side or the other.]

DEFINITION 6 A set s of atoms supports a set x of Mσ if every element of
Symm(A \ s) fixes x. If x is supported by a finite set of atoms we say x is of
finite support. We will say that s is the support of x if s is ⊆-minimal among
the sets that support x.

If x is of finite support then its support is in fact defined, as we will now
show. We will show that if x is supported by s1 and by s2 both finite, then it is
supported by s1 ∩ s2, from which it will follow that if x is a set of finite support
then there is a unique ⊆-minimal set s that supports x.

The situation we consider is quite elementary and general, and doesn’t nec-
cessarily have anything to do with FMS models at all.

LEMMA 7 Let A be an infinite set, and a1 . . . ak and b1 . . . bj two disjoint finite
subsets of it. Then any permutation τ of A can be expressed as the composition
of three permutations of A, the first one fixing all the as, the second one fixing
all the bs and the third one fixing all the as (we can do it the other way round—
“bab”—if you prefer).
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Proof:
The argument to τ might be an a, or a b or an ordinary (“O”), and so might

the values. This gives nine cases

τ sends an a to an a Fix it; move it to the a; fix it.
τ sends an a to an b Fix it; move it to an O; move the O to the b.
τ sends an a to an O Fix it; move it to the O; fix it.

τ sends a b to an a Move it to an O; move the O to the a; fix it.
τ sends a b to a b Move it to an O; fix it; move the O to the b.
τ sends a b to an O Move it to the O; fix it; fix it.

τ sends an O to an a Fix it; move it to the a; fix it.
τ sends an O to a b Move it to the b; fix it; fix it.
τ sends an O to an O Move it to the O; fix it; fix it.

The second, fourth and fifth lines compel us to use Os as stepping stones. But
there are only finitely many stepping stones needed. The ninth line is a correct
way to procede in sending an O to an O in all but finitely many cases.

So we have proved that if x has two (finite) supports s1 and s2 then it is
supported by s1 ∩ s2. Any permutation π that fixes everything in s1 ∩ s2 is a
product—as above—of three permutations that fix x; two of them permutations
that fix everything in s1 (and therefore fix x) and a third permutation that fixes
everything in s2 (and therefore fixes x). So π fixes x. So every permutation
fixing everything in s1 ∩ s2 fixes x.

Let us extend the use of ‘stab(x)’ to denote also that subgroup of Symm(A)
consisting of those permutations of A [that induce ∈-automorphisms] that fix
x.

Suppose x has support A′ ⊂ A. That is to say: every permutation of A \A′

fixes x. Can there be permutations fixing x that also move some things in A′?
Suppose stab(x) contained a permutation σ that swapped b and c, both in A′.
Now we can compose σ with anything in Symm(A \ A′) to obtain something
that fixes x, and σ−1 �(A \A′) is a permutation that fixes everything in A′. So
σ·(σ−1 �(A\A′)) fixes x, and we can compose it with any element of Symm(A\A′)
to obtain something that fixes x. But that means that any permutation of A
that swaps b and c but fixes everything else in A′ will fix x. So stab(x) is the
product of symm(A\A′) with a group G of permutations of A′. Is G is a product
of symmetric groups?

Every set x gives rise to an equivalence relation on atoms. Say a ∼x b if
(a, b) fixes x. I think it will turn out that x is of finite support iff ∼x has a
cofinite equivalence class. (If it has a cofinite equivalence class it can have only
one, and all the others will be finite). Clearly whenever a and b belong to the
same equivalence class then the transposition (a, b) belongs to stab(x).

Randall supplies the example of a set x = {{a, b}, {c, d}}. ∼x has five
equivalence classes: {a}, {b}, {c}, {d} and A \ {a, b, c, d} but stab(x) is bigger
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than the product of the symmetric group on the ∼x-equivalence classes, co’s it
contains the permutation (a, b)(c, d). So G might not be a product of symmetric
groups . . . it might contain more.

It would be nice if the class of sets of finite support gave us a model of
something sensible, but extensionality fails: if X is of finite support then P(X)
and the set {Y ⊆ X : Y is of finite support} are both of finite support and
have the same members with finite support. We have to consider the class of
elements hereditarily of finite support. Let’s call it HF . This time we do get a
model of ZF.

DEFINITION 8 HF is the inner model of sets hereditarily of finite support

LEMMA 9 The class of sets of finite support is closed under all the definable
operations that the universe is closed under.

