SOME BOUNDS ON THE COEFFICIENTS
OF COVERING CURVES

T.A. FISHER

ABSTRACT. We compute bounds on the coefficients of the equations
defining everywhere locally soluble n-coverings of elliptic curves over the
rationals for n = 2,3,4. Our proofs use recent work of the author with
Cremona and Stoll on the minimisation of genus one curves, together
with standard results from the geometry of numbers. We use the same
methods to give a criterion (satisfied by only a finite number of “small”
elliptic curves) for ruling out the existence of elements of order 3 in the
Tate-Shafarevich group.

1. INTRODUCTION

Let E/Q be an elliptic curve and n > 2 an integer. The Selmer group
S (E/Q) parametrises the everywhere locally soluble n-coverings 7 : C' —
E. By global class field theory the curve C' admits a Q-rational divisor of
degree n and hence can be written as either a double cover of P! (case n = 2)
or a genus one normal curve C' C P"! (case n > 3). The aim of a descent
calculation is to compute the Selmer group S"™(E/Q) as an abelian group
and to represent its elements by equations for the covering curves C'. In view
of the short exact sequence

(1.1) 0 — E(Q)/nE(Q) — S™(E/Q) — IL(E/Q)[n] — 0

this gives information about both the Mordell-Weil group E(Q) and the
Tate-Shafarevich group II(E/Q). Indeed the covering curves can be used
either to help search for points of infinite order in F(Q) or to exhibit explicit
elements of III(E£/Q).

There are two different approaches to explicit 2-descent on an elliptic
curve. The number field method computes S@(E/Q) as a subgroup of
L*/(L*)* where L is a product of number fields. The Selmer group ele-
ments are then converted to binary quartics using a method that relies on
an explicit version of the Hasse principle for conics. In contrast the invariant
theory method bounds the coefficients of the required binary quartics, and
then uses these bounds to make an exhaustive search. The invariant theory
method was used by Birch and Swinnerton-Dyer in their pioneering computer
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calculations [BSD| and subsequently developed by Cremona in his program
mwrank. The development of computer algebra packages able to compute
the class group and units of number fields has since made the number field
method equally suitable for computation.

The number field method has been generalised to p-descent (see [DSS],
[SS], [CFOSS)) and is practical for p = 3 (and p = 5 in small examples). The
method relies on an explicit version of the local-to-global principle for the
p-torsion of the Brauer group of Q. The number field method also extends
to 4-descent and 8-descent, as described in [MSS], [Wol, [S]. The invariant
theory method in the case n = 3 was investigated in [DS], but does not
appear to generalise in any practical way to n > 2.

The equations defining an n-covering C' of E' depend on a choice of co-
ordinates on P"~!. It is obviously desirable to make a change of co-ordinates
so that the equations have small integer coefficients. In practice this is
achieved by the combination of two techniques, termed minimisation and re-
duction. In the minimisation stage spurious prime factors are removed from
a suitably defined discriminant. In the reduction stage an integer unimodular
change of co-ordinates is made to further reduce the size of the coefficients
(without changing the discriminant). Minimisation and reduction are impor-
tant for both the number field and invariant theory methods. In the number
field method the equations computed typically have very large coefficients,
and we need to minimise and reduce to get sensible answers. In the invariant
theory method minimisation and reduction are used at the outset to obtain
the bounds upon which the method relies.

In joint work with Cremona and Stoll [CFS] the author has described
efficient algorithms for minimising and reducing n-coverings for n = 2,3, 4.
(The work on minimisation applies over an arbitrary local field.) It has been
found in numerical examples that elements of the Tate-Shafarevich group
typically have quite small coefficients and that the size of the coefficients
tends to decrease with n. In this note we give some theoretical support for
these observations. In fact we give bounds on the coefficients depending only
on the naive height of £. In principle this generalises the invariant theory
method to n = 3,4 although the result is certainly not a practical algorithm.
In view of this we concentrate on giving a single bound for all the coefficients
and do not keep track of certain implied constants. Thus our treatment in
the cases n = 2, 3 differs from that in [BSD], [DS].

