2017 p3 q11H

Thomas Forster

May 29, 2018

Problem reduction exercises are always hacky and ad hoc ("ad hack" the wags say). There are a few tricks you can try but none of them really amount to a technique. You just have to snoop around looking for unlocked windows.

This particular problem reduction exercise is this: given a machine that, given n, will go PING! if W_n is decidable (we know it is semidecidable), use it to answer questions of the kind: "Is W_m finite?" To do this tweaking we have to be able to do the following, given m, come up (computably!) with n s.t. W_n is recursive iff W_m is finite. So: if W_m is infinite then W_n must fail to be decidable. What is your favourite example of a semidecidable set that is semidecidable but not decidable? As Imre would say: "Switch brain off and do the obvious thing". Yes, IK. Duh.

So, given m, i compute n as follows. I get a volcano V (a machine running in parallel with itself that emits numbers without being asked) that emits members of W_m . While this is going on i am trying to compute members of \mathbb{K} . I do this by running $\{k\}(k)$ for lots of k in parallel. Which k? Well, at each stage i am running $\{k\}(k)$ in parallel on all the k that are below the largest number emitted by V so far. This process i have described is parametrised by m and so represents a function from \mathbb{N} to \mathbb{N} . The set of numbers i get is of course semidecidable and is W_n for some n, and, yes, i can compute this n from m.

By assumption i have a machine \mathfrak{M} , wot i have trafficked from Eastern Europe and am keeping in inhumane and degrading conditions in a mouldy and rat-infested attic, where I use it to answer questions of the form "Is W_n a decidable set?" I now force open the jaws of my machine and insert the number n that i got from the preceding paragraph. What might W_n be? It might be finite, and if it's finite, well, it's finite. But it might be infinite. But if it's infinite it must be IK, and so is not decidable! So if \mathfrak{M} says that W_n is recursive it must be that it is finite, but that means that W_m was finite!