Proof:
The idea is so simple that I shall wave my arms over it. Suppose φ(x, ~y) is

a formula that says that x = f(~y). If σ is a permutation [inducing an auto-
morphism] that fixes all the ~y, then it must also fix x—because it is an auto-
morphism. Thus if x = f(~y) we must have supp(x) ⊆ (supp(y1)∪. . . supp(yn)).

COROLLARY 10 HF is a model of all the axioms of ZF except choice: AC for
countable sets of pairs fails.

Proof: Lemma 9 takes care of the axioms of empty set, pairing, sumset and
power set. To verify the axiom scheme of replacement we have to check that
the image of a set hereditarily of finite support in a definable function (with
parameters among the sets hereditarily of finite support and all its internal
variables restricted to sets hereditarily of finite support) is hereditarily of finite
support too. The operation of translating a set under a definable function (with
parameters among the sets hereditarily of finite support and all its internal
variables restricted to sets hereditarily of finite support) is definable and will
(by lemma 9) take sets of finite support to sets of finite support.

So if X is in HF and f a definable operation as above, f“X is of finite
support. And since we are interpreting this in HF , all members of f“X are in
HF , so f“X is in HF too, as desired.

To verify the axiom of infinity we reason as follows. Every wellfounded set
x is fixed under all automorphisms, and is therefore of finite support. Since all
members of any wellfounded set are wellfounded they will all be of finite support
as well, so every wellfounded set is hereditarily of finite support. So HF will
contain all wellfounded sets that were present in the model we started with. In
particular it will contain the von Neumann ω.

It remains only to show that AC2 fails in HF . Consider the set of (un-
ordered) pairs of atoms. This set is in HF . (It has empty support). However
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no selection function for it can be in HF . Suppose f is a selection function
and {a, b} an arbitrary pair of atoms. f must pick one element from {a, b}, so
supp(f) meets every pair of atoms and is therefore infinite.

Observe that in HF the collection A of atoms is a set, but—altho’ it is
manifestly countable seen from outside (and in the sense of the original model)—
it is not countable in the sense of HF, and indeed it is not wellorderable (since
there is no choice function on the set of its two-membered subsets). In fact (tho’
we shall not prove this) we cannot even find a wellfounded set to which it is
equinumerous! Thus HF also falsifies Coret’s axiom B: “Every set is the same
size as a wellfounded set”.

4 Generalising the Construction

Now let’s stand back and have a look at what features we have used.

DEFINITION 11 Definition of General FM Model
An FM model arises from:

(i) A set U of atoms;
(ii) A group G of permutations of U ;
(iii) A normal filter F over G.

A normal filter over a group G is a collection of subgroups of G closed under
∩, superset and conjugation.

We extend permutations in G to ∈-automorphisms of our model of ZFU as
above (definition 5). We then say that a stable set is one whose stabiliser is in
F . The FM model reulting from this choice of U , G and F is the collection of
hereditarily stable sets.

In the model with which we started U is the (countable) set A of all atoms,
G is the full symmetric group Symm(A) and F is the filter generated by the set
{stabSymm(A)(X) : (X ⊆ A) ∧ |A \X| < ℵ0} of setwise stabilisers in Symm(A)
of cofinite subsets of A.

Typically G will be the full symmetric group Symm(U), but it doesn’t have
to be, and if it isn’t we can arrange for lemma 7 to fail. [Thanks to Randall
for this illustration.] Consider a model in which we start with countably many
atoms, partitioned into pairs (“socks”). We consider only permutations that
respect the pairs. Then consider the sets hereditarily of finite support as usual.
Now let x be {{a, b}, {c, d}}, where {a, b} and {c, d} are two pairs of socks. Then
the set {a, c} supports x (beco’s among the permutations-that-preserve-pairs,
all those that fix both a and c also fix x) and so does the set {b, d} (beco’s
among the permutations-that-preserve-pairs, all those that fix both b and d also
fix x).

Note that for lemma 9 to hold we need F to be closed under finite intersec-
tions and superset. Why do we

need it closed
under conjuga-
tion?8



5 Embeddings between FM Models

Usually an FM model is a one-off construction, done to order to solve a partic-
ular independence question, and there is not normally any reason to consider
relations between FM models, no need to consider more than one model at a
time. However more complicated situations can arise in which we are juggling
several FM models and we want to know about embedding relations between
them. As is our habit, we will start with a simple illustration.