In the cases n = 2, 3,4 we represent Selmer group elements by equations
of the following form.

Definition 1.1. A genus one model of degree n € {2,3,4} is

(i) if n = 2, a binary quartic, i.e. a homogeneous polynomial of degree 4
in 2 variables,
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(ii) if n = 3, a ternary cubic, i.e. a homogeneous polynomial of degree 3
in 3 variables,

(iii) if n = 4, a quadric intersection, i.e. a pair of homogeneous polyno-
mials of degree 2 in 4 variables.

We recall that the minimal discriminant of an elliptic curve E/Q is
Ap = (¢} —c3)/1728

where ¢4 and cg are the usual quantities associated to a globally minimal
Weierstrass equation for E. In Theorem 1.2 below we instead work with the
naive height of ' which we define as

Hi = max(lea ' o).
We write ||®||o for the maximum absolute value of a coefficient of a genus
one model . The notation f < g should be understood to mean that f < cg
for some absolute constant ¢ > 0.
Theorem 1.2. Let E/Q be an elliptic curve and let n € {2,3,4}.
(a) Each & € S™(E/Q) can be represented by a genus one model ® with
integer coefficients and
9]l < H.
(b) If € is non-zero in S™(E/Q) then this bound may be improved to
1@]]o0 < Hp-
(c) If the image of € in II(E/Q) has exact order n then
1o < Hp "

We remark that Theorem 1.2(a) gives a proof that S™(E/Q) is finite,
and hence by (1.1) a proof of the weak Mordell-Weil theorem for n = 2,3, 4.
This proof differs from the usual proofs in that we work entirely over the
rationals, i.e. we do not need to make any field extensions.

The formulae in Lemmas 3.11 and 3.12 of [CFS] suggest that the exponents
of Hg in Theorem 1.2(a) and (b) might be best possible. We suspect that
the exponent of Hg in Theorem 1.2(c) is also best possible in view of the
models

n=2 y? = Mozt + 2222 + A 2t

n=23 )\Ox(?; + Al + )\3:153 — xor122 = 0
)\oiL‘(Q) + 1213 — )\2953 =0

n=4 {)\1513%4—%0332—)\3%%:0

that arise in the context of descent by cyclic isogeny (see [F1, §1.2] for the
cases n = 3,4).
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We expect that Theorem 1.2 generalises to the case n = 5. (See [F3] for
the definition of a genus one model of degree 5.)

In favourable circumstances, the geometry of numbers can be used to
construct a rational point on a smooth plane cubic. We turn this into a
criterion for ruling out the existence of elements of order 3 in the Tate-
Shafarevich group.

Theorem 1.3. Let E be an elliptic curve over Q with j-invariant j and
minimal discriminant Ag. Let

B =min{|z| : z € C a root of (X =3 (X =3 +5X° =0}
If |Ag| < &;B® then II(E/Q)[3] =

Since B is bounded as a function of j this theorem applies to only finitely
many elliptic curves. In Cremona’s tables [C], which go up to conductor
130000, we find 92 elliptic curves satisfying the condition of the theorem,
and all of these have conductor less than 1000. Their ranks are distributed
as follows

rank ‘ 0 1 2
# curves |49 41 2

There is no difficulty in verifying by 3-descent (see [SS]) that each of these
curves has IHI(E/Q)[3] = 0. The interest of Theorem 1.3 instead lies in its
method of proof, and in the hope that similar criteria might be found for
ruling out elements of order n in III(E/Q) for other integers n.

Example 1.4. Let E be the elliptic curve
v 4y =24 2* — 2.

Then Ap = 389, j = 2'273/389 and éB:; = 528.57930586 . ... Theorem 1.3
shows that III(E/Q)[3] = 0. In fact E(Q) = Z? and the (inverse pairs of)
non-trivial elements of S®(E/Q) = (Z/3Z)? are represented by the ternary
cubics

Fi(x,y,2) = 2%z — xy? — 2oyz + 22° + 32 + y2?
Fy(x,y,2) = 2°2 — xy® + 20yz — y2* — 22
Fy(x,y,2) = 2%y — ay® — x2® — y*z — 2y2°
Fy(z,y,2) = a*y + ay® — 2ayz + 22 — y’z — y2°.

