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MPhil in Advanced Computer Science

Introductory logic

Leader: Thomas Forster
Timing: SS03; 0900 Tu, Thu, Michaelmas weeks 5-8
Prerequisites:
Structure: study group of 8 hours

AIMS

This module aims to provide the basic mathematical logic which will be assumed
in later courses.

SYLLABUS

1. Propositional Calculus: truth-functional models, a deductive calculus and
a proof of soundness and completeness.

2. First-Order Predicate logic: Tarskian truth and models, a deductive cal-
culus and a proof of soundness and completeness.

3. Compactness and Löwenheim-Skolem theorems.

4. First-order theories and their models: some examples with indications
(and in some cases proofs) of which theories are complete/incomplete:
Dense linear orders,
Natural numbers with successor,
Pressburger arithmetic,
Peano arithmetic,
Real-closed fields.

OBJECTIVES

On completion of this module students should: have a good understanding of
propositional and first order logic, their proof systems and models.

ASSESSMENT

A percentage grade based on a take-away exam, possibly supplemented by
weekly handout exercises; assessed by TF.

RECOMMENDED READING

Enderton: ‘A Mathematical Introduction to Logic’
Forster: ‘ Logic, Induction and Sets’
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SYNOPSIS

• Lectures one and Two. Syntax of propositional logic. Truth-functional
connectives only. Formal semantics using valuations. Space of valuations.
Evaluation strategies. Natural deduction and sequent calculus. Soundness
and completeness. Interpolation. Curry-Howard.

• Lectures three and four. Predicate calculus syntax. Natural deduction
and sequent calculus. Epsilon terms, completeness. Löwenheim-Skolem
theorem.

• Lectures five and six. Categoricity. Assorted first-order theories. Dense
linear orders. Natural numbers with successor. Pressburger arithmetic.
Peano arithmetic. Real-closed fields

• Lectures seven and eight. Possible world semantics
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Chapter 1

Two Lectures on
Propositional Logic

Syntax of propositional logic. A propositional language is launched by an al-
phabet, which is a set of propositional letters, and the propositional language
is the set of all formulæ built up from the propositional letters by means of
whatever connectives we specify—typically ∧, ∨, →, ¬ and ←→. A valuation
is a function from the alphabet to {0, 1} (the set of truth-values)

Truth-functional connectives only.

1.1 Formal semantics

If you know what a topological space is, and what a compact space is, you might
like to try the following exercise:

EXERCISE 1 V, the space of valuations, is the set of all valuations on (the
alphabet of) L. We endow L with a topology by taking, for each finite set P ′ ⊂ P
and each finite map v : P ′ → {0, 1}, the set

{v′ : (∀p ∈ P ′)(v(p) = v′(p))}

(of all valuations that agree with v) to be a basic open set. Prove that this
topology is compact.
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The key to not getting lost in this enterprise is to bear in mind that the
expressions of propositional logic are built up from atomic formulæ (letters)
whose meaning is not reserved: they can be anything: Anna can cancan or
Kant can’t cant, but the symbols in the logical vocabulary—‘∧’, ‘∨’ and so
on—emphatically are reserved.

A valuation [for propositional language] is a function that assigns truth-
values (not meanings!) to the primitive letters of that language. We will use
the letter ‘v’ to range over valuations. Now we define a satisfaction relation sat
between valuations and complex expressions.

DEFINITION 1 A complex expression φ might be a propositional letter and if
it is then sat(v, φ) is just v(φ), the result of applying v to φ;

If φ is the conjunction of ψ1 and ψ2 then sat(v, φ) is sat(v, ψ1)∧sat(v, ψ2);
If φ is the disjunction of ψ1 and ψ2 then sat(v, φ) is sat(v, ψ1)∨sat(v, ψ2);
If φ is the conditional whose antecedent is ψ1 and whose consequent is ψ2

then sat(v, φ) is sat(v, ψ1)→ sat(v, ψ2);
If φ is the negation of ψ1 then sat(v, φ) is ¬sat(v, ψ1) ;
If φ is the biconditional whose two immediate subformulæ are ψ1 and ψ2

then sat(v, φ) is sat(v, ψ1)←→ sat(v, ψ2).

Notice that here i am using the letters ‘φ’ and ‘ψ1’ and ‘ψ2’ as variables that
range over formulæ, as in the form of words “If φ is the conjunction of ψ1 and
ψ2 then . . . ”. They are not abbreviations of formulæ. There is a temptation to
write things like

“If φ is ψ1 ∧ ψ2 then sat(v, φ) is sat(v, ψ1) ∧ sat(v, ψ2)”

or perhaps

sat(v, ψ1 ∧ ψ2) is sat(v, ψ1) ∧ sat(v, ψ2) (1.1)

Now although our fault-tolerant pattern matching enables us to see imme-
diately what is intended, the pattern matching does, indeed, need to be fault-
tolerant. (In fact it corrects the fault so quickly that we tend not to notice the
processing that is going on.)

In an expression like ‘sat(v, φ)’ the ‘φ’ has to be a name of a formula, as we
noted above, not an abbreviation for a formula. But then how are we to make
sense of

sat(v, ψ1 ∧ ψ2) (1.2)

The string ‘ψ1 ∧ ψ2’ has to be the name of formula. Now you don’t have to
be The Brain of Britain to work out that it has got to be the name of whatever
formula it is that we get by putting a ‘∧’ between the two formulæ named by
‘ψ1’ and ‘ψ2’—and this is what your fault-tolerant pattern-matching wetware
(supplied by Brain-Of-Britain) will tell you. But we started off by making a
fuss about the fact that names have no internal structure, and now we suddenly
find ourselves wanting names to have internal structure after all!
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In fact there is a way of making sense of this, and that is to use corner quotes
to create an environment wherein compounds of names of formulæ (composed
with connectives) name composites (composed by means of those same connec-
tives) of the formulæ named

So 1.1 would be OK if we write it as

sat(v, pψ1 ∧ ψ2q) is sat(v, ψ1) ∧ sat(v, ψ2) (1.3)

An alternative way of proceding is to dispense with corner quotes and use
an entirely new suite of symbols—as it might be ‘and’ and ‘or’ and so on, and
setting up links between them and the connectives ‘∧’ and so on in the object
language so that—for example

ψ1 and ψ2 (A)

is the conjunction of ψ1 and ψ2. The only drawback to this is the need to Allude to Quine: ML
conjure up an entire suite of symbols, all related suggestively to the connectives
they are supposed to name. Here one runs up against the fact that any symbols
that are suitably suggestive will also be laden with associations from their other
uses, and these associations may not be helpful. Suppose we were to use an
ampersand instead of ‘and’; then the fact that it is elsewhere used instead of ‘∧’
might cause the reader to assume it is just a synonym for ‘∧’. There is no easy
way through.

1.2 Eager and Lazy Evaluation

The recursive definition of sat in the previous section gives us a way of deter-
mining what truth-value a formula receives under a valuation. Start with what
the valuation does to the propositional letters (the leaves of the parse tree) and
work up the tree. Traditionally the formal logic that grew up in the 20th cen-
tury took no interest in how things like sat(φ, v) was actually calculated. The
recursive definition tells us uniquely what the answer must be but it doesn’t tell
us uniquely how to calculate it.

The way of calculating sat(φ, v) that we have just seen (start with what the
valuation does to the propositional letters—the leaves of the parse tree—and
work up the tree) is called Eager evaluation also known as Strict evaluation.
But there are other ways of calculating that will give the same answer. One of
them is the beguilingly named Lazy evaluation which we will now describe.

Consider the project of filling out a truth-table for the formula A∧(B∨(C∧
D)). One can observe immediately that any valuation (row of the truth-table)
that makes ‘A’ false will make the whole formula false:
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A ∧ (B ∨ (C ∧ D))
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

A ∧ (B ∨ (C ∧ D))
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Now, in the remaining cases we can observe that any valuation that makes
‘B’ true will make the whole formula true.:

A ∧ (B ∨ (C ∧ D))
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

A ∧ (B ∨ (C ∧ D))
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 1 1 0 0
1 1 1 1 0 1
1 1 1 1 1 0
1 1 1 1 1 1

In the remaining cases any valuation that makes ‘C’ false will make the
whole formula false.
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A ∧ (B ∨ (C ∧ D))
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0
1 0 1 1
1 1 1 1 0 0
1 1 1 1 0 1
1 1 1 1 1 0
1 1 1 1 1 1

A ∧ (B ∨ (C ∧ D))
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 0 0 0 0
1 0 0 0 0 0 1
1 0 0 0 1 0 0∗

1 1 0 1 1 1 1∗

1 1 1 1 0 0
1 1 1 1 0 1
1 1 1 1 1 0
1 1 1 1 1 1

The starred ‘0∗’ and ‘1∗’ are the only cases where we actually have to look
at the truth-value of D.

These illustrations concern evaluation in languages whose expressions eval-
uate to truth-values. The idea originally arose in connection with langauges
whose expressions evaluate to numbers or other data objects.

if x ≥ 0 then f(x) else g(x).

Of course you evaluate lazily. No point in calculating both f(x) and g(x)
when you are clearly going to need only one of them! First you evaluate x to
see whether it is above or below 0 and then you do whichever of f(x) and g(x)
that it turns out you need.

Notice also in this connection that i might not have to evaluate x completely
in order to know which way to jump. If x is presented to me as a double-
precision decimal number i have 12 decimal places to evaluate, but i will know
already after evaluating the first of them whether x is positive or negative.
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Eager and strict give the same result beco’s all parse trees are finite and
have no loops. We prove this by structural induction

1.3 Natural Deduction and Sequent Calculus

1.4 The Rules of Natural Deduction

In the following table we see that for each connective we have two rules: one
to introduce the connective and one to eliminate it. These two rules are called
the introduction rule and the elimination rule for that connective. Richard
Bornat calls the elimination rules “use” rules because the elimination rule for
a connective C tells us how to use the information wrapped up in a formula
whose principal connective is C.

(The idea that everything there is to know about a connective can be cap-
tured by an elimination rule plus an introduction rule has the same rather
operationalist flavour possessed by the various meaning is use doctrines one
encounters in philosophy of language. In this particular form it goes back to
Prawitz, and possibly to Gentzen.)references?

The rules tell us how to use the information contained in a formula (Some
of these rules come in two parts.)

∨-int: A
A∨B ; B

A∨B ; ∨-elim(1): A∨B

[A]1

...
C

[B]1

...
C

C

∧: A B
A∧B ; ∧-elim: A∧B

A ; A∧B
B

→-int(1)

[A]1

...
B

A→B →-elim: A A→B
B

Ex falso sequitur quodlibet; ⊥
A Double negation ¬¬A

A

Some small print:
N.B.: in →-introduction you don’t have to cancel all occurrences of the

premiss: it is perfectly all right to cancel only some of them .
The Latin expression ex falso . . . means: “From the false follows whatever

you like”.
Some of these rules look a bit daunting so let’s start by cutting our teeth on

some easy ones.

EXERCISE 2 Using just the two rules for ∧, the rule for ∨-introduction and
→-elimination see what you can do with each of the following sets of formulæ:1

1Warning: in some cases the answer might be “nothing!”.
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1. A, A→ B;

2. A, A→ (B → C);

3. A, A→ (B → C), B;

4. A, B, (A ∧B)→ C;

5. A, (A ∨B)→ C;

6. A ∧B, A→ C;

7. A ∧B, A→ C, B → D;

8. A→ (B → C), A→ B, B → C;

9. A, A→ (B → C), A→ B;

You will probably notice in doing these questions that you use one of your
assumptions more than once, and indeed that you have to write it down more
than once (= write down more than one token!) This is particularly likely to
happen with A∧B. If you need to infer both of A and B then you will have to
write out ‘A ∧B’ twice—once for each application of ∧-elimination.

If you try writing down only one token you will find that you want your
sheet of paper to be made of lots of plaited ribbons. Ugh.

The two rules of ex falso and double negation are the only rules that specif-
ically mention negation. Recall from p. ?? that ¬B is B → ⊥, so the inference

A ¬A
⊥ (1.1)

—which looks like a new rule—is merely an instance of →-elimination.
Finally we need the identity rule:

A B C . . .

A
(1.2)

(where the list of extra premisses may be empty) which records the fact that
we can deduce A from A. Not very informative, one might think, but it turns
out to be useful. After all, how else would one obtain a proof of the undoubted
tautology A → (B → A), otherwise known as ‘K’? One could do something
like

[A]2 [B]1
∧-int

A ∧B ∧-elim
A →-int (1)

B → A →-int (2)
A→ (B → A)

(1.3)

but that is grotesque: it uses a couple of rules for a connective that doesn’t
even appear in the formula being proved! The obvious thing to do is
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[A]2 [B]1
identity rule

A →-int (1)
B → A →-int (2)

A→ (B → A)

(1.4)

If we take seriously the observation above concerning the rule of→-introduction—
namely that you are not required to cancel all occurrences of an assumption—
then you infer that you can cancel none of them, and that suggests that you
can cancel assumptions that aren’t there—then we will not need this rule. This
means we can write proofs like 1.5 below. To my taste, it seems less bizarre
to discard assumptions than it is to cancel assumptions that aren’t there, so I
prefer 1.4 to 1.5. It’s a matter of taste.

[A]1
→-int

B → A →-int (1)
A→ (B → A)

(1.5)

It is customary to connect the several occurrences of a single formula at
introductions (it may be introduced several times) with its occurrences at elim-
ination by means of superscripts. Square brackets are placed around eliminated
formulæ, as in the formula displayed above.

There are funny logics where you are not allowed to use an assumption more
than once: in these resource logics assumptions are like sums of money. (You
will find them in section ?? if you last that long). This also gives us another
illustration of the difference between an argument (as in logic) and a debate (as
in rhetoric). In rhetoric it may happen that a point, albeit a good point, can
be usefully made only once . . . in an ambush perhaps.Do some very simple illus-

trations of compound proofs
here 1.4.1 What do the rules mean??

One way in towards an understanding of what the rules do is to dwell on the
point made by my friend Richard Bornat that elimination rules are use rules:

The rule of →-elimination

The rule of →-elimination tells you how to use the information wrapped up
in ‘A → B’. ‘A → B’ informs us that if A, then B. So the way to use the
information is to find yourself in a situation where A holds. You might not be
in such a situation, and if you aren’t you might have to assume A with a view
to using it up later—somehow. We will say more about this.

The rule of ∨-elimination

The rule of ∨-elimination tells you how to use the information in ‘A ∨ B’. If
you are given A ∨ B, how are you to make use of this information without
supposing that you know which of A and B is true? Well, if you know you can
deduce C from A, and you ALSO know that you can deduce C from B, then
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as soon as you are told A∨B you can deduce C. One could think of the rule of
∨-elimination as a function that takes (1) A ∨ B, (2) a proof of C from A and
(3) a proof of C from B, and returns a proof of C from A ∨B. This will come
in useful on page 23.

Here is an example, useful to those of you who fry your brains doing sudoku

3 8
1 6 4 9 7

4 7 1 6
2 8 7 5

5 1 8
8 4 5 2
7 5 1 8 4

4 3 5 7 1
6

There is a 5 in the top right-hand box—somewhere. But in which row? The 5
in the top left-hand box must be in the first column, and in one of the top two
rows. Similarly the 5 in the middle box on the top must be in the first column,
and in one of the top two rows. These two 5s must of course be in different
rows. So where is the five in the rightmost of the three top boxes? Either the 5
in the left box is on the first row and the 5 in the middle box is on the second
row or the 5 in the middle box is on the first row and the 5 in the left box is on
the second row. We don’t know which of the possibilities is the true one, but it
doesn’t matter: either way the 5 in the rightmost box must be in the bottom
(third) row.

There is a more general form of ∨-elimination:

[A1]1 [A2]1

...
...

C C

. . . [An]1

...
C A1 ∨A2 ∨ . . . An ∨-elim (1)
C

(1.1)

where we can cancel more than one assumption. That is to say we have a
set {A1 . . . An} of assumptions, and the rule accepts as input a list of proofs of
C: one proof from A1, one proof from A2, and so on up to An. It also accepts
the disjunction A1∨ . . . An of the set {A1 . . . An} of assumptions, and it outputs
a proof of C.