If we fix U and G, but rerun the construction with an F ′ ⊃ F we obtain
more sets, and the first FM model is a proper substructure of the second. (For
example, F ′ could be the filter generated by {stabSymm(A)(X) : X ∈ U} for U
some nonprincipal ultrafilter on A) then we have in the resulting FM model all
the sets we had in our original model plus some more.) What can one say about
the inclusion embedding?

Or again, let A be a set of atoms, and B ⊂ A with |B| < |A|, both infinite.
We obtain two FM models from this, MB and MA: MB is the collection of
sets hereditarily of finite support (“HF”) with support a subset of B, and MA

similarly consists of those things hereditarily of finite support with support a
subset of A. Observe that MB is not a substructure of MA, co’s there are sets
of atoms in MB that are not in MA (for example the cofinite subsets of B).

It’s pretty clear that there should be an injection i : MB ↪→ MA. It sends
atoms to themselves, and if b ⊂ B is a set of atoms in MB we want i(b) to be
b if b is finite and b ∪ (A \ B) otherwise. So far so good. The challenge now is
to show that i can be extended naturally to something defined on the whole of
MB , and that the result is an elementary embedding.

Observe that, for x ∈ MB , supp(x) = supp(i(x)), at least when x is a set of
atoms. Is this always going to be true? What is to stop us declaring i(x) =: i“x?
As Randall says, consider the set [B]2 of pairs of atoms from B. It’s a set of
MB but not of MA. Is i a P-

embedding?
From here on things become a bit sketchy!

5.1 John Truss writes

I’m sorry if I ignored (or seemed to ignore) your message. Looking it up, there
was just one, that’s to say whether if you take an infinite subset of the set of
atoms, and take the basic Fraenkel models (I think that’s what they are, before
Mostowski got involved) one’s an elementary substructure of the other. Well,
that must be true! But if you say it’s tricky to prove, then I’d take your word
for it. At any rate, they’re isomorphic (which isn’t what you asked). I looked at
that sort of thing in the old APAL paper entitled ’The structure of amorphous
sets’, [21]. Basically, given two FM models which ’ought’ to be the same, you
force using finite maps between subsets of the sets of atoms (in the general case
preserving some structure on them) and pass to the generic extension; then
prove that the original models are suitable submodels of the generic extensions,
or something like that. . .
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[tf interjects: of course you can play an Ehrenfeucht-Fräıssé game to show
that they are elementarily equivalent! mind you, that isn’t enough for what we
want.]

. . . Another related thing which should be true, but perhaps you’re not inter-
ested in, is this: if M and N are Mostowski ordered models formed by starting
with the sets of atoms as the rationals and the reals respectively, then M is an
elementary substructure of N. I think I worked out that they are elementarily
equivalent, but presumably the stronger statement should be true.

I’ll see if there’s anything I can send you. Some of it is from the pre-digital
age, so might have to be scanned first.

All the best, John

5.2 Randall on Elementary Embeddings

Randall sez (and i’m going to edit this)
Notations are of two kinds. (xm, n), where m ≤ n, represents the function

from n-term injective finite sequences of atoms which returns the mth term of
the sequence: (xm, n)[(a1, . . . , an)] is defined as am.

(A,n), where A is a set of notations such that for every (a,m) ∈ A, m ≥ n,
represents a more complex function taking n-element sequences of atoms as
input:

(A,n)[(a1, . . . , an)][v] is defined as {(a[w] : a ∈ A ∧ v ⊆ w}.
All notations are defined in this way.
We prove by induction on the structure of notations that π(n[v] = n(π ◦ v)

and n[v] has the range of v as a support for any notation n. This is obvious for
the atomic notations: π((xm, n)[(a1, . . . , an)]) = π(xm) = (xm, n)[π(a1), . . . , π(an)].
a support of (xm, n)[(a1, . . . , an)] = am is {am} ⊆ {a1, . . . , an}, and of course a
finite superset of a support is a support.

Now suppose for a set notation A that every element of A satisfies these con-
ditions. π((A,n)[(a1, . . . , an)][v]) = {π((a[w]) : a ∈ A ∧ v ⊆ w} = {(a[π ◦w] :
a ∈ A∧v ⊆ w} = {(a[π ◦w] : a ∈ A∧π◦v ⊆ π◦w} = π((A,n)[(a1, . . . , an)][π◦
v]). Further, if π fixes each element of v = (a1, . . . , an), then for each el-
ement a[a1, . . . , an, b1, . . . , bm] of (A,n)[(a1, . . . , an)][v], its image under π is
a[π(a1), . . . , π(an), π(b1), . . . , π(bm)] = a[a1, . . . , an, π(b1), . . . , π(bm)] which also
belongs to(A,n)[(a1, . . . , an)][v] and its inverse image under π also belongs to
(A,n)[(a1, . . . , an)][v] for the same reason, so A is fixed under π as desired.

