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Sheet 1
Do not allow yourself to confuse ‘G \ H’ and ‘G/H’.

Question 1
A chance to write ‘h1 ∈ H1 \ H2’.

Can you have three subgroups forming an antichain under ⊆ whose union is a sub-
group?

Question 2

Question 3
Observe the symmetry in the definition of x ∗ y. This tells you that the group is abelian.

Suppose n is odd and we have a homomorphism f from D2n to Cn. Every element
of Cn is of odd order, but the reflections in D2n are of even order. What can f possibly
send them to? For any g the order of f (g) must divide the order of g. So f must send
every reflection to 11. But every element of D2n is a product of two reflections.
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Question 4

Question 5

Question 6

Question 7

Question 8

Question 9

Question 10

Question 11

Question 12

Question 13

Question 14
Suppose that every element is of order 2. Then abab = 11. So abab · ba = ba. Do some
cancelling on the LHS to get ab = ba.

You might wonder if you get anything nice from every element of a group being of
order 3. No! 2 is special in this respect.

The starred part is a riff on things called boolean rings. Given a collection X ⊆ G,
we can think about the subgroup generated by those elements. If that subgroup is the
whole of G then we say X is a set of generators of G. Because every element is of order
2 each element is its own inverse, so we don’t have to write things like aba−1b−1, we
can merely write abab, and not worry about the exponents. Since a2 = 11 we don’t have
to worry about higher powers. Because the group is abelian we can not only ignore the
exponents we can even ignore order, so we can uniquely identify any element witha set
of generators. How many such sets are there? Find a ⊆-minimal set X of generators.
Then |G| = 2|X|. I did mention boolean rings didn’t i. You don’t need to know about
them yet, but one can at this stage make the point that the power set P(X) of X becomes
a group of this kind (every element is of order 2—we say it is a group of exponent 2)
if we take the group operation to be. . . can you guess. . . ?1 Answer in the footnote.

Sheet 2

Question 1
30 is the LCM of 6 and 10. Lagrange tells you that not only must the order of the group
be at least as big as 30, it must be a multiple of 30.

1The group operation is XOR, exclusive OR, and the unit is X.
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Question 2
Every element is of order 2 so it can’t be C4.

Question 3

Question 4
You want to say “send gH to Hg”, don’t you? But it doesn’t work, because lots of
different gs can give you the same left coset gH but different right cosets! Try prove
gH = g′H → Hg = Hg′; it doesn’t work. (In fact one can find counterexamples; Dr
Wadsley suggests taking G = D6 and H a subgroup of order 2). Annoying.

Something that looks as if it might work is gH 7→ Hg−1.
Want: gH = g′H → Hg−1 = Hg′−1.
g1H = g2H so
for all a in H there is b in H s.t. g1a = g2b, which is to say
(g1a)−1 = (g2b)−1

which is to say
a−1g−1

1 = b−1g−1
2 .

In full:

(∀a ∈ H)(∃b ∈ H)(a−1g−1
1 = b−1g−1

2 ).

But H is a group, so is closed under inverse so this is

(∀a ∈ H)(∃b ∈ H)(ag−1
1 = bg−1

2 ),

which says that

Hg−1 = Hg′−1.

The upshot is that gH = g′H → Hg−1 = Hg′−1 as desired. Thus we can send gH
to Hg−1 since it really doesn’t matter which of g and g′ we choose.

Notice that this bijection is natural. This is a concept to get straight in supervision!

Question 5
The order is obviously 4; it fixes 0 and∞.

Apparently g(z) = −((i − 1)z − (1 − i))/((i − 1)z − (1 + i))

Question 6
Unless i am much mistaken each orbit is a hyperbola. None of you picked this up, and
i’m not sure why, co’s it’s not difficult. Perhaps unfamiliar so you get wrongfooted into
thinking about differential equations for et. Every orbit is a solution of whatever-the-
differential-equation-is-for-a-conic.
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Question 7
I like to think this is obvious, and i’m not sure what to say.