The rule of ∨-elimination is a hard one to grasp so do not panic if you don’t
get it immediately. However, you should persist until you do.

1.4.2 Goals and Assumptions

When you set out to find a proof of a formula, that formula is your goal. As
we have just mentioned, the obvious way to attack a goal is to see if you can



14 CHAPTER 1. TWO LECTURES ON PROPOSITIONAL LOGIC

obtain it as the output of (a token of) the introduction rule for its principal
connective. If that introduction rule is →-introduction then this will generate
an assumption. Once you have generated an assumption you will need—sooner
or later—to extract the information it contains and you will do this by means
of the elimination rule for the principal connective of that assumption. It’s
actually idiotically simple:

1. Attack a goal with the introduction rule for its principal connective;

2. Attack an assumption with the elimination rule for its principal connec-
tive.

Consider (1). We have the goal ((A → B) → A) → ((A → B) → B). The
principal connective of this formula is the arrow in the middle that I underlined.
So we assume the antecedent (which is (A→ B)→ A) and then the consequent
(which is (A → B) → B) becomes our new goal. So we have traded the old
goal ((A→ B)→ A) → ((A→ B)→ B) for the new goal ((A→ B)→ B) and
generated the new assumption ((A→ B)→ A).

I have noticed that beginners often treat assumptions as if they were goals.
Perhaps this is because they encounter goals first and they are perseverating.
In the example of the preceding paragraph we generated the assumption (A→
B)→ A. How are you going to use this assumption? Do not attempt to prove
it; you must use it! And the way to use it is to whack it with the elimination
rule for its principal connective—which is →. The only way you can do this is
if you have somehow got hold of A → B—and this gives you the new goal of
A→ Bto be continued . . .

Your first step—when challenged to find a natural deduction proof of a
formula—should be to identify the principal connective. (That was the point of
exercise ??.) For example, when challenged to find a proof of (A∧B)→ A, the
obvious gamble is to expect that the last step in the proof was a→-introduction
rule applied to a proof of A with the assumption A ∧B.

1.4.3 The small print

It isn’t always true that you should attack an assumption (or goal) with the
elimination (introduction) rule for its main connective. It might be that the
goal or assumption you are looking at is a propositional letter and therefore
does not have a principal connective! In those circumstances you have to try
something else. Your assumption might be P and if you have in your knapsack
the formula (P ∨ Q) → R it might be a good idea to whack the ‘P ’ with a ∨-
introduction to get P ∨Q so you can then do a →-elimination and get R. And
of course you might wish to refrain from attacking your assumption with the
elimination rule for its principal connective. If you assumption is P ∨Q and you
already have in your knapsack the formula (P ∨Q)→ R you’d be crazy not to
use →-elimination to get R. And in so doing you are not using the elimination
rule for the principal connective of P ∨Q.
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And even when a goal or assumption does have a principal connective attack-
ing it with their appropriate rule for that principal connective is not absolutely
guaranteed to work. Consider the task of finding a proof of A ∨ ¬A. (A here
is a propositional letter, not a complex formula). If you attack the principal
connective you will of course use ∨-int and generate the attempt

A ∨-int
A ∨ ¬A (1.1)

or the attempt

¬A ∨-int
A ∨ ¬A (1.2)

and clearly neither of these is going to turn into a proof of A∨¬A, since we
are not going to get a proof of A (nor a proof of ¬A). It turns out you have
to use the rule of double negation. assume ¬(A ∨ ¬A) and get a contradiction.
There is a pattern to at least some of these cases where attacking-the-principal-
connective is not the best way forward, and we will say more about it later.

The moral of this is that finding proofs is not a simple join-up-the-dots
exercise: you need a bit of ingenuity at times. Is this because we have set
up the system wrongly? Could we perhaps devise a system of rules which was
completely straightforward, and where short tautologies had short proofs2 which
can be found by blindly following rules like always-use-the-introduction-rule-for-
the-principal-connective-of-a-goal? You might expect that, the world being the
kind of place it is, the answer is a resounding ‘NO!’ but curiously the answer to
this question is not known. I don’t think anyone expects to find such a system,
and i know of no-one who is trying to find one, but the possibility has not been
excluded. Connection with P=NP. NP

= co-NP[If φ is not a propositional tautology we can find a falsifying valuation deter-
ministically in exponential time or nondeterministcally in polynomial time.It’s
not at all clear whether there can be a proof system for propositional logic which
will, in polynomial time, exhibit a proof if there is one]

Get these in something like
increasing order of difficultyEXERCISE 3 Find natural deduction proofs of the following tautologies:

1. (P → Q)→ ((Q→ R)→ (P → R));

2. (A→ C)→ ((A ∧B)→ C);

3. ((A ∨B)→ C)→ (A→ C);

4. P → (¬P → Q);

5. A→ (A→ A) (you will need the identity rule);

6. (((P → Q)→ Q)→ Q)→ (P → Q);

7. ((A→ B)→ A)→ ((A→ B)→ B);

2‘short’ here can be given a precise meaning.
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8. A→ ((((A→ B)→ B)→ C)→ C);

9. (P ∨Q)→ (((P → R) ∧ (Q→ S))→ (R ∨ S));

10. (P ∧Q)→ (((P → R) ∨ (Q→ S))→ (R ∨ S));

11. ¬(A ∨B)→ (¬A ∧ ¬B);

12. A ∨ ¬A; (*)

13. ¬(A ∧B)→ (¬A ∨ ¬B); (hard!) (*)

14. (A ∧ (B ∨ C))→ ((A ∧B) ∨ (A ∧ C));

15. (A ∨ (B ∧ C))→ ((A ∨B) ∧ (A ∨ C));

16. A → [(A → C) → ((B → C) → C)]; (for this and the next you will need
the identity rule);

17. B → [(A → C) → ((B → C) → C)]; (then put these last two together to
obtain a proof of

18. (A ∨B)→ [(A→ C)→ ((B → C)→ C)];

19. (B ∨ (B → A))→ A→ A;

20. (A ∧B) ∨ (A ∧ ¬B) ∨ (¬A ∧B) ∨ (¬A ∧ ¬B). (Hard! For enthusiasts
only) (*)

You should be able to do the first eight without breaking sweat. If you can do
the first dozen without breaking sweat you may feel satisfied. The starred items
will need the rule of double negation. For the others you should be able to
find proofs that do not use double negation. The æsthetic into which you are
being inducted is one that says that proofs that do not use double negation are
always to be preferred to proofs that do. Perhaps it is a bit belittling to call it
an æsthetic: there is a principled philosophical position that denies the rule of
double negation, and one day you might want to engage with it.

Enthusiasts can also attempt the first two parts of exercise 22 on p. 46: they
are like the exercises here but harder.

If you want to get straight in your mind the samll print around the →-
introduction rule you might like to try the next exercise. In one direction you
willl need to cancel two occurence of an assumption, and in the other you will
need the identity rule, which is to say you will need to cancel zero occurences
of the assumption.

EXERCISE 4

1. Provide a natural deduction proof of A→ (A→ B) from A→ B;

2. Provide a natural deduction proof of A→ B from A→ (A→ B).
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To make quite sure you might like to try this one too

EXERCISE 5

1. Provide a natural deduction proof of A→ (A→ (A→ B)) from A→ B;

2. Provide a natural deduction proof of A→ B from A→ (A→ (A→ B)).

EXERCISE 6 Life is complicated on Planet Zarg. The Zarglings believe there
are three truth-values: true, intermediate and false. Here we write them as
1, 2 and 3 respectively. Here is the truth-table for the connective → on planet
Zarg:

P → Q
1 1 1
1 2 2
1 3 3
2 1 1
2 1 2
2 3 3
3 1 1
3 1 2
3 1 3

On Zarg the truth-value of P ∨Q is simply the smaller of the truth-values of
P and Q; the truth-value of P ∧Q is the larger of the truth-values of P and Q.

Write out Zarg-style truth-tables for

1. P ∨Q;

2. P ∧Q;

3. ((P → Q)→ P )→ P ;

4. P → (Q→ P );

5. (P → Q)→ Q);

[Brief reality check: What is a tautology on Planet Earth?]
What might be a good definition of tautology on Planet Zarg?
According to your definition of a tautology-on-planet-Zarg, is it the case that

if P and Q are formulæ such that P and P → Q are both tautologies, then Q is
a tautology?

There are two possible negations on Zarg:

P ¬1P ¬2P
1 3 3
2 2 1
3 1 1
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Given that the Zarglings believe ¬(P ∧¬P ) to be a tautology, which negation
do they use?

Using that negation, do they believe the following formulæ to be tautologies?

1. P ∨ ¬P?

2. (¬¬P ) ∨ ¬P?

3. ¬¬(P ∨ ¬P )?

4. (¬P ∨Q)→ (P → Q)?

EXERCISE 7 Annotate the following proofs, indicating which rules are used
where and which premisses are being cancelled when.

P P → Q

Q

(P → Q)→ Q

P → ((P → Q)→ Q)

(1.3)

P ∧Q
Q

P ∨Q
(P ∧Q)→ (P ∨Q)

(1.4)

P ¬P
⊥
Q

P → Q

(1.5)

P ∨Q
P P → R

R

Q Q→ R

R

R
(P ∨Q)→ R

(1.6)

A B
A ∧B

B → (A ∧B)
A→ (B → (A ∧B))

(1.7)
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(A→ B)→ B A→ B

B
((A→ B)→ B)→ B

(A→ B)→ (((A→ B)→ B)→ B)

(1.8)

EXERCISE 8 Now find sequent proofs for the formulæ in exercise 3 (page 15).
For the starred formulæ you should expect to have to have two formulæ on the
right at some point.

Be sure to annotate your proofs by recording at each step which rule you are
using. That makes it easier for you to check that you are constructing the proofs
properly.

EXERCISE 9 Find a proof of the sequent:

(A→ B)→ B ` (B → A)→ A

EXERCISE 10 Go back to Zarg (exercise 6 p. 17)

1. Using the truth-table for ¬ that you decided that the Zarglings use—check
that the Zarglings do not believe axiom T to be a tautology. (¬A→ B)→
((¬A→ ¬B)→ A)

2. Do the Zarglings believe S to be a tautology?

The empty conjunction and the empty disjunction

Since a conjunction or disjunction can have more than two disjuncts, it’s worth
asking if it can have fewer. . .

As we have just seen, ‘∨’ and ‘∧’ have uppercase versions ‘
∨

’ and ‘
∧

’ that
can be applied to sets of formulæ:

∨
{p, q} is obviously the same as p ∨ q for

example, and
∧
{p, q} is p ∧ q by the same token.

Slightly less obviously
∧
{p} and

∨
{p} are both p. But what is

∨
∅? (the

disjunction of the empty set of formulæ). Does it even make sense? Yes it does,
and if we are brave we can even calculate what it is.

If X and Y are sets of formulæ then
∨

(X ∪ Y ) had better be the same as∨
X ∨

∨
Y . Now what if Y is ∅, the empty set? Then∨

X

=
∨

(X ∪ ∅)

(because X = X ∪ ∅)
= (

∨
X) ∨ (

∨
∅)

so

(
∨
X) ∨ (

∨
∅) = (

∨
X) (1.9)
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and this has got to be true for all sets X of formulæ. This compels
∨
∅ to

be the false. If it were anything else then a situation might arise in which the
left-hand side of (1.9) were true and the right-hand-side false.

Similarly
∧
∅ is the true.

In general if ∗ is an (associative) operation ∗ : V × V → V then ∗ is defined
on lists and ∗ of the empty list will be the unit for ∗

Thus the sum of the empty set of (naturals, reals, complexes . . . ) will be
0 (of the appropriate type); the product of the empty set of (naturals, reals,
complexes . . . ) will be 0 (of the appropriate type) will be 1 (of the appropriate
type)to be explained

1.5 CNF and DNF

Definition of CNF and DNF. Normal form theorem: every formula is equivalent
to something in CNF and also to something in DNF. We prove this using the
de Morgan identities.

EXERCISE 11 Put the formula “if p then q else r” into DNF and also into
DNF.

EXERCISE 12 The dual Â of a propositional formula A is the result of re-
placing every propositional letter in A by its negation.

(Thus if p and q are letters then p̂ ∨ q is ¬p ∨ ¬q; ¬̂p ∧ q is p ∧ ¬q and so
on. Notice that Â is typically not logically equivalent to ¬A! A formula A is
self-dual if it is logically equivalent to its own dual: that is to say that A←→ Â
is a tautology. For example: p XOR q is self-dual—‘p’ and ‘q’ being literals—even
tho’ A XOR B is not self-dual in general.)

A XOR (B XOR C) is not self-dual: it is in fact dual to its negation. But
(A XOR D) XOR (B XOR C) is self-dual.

1. Show that the hat commutes with all connectives:
Â ∨B ←→ (Â ∨ B̂)
Â ∧B ←→ (Â ∧ B̂)
Â→ B ←→ (Â→ B̂)
¬̂A←→ ¬Â

2. Show that any propositional formula of the form A←→ Â is self-dual;

3. Show that if A is a self-dual formula so is ¬A;

4. Show that whenever A is a self-dual formula there is a formula B such
that A is logically equivalent to B ←→ B̂; In how many ways can this be
done?

5. Is there a similar result for Predicate Calculus?
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1.5.1 CNF and Resolution

Let us say that a clause is a disjunction of atomics and negatomics. The
theorem that says that every formula is equivalent to one in CNF says that
every expression is equivalent to a conjunction of clauses. If we have a finite
set of assumptions in a propositional language we can put each assumption
into CNF and thereby obtain a set of cluases which is logically equivalent to
our initial set of assumptions. This is an advantageous move because clauses
are much easier things to work with than are arbitrary formulæ. In particular
we can use a rule commonly called resolution. Suppose A is a clause one of
whose disjuncts is the letter P , and B is a clause one of whose disjuncts is the
negatomic ¬P . We can think of A and B as A ∨ P and B ∨ ¬P respectively.
When we think of them like that, we can see immediately that we can infer
A ∨B from them.

Being a real pedant i cannot help noticing that the conclusion A∨B that we
have inferred isn’t a clause (unless both A and B are atomics-or-negatomics).
We would need to flatten it in order to obtain a clause. So the appropriate data
structure for inputs to the resolution rule is set (each input should be a set of
atomics-and-negatomics) rather than formula (a disjunction of atomics-and-
negatomics).

1.6 Soundness and completeness of the natural
deduction rules

The rules of natural deduction are sound: every formula we can prove using
natural deduction is a tautology. The rules preserve truth: if you reason using
these rules from true premisses your conclusions will be true as well. Whatever
our logical machinery (and it might be deliberately over-simplified, as it is when
we start off with propositional logic) we want to be sure that the rules that we
decide on for reasoning with that machinery are sound in this sense.

Completeness is a feature complementary to soundness. Not only are the
rules sound, but they exhaust the possible modes of truth-preserving reason-
ing (in this language) in the sense that any truth-preserving inference can be
captured by reasoning according to these formulations. We say the rules are
complete. We prove this in section ??. It is impossible to overstate the signif-
icance of this fact. There is a finite system of rules of inference which captures
all truth-preserving reasoning expressible in this syntax. The power of this sim-
plification is incalculable and has impressed generations of logicians. There is a
tradition in modern logic that holds that a body of principles of reasoning that
cannot be finitely codified is simply not part of Logic at all. Not everybody
believes this, but it is a widely held view.

In the case of propositional logic we have truth-tables, which enable us to
decide quite quickly when a formula is valid (or when a principle of reasoning
is truth-preserving aka sound). This is so convenient that one tends to forget
that there is actually a method of generating all the valid principles (and all the



22 CHAPTER 1. TWO LECTURES ON PROPOSITIONAL LOGIC

tautologies aka valid formulæ) over and above a method of recognising them
when they pop up. In fact there are several ways of doing this, and we will
see some of them, and we will prove that they do this: that is, that they are
complete.