This means that every set thus denoted belongs to the FM model.
Now we show that every set in the FM model is thus denoted (lies in the

range of one of the functions represented by the notations). We show this by
induction on rank.

Clearly every atom is in the range of a notation function (specifically (x1, 1)).
The empty set is in the range of (∅, 0), Suppose that each set of rank β < α is in
the range of some notation function. Let A be a set of rank α. Each a ∈ A can be
written in the form na[w] by inductive hypothesis. Let S be a support of A. By
changing indices of component notations xi, we can arrange for each w to have
the same initial segment v = (a1, . . . , an) whose range is S. Now observe that for
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any notation na that we have used, since na[w] = na[(a1, . . . , an.b1, . . . , bm) = a
is in this set, the value of any notation na∗ [w] = na[(a1, . . . , an.b∗1, . . . , b

∗
m) is

also included in the set, because it is the result of the action of a permutation
fixing S on an element of the set A (it is important here that the argument lists
do not contain repeated elements). Thus (after the indicated modifications) we
see that ({naa ∈ A}, |S|)(v) = A.

Now we show that a model of this kind with atom set A is elementarily
equivalent to its submodel with atom set B an infinite subset of A. The ele-
mentary embedding sends each element of the model with atoms B written in
the form A[v] to the element of the model with atoms A represented by exactly
the same notation.

We need the following fact. x = y ↔ π(x) = π(y) and x ∈ y iff π(x) ∈ π(y)
for the particular permutations π induced by actions on atoms that we work
with. Thus any atomic sentence M [(a1, . . . , an)]R N [(b1, . . . , bn)] has the same
truth value as M [(π(a1), . . . , π(an))]R N [(π(b1), . . . , π(bn))] (R being member-
ship or equality). Here we have used what we showed above about actions of
permutations on our notation functions. And this implies that the truth value
of such a sentence in any model depends only on the identities of M and N and
the truth values of sentences ai = bj .

For any x in the smaller model (with atoms B) we associate an x∗ in the
larger model (with atoms A) written using the same notation. For any x in the
smaller model, let x∗ be the object with the same notation in the larger model.

We need to establish that this is well-defined: for any notations m and n,
and vectors taken from B, m[v] = n[w] in the smaller model iff m[v] = n[w] in
the larger model.

If one of the notations m and n is a projection map xm, then the other
must also be a projection map, as its value must also be an atom, and clearly
m[v] = n[w] = a in either model implies m[v] = n[w] = a in the other model
in this case.

Suppose that m[v] = n[w] in the smaller model. Let x be an element of
m[v]. It must be of the form m′[v′] where m′ ∈ π1(m) and v′ extends v. It
must also be of the form n′[w′] where n′ ∈ π1(n) and w′ extends w. Since we
have m′[v′] = n′[w′] for the smaller model, we must also have m′[v′] = n′[w′]
for the larger model (induction on complexity of notations). Now any element
of the set denoted by m[v] in the larger model must be of the same form m′[v′]
described above. Change atoms in A \ B which occur in m′[v′] into atoms in B
using a permutation σ of A which fixes the atoms in B which appear in m′[v′].
The resulting m′[v′′] will be equal to a n′[v′′] whose referent in the smaller
model is equal to m′[v′′]. We can then apply σ−1 to send m′[v′′] back to m′[v′]
and n′′[w′′] to n′[w′], which is the same object (of course) but also clearly an
element of n[w] in the larger model. The argument is symmetrical, so the two
sets are the same.

Now suppose that m[v] = n[w] in the larger model. An element of m[v] in
the smaller model has notation m′[v′]. This refers to an element of the larger
model as well, and must be equal there to an n′[w′]. Because the set m′[v′] has
support included in B in the larger model, we can apply a permutation to get
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a notation n′[w′′] in wich no atoms not in B without changing its value. So we
have established m′[v′] = n′[w′′] in the larger model and so also in the smaller
model by induction on complexity. But clearly n′[w′′] ∈ n[w] in the smaller
model, and by symmetry of the situation we see that the two sets are the same.