2. BACKGROUND AND OVERVIEW

2.1. Invariants of genus one models. We work over a field K of charac-
teristic zero and write K for its algebraic closure. The space of genus one
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models of degree n = 2, 3,4 is acted on by the group G, defined as follows
Gs = Gy, x GLy (11, N] : F v pi*(F o N)
Gs = G, x GL3 [, N]: F— pu(F o N)
Gy = GLy x GLy [M,N]: (Q1,Q2)" — M(Q10N,Qy0N)7.

Let det : G, — G,,, be the character defined by [, N] — pdet N, respectively
[M,N] +— det M det N. An invariant of weight k is a polynomial in the
coefficients of a genus one model satisfying

(2.1) I(g®) = det(g)"1(®)

for all ¢ € G,. The action of the centre of G,, shows that [ is homogeneous
of degree kn/(6 —n). In each of the cases n = 2, 3,4 the ring of invariants
is generated by invariants ¢y, and c¢g of weights 4 and 6. See [F3, §7], [CFS]
for explicit formulae. We put A = (¢} — ¢2)/1728. It is shown in [AKM?P],
[F'3] that @ is non-singular (i.e. defines a smooth curve of genus one) if and
only if A(®) # 0, and that the Jacobian elliptic curve is

(2.2) y? = 2® — 27cy(®)x — Hdcg(P).

Definition 2.1. Genus one models ®; and &, are K-equivalent if they are
in the same orbit for the action of G, (K). They are properly K-equivalent
if &y = gP; for some g € G, (K) with det g = 1.

Lemma 2.2. Non-singular genus one models ®; and ®, are properly K-
equivalent if and only if they have the same invariants.

PROOF: The first implication is clear by (2.1). For the converse, we see by
Propositions 4.6 and 4.7 in [F3] that every non-singular model is properly
K-equivalent to a model of the form

n=2 y? =232 + Az + B2*
n=3 v’z = a® + Axz® + B2
n=4 x? — 2t =y* —at — Arz — B2* = 0.

It then suffices to note that these “Weierstrass models” are uniquely deter-
mined by their invariants. In fact ¢4 = —48A and ¢4 = —864B. O

A non-singular genus one model ® defines both a smooth curve of genus
one C' and a regular 1-form w on C. Writing F; for the partial derivative of
F with respect to x; we have

n=2 P =Flen)  w=ad /)2
n=3 F(xzg,x1,29) =0 w = 2ad(z1/70)/ F>
n=4 F=G=0 w:l'gd(l'l/fﬂo)/(FgGg—FgGQ).
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It is shown in [F3, Proposition 5.19] that if &3 = g®; and v : Cy — C} is
the morphism determined by ¢ then

(2.3) 7wy = (det g)ws.

2.2. Galois cohomology. We consider pairs (C' — S,w) where C' — S is
a morphism from a smooth curve of genus one C' to a Brauer-Severi variety
S, and w is a regular 1-form on C. An isomorphism between (C; — Si,w1)
and (Cy — Sy,ws) is a pair of isomorphisms ¢ : C} = Cy and ¢ : S1 = S,
such that ¢*ws = w; and the diagram

Ci—=5

|
CQHSQ

commutes.

Let n > 2 be an integer. Let E/K be an elliptic curve with invariant
differential wy. We map E — P""! via the complete linear system |n.0g|.
We recall that objects defined over K are called twists if they are isomorphic
over K.

Lemma 2.3. The twists of (E — P" ' wg), up to K-isomorphism, are
parametrised by H'(K, E[n]).

Proof. This is [F2, Lemma 2.3]. O
The obstruction map, defined in [O], [CFOSS], is
Ob: H'(K, E[n]) — Br(K)
(C — S,w) —[9].