The rules are sound in that they preserve truth: in any token of the rule if
the premisses are true then the conclusions are true too. For the rules like ∧-
introduction, ∨-introduction, ∧-elimination,→-elimination . . . it’s obvious what
is meant: for any valuation v if the stuff above the line is true according to v
then so is the stuff below the line.

What I am planning to convince you is that any complex proof made up by
composing lots of tokens of ∧-int, →-elim and so on has the property that any
valuation making all the premisses true also makes the conclusion true. That
is to say, we claim that all complex proofs are truth-preserving. Notice that
this has as a special case the fact that any complex proof with no premisses has
a conclusion that is logically valid. Every valuation making all the premisses
true will make the conclusion true. Now since there are no premisses, every
valuation makes all the premisses true, so every valuation makes the conclusion
true. So the conclusion is valid!Rephrase this

However this way of thinking about matters doesn’t enable us to make sense
of →-introduction and ∨-elimination. To give a proper description of what is
going on we need to think of the individual (atomic) introduction and elimi-
nation rules as gadgets for making new complex proofs out of old (slightly less
complex) proofs.

That is to say you think of the rule of ∧-introduction as a way of taking
a complex proof D1 of A and a complex proof D2 of B and giving a complex
proof D3 of A ∧ B. We are trying to show that all complex deductions are
truth-preserving.

The fact that ∧-introduction is truth-preserving in the sense of the previous
paragraph now assures us that it has the new property that:

If

• D1 is a truth-preserving deduction of A (that is to say, any valuation
making the premisses of D1 true makes A true); and

• D2 is a truth-preserving deduction of B (that is to say, any valuation
making the premisses of D2 true makes A true);

Then
the deduction D3:

D1

...
A

D2

...
B ∧-int

A ∧B

(1.1)



1.6. SOUNDNESS AND COMPLETENESS OF THE NATURAL DEDUCTION RULES23

too, is truth-preserving in the sense that any valuation making the premisses
of D3 true—and they are just (the premisses of D1) ∪ (premisses of D2)—makes
A ∧B true too.

This sounds like a much more complicated way of thinking of ∧-introduction
as truth-preserving than the way we started out with, but we need this way
of seeing things when we come to consider the rules that involve cancelling
assumptions, namely →-introduction and ∨-elimination. Let us now consider
these two.

→-introduction

Suppose we have a deduction D of B from A, C1 . . . Cn, and that D is truth-
preserving. That is to say, any valuation making all of A, C1 . . . Cn true will
also make B true. Now consider the deduction D′ (of A → B from C1 . . . Cn)
that is given us by an application of →-introduction. We want this to be truth-
preserving as well, that is to say, we want any valuation making C1 . . . Cn true to
make A→ B true too. Let’s check this. Let v be a valuation making C1 . . . Cn picture here
true. Then either

(i) it makes A true in which case—beco’s D was truth-preserving—it
makes B true as well and thereby makes A→ B true.

Or

(ii) it makes A false. Any valuation making A false makes A → B
true.

Remember: you don’t have to cancel all occurrences of the premiss. (see
page 10.)

∨-elimination

We can tell a similar story about ∨-elimination. Suppose we have a truth-
preserving deduction D1 of C from A (strictly: from A and a bag of extra
assumptions like the C1 . . . Cn of the previous paragraph) and a truth-preserving
deduction D2 of C from B (and extra assumptions). That is to say that any
valuation making A (and the extra assumptions) true makes C true, and any
valuation making B (and the extra assumptions) true makes C true. Now, any
valuation making A ∨ B (and the extra assumptions) true will make one of A
and B true. So the new proof

[A]1

...
D1

...
C

[B]1

...
D2

...
C A ∨B ∨-elim (1)
C

(1.2)
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—that we make fromD1 andD2 by applying ∨-elim to it—is truth-preserving
as well.

In excruciating detail: let v be a valuation that makes A∨B (and the extra
assumptions) true. Since v makes A ∨ B true, it must either (i) make A true,
in which case we conclude that C must be true beco’s of D1; or (ii) make B
true, in which case we conclude that C must be true beco’s of D2. Either way
it makes C true.

1.7 Harmony and conservativeness

1.7.1 Conservativeness

Recall the discussion on page 11 about the need for the identity rule, and the
horrendous proof of K that we would otherwise have, that uses the rules for ∧.

Notice that the only proof of Peirce’s Law that we can find uses rules for
a connective (¬, or ⊥ if you prefer) that does not appear in the formula being
proved. (Miniexercise: find a proof of Peirce’s law). This rule is the rule
of double negation of course. No-one is suggesting that this is illicit: it’s a
perfectly legal proof; however it does violate an æsthetic. (As does the proof
of K that uses the rules for ∧ instead of the identity rule). The æsthetic is
conservativeness: every formula should have a proof that uses only rules for
connectives that appear in the formula. Quite what the metaphysical force of
this æsthetic is is a surprisingly deep question. It is certainly felt that one of
the points in favour of the logic without the rule of double negation (which we
will see more of below) is that it respects this æsthetic.

The point of exercise 6 part 3 p. 17 was to establish that there can be no
proof of Peirce’s law using just the rules for ‘→’.Plonk and tonk

See section 1.7.6

1.7.2 Harmony

A further side to this æsthetic is the thought that, for each connective, the
introduction and elimination rule should complement each other nicely. What
might this mean, exactly? Well, the introduction rule for a connective £ tells
us how to parcel up information in a way represented by the formula A£B, and
the corresponding elimination (“use”!) rule tells us how to use the information
wrapped up in A£B. We certainly don’t want to set up our rules in such a way
that we can somehow extract more information from A£B than was put into
it in the first place. This would probably violate more than a mere æsthetic,
in that it could result in inconsistency. But we also want to ensure that all the
information that was put into it (by the introduction rules) can be extracted
from it later (by the use rules). If our rules complement each other neatly in
this way then something nice will happen. If we bundle information into A£B
and then immediately extract it, we might as well have done nothing at all.
Consider
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D1

...
A

D2

...
B ∧-int

A ∧B ∧-elim
B

(1.1)

where we wrap up information and put it inside A ∧ B and then immediately
unwrap it. We can clearly simplify this to:

D2

...
B

(1.2)

This works because the conclusion A ∧ B that we infer from the premisses
A and B is the strongest possible conclusion we can infer from A and B and
the premiss A∧B from which we infer A and B is the weakest possible premiss
which will give us both those conclusions. If we are given the ∧-elimination rule,
what must the introduction rule be? From A ∧ B we can get both A and B,
so we must have had to put them in in the first place when we were trying to
prove A ∧ B by ∧-introduction. Similarly we can infer what the ∧-elimination
rule must be once we know the introduction rule.

The same goes for ∨ and →. Given that the way to prove A → B is to
assume A and deduce B from it, the way to use A → B must be to use it in
conjunction with A to deduce B; given that the way to use A→ B is to use it
in conjunction with A to infer B it must be that the way to prove A→ B is to
assume A and deduce B from it. That is why it’s all right to simplify

[A]
...
B →-int

A→ B A →-elim
B

(1.3)

to

A
...
B

(1.4)

And given that the way to prove A∨B is to prove one of A and B, the way
to use A ∨ B must be to find something that follows from A and that also—
separately—follows from B; given that the way to use A∨B is to find something
that follows from A and that also—separately and independently—follows from
B, it must be that the way to prove A ∨ B is prove one of A and B. That is
why we can simplify
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[A1]1

...
C

[A2]1

...
C

A1 ∨-int
A1 ∨A2 ∨-elim (1)

C

(1.5)

to

A1

...
C

(1.6)

DEFINITION 2 We say a pair of introduction-plus-elimination rules for a con-
nective £ is harmonious if (i) A£B is the strongest thing we can infer from
the premisses for £-introduction and (ii) A£B is the weakest thing that (with
the other premisses to the £-elimination rule, if any3) implies the conclusion of
the £-elimination rule.

What we have shown above is that the rules for→, ∧ and ∨ are harmonious.

1.7.3 Maximal Formulæ

. . . [for enthusiasts only!]
The first occurrence of ‘A → B’ in proof 1.3 above is a bit odd. It’s the

result of a →-introduction and at the same time the (major) premiss of an
→-elimination. (We say such a formula is maximal.). That feature invites
the simplification that we showed there. Presumably this can always be done?
Something very similar happens with the occurrence of ‘A1 ∨ A2’ in proof 1.5.
One might think so, but the situation is complex and not entirely satisfactory.
One way into this is to try the following exercise:

EXERCISE 13 Deduce a contradiction from the two assumptions p→ ¬p and
¬p→ p. (These assumptions are of course really p→ (p→ ⊥) and (p→ ⊥)→
p). Try to avoid having a maximal formula in your proof.

1.7.4 Completeness

Completeness is harder. When we say that the system of rules of natural de-
duction is complete we mean that it provides proofs of every tautology.

A row is a conjunction of atomics and negatomics in which every propo-
sitional letter appears precisely once. There is an obvious correlation between
rows and valuations.

For A a propositional formula let A∗ be the disjunction of all the rows that
make A come out true.

We write ‘` φ’ for “there is a natural deduction proof of φ”.
3Do not forget that the elimination rule for £ might have premisses in addition to A£B:

→-elimination and ∨-elimination do, for example.
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LEMMA 3 For all propositional formulæ A, there is a natural deduction proof
of A←→ A∗.

Proof:
By structural induction on formulæ. The base case concerns individual

propositional letters and ⊥, the false. If A is a propositional letter or ⊥ then
A∗ is just A. Clearly ` A←→ A∗.

There is an induction step for each of ∧, ∨ and →.

∧ (A ∧ B)∗ is the disjunction of those rows common to A∗ and B∗, and
is therefore interdeducible with A∗ ∧ B∗. By induction hypothesis A is
interdeducible with A∗ and B is interdeducible with B∗ so A∗∧B∗ (which
we have just seen is interdeducible with (A ∧ B)∗) is interdeducible with
A ∧B.

∨ (A ∨ B)∗ is the disjunction of those rows appearing in the truth-table
for A ∨ B, and is therefore interdeducible with A∗ ∨ B∗. By induction
hypothesis A is interdeducible with A∗ and B is interdeducible with B∗

so A∗ ∨ B∗ (which we have just seen is interdeducible with (A ∨ B)∗) is
interdeducible with A ∨B.

→ (A → B)∗ is of course the disjunction of all rows that make A false or B
true. We prove the two directions separately.

` (A→ B)∗ → (A→ B)

Let r be one of the rows of (A→ B)∗.
(i) If r is a row that makes B true, then it is a disjunct of B∗

so ` r → B∗ whence ` r → B by induction hypothesis. So
definitely ` r → (A→ B).
(ii) If r is a row that makes A false, then it is inconsistent
with every row that makes A true, so it is inconsistent with
their disjunction—which is A∗. A and A∗ are interdeducible by
induction hypothesis, so ` r → (A → ⊥). But ` (A → ⊥) →
(A→ B), so ` r → (A→ B).
Either way, if r is a row of (A→ B), ` r → (A→ B). (A→ B)∗

is the disjunction of all the rows of A→ B so, by ∨-elimination,
` (A→ B)∗ → (A→ B).

` (A→ B)→ (A→ B)∗.

Assume A → B and ¬(A → B)∗. We will deduce the false.
¬(A→ B)∗ denies every row in B∗, so refutes B∗ and therefore
refutes B (by induction hypothesis). ¬B gives ¬A by modus
tollens. Now by induction bypothesis on A we can refute every
disjunct in A∗ (every row that makes A true). But our denial
of (A → B)∗ refuted every row that made A false. So we have
refuted all rows! Recall that we can prove the disjunction of all



28 CHAPTER 1. TWO LECTURES ON PROPOSITIONAL LOGIC

the rows. (A∨¬A)∗ is provable. This gives us the contradiction
we seek. Then we use the rule of classical negation to deduce
(A → B)∗. We now use →-introduction to obtain a proof of
(A→ B)→ (A→ B)∗.

We can now prove

THEOREM 4 Every truth-table tautology has a natural deduction proof

Proof: Suppose that A is a truth-table tautology. Observe that, if a1 . . . an are
the propositional letters that appear in A, then we can prove the disjunction
of the 2n rows to be had from a1 . . . an. Since A is a truth-table tautology this
disjunction is in fact A∗. Lemma 3 tells us that there is a natural deduction
proof of A←→ A∗ so we conclude that there is a natural deduction proof of A.

Admittedly this seems excessively laborious but the result is important even
if the proof isn’t. Important too, is the experience of discovering that soundness
proofs are easy and completeness proofs are hard(er)!

1.7.5 What is a Completeness Theorem?

The completeness+soundness result we have just seen for the rules of natural
deduction and the concept of a propositional tautology connects two sets. One
set is defined by a semantical property (being satisfied by all valuations) and
the other is defined by a syntactic property (being generated by a set of rules.
Indeed the property of being generated by a set of rules is equivalent to being
what is called in the literature a recursively enumerable (“r.e.”) set or (more
illuminatingly) a semidecidable set. We say a set X is semidecidable if there
is a procedure P that will authenticate its members (so whenever a candidate
for membership is in fact a member this will be confirmed in finite time). No-
tice that this does not require that the method P will reject any unsuiitable
candididate in finite time. If there is a method that will reject any unsuiitable
candididate in finite time then the complement of X is semidecidable and we
say X is decidable (“recursive” is the old terminology).

So typically a completeness theorem is an assertion about two sets X and
Y where X is a set defined semantically (as it might be, the set of tautologies)
and Y is a semidecidable set defined by a syntactic criterion (as it might be the
set of strings that have natural deduction proofs) and says that X = Y .

You may have felt tempted to say that the completeness theorem for propo-
sitional logic was no big deal. So we have this set of tautologies . . . well, cook
up some rules that generate them all. What’s the problem? The problem is
that there might be no such set of rules. We will see later that there are Log-
ics which cannot be captured by a set of rules in this way: every set of rules
either generates things it shouldn’t or fails to generate some things it should.
(Trakhtenbrot’s theorem; second-order logic)
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There is a completeness theorem for predicate logic, as we shall see. There
is also a completeness theorem for constructive logic.

1.7.6 Interpolation

EXERCISE 14 Suppose A is a propositional formula and ‘p’ is a letter appear-
ing in A. Show that there are formulæ A1 and A2 not containing ‘p’ such that
A is semantically equivalent to (A1 ∧ p) ∨ (A2 ∧ ¬p). [Hint: consider how you
might be able to simplify A on coming to know the truth-value of ‘p’.]

EXERCISE 15 Find an interpolant Q for

(A ∧B) ∨ (¬A ∧ C) ` (B → C)→ (D → C)

and supply proofs (in whatever style you prefer) of

(A ∧B) ∨ (¬A ∧ C) → Q

and

Q → ((B → C)→ (D → C))

1.8 Sequent Calculus

Imagine you are given the task of finding a natural deduction proof of the
tautology

(p→ (q → r))→ ((p→ q)→ (p→ r)).

Obviously the first thing you do is to attack the principal connective, and
claim that (p→ q)→ (p→ r) is obtained by an →-introduction as follows:

p→ (q → r)
... →-int

(p→ q)→ (p→ r)

(1.1)

in the hope that we can fill the dots in later. Notice that we don’t know at
this stage how many lines or how much space to leave . . . . At the second stage
the obvious thing to do is try →-introduction again, since ‘→’ is the principal
connective of ‘(p→ q)→ (p→ r)’. This time my proof sketch has a conclusion
which looks like

... →-intp→ r
→-int

(p→ q)→ (p→ r)

(1.2)

and we also know that floating up above this—somewhere—are the two
premisses p → (q → r) and p → q. But we don’t know where on the page to
put them!
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This motivates a new notation. Record the endeavour to prove

(p→ (q → r))→ ((p→ q)→ (p→ r))

by writing

` (p→ (q → r))→ ((p→ q)→ (p→ r)).

using the new symbol ‘`’.4 Then stage two (which was formula 1.1) can be
described by the formula

p→ (q → r) ` ((p→ q)→ (p→ r)).

which says that (p→ q)→ (p→ r) can be deduced from p→ (q → r). Then
the third stage [which I couldn’t write down and which was formula 1.2, which
said that p→ r can be deduced from p→ q and p→ (q → r)] comes out as

p→ (q → r), p→ q ` p→ r

This motivates the following gadgetry.
A sequent is an expression Γ ` ψ where Γ is a set of formulæ and ψ is a

formula. Γ ` ψ says that there is a deduction of ψ from Γ. In sequent calculus
one reasons not about formulæ—as one did with natural deduction—but instead
about sequents, which are assertions about deductions between formulæ.