Question 8

Question 9
The fact that a group acts on itself by conjugation is standard. For any subgroup H one
wants to know: “how big is its orbit?”. How many different subgroups can you find
that are conjugate copies of H, things of the form gHg−1? In principle there might be
|G|-many, but it might happen that g1Hg−1

1 = g2Hg−1
2 for some g1 , g2. Let us say

g1 ∼ g2 iff g1Hg−1
1 = g2Hg−1

2 . Certainly g1 ∼ g2 if g1g−1
2 ∈ H! So the answer to “how

many . . . ?” will be : |G| divided by the size of the equivalence classes, aka the index
of ∼.

Question 10
Think polygons. If the polygon has an odd number of sides then every reflection is
about a line through a vertex and the midpoint of the opposite side; if it has an even
number of sides then there are two kind of relections. One kind is about lines that
go through opposite vertices (“diameters”), and the other is about lines that connect
midpoints of opposite sides.

In all three cases any two reflections of any one flavour can be conjugated by rota-
tions.

I really should fire up geogebra and draw some pictures.

Question 11

Question 12
Suppose |G| = 2p. Every nonidentity element of G must be of order 2, p or 2p. If it has
a nonidentity element of order 2p then it is C2p. So suppose it has nonidentity elements
or order 2 and p only. Then it had better turn out to be D2p.

Let C be the cyclic group generated by one of the elements of order p. This was
obviously intended by the gods to be the cyclic group of the rotations. It has two cosets.
What does the other coset (call it C′) consist of? We hope that it consists entirely of
involutions.

Question 13
All the stabilisers of elements of X are conjugate copies of one another. Since the
group is abelian they must all the same: in an abelian group all subgroups are normal
(identical to any conjugate copy). The action is faithful by assumption, which is to say
that the intersection of the stabilisers is the trivial group. (No nonidentity element fixes
everything). But if they are all the same then the only way their intersection can be the
trivial group is if every single one of them is the trivial group. So, for any x ∈ X, no
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two g, h ∈ G send x to different things. But if the action is transitive, then for every
y ∈ X there must be g with gx = y. One and only one. So |G| = |X|.

Question 14
Let G be a group of order p2, p prime. It acts on itself by conjugation. Think about the
kernel of this action, the centraliser of G. It’s a subgroup, and so has order 1 or p or
p2 by Lagrange. If it has order p2 it’s the whole of G, so G is abelian. It is has order p
then it’s Cp so G is going to have to be Cp ×Cp which is also abelian. Finally we have
to show that the centraliser cannot be the trivial group.
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Question 1
If H is of index 2 then it has only two cosets. Cosets? Only two left cosets, one of
which is H, and only two right cosets, one of which—again—is H. Since the two left
cosets (and the two right cosets) partition G it must be that the left coset that isn’t H
must be the same set as the right coset that isn’t H. But then G is clearly normal.

Question 3
Why all the fuss about normal subgroups? Here’s why . . . . If G is a subgroup of H
then it induces an equivalence relation on (the members of) H, and it can do this in at
least three ways. The partition of H into left cosets is the set of equivalence classes of
one of them (what is this equivalence relation?); the partition of H into right cosets is
the set of equivalence classes of another of them (what is this equivalence relation?);
there is a third defined by h1 ∼G h2 if h1 · (h2)−1 ∈ G. (Check that that really is an
equivalence relation(!)). In each case the quotient is the set of equivalence classes.
Is the quotient a group? Might be. How would we define a group operation on the
equivalence classes. Well, to multiply two equivalence classes together, take a member
of the one and a member of the other, multiply them together and take the equivalence
class of the result. Does this work? Might it make a difference which representatives
you take? If it does make a difference then that avenue of putting a group structure on
the quotient (at least) is not open to you. Might you not need special conditions on G to
ensure that it doesn’t matter which representatives you take? You might indeed: and i
suppose in principle the special conditions might be different for the three equivalence
relations we consider. However if G is a normal subgroup of H then we can show
that it doesn’t matter which representative we take. In fact if G is normal then the
two equivalence relations “. . . belong to same left coset” and “. . . belong to same right
coset” are the same equivalence relation, and that simplifies matters enormously. In
fact G being normal makes all three equivalence relations the same.