We also need x ∈ y ↔ x∗ ∈ y∗. This follows fairly easily. The truth of
m(x) ∈ n(y) in either model depends on the equality of m(x) with some term
n′(y′) (and in the larger model considerations of support allow you to assume
that additional atoms in y′ are in B); then this equality fact can be transferred
from one model to the other by the previous discussion.

Now that we have handled atomic statements, we indicate how the inductive
argument for statements with quantifiers will go.

Suppose that (∃y.P (x∗, y)) is true in the larger model, where x is in the
smaller model. Find y witnessing this. Apply a permutation to send all argu-
ments in a notation representing y to elements of B (which will not affect the
truth value of the statement, as shown above). Then y = z∗ for some z, so we
have P (x∗, z∗), so we have P (x, z) in the smaller model, so we have (∃x.P (x, z))
in the smaller model.

Suppose that (∃y.P (x, y)) is true in the smaller model. Then P (x, y) is true
in the smaller model, P (x∗, y∗) is true in the larger model, so (∃y.P (x∗, y)) is
true in the larger model.

An argument by induction on the structure of formulas here would also
need to include an extension of the assertion that applying permutations to
parameters in a statement will not affect its truth value. This isn’t doubtful
(we showed it for atomic statements above), just annoying.

G’day, it’s me again. Every element x of MB is a union of Symm(B\
supp(x))-orbits. So, once we know what to send orbits to, we have a defi-
nition of i by ∈-recursion. The obvious thing to do is to send a Symm(B\
supp(x))-orbit O to is the Symm(A\ supp(i(x)))-orbit of i(x). Or do we mean
the Symm(A\ supp(x))-orbit of i(x)? It turns out that it won’t make any dif-
ference beco’s—according to Randall—supp(i(x)) = supp(x) anyway. (Which
is what one would expect)

For a start, we’d have to check that it doesn’t make any difference to the
answer if we pick a different representative of O.

But i have a worry of higher priority. Every element x of MB is a union
of Symm(B\ supp(x))-orbits. But—more to the point—x is also a union of
Stab(x)-orbits. . . and it is presumably this group we need rather than Symm(B\
supp(x)).

5.3 A message from Jamie Gabbay

Dear Randall and Thomas,
I’m writing following conversations with both of you to describe some maths

that has not yet been put together (and perhaps cannot be put together), but
I see its shape in other papers. I’ll be as brief and clear as I can, and I welcome
input.
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It turns out that FM sets have a capture-avoiding substitution action. That
means that given elements x and u and an atom a you can form x[a → u] which
is in some sensible sense “x with a substituted for u”.

(This substitution is capture-avoiding; e.g. Atoms[a → u] =Atoms. So this
is not the obvious replacement of a with u in x.)

Call such an abstract substitution action a *σ-action*. So the universe of
FM sets supports a σ-action. This is documented in two papers (both technical):
[8] and [9]

It also turns out that if X has σ-action then (after the fashion of a Stone
Duality construction) also P(P(X)) has a corresponding σ-action. And further,
P(P(X)) is a model of first-order logic. Also, P(X) has an inverted dual to the
σ-action, which I all an *amgis-action*.

The sense in which I mean “model of first-order logic” is unorthodox. P(P(X))
is a Boolean algebra, but using *nominal* algebra we can define a generalisation
of Boolean algebra that is to predicate logic, as propositional logic is to Boolean
algebra, like so:

• Algebra, Boolean algebra, powerset

• Nominal algebra, FOLeq algebra, nominal powerset

To use some jargon, if X is a σ-algebra then P(P(X)) is a FOLeq algebra
(first-order logic with equality).

This is documented in [10] and also in an unpublished draft under consider-
ation for a journal (semocn), which I attach (please do not distribute it).

What semocn adds over stodnf is the observation that a FOLeq algebra
allows an *absolute* denotation of first-order logic. By “absolute” I mean there
is no valuation: given a predicate φ its sets denotation [[φ]] is a set, and we do
not need a valuation mapping free variables of φ to elements. Intuitively, free
variables of phi are interpreted as themselves, as FM atoms.

Now for some speculation:

• We can we extend this from first-order logic with equality to the language
of set theory, i.e. we can add ∈. So for the specific case that X has a
σ-action and a notion of set inclusion (e.g. take X to be some “big” FM
set), then P(P(X)) is itself a model (or nearly so, depending on the size
of X) of FM set theory. This is like a Stone Duality result, but for set
theory. Weird.