Programme: sequent calculus is natural deduction with
control structures! A sequent proof is a program that com-
putes a natural deduction proof.

Capital Greek letters denote sets of formulæ and lower-case Greek letters
denote formulæ.

We accept any sequent that has a formula appearing on both sides. Such
sequents are called initial sequents. Clearly the allegation made by an initial
sequent is correct!

There are some obvious rules for reasoning about these sequents. Our en-
deavour to find a nice way of thinking about finding a natural deduction proof
of

(p→ (q → r))→ ((p→ q)→ (p→ r))

gives us something that looks in part like

p→ (q → r), (p→ q), p ` r
p→ (q → r), (p→ q) ` (p→ r)

p→ (q → r) ` (p→ q)→ (p→ r)

` (p→ (q → r))→ ((p→ q)→ (p→ r))

4For some reason this symbol is called ‘turnstile’.
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and this means we are using a rule

Γ, A ` B
→ RΓ ` A→ B

(1.3)

Of course there are lots of other rules, and here is a summary of them:

∨L : Γ, ψ ` ∆ Γ′, φ ` ∆′

Γ ∪ Γ′, ψ ∨ φ ` ∆ ∪∆′ ∨ R: Γ ` ∆, φ
Γ ` ∆, ψ ∨ φ

∨ R: Γ ` ∆, ψ
Γ ` ∆, ψ ∨ φ

∧L : Γ, ψ, φ ` ∆
Γ, ψ ∧ φ ` ∆ ∧R : Γ ` ∆, ψ Γ′ ` ∆′, φ

Γ ∪ Γ′ ` ∆ ∪∆′, ψ ∧ φ

¬L : Γ ` ∆, ψ
Γ,¬ψ ` ∆ ¬R : Γ, ψ ` ∆

Γ ` ∆,¬ψ

→ L : Γ ` ∆, φ Γ′, ψ ` ∆′

Γ ∪ Γ′, φ→ ψ ` ∆ ∪∆′ → R : Γ, ψ ` ∆, φ
Γ ` ∆, ψ → φ

Weakening-L: Γ ` ∆
Γ, A ` ∆; Weakening-R: Γ ` ∆

Γ ` ∆, B ;

Contraction-L: Γ, ψ, ψ ` ∆
Γ, ψ ` ∆ ; Contraction-R: Γ ` ∆, ψ, ψ

Γ ` ∆, ψ ;

Cut:
Γ ` ∆, ψ Γ′, ψ ` ∆′

Γ ∪ Γ′ ` ∆,∆′ .

In this box I have followed the universal custom of writing ‘Γ, ψ’ for ‘Γ∪{ψ};
I have not so far followed the similarly universal custom of writing ‘Γ,∆’ instead
of ‘Γ ∪∆’ but from now on I will.

You might find useful the terminology of eigenformula. The eigenformula
of an application of a rule is the formula being attacked by that application. In
each rule in the box above I have underlined the eigenformula.

There is no rule for the biconditional: we think of a biconditional A←→ B
as a conjunction of two conditionals A→ B and B → A.

Now that we have rules for ¬ we no longer have to think of ¬p as p → ⊥.
(see appendix ??.??.)

The two rules of ∨-R give rise to a derived rule which makes good sense
when we are allowed more than one formula on the right. it is

Γ ` ∆, A,B

Γ ` ∆, A ∨B
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Γ ` ∆, A,B
Γ ` ∆, A ∨B

I shall explain soon (section ??) why this is legitimate.
A word is in order on the two rules of contraction. Whether one needs the

contraction rules or not depends on whether one thinks of the left and right
halves of sequents as sets or as multisets. Both courses of action can be argued
for. If one thinks of them as multisets then one can keep track of the multiple
times one exploits an assumption. If one thinks of them as as sets then one
doesn’t need the contraction rules. It’s an interesting exercise in philosophy of
mathematics to compare the benefits of the two ways of doing it, and to consider
the sense in which they are equivalent. Since we are not hell-bent on rigour we
will equivocate between the two approaches: in all the proofs we consider it will
be fairly clear how to move from one approach to the other and back.

A bit of terminology you might find helpful. Since premisses and conclusion
are the left and right parts of a sequent, what are we going to call the things
above and below the line in a sequent rule? The terminology precedent and
succedent is sometimes used. I’m not going to expect you to know it: I’m
offering it to you here now because it might help to remind you that it’s a
different distinction from the premiss/conclusion distinction. I think it is more
usual to talk about the upper sequent and the lower sequent.

You will notice that I have cheated: some of these rules allow there to be
more than one formula on the right! There are various good reasons for this, but
they are quite subtle and we may not get round to them. If we are to allow more
than one formula on the right, then we have to think of Γ ` ∆ as saying that
every valuation that makes everything Γ true also makes something in ∆ true.
We can’t correctly think of Γ ` ∆ as saying that there is a proof of something
in ∆ using premisses in Γ because:

A ` A
is an initial sequent. so we can use ¬−R to infer

` A,¬A.

So ` A,¬A is an OK sequent. Now it just isn’t true that there is always a
proof of A or a proof of ¬A, so this example shows that it similarly just isn’t
true that a sequent can be taken to assert that there is a proof of something on
the right using only premisses found on the left—unless we restrict matters so
that there is only one formula on the right. This fact illustrates how allowing
two formulæ on the right can be useful: the next step is to infer the sequent

` A ∨ ¬A
and we can’t do that unless we allow two formulæ on the right.
However, it does help inculcate the good habit of thinking of sequents as

metaformulæ, as things that formalise facts about formulæ rather than facts of
the kind formalised by the formulæ.
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One thing you will need to bear in mind, but which we have no space to
prove in this course, is that sequent proofs with more than formula on the right
correspond to natural deduction proofs using the rule of double negation. N.B.: Display this properly
commas on the left of a sequent mean ‘and’ while commas on the right-hand
side mean ‘or’ ! This might sound odd, but it starts to look natural quite early,
and you will get used to it easily.

A summary of what we have done so far with Natural Deduction and Sequent
Calculus.

• A sequent calculus proof is a log of attempts to build a
natural deduction proof.

• So a sequent is telling you that there is a proof of the
formula on the right using as premisses the formulæ on
the left.

• But we muck things up by allowing more than one formula
on the right so we have to think of a sequent as saying if
everything on the left is true then something on the right
is true.

• Commas on the left are and, commas on the right are or.

1.9 Hilbert-style Proofs

In this style of proof we have only three axioms
K: A→ (B → A)
S: (A→ (B → C))→ ((A→ B)→ (A→ C))
T : (¬A→ B)→ ((¬A→ ¬B)→ A)
and the rules of modus ponens and substitution. ‘K’ and ‘S’ are standard

names for the first two axioms. There is a good reason for this, which we will
see in chapter ??. The third axiom does not have a similarly standard name.

Notice that only two connectives appear here: → and ¬. How are we sup-
posed to prove things about ∧ and ∨ and so on? The answer is that we define the
other connectives in terms of→ and ¬, somewhat as we did on page ??—except
that there we defined our connectives in terms of a different set of primitives.

Here is an example of a proof in this system:

1. A→ ((A→ A)→ A) Instance of K

2. (A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A)) Instance of S

3. (A→ (A→ A))→ (A→ A) Modus Ponens (1) and (2)

4. A→ (A→ A) Instance of K:

5. A→ A Modus Ponens (3) and (4)
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I thought I would give you an illustration of a proof before giving you a
definition. Here is the definition.

DEFINITION 5 A Hilbert-style proof is a list of formulæ wherein every for-
mula is either an axiom or is obtained from earlier formulæ in the list by modus
ponens or substitution.

Some comments at this point.

1. We can do without the rule of substitution, simply by propagating the
substitutions we need back to the axioms in the proof and ruling that a
substitution instance of an axiom is an axiom.

2. We can generalise this notion to allow assumptions as well as axioms. That
way we have—as well as the concept of an outright (Hilbert)-proof—the
concept of a Hilbert-proof of a formula from a list of assumptions.

3. An initial segment of a Hilbert-style proof is another Hilbert-style proof—
of the last formula in the list.

4. Hilbert-style proofs suffer from not having the subformula property, as the
boxed proof (above, page 33) shows.

EXERCISE 16 You have probably already found natural deduction proofs for
K and S. If you have not done so, do it now. Find also a natural deduction
proof of T , the third axiom. (You will need the rule of double negation).

EXERCISE 17 Go back to Zarg (exercise 6 p. 17) and—using the truth-table
for ¬ that you decided that the Zarglings use—check that the Zarglings do not
believe axiom T to be a tautology.

I will spare you the chore of testing whether or not the Zarglings believe S
to be a tautology. One reason is that it would involve writing out a truth-table
with a dispiritingly large number of rows. How many rows exactly?

EXERCISE 18 [For enthusiasts only]
Find Hilbert-style proofs of the following tautologies

(a) B → ¬¬B.
(b) ¬A→ (A→ B).
(c) A→ (¬B → ¬(A→ B)).
(d) (A→ B)→ ((¬A→ B)→ B).

Notice how easy it is to prove that the Hilbert-style proof system is sound!
After all, every substitution-instance of a tautology is a tautology, and if A→ B
and A are tautologies, so is B.This needs massive expan-

sion
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1.9.1 The Deduction Theorem

In this Hilbert-style proof system the only rules of inference are modus ponens
and substitution. Establishing that A → A is a theorem—as we did above—is
quite hard work in this system. If we had a derived rule that said that if we have
a Hilbert-style proof of A using a premiss B then we have a Hilbert-style proof
of A→ B then as a special case we would know that there was a Hilbert-proof
of A→ A.

To justify a derived rule that says that if we have a Hilbert-proof of A from
B then there is a Hilbert-proof of A→ B we will have to show how to transform
a proof of B with an assumption A in it into a proof of A→ B. Let the Hilbert-
proof of B be the list whose ith member is Bi. The first thing we do is replace
every Bi by A→ Bi to obtain a new list of formulæ. This list isn’t a proof, but
it is the beginnings of one.

Suppose Bk had been obtained from Bi and Bj by modus ponens with Bi

as major premiss, so Bi was Bj → Bk. This process of whacking ‘A →’ on
the front of every formula in the list turns these into A → (Bj → Bk) and
A → Bj . Now altho’ we could obtain Bk from Bj and Bj → Bk by modus
ponens we clearly can’t obtain A → Bk from A → Bj and A → (Bj → Bk)
quite so straightforwardly. However we can construct a little Hilbert-style proof
of A → Bk from A → Bj and A → (Bj → Bk) using S. When revising you
might like to try covering up the next few formulæ and working it out yourself.

1. (A→ (Bj → Bk))→ ((A→ Bj)→ (A→ Bk)) S

2. A→ (Bj → Bk)

3. (A→ Bj)→ (A→ Bk) modus ponens (1), (2)

4. A→ Bj

5. A→ Bk modus ponens (3), (4)

Lines (2) and (4) I haven’t labelled. Where did they come from? Well, what
we have just seen is an explanation of how to get A→ Bk from A→ (Bj → Bk)
and A → Bj given that we can get Bk from Bj and Bj → Bk. What the box
shows us is how to rewrite any one application of modus ponens. What we have
to do to prove the deduction theorem is to do this trick to every occurrence of
modus ponens. Revise this: it isn’t correct

If we apply this process to:
A→ ((A→ B)→ B)
A,A→ B ` B
A ` ((A→ B)→ B)
we obtain

1. (A→ B)→ (((A→ B)→ (A→ B))→ (A→ B)) Instance of K

2. ((A → B) → (((A → B) → (A → B)) → (A → B))) → (((A → B) →
((A→ B)→ (A→ B)))→ ((A→ B)→ (A→ B))) Instance of S
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3. ((A→ B)→ ((A→ B)→ (A→ B)))→ ((A→ B)→ (A→ B)) Modus
Ponens (1) and (2)

4. (A→ B)→ ((A→ B)→ (A→ B)) Instance of K:

5. (A→ B)→ (A→ B) Modus Ponens (3) and (4)

6. ((A→ B)→ (A→ B))→ (((A→ B)→ A)→ ((A→ B)→ B) Instance
of S

7. ((A→ B)→ A)→ ((A→ B)→ B) Modus ponens (6), (5)

8. A Assumption

9. A→ ((A→ B)→ A) Instance of K.

10. (A→ B)→ A Modus ponens (9), (8).

11. (A→ B)→ B modus ponens (10), (7).

(Of course the annotations at the beginning and end of the lines are not
part of the proof but are part of a commentary on it. That’s the language-
metalanguage distinction again.)More to do here

THEOREM 6 If Γ, A ` B then Γ ` A→ B



Chapter 2

Curry-Howard

The Curry-Howard trick is to exploit the possibility of using the letters ‘A’, ‘B’
etc. to be dummies not just for propositions but for sets. This means reading
the symbols ‘→’, ‘∧’, ‘∨’ etc. as symbols for operations on sets as well as on
formulæ. The ambiguity we will see in the use of ‘A→ B’ is quite different from
the ambiguity arising from the two uses of the word ‘tank’. Those two uses are
completely unrelated. In contrast the two uses of the arrow in ‘A→ B’ have a
deep and meaningful relationship. The result is a kind of cosmic pun. Here is
the simplest case.

Altho’ we use it as a formula in propositional logic, the expression ‘A→ B’ is
used by various mathematical communities to denote the set of all functions from
A to B. To understand this usage you don’t really need to have decided whether
your functions are to be functions-in-intension or functions-in-extension; either
will do. The ideas in play here work quite well at an informal level. A function
from A to B is a thing such that when you give it a member of A it gives you
back a member of B.

2.1 Decorating Formulæ

2.1.1 The rule of →-elimination

Consider the rule of →-elimination

A A→ B →-elim
B

(2.1)

If we are to think of A and B as sets then this will say something like “If I
have an A (abbreviation of “if i have a member of the set A”) and an A → B
then I have a B”. So what might an A→ B (a member of A→ B) be? Clearly
A → B must be the set of functions that give you a member of B when fed a
member of A. Thus we can decorate 2.1 to obtain

37
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a : A f : A→ B
→-elim

f(a) : B
(2.2)

which says something like: “If a is in A and f takes As to Bs then f(a) is
a B.1 This gives us an alternative reading of the arrow: ‘A → B’ can now be
read ambiguously as either the conditional “if A then B” (where A and B are
propositions) or as a notation for the set of all functions that take members of
A and give members of B as output (where A and B are sets).

These new letters preceding the colon sign are decorations. The idea
of Curry-Howard is that we can decorate entire proofs—not just individual
formulæ—in a uniform and informative manner.

We will deal with →-int later. For the moment we will look at the rules for
∧.

2.1.2 Rules for ∧

2.1.2.1 The rule of ∧-introduction

Consider the rule of ∧-introduction:

A B ∧-int
A ∧B (2.1)

If I have an A and a B then I have a . . . ? thing that is both A and B? No.
If I have one apple and I have one banana then I don’t have a thing that is both
an apple and a banana; what I do have is a sort of plural object that I suppose
is a pair of an apple and a banana. (By the way I hope you are relaxed about
having compound objects like this in your world. Better start your breathing
exercises now.) The thing we want is called an ordered pair: 〈a, b〉 is the
ordered pair of a and b. So the decorated version of 2.1 is

a : A b : B ∧-int〈a, b〉 : A×B (2.2)

Say something about how
we use × here . . . What is the ordered pair of a and b? It might be a kind of funny plural

object, like the object consisting of all the people in this room, but it’s safest
to be entirely operationalist2 about it: all you know about ordered pairs is
that there is a way of putting them together and a way of undoing the putting-
together, so you can recover the components. Asking for any further information
about what they are is not cool: they are what they do. Be doo be doo. That’s
operationalism for you.

