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A binary relation ≺ on a set A is well-founded iff there are no infinite
descending chains: . . . ≺ ai ≺ . . . ≺ a1 ≺ a0.

(a) Show that a binary relation ≺ on a set A is well-founded iff any nonempty
subset Q of A has a minimal element1, i.e., an element m such that

m ∈ Q ∧ (∀b)(b ≺ m→ b ̸∈ Q)

[5 marks]

(b) Show that defining

⟨n1, n2⟩ ≺ ⟨n1
′, n2

′⟩ ←→ ⟨n1, n2⟩ ≠ ⟨n1
′, n2

′⟩ and n1 ≤ n′
1 and n2 ≤ n′

2.

determines a well-founded relation between pairs of positive natural numbers.
[7 marks]

(c) Let→ be a binary relation between pairs of positive natural numbers for
which ⟨m,n⟩ → ⟨m,n−m⟩ if m < n, and ⟨m,n⟩ → ⟨m− n, n⟩ if n < m .

Using (a) and (b), or otherwise, show that for all pairs of positive natural
numbers ⟨m,n⟩, there is a natural number h such that ⟨m,n⟩ → ⟨h, h⟩.

[8 marks]

Discussion

Well-founded relations are important and you need to know about them. That
is beco’s they support a kind of induction (a generalisation of “strong induction”
on the naturals) called wellfounded induction. This question is as good a way in
as you are likely to find, which is why i am writing out this discussion answer.

1not neccessarily unique
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(a)

This invites you to prove the equivalence of two definitions of “wellfounded”. It
is the second definition that is the primary one, in that it captures the property
a relation has to have if it is to support (wellfounded) induction. The first
definition—the “descending chain condition”—is easier to understand, and is
equivalent to the second if we have the axiom of choice.

The first condition obviously implies the second because an infinite descend-
ing chain would be a ‘(“bad”) Q without a minimal element. For the other
direction suppose there is a “bad” Q. Using the axiom of choice we build an in-
finite descending chain: no element is minimal so we can always find an element
below the last member of the chain we are building.

For a concise introduction to wellfounded induction look at (e.g.) pp 11–12 of
https://www.dpmms.cam.ac.uk/~tf/cam_only/partiiicomputability.pdf or
read the section in Logic, Induction and Sets.

(b)

This ordering is the strict part of the product ordering, sometimes on IN × IN,
the pointwise product of two copies of the strict ordering ⟨IN, <IN⟩. Do not
confuse this ordering with the lexicographic ordering.

It’s wellfounded beco’s it’s a pointwise product of two wellfounded strict
total orders (aka wellorderings). This last fact (that a pointwise product of two
wellfounded strict total orders is likewise wellfounded) is worth committing to
memory, so let’s prove it—or rather this particular instance. Suppose we had an
infinite descending chain of pairs of natural numbers. Think about the smallest
number that appears as the first component of a pair in our infinite descending
chain. Call it k. Then consider the smallest number n s.t. ⟨k, n⟩ appears in
our chain. It is then the least pair in the chain. So the chain was not infinitely
descending.

(c)

We are being invited to build a descending chain by the following method. If we
have a pair ⟨m,n⟩ in our hand, we put below it either ⟨m,n−m⟩ (if m < n) or
⟨m− n, n⟩ (if m > n); if m = n we do nothing. Observe that both ⟨m,n−m⟩
and ⟨m− n, n⟩ come below ⟨m,n⟩ in the product order. So we cannot do this
infinitely often. So we have to stop! But the only way we can stop is if we reach
a stage where the two components are the same.

You will presumably have spotted the connection to Euclid’s division algo-
rithm. This is the standard proof that that algorithm always halts. That was
always sort-of obvious, so what we have done here is not so much prove that
Euclid’s algorithm is good but rather show that it is good for specific reasons
which can be deployed elsewhere. (For example to proving that the Ackermann
function is defined everywhere).
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