• The resemblance with stratification is unclear. The “P(P(X))” construc-
tion is stratification-flavoured, in that elements of X and P(P(X)) are
“positively oriented” and have a σ-action, but elements of P(X) are neg-
atively oriented, and have this *amgis-action. * This means that x and
{x} are different, because if {x} is positive then x is negative; x might be
the same but in one case it is required to have a σ-action and in the other
an amgis-action. For me, this is reminiscent of a stratification condition.
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• I am also reminded of Thomas’s work on the semantic characterisation
of stratification—you use permutations of the universe to detect how far
“down” a predicate looks into a set. I wonder if the σ-action is doing a
similar job: a predicate φ can’t “see” too far into x when φ(x′) if and only
if φ(x) for every x′, a, and u such that x′[a → u] = x.

• I lied about P(P(X)) being a FOLeq algebra. It’s actually a restriction
to a subset of P(P(X)) that forms the FOLeq algebra; it’s a pretty big
subset, but the difference is “noticeable” (to see the precise conditions,
see Definition 3.16 of the attached paper). So I had hoped to build a
model of set theory by iterated restricted powersets—analogously to how
we build a model of FM sets by iterated finitely-supported powersets—but
that may not be possible. Intuitively, this reflects that it may be possible
to take a set representing a predicate and remove a single element from it
“by hand” to obtain a set that does not represent a predicate. However,
perhaps for sets that are “large enough”, this cannot be done, because our
language of set theory can’t identify individual elements any more. I just
don’t know, and I’d welcome ideas.

I’m not sure how this all fits together, and fits in with your work, but it
seems to me that there is something going on here.

Let me sum this up as follows:

• FM sets has a σ-action. [he means: every model of ZFU has a σ-action]

• There is a notion of FOLeq algebra which generalises Boolean algebra to
first-order logic with equality.

• This notion can be extended further to include a notion of ∈, set mem-
bership, though I haven’t written that up.

• That basically means that given any model of set theory X (or just a rather
big set) we get another model out of (nearly) P(P(X)), though x = y and
x ∈ y are not interpreted as literal equality and set membership any more,
but as elements of P(P(X)). Is that interesting?

• The “double powerset” construction has a “σ-amgis-σ” structure that re-
minds me of stratification.

• I wonder if this can be usefully iterated, as the P construction can be
iterated. Note: it’s not difficult to build an X with both a sigma *and*
an amgis-action.

• I wonder if the σ-action can be linked to Thomas’s work on semantically
characterising stratification.

• Very concretely, I wonder if it might be interesting to just take stodfo and
extend it with ∈ to obtain a topological analogue of set theory.

I welcome comments.
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5.4 Correspondence Gabbay-Forster

tf writes

Good. Now i have to understand what this capture-avoiding substitution is.
You say it isn’t the obvious thing..

Let’s start with an FM model. Specifically with the model in which every
set has finite support. I’m in with a chance if you do that.

Jamie writes

We’re thinking in terms of FM sets. So we want some definition of substitution
on the sets universe x[a 7→ u].

Substitution should interact consistently with the FM notion of support. In
particular this means that if a#x

...which means that a is not in the support of x.? [interjects tf]

then x[a 7→ u] = x.
It is a fact that supp(A) = ∅. So a#A. Therefore, whatever we take

x[a 7→ u] to be, it should satisfy A[a 7→ u] = A.
The ‘obvious’ definition of substitution includes that for a set X, X[a 7→

u] = {x′[a 7→ u] : x′ ∈ X}.

tf writes

Yep, it does, indeed, as you say. So far i’m with you.
Presumably, when x is an atom, x[a 7→ b] is x unless x = a in which case

it is b. So the problem is that the function [a 7→ b] doesn’t just permute the
atoms. Am i right?

Jamie writes

This would imply that A[a 7→ b] = A\{a}. We do not want this behaviour, so
we cannot take the ‘obvious’ definition above.

A[a 7→ b] = A\{a}....?

tf writes

Does this mean the same as
A[a 7→ b] = {x[a 7→ b] : x ∈ A}.

Jamie writes

Dear Thomas,
OK, so the challenge is to define a capture-avoiding substitution on FM sets.