1So why not write this as ‘a ∈ A’ if it means that a is a member of A? There are various
reasons, some of them cultural, but certainly one is that here one tends to think of the
denotations of the capital letters ‘A’ and ‘B’ and so on as predicates rather than sets.

2Have a look at chapter 1



2.1. DECORATING FORMULÆ 39

2.1.2.2 The rule of ∧-elimination

If you can do them up, you can undo them: if I have a pair-of-an-A-and-a-B
then I have an A and I have a B.

〈a, b〉 : A ∧B
a : A

〈a, b〉 : A ∧B
b : B

A×B is the set {〈a, b〉 : a ∈ A∧ b ∈ B} of3 pairs whose first components are
in A and whose second components are in B. A×B is the Cartesian product
of A and B.

(Do not forget that it’s A×B not A∩B that we want. A thing in A∩B is
a thing that is both an A and a B: it’s not a pair of things one of which is an
A and the other a B; remember the apples and bananas above.)

2.1.3 Rules for ∨
To make sense of the rules for ∨ we need a different gadget.

A

A ∨B
B

A ∨B
If I have a thing that is an A, then I certainly have a thing that is either an

A or a B—namely the thing I started with. And in fact I know which of A and
B it is—it’s an A. Similarly If I have a thing that is a B, then I certainly have
a thing that is either an A or a B—namely the thing I started with. And in
fact I know which of A and B it is—it’s a B.

Just as we have cartesian product to correspond with ∧, we have disjoint
union to correspond with ∨. This is not like the ordinary union you may
remember from school maths. You can’t tell by looking at a member of A ∪ B
whether it got in there by being a member of A or by being a member of B.
After all, if A ∪ B is {1, 2, 3} it could have been that A was {1, 2} and B was
{2, 3}, or the other way round. Or it might have been that A was {2} and B
was {1, 3}. Or they could both have been {1, 2, 3}! We can’t tell. However,
with disjoint union you can tell.

The disjoint union AtB of A and B is obtained by making copies of every-
thing in A and marking them with wee flecks of pink paint and making copies of
everything in B and marking them with wee flecks of blue paint, then putting
them all in a set. We can put this slightly more formally, now that we have the
concept of an ordered pair: A tB is

(A× {pink}) ∪ (B × {blue}),

where pink and blue are two arbitrary labels.
(Check that you are happy with the notation: A × {pink} is the set of all

ordered pairs whose first component is in A and whose second component is in

3If you are less than 100% happy about this curly bracket notation have a look at the
discrete mathematics material on my home page.
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{pink} which is the singleton of4 pink, which is to say whose second component
is pink. Do not ever confuse any object x with the set {x}—the set whose sole
member is x! So an element of A × {pink} is an ordered pair whose first
component is in A and whose second component is pink. We can think of such
an ordered pair as an object from A labelled with a pink fleck.)Say something about A t

B = B tA ∨-introduction now says:

a : A b : B
〈a, pink〉 : A tB 〈b, blue〉 : A tB

∨-elimination is an action-at-a-distance rule (like →-introduction) and to
treat it properly we need to think about:

2.2 Propagating Decorations

The first rule of decorating is to decorate each assumption with a variable, a
thing with no syntactic structure: a single symbol.5 This is an easy thing to
remember, and it helps guide the beginner in understanding the rest of the
gadgetry. Pin it to the wall:

Decorate each assumption with a variable!

How are you to decorate formulæ that are not assumptions? You can work
that out by checking what rules they are the outputs of. We will discover through
some examples what extra gadgetry we need to sensibly extend decorations
beyond assumptions to the rest of a proof.

2.2.1 Rules for ∧
2.2.1.1 The rule of ∧-elimination

A ∧B ∧-elim
B

(2.1)

We decorate the premiss with a variable:

x : A ∧B ∧-elim
B

(2.2)

. . . but how do we decorate the conclusion? Well, x must be an ordered pair
of something in A with something in B. What we want is the second component
of x, which will be a thing in B as desired. So we need a gadget that when we
give it an ordered pair, gives us its second component. Let’s write this ‘snd’.

4The singleton of x is the set whose sole member is x.
5You may be wondering what you should do if you want to introduce the same assumption

twice. Do you use the same variable? The answer is that if you want to discharge two
assumptions with a single application of a rule then the two assumptions must be decorated
with the same variable.
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x : A ∧B
snd(x) : B

By the same token we will need a gadget ‘fst’ which gives the first compo-
nent of an ordered pair so we can decorate6

A ∧B ∧-elim
A

(2.3)

to obtain

x : A ∧B
fst(x) : A

2.2.1.2 The rule of ∧-introduction

Actually we can put these proofs together and whack an ∧-introduction on the
end:

x : A ∧B x : A ∧B
snd(x) : B fst(x) : A
〈snd(x), fst(x)〉 : B ∧A

2.2.2 Rules for →
7.2.2.1 The rule of →-introduction

Here is a simple proof using →-introduction.

[A→ B]1 A
→-elim

B →-int (1)
(A→ B)→ B

(2.1)

We decorate the two premisses with single letters (variables): say we use ‘f ’
to decorate ‘A → B’, and ‘x’ to decorate ‘A’. (This is sensible. ‘f ’ is a letter
traditionally used to point to functions, and clearly anything in A→ B is going
to be a function.) How are we going to decorate ‘B’? Well, if x is in A and f is
a function that takes things in A and gives things in B then the obvious thing
in B that we get is going to be denoted by the decoration ‘f(x)’:

f : [A→ B]1 x : A
f(x) : B

??? : (A→ B)→ B

6Agreed: it’s shorter to write ‘x1’ and ‘x2’ than it is to write ‘fst(x)’ and ‘snd(x)’ but this
would prevent us using ‘x1 and x2’ as variables and in any case I prefer to make explicit the
fact that there is a function that extracts components from ordered pairs, rather than having
it hidden it away in the notation.
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So far so good. But how are we to decorate ‘(A→ B)→ B’? What can the
‘???’ stand for? It must be a notation for a thing (a function) in (A→ B)→ B;
that is to say, a notation for something that takes a thing in A→ B and returns
a thing in B. What might this function be? It is given f and gives back f(x).
So we need a notation for a function that, on being given f , returns f(x).
(Remember, we decorate all assumptions with variables, and we reach for this
notation when we are discharging an assumption so it will always be a variable).
We write this

λf.f(x)

This notation points to the function which, when given f , returns f(x). In
general we need a notation for a function that, on being given x, gives back
some possibly complex term t. We will write:

λx.t

for this. Thus we have

f : [A→ B]1 x : A
→-elim

f(x) : B
→-int (1)

λf.f(x) : (A→ B)→ B

(2.2)

Thus, in general, an application of →-introduction will gobble up the proof

x : A
...

t : B

and emit the proof

[x : A]
...

t : B
λx.t : A→ B

This notation—λx.t—for a function that accepts x and returns t is incredibly
simple and useful. Almost the only other thing you need to know about it is
that if we apply the function λx.t to an input y the output must be the result
of substituting ‘y’ for all the occurrences of ‘x’ in t. In the literature this result
is notated in several ways, for example [y/x]t or t[y/x].Go over a proof of S at this

point

2.2.3 Rules for ∨
We’ve discussed ∨-introduction but not ∨-elimination. It’s very tricky and—
at this stage at least—we don’t really need to. It’s something to come back
to—perhaps! 7

7For any gluttons for punishment out there here is a message from my former student Nick
Benton of Microsoft Research:
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EXERCISE 19 Go back and look at the proofs that you wrote up in answer to
exercise 2, and decorate those that do not use ‘∨’.

2.2.4 Remaining Rules

2.2.4.1 Identity Rule

Here is a very simple application of the identity rule. See [?]: Semantical Archæol-
ogy.

A B
B

B → A
A→ (B → A)

Can you think of a function from A to the set of all functions from B to A?
If I give you a member a of A, what function from B to A does it suggest to
you? Obviously the function that, when given b in B, gives you a.

This gives us the decoration

a : A b : B
b : B

λb.a : B → A
λa.(λb.a) : A→ (B → A)

The function λa.λb.a has a name: K for Konstant. (See section 1.9.) Show how do do this using
the option of cancelling non-
existent assumptions.2.2.4.2 The ex falso

The ex falso sequitur quodlibet speaks of the propositional constant ⊥. To
correspond to this constant proposition we are going to need a constant set.
The obvious candidate for a set corresponding to ⊥ is the empty set. Now
⊥ → A is a propositional tautology. Can we find a function from the empty set
to A which we can specify without knowing anything about A? Yes: the empty
function! (You might want to check very carefully that the empty function ticks
all the right boxes: is it really the case that whenever we give the empty function
a member of the empty set to contemplate it gives us back one and only one
answer? Well yes! It has never been known to fail to do this!! Look again at
page ??.) That takes care of ⊥ → A, the ex falso.

“∨-elim goes to a generalization of if-then-else called “case”:

` E : A + B x : A ` M : C y : B ` N : C
` case E of inl(x) ⇒ M |inr(y) ⇒ N : C

Note ‘x’ bound in M , ‘y’ in N . The operational behaviour is to evaluate E, see if it turns
into inl(a) for some a ∈ A and—if it does—evaluate M with ‘x’ bound to a, otherwise the
symmetric thing. if-then-else is morally the special case where A and B are both just 1,
the one element type, though binding a variable to a value of type 1 is a bit of a waste of
time, so we simplify the syntax.

Haskell, ML etc have case in, and that’s what it’s called there too, but they generalize the
forms of pattern matching somewhat.”
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2.2.4.3 Double Negation

What are we to make of A → ⊥? Clearly there can be no function from A to
the empty set unless A is empty itself. What happens to double negation under
this analysis?

((A→ ⊥)→ ⊥)→ A

• If A is empty then A → ⊥ is the singleton of the empty function and is
not empty. So (A→ ⊥)→ ⊥ is the set of functions from a nonempty set
to the empty set and is therefore the empty set, so ((A→ ⊥)→ ⊥)→ A
is the set of functions from the empty set to the empty set and is therefore
the singleton of the empty function, so it is at any rate nonempty.

• However if A is nonempty then A→ ⊥ is empty. So (A→ ⊥)→ ⊥ is the
set of functions from the empty set to the empty set and is nonempty—
being the singleton of the empty function—so ((A → ⊥) → ⊥) → A is
the set of functions from a nonempty set to the empty set and is therefore
empty.

So ((A→ ⊥)→ ⊥)→ A is not reliably inhabited. This is in contrast to all
the other truth-table tautologies we have considered. Every other truth-table
tautology that we have looked at has a lambda term corresponding to it.to be continued

A final word of warning: notice that we have not provided any λ-gadgetry
for the quantifiers. This can in fact be done, but there is no spacetime here to
do it properly.

2.3 Exercises

In the following exercises you will be invited to find λ terms to correspond to
particular wffs—in the way that the lambda term λa.λb.a (aka ‘K’) corresponds
to A→ (B → A) (also aka ‘K’ !) You will discover very rapidly that the way to
find a λ-term for a formula is to find a proof of that formula: λ-terms encode
proofs!

EXERCISE 20 Find λ-terms for

1. (A ∧B)→ A;

2. ((A→ B) ∧ (C → D))→ ((A ∧ C)→ (B ∧D));

3. (A→ B)→ ((B → C)→ (A→ C));

4. ((A→ B)→ A)→ ((A→ B)→ B);

5. (A→ (B → C))→ (B → (A→ C));

6. (A→ (B → C))→ (B ∧A)→ C));

7. ((B ∧A)→ C))→ (A→ (B → C));
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Finding λ-terms in exercise 20 involves of course first finding natural de-
duction proofs of the formulæ concerned. A provable formula will always have
more than one proof. (It won’t always have more than one sensible proof!) For
example the tautology (A→ A)→ (A→ A) has these proofs (among others)

[A→ A]1
identity rule

A→ A →-int (1)
(A→ A)→ (A→ A)

(2.1)

[A]1 [A→ A]2
→-elim

A →-int (1)
A→ A →-int (2)

(A→ A)→ (A→ A)

(2.2)

[A]1 [A→ A]2
→-elim

A [A→ A]2
→-elim

A →-int (1)
A→ A →-int (2)

(A→ A)→ (A→ A)

(2.3)

[A]1 [A→ A]2
→-elim

A [A→ A]2
→-elim

A [A→ A]2
→-elim

A →-int (1)
A→ A →-int (2)

(A→ A)→ (A→ A)
(2.4)

[A]1 [A→ A]2
→-elim

A [A→ A]2
→-elim

A [A→ A]2
→-elim

A [A→ A]2
→-elim

A →-int (1)
A→ A →-int (2)

(A→ A)→ (A→ A)
(2.5)



46 CHAPTER 2. CURRY-HOWARD

EXERCISE 21 Decorate all these proofs with λ-terms. If you feel lost, you
might like to look at the footnote8 for a HINT.

2.3.1 Need a section here on Combinators and Hilbert
proofs

EXERCISE 22 Provide, without using the rule of double negation,

1. a natural deduction proof of ¬¬((¬A→ B)→ ((¬A→ ¬B)→ A));

2. a natural deduction proof of ¬¬B from ¬¬A and ¬¬(¬¬A→ ¬¬B);

Provide sequent proofs of the following, respecting the one-formula-on-the-right
constraint.

1. ` ¬¬((¬A→ B)→ ((¬A→ ¬B)→ A));

2. ¬¬A,¬¬(¬¬A→ ¬¬B) ` ¬¬B.

2.3.2 Some advanced exercises for enthusiasts

Life on Planet Zarg taught us that Peirce’s law does not follow from K and
S alone: we seem to need the rule of double negation. In fact Peirce’s law, in
conjunction with K and S, implies all the formulæ built up only from → that
we can prove using the rule of double negation.

EXERCISE 23 Observe that (P → Q)→ Q has the same truth-table as P ∨Q.
Construct a natural deduction proof of R from the premisses (P → Q) → Q,
P → R and Q → R. You may additionally use as many instances of Peirce’s
law as you wish.9

8Notice that in each proof of these proofs all the occurrences of ‘A → A’ are cancelled
simultaneously.. Look at the footnote on page 40.

9I am endebted to Tim Smiley for this amusing fact.



Chapter 3

Lectures three and four

Predicate calculus syntax. Natural deduction and sequent calculus. Epsilon
terms, completeness. Cut-elimination?

All the apparatus for constructing formulæ in propositional logic works too
in this new context: If A and B are formulæ so are A ∨ B, A ∧ B, ¬A and so
on. However we now have new ways of creating formulæ, new gadgets which we There is really an abuse of

notation here: we should use
quasi-quotes . . .

had better spell out:

Constants and variables

Constants tend to be lower-case letters at the start of the latin alphabet (‘a’,
‘b’ . . . ) and variables tend to be lower-case letters at the end of the alphabet
(‘x’, ‘y’, ‘z’ . . . ). Since we tend to run out of letters we often enrich them with
subscripts to obtain a larger supply: ‘x1’ etc.

Predicate letters

are upper-case letters from the latin alphabet, usually from the early part: ‘F ’
‘G’ . . . . They are called predicate letters because they arise from a programme
of formalising reasoning about predicates and predication. ‘F (x, y)’ could have
arisen from ‘x is fighting y’. Each predicate letter has a particular number of
terms that it expects; this is the arity of the letter. If we feed it the correct
number of terms—so we have an expression like F (x, y)—we call the result an
atomic formula.

The equality symbol ‘=’ is a very special predicate letter: you are not
allowed to reinterpret it the way you can reinterpret other predicate letters. We
in the Information Technology fraternity say of strings that cannot be assigned
meanings by the user that they are reserved. It is said to be part of the
logical vocabulary. The equality symbol ‘=’ is the only relation symbol that
is reserved. In this respect it behaves like ‘∧’ and ‘∀’ and the connectives, all of
which are reserved in this sense.