Specifically (and this was question 7, which we might as well deal with here) we
want to show that if H is a normal subgroup of G we can define a group operation on the
left H-cosets by taking representatives from two cosets, multiplying them togther using
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the group operations of G and then presenting the coset of the product as the output of
our new group operation on the cosets. It doesn’t matter which representatives we pick
from the cosets. What we have to show is that if a′ belongs to the same coset as a
and b′ belongs to the same coset as b then a′b′ belongs to the same coset as ab. (A
language point: we want to say that the equivalence relation of belonging-to-the-same-
left-coset is a congruence relation for the multiplication of G.) Two things belong to
the same left H coset if you can get one from the other by multiplying it on the right
by an element of H. So let us multiply ah1 (which belongs to the same left-coset as a)
by bh2 (which belongs to the same left-coset as b) and hope that ah1bh2 will belong to
the same left-coset as ab. (h1, h2 ∈ H of course). We want to tweak the word ah1bh2
into something of the form abh3. Observe that h1b = bb−1h1b and we can bracket this
as b(b−1h1b) so we can rewrite ah1bh2 as ab(b−1h1b)h2. Now, since H is normal (and
therefore a union of conjugacy classes) b−1h1b is also in H, whence (b−1h1b)h2 is in H
and we can call it h3, so that ah1bh2 = abh3 as desired.

Where were we? H has got to be the kernel of a homomorphism. Now that the
normality of H has ensured that the obvious candidate for a group structure on the set
of cosets is indeed a group structure, we can send elements of G to their cosets and find
that this is a group homomorphism. (Check it!) The kernel of this homomorphism is
the normal subgroup H.

Question 4
The quaternion group is a counterexample as it happens, but i’m not sure how you
are supposed to know that. I suppose it’s one of the things you pick up behind the
bike sheds. I think the point of this question is for you to attempt to prove that if
every subgroup is normal then the group is abelian, and find the failure instructive and
illuminating.

Question 5
I don’t know about you, Dear Reader, but for your humble correspondent this question
usefully illustrates the fact that, on the whole, G is not reliably isomorphic to (G/H) ×
H. In the case we are considering here G is a cyclic group (as it might be: C25) and H,
being a subgroup of a cyclic group, is cyclic itself (in this case let it be C5). Then the
quotient is obviously C5 again. But C5 × C5 is not C25. I think they say that C25 “is an
extension of” C5 “by” C5. (When explaining this to Wilfrid i incautiously used C15 as
my illustration, forgetting that C3 × C5 really is C15, beco’s 3 and 5 are coprime. He
picked me up on it.)

Question 6
I find myself thinking of this quotient group as the rational interval [0, 1) (yes i think i
do mean the half-open interval) with addition mod 1.
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Question 8
This object is apparently called the Heisenberg Group and it is something to do with
Quantum Mechanics. It’s a simple diagram chase to verify that G is a subgroup of
GL3(IR) and that H is a normal subgroup of G.

Consider the function that sends the displayed matrix (i’ll try to draw a picture) to
x + iy . . .

Question 10
The image of θ is the set of linear combinations of a and b. I think they want you to
say that it’s the set of all integer multiples of HCF(a, b).

Question 11
Apparently this is a routine technique in the study of finite groups. G acts on the
quotient (the set of cosets) G/H. This action gives us a homomorphism from G to the
(“symmetric”) group of all permutations of G/H. The hypothesis we are given is that
|G| does not divide the cardinality of this symmetric group. The effect of this is that the
homomorphism cannot be injective: if it were the G would be iso to a subgroup of the
symmetric group and its size would divide the cardinality of the symmetric group (by
Lagrange). This draws our attention to the kernel of the homomorphism, which must
therefore be a normal subgroup of G. [Do i need to explain why it’s a subgroup of H?]

Question 12
It has a normal subgroup of order 4, so the quotient is of order 7 and must be C7. The
normal subgroup is abelian and the quotient is abelian. Is that enuff to make the original
group abelian? No, as Gareth points out to me, the rotations in a dihedral group are
a normal subgroup (abelian) and the quotient is abelian but dihedral groups are not
abelian.

Question 13
Z/nZ is the integers mod n (think of it as the regular n-gon). So think how the isome-
tries of Z act on the regular n-gon. Well, what are these isometries anyway? Trans-
lations and reflections. Clearly translations are going to give rise to rotations of the
regular n-gon and reflections will give rise to, well, reflections! So we have a homo-
morphism from the group of isometries of Z to D2n. So: what is the kernel of this
homomorphism? Clearly any translation of Z by a multiple of n is going to do nothing
and will therefore be in the kernel.
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