The literature contains two approaches:
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1. stusun “A study of substitution”. [8]

2. stodfo “Stone duality for first-order logic”. [10]

I’ll sketch both.
For A ⊆ A define fix (A) = {π : ∀a∈A.π(a) = a} (as standard).
[So fix (A) is the pointwise stabiliser of A]
The idea of stusun is this:
* It is a fact that every FM set X (not an atom) can be expressed as a union

of orbits x

x

A where x ∈ X and A ⊆ supp(X), and
[so this will be enuff, beco’s the operation [a 7→ b] commutes with set union

in the sense that the result of substituting a for b in X is the union of the results
of substituting a for b in all the PLANES (yipee!) included in X.]

Yes. Exactly!

No! I’m glad you brought this up. [a 7→ b] does not commute with set union
[in a different sense].

Consider that a[a 7→ b] = b and (it is a fact that) (A\{a})[a 7→ b] = A\{b}
and also A[a 7→ b] = A (since a#A). You can do the sets calculations yourself,
writing A as {a} ∪ (A\{a}).

The substitution of [8] (there are actually two in [8], but they both display
this behaviour) does not commute with ∪ or ∩ in general.

Here is what I know:
* The second substitution action in stusun commutes with ∆ (exclusive or),

but again not with ∪ or ∩ in general.
* Both substitution actions from stusun commute with nominal abstraction

[a]x; the notion of atoms-abstraction from my PhD thesis which in the notation
I have given you previous is defined by [a]x = (a, x)

x

supp(x)\{a}. See Definition
3.8 of fountl. * frenrs identifies a subclass of FM sets which I call positive sets,
for which substitution is better-behaved. The class of positive sets is not closed
under negation. * stodfo defines a substitution action that commutes with ∩,
∪, and complements \. However, this is a completely different substitution
action and is not defined orbit-wise. The substitution action of stodfo does not
commute with nominal abstraction.

One of the puzzles of my current research is why there are these two (or
three) substitution actions on FM sets, one pair of which commutes with ‘orbit’
or ‘datatype’ structure [a]x, and the other commutes with ‘logical’ structure ∪,
∩, and \.

x

x

A = {π·x : π ∈ fix (A)}. In words, x

x

A is the set of π·x such that π fixes A
pointwise.

[he means that x

x

A is the orbit of x under the action of the pointwise sta-
biliser of A]

In stusun, I call the set of (x,A) pairs necessary to generate X, the * planes*
of X.

[he means the planes are the orbits into which you decompose x..?]
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(The definitions are 2.16 and 3.10 of [8]. However, I would suggest you might
prefer the presentation—which I wrote some years later—in [9], definitions 3.1
and 3.3.)

A has one plane (up to α-conversion of planes): a

x

∅;
A \ {a} has one plane (up to α-conversion): b

x

a;
{a} has one plane: a

x

a.

Now defining substitution is kind of simple if we can just define it on the
planes.

So we define ∈-inductively:

a[a 7→ u] = u etc
and
(x

x

A)[a 7→ u] = x[a 7→ u]

x

A\(a∪supp(u))

as usual.
(The above is a lie; the actual definition is more complex, but not for very

interesting reasons. See 3.14 of [8] if you dare. I would write it differently today.
It doesn’t matter for now, though.)

Let’s try this with A to get the idea. A = b

x

∅ so A[a 7→ u] = (b[a 7→ u])

x

∅ =
b

x

∅ = A.
Perfect!
The definition in [8] has the following good property: *if* x consists of

nominal abstract syntax (syntax-with-binding) as constructed in my PhD thesis,
*then* x[a 7→ u] is equal to what x with a substituted for u should be. So in
this sense, [8] is a generalisation of my PhD from syntax to ... all of FM sets.
Amazing.

stodfo takes a completely different approach. We introduce an auxiliary
amgis-action [u 7→a] and set X[a 7→ u] = {x : x[u 7→a] ∈ X} and X[u 7→a] = {x :
x[a 7→ u] ∈ X}.

This introduces the rather odd (in the context of FM sets) ‘polarity’ of
sets; given x, it can be considered *positively* and we calculate x[a 7→ u], or
*negatively* and we calculate x[u 7→a].

You might guess that the definition above will not give us a#X implies
X[a 7→ u] = X. You would be right—it doesn’t!

However, if we restrict to the X that *do* have this property, and construct
the set of such X and call it powσ(X), then it turns out that such X are
closed under the substitution action so powσ(X) does have a capture-avoiding
substitution action.

The feature of [10] is that by virtue of being a powerset, powσ(X) also has the
structure of a Boolean algebra—but there’s more, because we have substitution
too, and so by taking intersections we can interpret universal quantification. In
fact, powσ(X) is a model not just of Boolean algebra but of first-order logic.
Also amazing.