47



48 CHAPTER 3. LECTURES THREE AND FOUR

Unary predicates have one argument, binary predicates have two; n-ary
have n. Similarly functions.

Atomic formulæ can be treated the way we treated literals in propositional
logic: we can combine them together by using ‘∧’ ‘∨’and the other connectives.

Finally we can bind variables with quantifiers. Ther are two: ∃ and ∀. We
can write things like

(∀x)F (x)

everything is a frog;

(∀x)(∀y)L(x, y)

everybody loves everyone
we might write this second thing as

(∀xy)L(x, y)

to save space
The syntax for quantifiers is variable-preceded-by quantifier enclosed in brack-

ets, followed by stuff inside brackets:
(∃x)(. . .) and (∀y)(). We sometimes omit the pair of brackets to the right of

the quantifier when no ambiguity is caused thereby.
The difference between variables and constants is that you can bind variables

with quantifiers, but you can’t bind constants. The meaning of a constant is
fixed.

. . . freecomplete this explanation;
quantifiers are connectives
too

For example, in a formula like

(∀x)(F (x)→ G(x))

the letter ‘x’ is a variable: you can tell because it is bound by the universal
quantifier. The letter ‘F ’ is not a variable, but a predicate letter. It is not bound
by a quantifier, and cannot be: the syntax forbids it. In a first-order language
you are not allowed to treat predicate letters as variables: you may not bind
them with quantifiers. Binding predicate letters with quantifiers (treating them
as variables) is the tell-tale sign of second-order Logic.

We also have

Function letters

These are lower-case latin letters, typically ‘f ’ ‘g’ ‘h’. We apply them to vari-
ables and constants, and this gives us terms: f(x), g(a, y) and suchlike. In fact
we can even apply them to terms: f(g(a, y)), g(f(g(a, y), x)) and so on. So a
term is either a variable or a constant or something built up from variables-and-
constants by means of function letters. What is a function? That is, what sort
of thing do we try to capture with function letters? We have seen an example:
father-of is a function: you have precisely one father; son-of is not a function.
Some people have more than one, or even none at all.
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3.1 Exercises

EXERCISE 24 In each formula circle the principal connective. (This requires
more care than you might think! Pay close attention to the brackets)

In each of the following pairs of formulæ, determine whether the two formulæ
in the pair are (i) logically equivalent or are (ii) negations of each other or (iii)
neither. The last two are quite hard.

(∃x)(F (x)); ¬∀x¬F (x)
(∀x)(∀y)F (x, y); (∀y)(∀x)F (x, y)
(∃x)(F (x) ∨G(x)); ¬(∀x)(¬F (x) ∨ ¬G(x))
(∀x)(∃y)(F (x, y)); (∃y)(∀x)(F (x, y))
(∃x)(F (x))→ A; (∀x)(F (x)→ A)
(∃x)(F (x)→ A); (∀x)(F (x))→ A

(In the last two formulæ ‘x’ is not free in A)

EXERCISE 25 Find proofs of the following sequents:

1. ¬∀xφ(x) ` ∃x¬φ(x);

2. ¬∃xφ(x) ` ∀x¬φ(x);

3. φ ∧ ∃xψ(x) ` ∃x(φ ∧ ψ(x));

4. φ ∨ ∀xψ(x) ` ∀x(φ ∨ ψ(x)),

5. φ→ ∃xψ(x) ` ∃x(φ→ ψ(x)),

6. φ→ ∀xψ(x) ` ∀x(φ→ ψ(x)),

7. ∃xφ(x)→ ψ ` ∀x(φ(x)→ ψ)

8. ∀xφ(x)→ ψ ` ∃x(φ(x)→ ψ),

9. ∃xφ(x) ∨ ∃xψ(x) ` ∃x(φ(x) ∨ ψ(x)),

10. ∀xφ(x) ∧ ∀xψ(x) ` ∀x(φ(x) ∧ ψ(x)),

In this exercise φ and ψ are formulæ in which ‘x’ is not free, while φ(x) and
ψ(x) are formulæ in which ‘x’ may be free.

EXERCISE 26 Prove the following sequents. The first one is really quite easy.
(It is Russell’s paradox of the set of all sets that are not members of themselves.
The second one underlines the fact that you do not need a biconditional in the
definition of ‘symmetric’.

1. ` ¬(∃x)(∀y)(P (y, x)←→ ¬(P (y, y)))

2. ∀x∀y(R(x, y)→ R(y, x)) ` ∀x∀y(R(x, y)←→ R(y, x));
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3. ` ¬(∃x)(∀y)(P (y, x)←→ (∀z)(P (z, y)→ ¬P (y, z)))

This formula concerns the modified paradox of Russell concerning the set
of those sets that are not members of any member of themselves.

It is noticeably harder, and is recommended mainly for enthusiasts. You
will certainly need to “keep a copy”! You will find it much easier to find
a proof that uses cut. Altho’ there is certainly a proof that never has
more than one formula on the right you might wish to start off without
attempting to respect this constraint.

EXERCISE 27 Find a proof of the following sequent:

(∀x)[P (x)→ P (f(x))] ` (∀x)[P (x)→ P (f(f(x)))]

For this you will definitely need to keep a copy. (On the left, as it happens)

EXERCISE 28 Using the natural deduction rules derive a contradiction from
the two assumptions ¬(∀x)(¬φ(x)) and ¬(∃x)(φ(x)).

3.2 Equality and Substitution

Frege gave a definition of equality in higher-order logic. Equality is a deeply
deeply problematic notion in all branches of philosophy, so it was really quite
brave of Frege to even attempt to define it. His definition of equality says that
it is the intersection of all reflexive relations. Recall from definition ?? that
a binary relation R is reflexive if R(w,w) holds for all w: (That’s what the
‘(∀w)(R(w,w))’ is doing in the formula 3.2 below.) So Frege’s definition is

x = y iff (∀R)[(∀w)(R(w,w))→ R(x, y)] (3.1)

The first thing to notice is that this definition is second-order! You can
tell that by the ‘(∀R)’ and the fact that the ‘R’ is obviously a predicate letter
because of the ‘R(w,w)’.

Notice that this definition is not circular (despite what you might have ex-
pected from the appearance of the word ‘reflexive’) since the definiendum does
not appear in the definiens.

3.2.1 Substitution

Consider the binary relation “every property that holds of x holds also of y and
vice versa”. This is clearly reflexive! If x and y are equal then they stand in
this relation (because two things that are equal stand in every reflexive rela-
tion, by definition) so they have the same properties. This justifies the rule of
substitution. (If you have good French have a look at [?]).

A(t) t = x
subst

A(x)
(3.1)
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In the rule of substitution you are not obliged to replace every occurrence
of ‘t’ by ‘x’. (This might remind you of the discussion on page 10 where we
consider cancelling premisses.)

The following example is a perfectly legitimate use of the rule of substitution,
where we replace only the first occurrence of ‘t’ by ‘x’. In fact this is how we
prove that equality is a symmetrical relation!

t = t t = x substx = t
(3.2)

Given that, the rule of substitution could more accurately be represented by

A[t/x] t = x
subst

A
(3.3)

. . . the idea being that A is some formula or other—possibly with free occur-
rences of ‘x’ in it—and A[t/x] is the result of replacing all free occurrences of
‘x’ in A by ‘t’. This is a bit pedantic, and on the whole our uses of substitution
will look more like 3.1 than 3.3.

However we will definitely be using the A[t/x] notation in what follows, so
be prepared. Sometimes the [t/x] is written the other side, as

[t/x]A. (3.4)

This notation is intended to suggest that [t/x] is a function from formulæ to
formulæ that is being applied to the formula A.

One thing that may cause you some confusion is that sometimes a formula
with a free variable in it will be written in the style “A(x)” making the variable
explicit. Sometimes it isn’t made explicit. When you see the formula in 3.2.1
it’s a reasonable bet that the variable ‘x’ is free in A, or at least could be: after
all, there wouldn’t be much point in substituting ‘t’ for ‘x’ if ‘x’ weren’t free,
now would it?!

3.2.2 Leibniz’s law

“The identity of indiscernibles”. This is a principle of second-order logic:

(∀xy)((∀R)(R(x)←→ R(y))→ x = y) (3.1)

The converse to 3.1 is obviously true so we can take this as a claim about
the nature of equality: x = y iff (∀R)(R(x)←→ R(y)).

It’s not 100% clear how one would infer that x and y are identical in Frege’s
sense merely from the news that they have the same monadic properties: Frege’s
definition talks about reflexive relations, which of course are binary. The claim
that 3.1 characterises equality is potentially contentions. It is known as Leib-
niz’s Law.
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3.3 Prenex Normal Form

There is a generalisation of CNF and DNF to first-order logic: it’s called Prenex
normal form. The definition is simplicity itself. A formula is in Prenex normal
form if it is of the form

(Qv1)(Qv2) · · · (Qvn)(....)

where the Qs are quantifiers, and the dots at the end indicate a purely
propositional formula: one that contains no quantifiers, and is in conjunctive
normal form. All quantifiers have been “pulled to the front”.

EXERCISE 29 Which of the following formulæ are in Prenex normal form?Insert some formulae here!!

THEOREM 7 Every formula is logically equivalent to one in PNF.

To prove this we need to be able to “pull all quantifiers to the front”. What
does this piece of italicised slang mean? Let’s illustrate:

(∀x)F (x) ∧ (∀y)G(y)

is clearly equivalent to
(∀x)(∀y)(F (x) ∧G(y))

(If everything is green and everything is a frog then everything is both green
and a frog, and vice versa).

In exercise 25 the point in each case is that in the formula being deduced
the scope of the quantifier is larger: it has been “pulled to the front”. If we
keep on doing this to a formula we end up with something that is in PNF. ]
. . . and explain to your flatmates what this has to do with theorem 7.Explain why PNF is

important—why normal
form theorems are im-
portant in general. It
imposes a linear order on
the complexity of formulæ.

3.4 Soundness again

At this point we should have a section analogous to section 1.6 where we prove
the soundness of natural deduction for propositional logic and section ?? where
we prove the soundness of sequent calculus for propositional logic.Work to be done here

You will discover that it’s nowhere near as easy to test predicate calculus
formulæ for validity as it is to test propositional formulæ: there is no easy
analogue of truth-tables. Despite this there is a way of generating all the truth-
preserving principles of reasoning that are expressible with this syntax, and we
will be seeing them, and I hope to prove them complete

You must get used to the idea that all notions of logical validity, or of sound
inference, can be reduced to a finite set of rules in the way that propositional
logic can and predicate calculus can. Given that—as we noted on p ??—the
validity of an argument depends entirely on its syntactic form, perhaps we should
not be surprised to find that there are finite mechanical methods for recognising
valid arguments. However this holds good only for arguments of a particularly
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simple kind. If we allow variables to range over predicate letters then things start
to go wrong. Opinion is divided on how important is this idea of completeness.
If we have something that looks like a set of principles of reasoning but discover
that it cannot be generated by a finite set of rules, does that mean it isn’t part
of logic? Mention here other notions

of validity: true in all finite
models: true in all infinite
models

In contrast to soundness, completeness is hard. See section 3.6.

3.5 Hilbert-style systems for first-order Logic

At this point there should be a section analogous to section 1.9. However I think
we can safely omit it.

3.6 Semantics for First-order Logic

We arrived at the formulæ of first-order logic by a process of codifying what was
logically essential in some scenario or other. Semantics is the reverse process:
picking up a formula of LPC and considering what situations could have given
rise to it by the kind of codification that we have seen in earlier exercises such
as ??.

A valid formula is one that is true in all models. We’d better be clear what
this means! So let’s define what a model is, and what it is for a formula to be
true in a model.

Signatures, structures, carrier set. Then we can explain again the difference
between a first-order theory and a higher-order theory.

The obvious examples of structures arise in mathematics and can be mis-
leading and in any case are not really suitable for our expository purposes here.
We can start off with the idea that a structure is a set-with-knobs on. Here is
a simple example that cannot mislead anyone.

The carrier set is the set {Beethoven, Handel, Domenico Scarlatti} and the
knobs are (well, ‘is’ rather than ‘are’ because there is only one knob in this case)
the binary relation “is the favourite composer of”. We would obtain a different
structure by adding a second relation: “is older than” perhaps.

Now we have to give a rigorous explanation of what it is for a formula to be
true in a structure. Need some formal semantics

here!
DEFINITION 8
A theory is a set of formulæ closed under deduction.

We say T decides ψ if T ` ψ or T ` ¬ψ.
Let us extend our use of the ‘L’ notation to write ‘L(T )’ for the language to

which T belongs.1

A theory T is complete if T decides every closed φ in L(T ).
1For sticklers:

L(T ) =:
[

s∈T

L(s)

where L(s) is as defined in the second part of definition ?? on page ??.
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DEFINITION 9 A Logic is a theory closed under uniform substitution.

We need one more technicality: the concept of a countable language.
A first-order language with a finite lexicon has infinitely many expressions in
it, but the set of those expressions is said to be countable: that is to say we
can count the expressions using the numbers 1, 2, 3, 4 . . . which are sometimes
called the counting numbers and sometimes called the natural numbers. (If you
were a mathematics or computer science student I would drag you kicking and
screaming through a proof of this fact). The set of natural numbers is usually
written with a capital ‘N’ in a fancy font, for example IN. There is some small
print to do with the fact that we might have an infinite supply of variables . . . .
After all, there is no limit on the length of expressions so there is no limit on
the number of variables that we might use, so we want to be sure we will never
run out. The best way to do this is to have infinitely many variables to start
with. We can achieve this while still having a finite alphabet by saying that
our variables will be not ‘x’, ‘y’ . . . but ‘x’, ‘x′’, ‘x′′’ . . . the idea being that you
can always make another variable by plonking a ‘′’ on the right of a variable.
(Notice that the systematic relation that holds between a variable and the new
variable obtained from it by whacking it on the right with a ‘′’ has no semantics:
the semantics that we have cannot see through into the typographical structure
of the variables.)

THEOREM 10 Every theory in a countable language can be extended to a com-
plete theory.

Proof: Suppose T is a theory in a language L(T ) which is countable. Then we
count the formulæ in L(T ) as φ1, φ2 . . . and define a sequence of theories Ti as
follows.

T0 = T and thereafter

Ti+1 is to be Ti if Ti decides φi and is Ti ∪ {φi} otherwise.

3.6.1 Completeness

∈-terms

For any theory T we can always add constants to L(T ) to denote witnesses to
∃n sentences in T .∃n sentence? ‘witness’ eo ex-

istential quantifiers not ex-
plained yet

Suppose T ` (∃x)(F (x)). There is nothing to stop us adding to L(T ) a new
constant symbol ‘a’ and adding to T an axiom F (a). Clearly the new theory
will be consistent if T was. Why is this? Suppose it weren’t, then we would
have a deduction of the false from F (c). But T also proves (∃x)(F (x)), so we
can do a ∃-elimination to have a proof of ⊥ in T . But T was consistent.

Notice that nothing about the letter ‘a’ that we are using as this constant
tells us that a is a thing which is F . We could have written the constant ‘aF ’
or something suggestive like that. Strictly it shouldn’t matter: variables and
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constant symbols do not have any internal structure that is visible to the lan-
guage2, and the ‘F ’ subscript provides a kind of spy-window available to anyone
mentioning the language, but not to anyone merely using it. The possibility of
writing out novel constants in suggestive ways like this will be useful later.

EXERCISE 30

1. Find a proof of the sequent ` (∃x)(∀y)(F (y)→ F (x))

2. Find a natural deduction proof of (∃x)(∀y)(F (y)→ F (x))

3. Find a proof of the sequent ` (∃x)(F (x)→ (∀y)(F (y))

4. Find a natural deduction proof of (∃x)(F (x)→ (∀y)(F (y))

The first item tells us that for any F with one free variable we can invent a
constant whose job it is to denote an object which has property F as long as
anything does. If there is indeed a thing which has F then this constant can
denote one of them, and as long as it does we are all right. If there isn’t such
a thing then it doesn’t matter what it denotes. There is a similar argument for
the formula in parts 3 and 4. The appeal to the law of excluded middle in this
patter should alert you to the possibility that this result is not constructively
correct. (So you should expect to find that you need to have to use the rule Explain constructively cor-

rectof double negation in parts 2 and 4 and will have two formulæ on the right at
some point in the proof of parts 1 and 3.