How are you with this so far?
Jamie
p.s. FYI there’s more to being capture-avoiding than a#x → x = x[a 7→ u].
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The three “capture-avoidance” properties are:

(1) a#x → x[a 7→ u] = x;
(2) b#x → ((b, a)·x)[b 7→ u] = x[a 7→ u];
(3) a#v → x[a 7→ u][b 7→ v] = x[b 7→ v][a 7→ u[b 7→ v]].

Here (b, a) is the swapping permutation taking b to a, a to b, and c to c.
(3) is often called *the substitution lemma* when applied to syntax.
In [8] I generate a substitution action that satisfies (1) and (2) but only

satisfies (3) for “a lot” of sets. I don’t think any of this matters for the embedding
you want, because the embedding is a far simpler definition than the substitution
of [8].

So if all you want to do is embed a copy of x
x

A in MS as x

x

A in MT then
you can probably ignore (1), (2), and (3) above, and just concentrate on the
theory of planes of FM sets.

Another message from Jamie

Dear Thomas,
So suppose for simplicity B ⊆ A. Consider two models of ZFA (a.k.a. ZFU),

MB and MA, as you described.
I need to change notation. I will write S and T where you wrote B and A.

A and B will henceforth range over finite sets of atoms.
We want to inject MS into MT .
Atoms map to themselves, as you observed.
Consider some set X ∈ MS . By Theorem 3.12 of [8] we can write

X =
⋃
{x

x

A | x

x

A ∝ X}

Here we use the following macro: ∝ and this notation is from [9], not [8],
but means “x

x

A is a plane in X”, which is written “(x,A) ∈ plane(X)” in [8].
It’s the same definition.

A plane in X a subset x

x

A ⊆ X such that A is a minimal subset of supp(X)
such that x

x

A ⊆ X. See Definition 3.10 of [8].
[The point is that these As are finite, and that x

x

A (for fixed x) gets bigger
as A gets smaller.]

Planes can overlap, and planes-in-X do not all have to have the same A.
Consider for instance

X = (a, b)

x

{a} ∪ (a, b)

x

{b}.

It is easy to see that this consists of two planes which overlap and have different
A.

(a, b)

x

{a} = {(a, b), (a, c), (a, d), (a, e), ...}
(a, b)

x

{b} = {(a, b), (c, b), (d, b), (e, b), ...}

The relationship between supp(X) and the As in its planes is given by The-
orem 3.13 of [8].
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So we have identified the planes x

x

A ∝ X. If we can map sets of the form
x

x

A from MB to MA then we are done, because we can extend this “planewise”
to general X.

So we have essentially reduced the problem to mapping x

x

A from MS to
MT .

Now we note that x

x

A is actually dependent on S and T . Because:
In MS the set x

x

A is equal to

{π(x) : π ∈ fix (A ∪ (A \ S))}.

In MT the set x

x

A is equal to

{π(x) : π ∈ fix (A ∪ (A \ T ))}.

[But i’m still not *entirely* happy. Then the argument to the ‘fix ’ is an
infinite set. Is that what you mean?]

Yes, kind of. You build MS and MT using atoms from S and T , so obviously
the notion of “atoms-orbit” x

x

A is relativised to the “atoms available”, which is
S and T respectively.

Viewed externally, from the point of view of some larger set of “all possible
atoms”, which may be infinitely larger than S and T , this does indeed lead to
an argument to fix—externally—that is infinite.

This is just an artefact of the way you set up your models.

So we map x
x

A (in MS) to x

x

A (in MT ), and we are done.
[There may be merit to be gained by thinking of these two sets of permuta-

tions as {π(x) : π ∈ fix (S ⇒ A)} and {π(x) : π ∈ fix (T ⇒ A)}?]
Of course this needs to be checked, but I would expect it to work.
Jamie
p.s. I have looked at such problems in the past.
* Section 9.5 of [6] performs (I think) essentially the construction above, for

the case where T = S ∪ {c} where c is an atom and c 6∈ S (actually something
a little stronger, identifying the exact image of MS in MT ). The notation and
language in which the result is expressed are completely different, though.

* A paper in the JSL “Finite and infinite support in nominal algebra and
nominal logic” gabbay.org.uk/papers.html#finisn addresses a related ques-
tion, of moving between universes with finite support and universes with infinite
support. I don’t suggest that this illuminates the discussion above of MS and
MT directly, but I mention it in case the information is useful later.
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