This constant is often written (εx)F (x). Since it points to something that
has F as long as there is something that has F , we can see that

(∃x)(F (x)) and F ((εx)F (x))

are logically equivalent. So we have two rules

(∃x)(F (x)) and F ((εx)F (x))
F ((εx)F (x)) (∃x)(F (x))

The right-hand one is just a special case of ∃-introduction but the left-
hand one is new, and we call it ε-introduction. In effect it does the work of
∃-elimination, because in any proof of a conclusion φ using ∃-elimination with
an assumption (∃x)F (x) we can replace the constant (as it might be) ‘a’ in the
assumption F (a) being discharged by the ε term ‘(εx)F (x)’ to obtain a new
proof of φ, thus:

[A(t)](1)

...
C (∃x)(A(x))

∃-elim(1)
C

(3.1)

2Look again at formula ?? on page ?? and the discussion on page ??.
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with

(∃x)(A(x))
ε-int

A((εx)(A(x)))
...
C

(3.2)

. . . where, in the dotted part of the second proof, ‘t’ has been replaced by
‘(εx)(A(x))’

Notice that this gives us an equivalence between a formula that definitely
belongs to predicate calculus (co’s it has a quantifier in it) and something that
appears not to3. Hilbert was very struck by this fact, and thought he had
stumbled on an important breakthrough: a way of reducing predicate logic to
propositional logic. Sadly he hadn’t, but the ε-terms are useful gadgets all the
same, as we are about to see.

THEOREM 11 Every consistent theory has a model.

Proof:
Let T1 be a consistent theory in a countable language L(T1).
Now we do the following things

1. Add axioms to T1 to obtain a complete extension;

2. Add ε terms to the language.

Notice that when we add ε-terms to the language we add new formulæ: if
‘(εx)F (x))’ is a new ε-term we have just added then ‘G((εx)F (x)))’ is a new
formula, and T1 doesn’t tell us whether it is to be true or to be false. That
is to say L(T1) doesn’t contain ‘(εx)F (x)’ or ‘G((εx)F (x)))’. Let L(T2) be
the language obtained by adding to L(T1) the expressions like ‘(εx)F (x)’ and
‘G((εx)F (x)))’.

We extend T1 to a new theory in L(T2) that decides all these new formulæ
we have added. This gives us a new theory, which we will—of course—call T2.

It’s worth thinking about what sort of formulæ we generate. We added terms
like (εx)(F (x)) to the language of T1. Notice that if H is a two-place predicate
in L(T ) then we will find ourselves inventing the term (εy)H(y, (εx)F (x)) which
is a term of—one might say—depth 2. And there will be terms of depth 3, 4
and so on as we persist with this process. All atomic questions about ε terms
of depth n are answered in Tn+1.

Repeat and take the union of all the theories Ti we obtain in this way: call
it T∞. (Easy to see that all the Ti are consistent—we prove this by induction).
T∞ is a theory in a language L∞, and it will be complete. The model for T∞
will be the structure whose carrier set is the set of ε terms we have generated
en route. All questions about relations between the terms in the domain are

3The ‘ε’ is not a quantifier, but it is a binder: something that binds variables. ‘∃’ and ‘∀’
are binders of course, and so is ‘λ’ which we will meet in chapter ??.
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answered by T∞. Does this make it a model of T? Might not T∞ assert that
there is a wombat but yet deny of each term that it is a wombat? This is what
we fear . . .

The key fact is that if T∞ asserts that there is a wombat, then that is because
one of the Ti asserts that there is a wombat. But if Ti does this, then at stage
i+ 1 we add a term and tell it to be a wombat. So there is a term asserted by
T∞ to be a wombat. This means that the thing we fear cannot happen.

This is a result of fundamental importance. Any theory that is not actually
self-contradictory is a description of something. It’s important that this holds
only for first-order logic. It does not work for second-order logic, and this fact
is often overlooked. (If you want a discussion of this, look at appendix ??). A
touching faith in the power of the completeness theorem is what lies behind the
widespread error of reifying possibilities into possible worlds. See [?].

Notice that this proof gives us something slightly more than I have claimed.
If the consistent theory T we started with was a theory in a countable language
then the model we obtain by the above method is also countable. It’s worth
recoding this fact:

COROLLARY 12 Every consistent theory in a countable language has a count-
able model.

Also Schütte’s proof

3.7 Interpolation

There is a precise analogue in predicate calculus of the interpolation lemma for
propositional logic of section ??.

THEOREM 13 The Interpolation Lemma
If A → B is a valid formula of first-order logic then there is a formula C

containing only predicate letters that appear in both A and B such that A→ C
and C → B are both valid formulæ of first-order logic.

A proof of this fact is beyond the scope of this course. The proof relies on
the subformula property mentioned earlier. The disjoint-vocabulary case is
intuitively obvious, but it’s not at all clear how to do the induction.

Close attention to the details of the proof of the completeness theorem will
enable us to prove it and get bounds on the complexity of the interpolating
formula. These bounds are not very good!

The interpolation lemma is probably the most appealing of the consequences
of the completeness theorem, since we have very strong intuitions about irrel-
evant information. Hume’s famous dictum that one cannot derive an “ought”
from an “is” certainly arises from this intuition. The same intuition is at work in
the hostility to the ex falso sequitur quodlibet that arises from time to time: if
there has to be a connection in meaning between the premisses and the conclu-
sion, then an empty premiss—having no meaning—can presumably never imply
anything.



58 CHAPTER 3. LECTURES THREE AND FOUR

3.8 Compactness

Recall section ?? at this point.

3.9 Skolemisation

EXERCISE 31 Find a proof of the sequent

∀x∃yR(x, y) ` (∀x1)(∃y1)(∀x2)(∃y2)(R(x1, y1)∧R(x2, y2)∧(x1 = x2 → y1 = y2))

[Fit this in somewhere: take a formula of the Σ1 fragment of second-order
logic. Delete the existential quantifiers. The result is a formula in 1st order logic
with function letters. If it is refutable then so was the Σ1 formula we started
with. So there is a refutation procedure for the Σ1 fragment of second-order
logic.

Similarly there is a refutation procedure for the set of formulæ true in all
finite structures.]



Chapter 4

Lectures Five and Six

4.1 Assorted First-order Theories

1. every poly of odd degree has a root;

2. 0 is not a sum of nontrivial squares;

3. either x or −x has a square root.

Can introduce an order by x ≤ y iff (∃z)(z2 + x = y). See Chang and Keisler
sec 5.4.

A typical way for a theory to arise is as the set of things true in a given
structure M. We write this Th(M). Thus Th(M) = {φ :M |= φ}. Theories
that arise in this way, as the set of things true in a particular structure, are of
course complete—simply because of excluded middle.

A related typical way in which a theory can arise is as the set of all sentences
true in a given class of structures.

Theories that arise in the first way are obviously going to be complete!
Surprisingly some theories that arise in the second way can be complete too:
DLO is the theory of dense linear orders. It is expressed in a language L(DLO)
with equality and one two-place predicate <. Its axioms say that < is transitive
and irreflexive, and that between any two things there is a third, and that there
is no first or last element.

EXERCISE 32 Write out the axioms of DLO. Can there be a finite model of
DLO?

It’s not hard to show that this theory is complete, using a famous construc-
tion of Cantor’s. We do this below.

A famous example of an incomplete theory is the theory known as Peano
Arithmetic. Its incompleteness was proved by Gödel.

59
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4.2 Categoricity

4.2.1 Countably categorical theories and Back-and-forth

DLO; the canonical random graph.

4.2.2 Uncountably categorical theories

Here is a rather nice example of a theory that is uncountably categorical It has
two axioms:

(∀x)(∃!y)(R(x, y)) and (∀y)(∃!z)(R(x, y)).



Chapter 5

Possible World Semantics

First we illustrate why constructivists repudiate the law of excluded middle.

Some readers may already know the standard horror story about
√

2
√

2
. For

those of you that don’t—yet—here it is.
Suppose you are given the challenge of finding two irrational number α and

β auch that αβ is rational. It is in fact the case that both e and loge(2) are
transcendental but this is not easy to prove. Is there an easier way in? Well,
one thing every schoolchild knows is that

√
2 is irrational, so how about taking

both α and β to be
√

2? This will work if
√

2
√

2
is rational. Is it? As it happens,

it isn’t (but that, too, is hard to prove). If it isn’t, then we take α to be
√

2
√

2

(which we now believe to be irrational—had it been rational we would have
taken the first horn) and take β to be

√
2.

αβ is now
(
√

2
√

2
)
√

2 =
√

2
√

2·
√

2
=
√

2
2

= 2

which is rational, as desired. However, we haven’t met the challenge. We
were asked to find a pair 〈α, β〉 of irrationals such that αβ is rational, and we
haven’t found such a pair. We’ve proved that there is such a pair, and we
have even narrowed the candidates down to a short list of two, but we haven’t
completed the job.1

What does this prove? It certainly doesn’t straightforwardly show that the
law of excluded middle is false; what it shows is that there are situations where
you don’t want to reason with it. There is a difference between proving that
there is a widget, and actually getting your hands on the widget. Sometimes it
matters, and if you happen to be in the kind of pickle where it matters, then
you want to be careful about reasoning with excluded middle.

To get a semantics for constructive logic we need something a great deal
more complicated than truth-tables! A first step is to increase the number

1We can actually exhibit such a pair, and using only elementary methods, at the cost of a
little bit more work. log2(3) is obviously irrational: 2p 6= 3q for any naturals p, q. log√2(3) is

also irrational, being 2 · log2(3). Clearly (
√

2)
log√2(3)

= 3.
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of truth-values, and we have seen some uses of three-valued truth-tables (see
exercise 6 p. 17). However, many-valued truth-tables are not the way to go.
For one thing, it can be shown that three-valued truth-tables do not draw the
distinctions we want, and no finite number of truth-values will ever do the trick.
This is very hard to prove and we won’t attempt it here. Another reason is
that if we try to capture constructive validity by means of truth-tables we are
still thinking of it as as an extensional logic not an intensional logic, and—since
that does not correctly engage with the spirit that moves constructive logic—it
is unlikely to give us decent semantics for it.

The final reason for not using many-valued truth-tables is that there is some-
thing to hand that is not only more faithful to the constructive conception but
is much more fun and susceptible of wider application: that is Possible World
Semantics, which is the subject of this chapter.

DEFINITION 14 A possible world model M has several components:

1. There is a collection of worlds with a binary relation ≤ between them; If
W1 ≤W2 we say W1 can see W2.

2. There is also a binary relation between worlds and formulæ, written ‘W |=
φ’;

3. Finally there is a designated (or ‘actual’ or ‘root’) world WM
0 .

We stipulate the following connections between the ingredients:

1. W |= ⊥ never holds. We write this as W 6|= ⊥.

2. W |= A ∧B iff W |= A and W |= B;

3. W |= A ∨B iff W |= A or W |= B;

4. W |= A→ B iff every W ′ ≥W that |= A also |= B;

5. W |= ¬A iff there is no W ′ ≥W such that W ′ |= A;

6. W |= (∃x)A(x) iff there is an x in W such that W |= A(x);

7. W |= (∀x)A(x) iff for all W ′ ≥W and all x in W ′, W ′ |= A(x).

We stipulate further that for atomic formulæ φ, if W |= φ and W ≤W ′,
then W ′ |= φ. (The idea is that if W ≤ W ′, then W ′ in some sense contains
more information than W .)

Then we say

M |= A if WM
0 |= A

4 is a special case of 3: ¬A is just A→ ⊥, and no world believes ⊥!
The relation which we here write with a ‘≤’ is the accessibility relation

between worlds. We assume for the moment that it is transitive and reflexive.
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Chat about quantifier alternation. There is a case for writing out the def-
initions in a formal language, on the grounds that the quantifier alternation
(which bothers a lot of people) can be made clearer by use of a formal language.
The advantage of not using a formal language is that it makes the language-
metalanguage distinction clearer.

The |= relation between worlds and propositions is certainly epistemically
problematic. For example W believes ¬p iff no world beyond W believes p.
This being so, how can anyone in W come to know ¬p? They would have to
visit all worlds ≥ W ! So this possible worlds talk is not part of an epistemic
story! This being the case, one should perhaps beware of the danger of taking
the “world W believes φ” slang too literally. Even if W believes ¬φ then in
some sense it doesn’t know that it believes ¬φ. . . unless of course W includes
among its inhabitants all the worlds ≥ W . But that makes for a scenario far
too complicated for us to entertain in a book like this. And it is arguable that
it is a scenario of which no coherent account can be given. See [?].

The possible worlds semantics is almost certainly not part of a constructivist
account of truth or meaning at all. (Remember: we encountered it as the
classical logicians’ way of making sense of constructive logic!) If it were, the
fact that it is epistemically problematic would start to matter.

The relation ≤ between worlds is transitive. A modelM believes φ (or not,
as the case may be) iff the designated world W0 ofM believes φ (or not). When
cooking up W0 to believe φ (or not) the recursions require us only to look at
worlds ≥W0. This has the effect that the designated world ofM is ≤ all other
worlds inM. This is why we sometimes call it the ‘root’ world. This use of the
word ‘root’ suggests that the worlds beyond W0 are organised into a tree: so if
W1 and W2 are two worlds that cannot see each other then there is no world
they can both see. However we are emphatically not making this assumption.

Quantifiers

The rules for the quantifiers assume that worlds don’t just believe primitive
propositions but also that they have inhabitants. I think we generally take
it that our worlds are never empty: every world has at least one inhabitant.
However there is no global assumption that all worlds have the same inhabitants.
Objects may pop in and out of existence. However we do take the identity
relation between inhabitants across possible worlds as a given.

5.1 Language and Metalanguage again

It is very important to distinguish between the stuff that appears to the left of
a ‘|=’ sign and that which appears to the right of it. The stuff to the right of
the ‘|=’ sign belongs to the object language and the stuff to the left of the ‘|=’
sign belongs to the metalanguage. So that we do not lose track of where we are
I am going to write ‘→’ for if–then in the metalanguage and ‘&’ for and in the
metalanguage instead of ‘∧’. And I shall use square brackets instead of round
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brackets in the metalanguage.
If you do not keep this distinction clear in your mind you will end of making

one of the two mistakes below (tho’ you are unlikely to make both.)
Remember what the aim of the Possible World exercise was. It was to give

people who believe in classical logic a way of making sense of the thinking of
people who believe in constructive logic. That means that it’s perfectly OK to
use classical logic in reasoning with/manipulating stuff to the left of a ‘|=’ sign.

For example here is a manœuvre that is perfectly legitimate: if

¬[W |= A→ B]

then it is not the case that

(∀W ′ ≥W )(W ′ |= A → W ′ |= B)

So, in particular,

(∃W ′ ≥W )(W ′ |= A & ¬(W ′ |= B))

The inference drawn here from ¬∀ to ∃¬ is perfectly all right in the classical
metalanguage, even though it’s not allowed in the constructive object language.

In contrast it is not all right to think that—for example—W |= ¬A ∨ ¬B
is the same as W |= ¬(A ∧ B) (on the grounds that ¬A ∨ ¬B is the same
as ¬(A ∧ B)). One way of warding off the temptation to do is is to remind
ourselves—again—that the aim of the Possible World exercise was to give people
who believe in classical logic a way of making sense of the thinking of people
who believe in constructive logic. That means that it is not OK to use classical
logic in reasoning with/manipulating stuff to the right of a ‘|=’ sign.

Another way of warding off the same temptation is to think of the stuff after
the ‘|=’ sign as stuff that goes on in a fiction. You, the reader of a fiction, know
things about the characters in the fiction that they do not know about each
other. Just because something is true doesn’t mean they know it!! (This is
what the literary people call Dramatic Irony.)2

(This reflection brings with it the thought that reading “W |= ¬¬A” as “W
believes not not A” is perhaps not the happiest piece of slang. After all, in
circumstances where W |= ¬¬A there is no suggestion that the fact-that-no-
world-≥-W -believes-A is encoded in W in any way at all. )Could say more about this

Another mistake is to think that we are obliged to use constructive logic in
the metalanguage which we are using to discuss constructive logic—to the left
of the ‘|=’ sign.

I suspect it’s a widespread error. It may be the same mistake as the mistake
of supposing that you have to convert to Christianity to understand what is
going on in the heads of Christians. Christians of some stripes would no doubt

2Appreciation of the difference between something being true and your interlocutor know-
ing it is something that autists can have trouble with. Some animals that have “a theory of
other minds” (in that they know that their conspecifics might know something) too can have
difficulty with this distinction. Humans seem to be able to cope with it from the age of about
three
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agree with the assertion that there are bits of it you can’t understand until you
convert, but I think that is just a mind-game. Doesn’t this duplicate earlier

stuff?We could make it easier for the nervous to discern the difference between the
places where it’s all right to use classical reasoning (the metalanguage) and the
object language (where it isn’t) by using different fonts or different alphabets.
One could write “For all W” instead of (∀W ) . . .”. That would certainly be a
useful way of making the point, but once the point has been made, persisting
with it looks a bit obsessional: in general people seem to prefer overloading to
disambiguation.

5.1.1 A possibly helpful illustration

Let us illustrate with the following variants on the theme of “there is a Magic
Sword.” All these variants are classically equivalent. The subtle distinctions
that the possible worlds semantics enable us to make are very pleasing.

1. ¬∀x¬MS(x)

2. ¬¬∃xMS(x)

3. ∃x¬¬MS(x)

4. ∃xMS(x)

The first two are constructively equivalent as well.
To explain the differences we need the difference between histories and

futures.

• A future (from the point of view of a world W ) is any world W ′ ≥W .

• A history is a string of worlds—an unbounded trajectory through the
available futures. No gaps between worlds...?

¬∀x¬MS(x) and ¬¬∃xMS(x) say that every future can see a future in which
there is a Magic Sword, even though there might be histories that avoid Magic
Swords altogether: Magic Swords are a permanent possibility: you should never
give up hope of finding one.

How can this be, that every future can see a future in which there is a magic sword but there is a history that

contains no magic sword–ever? It could happen like this: each world has precisely two immediate children. If it is

a world with a magic sword then those two worlds also have magic swords in them. If it is a world without a magic

sword then one of its two children continues swordless, and the other one acquires a sword. We stipulate that the

root world contains no magic sword. That way every world can see a world that has a magic sword, and yet there

is a history that has no magic swords.

∃x¬¬MS(x) says that every history contains a Magic Sword and moreover
the thing which is destined to be a Magic Sword is already here. Perhaps it’s
still a lump of silver at the moment but it will be a Magic Sword one day.
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5.2 Some Useful Short Cuts

5.2.1 Double negation

The first one that comes to mind is W |= ¬¬φ. This is the same as (∀W ′ ≥
W )(∃W ′′ ≥ W ′)(W ′′ |= φ). “Every world that W can see can see a world that
believes φ”. Let’s thrash this out by hand.

By clause 5 of definition 14

W |= ¬(¬φ)

iff

(∀W ′ ≥W )¬[W ′ |= ¬φ] (6.1)

Now

W ′ |= ¬φ iff (∀W ′′ ≥W ′)¬[W ′′ |= φ] by clause 5 of definition 14 so

¬[W ′ |= ¬φ] is the same as ¬(∀W ′′ ≥W ′)¬[W ′′ |= φ] which is

(∃W ′′ ≥W ′)(W ′′ |= φ).

Substituting this last formula for for ‘W ′ |= ¬φ’ in (6.1) we obtain

(∀W ′ ≥W )(∃W ′′ ≥W ′)(W ′′ |= φ)

5.2.2 If there is only one world then the logic is classical

If M contains only one world—W , say—then M believes classical logic. Let
me illustrate this in two ways:

1. SupposeM |= ¬¬A. Then W |= ¬¬A, since W is the root world ofM. If
W |= ¬¬A, then for every world W ′ ≥W there is W ′′ ≥W that believes
A. So in particular there is a world ≥ W that believes A. But the only
world ≥ W is W itself. So W |= A. So every world ≥ W that believes
¬¬A also believes A. So W |= ¬¬A→ A.

2. W either believes A or it doesn’t. If it believes A then it certainly believes
A∨¬A, so suppose W does not believe A. Then no world that W can see
believes A. So W |= ¬A and thus W |= (A ∨ ¬A). So W believes the law
of excluded middle.

We must show that the logic
of quantifiers is classical too The same arguments can be used even in models with more than one world,

if the worlds in question can see only themselves.
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5.3 Persistence

For atomic formulæ φ we know that if W |= φ then W ′ |= φ for all W ′ ≥W . We
achieved this by stipulation, and it echoes our original motivation. Even though
¬¬(∃x)(x is a Magic Sword) is emphatically not to be the same as (∃x)(x is a
Magic Sword), it certainly is inconsistent with ¬(∃x)(x is a Magic Sword) and
so it can be taken as prophecy that a Magic Sword will turn up one day. The
idea of worlds as states of knowledge where we learn more as time elapses sits
very well with this. By interpreting ¬¬(∃x)(x is a Magic Sword) as “Every
future can see a future that contains a Magic Sword” possible world semantics
captures the a way in which ¬¬(∃x)(x is a Magic Sword) can be incompatible
with the nonexistence of Magic Swords while nevertheless not telling us how to
find a Magic Sword.

We will say φ is persistent if whenever W |= φ then (∀W ′ ≥W )(W ′ |= φ)
We want to prove that all formulæ are persistent.

THEOREM 15 All formulæ are persistent.

Proof:

We have taken care of the atomic case. Now for the induction on quantifiers
and connectives.

¬ W |= ¬φ iff (∀W ′ ≥ W )¬(W ′ |= φ). Therefore if W |= ¬φ then (∀W ′ ≥
φ)¬[W ′ |= φ], and, by transitivity of ≥, (∀W ′′ ≥ W ′)¬[W ′′ |= φ]. But
then ¬[W ′ |= ¬φ].

∨ Suppose φ and ψ are both persistent. If W |= ψ ∨ φ then either W |= φ
or W |= ψ. By persistence of φ and ψ, every world ≥ satisfies φ (or ψ,
whichever it was) and will therefore satisfy ψ ∨ φ.

∧ Suppose φ and ψ are both persistent. If W |= ψ ∧ φ then W |= φ and
W |= ψ. By persistence of φ and ψ, every world ≥ satisfies φ and every
world ≥ satisfies ψ and will therefore satisfy ψ ∧ φ.

∃ Suppose W |= (∃x)φ(x), and φ is persistent. Then there is an x in W
which W believes to be φ. Suppose W ′ ≥ W . As long as x is in W ′ then
W ′ |= φ(x) by persistence of φ and so W ′ |= (∃x)(φ(x)).

∀ SupposeW |= (∀x)φ(x), and φ is persistent. That is to say, for allW ′ ≥W
and all x, W ′ |= φ(x). But if this holds for all W ′ ≥ W , then it certainly
holds for all W ′ ≥ any given W ′′ ≥W . So W ′′ |= (∀x)(φ(x)).

→ Finally suppose W |= (A→ B), and W ′ ≥ W . We want W ′ |= (A→ B).
That is to say we want every world beyond W ′ that believes A to also
believe B. We do know that every world beyond W that believes A also
believes B, and every world beyondW ′ is a world beyondW , and therefore
believes B if it believes A. So W ′ believes A→ B.
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That takes care of all the cases in the induction.

It’s worth noting that we have made heavy use of the fact that ≤ is transitive.
Later we will consider other more general settings where this assumption is not
made.

Now we can use persistence to show that this possible world semantics always
makes A → ¬¬A comes out true. Suppose W |= A. Then every world ≥ W
also believes A. No world can believe A and ¬A at the same time. (W |= ¬A
only if none of the worlds ≥ W believe A; one of the worlds ≥ W is W itself.)
So none of them believe ¬A; so W |= ¬¬A.

This is a small step in the direction of a completeness theorem for the possible
world semantics.

5.4 Independence Proofs Using Possible world
semantics

5.4.1 Some Worked Examples

Challenge 5.4.1.1: Find a countermodel for A ∨ ¬A

The first thing to notice is that this formula is a classical (truth-table) tautology.
Because of subsection 5.2.2 this means that any countermodel for it must contain
more than one world.

The root world W0 must not believe A and it must not believe ¬A. If it
cannot see a world that believes A then it will believe ¬A, so we will have to
arrange for it to see a world that believes A. One will do, so let there be W1

such that W1 |= A.picture here

Challenge 5.4.1.2: Find a countermodel for ¬¬A ∨ ¬A

The root world W0 must not believe ¬¬A and it must not believe ¬A. If it
cannot see a world that believes A then it will believe ¬A, so we will have to
arrange for it to see a world that believes A. One will do, so let there be W1

such that (W1 |= A). It must also not believe ¬¬A. It will believe ¬¬A as long
as every world it can see can see a world that believes A. So there had better
be a world it can see that cannot see any world that believes A. This cannot
be W1 because W1 |= A, and it cannot be W0 itself, since W0 ≤ W1. So there
must be a third world W2 which does not believe A.

Challenge 5.4.1.3: Find a countermodel that satisfies (A → B) → B)
but does not satisfy A ∨B

insert details here
Challenge 5.4.1.4: Find a countermodel for ((A→ B)→ A)→ A

You may recall from exercise 6 on page 17 that this formula is believed to be false
on Planet Zarg. There we had a three-valued truth table. Here we are going
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to use possible worlds. As before, with A ∨ ¬A, the formula is a truth-table
tautology and so we will need more than one world

Recall that a modelM satisfies a formula ψ iff the root world ofM believes
ψ: that is what it is for a model to satisfy ψ. Definition!

As usual I shall write ‘W0’ for the root world; and will also write ‘W |= ψ’
to mean that the world W believes ψ; and ¬[W |= ψ] to mean that W does not
believe ψ.

So we know that ¬[W0 |= ((A→ B)→ A)→ A].
Now the definition of W |= X → Y is (by definition 14)

(∀W ′ ≥W )[W ′ |= X → W ′ |= Y ] (5.1)

So since

¬[W0 |= ((A→ B)→ A)→ A]

we know that there must be a W ′ ≥W0 which believes ((A→ B)→ A but does
not believe A. (In symbols: (∃W ′ ≥ W0)[W ′ |= ((A → B) → A) & ¬(W ′ |=
A)].) Remember too that in the metalanguage we are allowed to exploit the
equivalence of ¬∀ with ∃¬. Now every world can see itself, so might this W ′

happen to be W0 itself? No harm in trying. . .
So, on the assumption that this W ′ that we need is W0 itself, we have:

1. W0 |= (A→ B)→ A; and

2. ¬[W0 |= A].

This is quite informative. Fact (1) tells us that every W ′ ≥W0 that believes
A → B also believes A. Now one of those W ′ is W0 itself (Every world can
see itself: remember that ≥ is reflexive). Put this together with fact (2) which
says that W0 does not believe A, and we know at once that W0 cannot believe
A→ B. How can we arrange for W0 not to believe A→ B? Recall the definition
14 above of W |= A → B. We have to ensure that there is a W ′ ≥ W0 that
believes A but does not believe B. This W ′ cannot be W0 because W0 does
not believe A. So there must be a new world (we always knew there would be!)
visible from W0 that believes A but does not believe B. (In symbols this is
(∃W ′ ≥W0)[W ′ |= A & ¬(W ′ |= B)].)

So our countermodel contains two worlds W0 and W ′, with W0 ≤W ′. W ′ |=
A but ¬[W0 |= A], and ¬[W ′ |= B].

Let’s check that this really works. We want

¬[W0 |= ((A→ B)→ A)→ A]

We have to ensure that at least one of the worlds beyond W0 satisfies (A→
B)→ A but does not satisfy A. W0 doesn’t satisfy A so it will suffice to check
that it does satisfy (A → B) → A. So we have to check (i) that if W0 satisfies
(A → B) then it also satisfies A and we have to check (ii) that if W ′ satisfies
(A→ B) then it also satisfies A. W ′ satisfies A so (ii) is taken care of. For (i)
we have to check that W0 does not satisfy A→ B. For this we need a world ≥
W0 that believes A but does not believe B and W ′ is such a world.
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Challenge 5.4.1.5: Find a model that satisfies (A → B) → B but does
not satisfy (B → A)→ A

We must have

W0 |= (A→ B)→ B (1)

and

¬[W0 |= (B → A)→ A] (2)

By (2) we must have W1 ≥W0 such that

W1 |= B → A (3)

but

¬[W1 |= A] (4)

We can now show

¬[W1 |= A→ B] (5)

If (5) were false then W1 |= B would follow from (1) and then W1 |= A would
follow from (3). (5) now tells us that there is W2 ≥W1 such that

W2 |= A (6)

and

¬[W2 |= B] (7)

From (7) and persistence we infer

¬[W1 |= B] (8)

and

¬[W0 |= B] (9)

Also, (4) tells us

¬[W0 |= A]. (10)

So far we have nothing to tell us that W0 6= W1. So perhaps we can get away
with having only two worldsW0 andW1 withW1 |= A andW0 believing nothing.

W0 believes (A → B) → B vacuously: it cannot see a world that believes
A → B so—vacuously—every world that it can see that believes A → B also
believes B. However, every world that it can see believes (B → A) but it does
not believe A itself. That is to say, it can see a world that does not believe A
so it can see a world that believes B → A but does not believe A so it does not
believe (B → A)→ A.
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5.4.2 Exercises

EXERCISE 33 Return to Planet Zarg!3

The truth-tables for Zarg-style connectives are on p 17.

1. Write out a truth-table for ((p→ q)→ q)→ (p ∨ q).
(Before you start, ask yourself how many rows this truth-table will have).

2. Identify a row in which the formula does not take truth-value 1.

3. Find a sequent proof for ((p→ q)→ q)→ (p ∨ q).

EXERCISE 34 Find a model that satisfies (p→ q)→ q but not p ∨ q.

It turns out that Zarg-truth-value 1 means “true in W0 and in W ′”; Zarg-
truth-value 2 means “true in W ′”, and Zarg-truth-value 3 means “true in
neither”—where W0 and W1 are the two worlds in the countermodel we found
for Peirce’s law. (Challenge 5.4.1.5)

EXERCISE 35 Find a model that satisfies p→ q but not ¬p ∨ q.

EXERCISE 36 Find a model that doesn’t satisfy p ∨ ¬p. How many worlds
has it got? Does it satisfy ¬p ∨ ¬¬p? If it does, find one that doesn’t satisfy
¬p ∨ ¬¬p.

EXERCISE 37 1. Find a model that satisfies A → (B ∨ C) but doesn’t
satisfy (A→ B) ∨ (A→ C))

2. Find a model that satisfies (A→ B) ∧ (C → D) but doesn’t satisfy (A→
D) ∨ (B → C))

3. Find a model that satisfies ¬(A ∧B) but does not satisfy ¬A ∨ ¬B

4. Find a model that satisfies (A → B) → B) and (B → A) → A but does
not satisfy A∨B. (Check that in the three-valued Zarg world ((A→ B)→
B) ∧ ((B → A)→ A) always has the same truth-table as A ∨B).

EXERCISE 38 Find countermodels for:

1. (A→ B) ∨ (B → A);

2. (∃x)(∀y)(F (y) → F (x)) (which is the formula in exercise 30 part 1 on
page 55).

EXERCISE 39 Consider the model in which there are two worlds, W0 and W1,
with W0 ≤ W1. W0 contains various things, all of which it believes to be frogs;
W1 contains everything in W1 plus various additional things, none of which it
believes to be frogs. Which of the following assertions does this model believe?

3Beware: Zarg is a planet not a possible world!
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1. (∀x)(F (x));

2. (∃x)(¬F (x));

3. ¬∃x¬F (x);

4. ¬¬(∃x)(¬F (x)).
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