In general this map is not a group homomorphism. Nonetheless we write
ker(Ob) for the inverse image of the identity.

Lemma 2.4. Let E/K be an elliptic curve and let n € {2,3,4}. Then the
genus one models of degree n with the same invariants as a fized Weierstrass

equation for E, up to proper K -equivalence, are parametrised by ker(Ob) C
H'(K, E[n]).

PROOF: A non-singular genus one model ¢ defines a smooth curve of genus
one C'— P" ! and a regular 1-form w on C. Conversely, every twist (C' —
S,w) of (F — P" 1 wg) with S = P! arises in this way. Let 5 be a genus
one model defining (£ — P"! wg). By (2.2) it has the same invariants as
some Weierstrass equation for F. We see by (2.3) that ®; and &, are properly
equivalent if and only if they determine isomorphic pairs (C; — P71 w,)
and (Cy — P"" ! wy). Thus ker(Ob) parametrises the genus one models
properly K-equivalent to @, up to proper K-equivalence. By Lemma 2.2
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the genus one models properly K-equivalent to ® 5 are those with the same
invariants as ®x. O

Remark 2.5. The subset ker(Ob) C H'(K, E[n]) contains the identity and
is closed under taking inverses. A binary quartic represents the identity if
and only if it has a K-rational root. A ternary cubic, respectively quadric
intersection, represents the identity if and only if it has a K-rational point
of inflection, respectively hyperosculating point.

Taking Galois cohomology of the short exact sequence 0 — E[2] — E[4] —
E[2] — 0 gives an exact sequence

B(K)[2|— HY(K, E[2]) - H'(K, E[4]) 2% HY\(K, E[2).

Lemma 2.6. The maps i, and [2]. have the following interpretations.
(i) The binary quartic F(z,z) = ax* + ba®z + ca?2? + dxz® + ezt is
mapped by v, to the quadric intersection

ToTg — xf = x§ - a:vg — bror; — cx% —driT9 — ex% = 0.

(ii) The quadric intersection (Q1,Qs) where Q;(x) = xT A;x fori = 1,2
is mapped by (2], to the binary quartic

F(z,z) = det(Ajz + Asz).

PROOF: (i) Let Cy be the curve defined by y? = F(x,2) and C; C P? the
image of C5 under the 2-uple embedding
(x:y:2)— (2% 2222 1 y).

If C% and (') are related in the same way as Cy and Cy then each isomorphism
(Cy — P') = (C% — P') induces an isomorphism (Cy; — P3) = (C} — P?)
compatible with the 2-uple embeddings. Hence twisting (Cy — P!) by £ €
H'(K, E[2]) has the effect of twisting (C; — P3) by 1.& € H'(K, E[4]).

(ii) Let Cy be the curve Q; = Qo = 0 and Cs the curve y* = F(x, z). Weil
[We, Chapter II, Appendix III] constructs a morphism w : Cy x Cy — Co
with the property that

w(P,Q)=w(P,Q) < P+Q~P +Q.

For fixed P € C4 the map @ — w(P, Q) induces a map on Jacobians that is
independent of the choice of P. This map is an isomorphism and we use it
to identify the Jacobians of Cy and Cy. Then P — w(P, P) is a morphism
that induces multiplication-by-2 on the Jacobians. Explicit formulae for this
covering map are given in [AKM?3P], [MSS]. If C} and C} are related in
the same way as Cy and Cy then each isomorphism (Cy — P3) = (C}, —
P?) induces an isomorphism (Cy — P!') = (C) — P') compatible with the
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covering maps. Hence twisting (Cy — P?) by ¢ € H'(K, E[4]) has the effect
of twisting (Cy — P') by [2].£ € H'(K, E[2]). O

2.3. Minimisation and reduction. We quote the following result on min-
imisation.

Proposition 2.7. Let n € {2,3,4}. Let C' be an everywhere locally soluble
n-covering of an elliptic curve E/Q. Let ¢y and cg be the invariants of a
minimal Weierstrass equation for E. Then C can be defined by an integer
coefficient genus one model with invariants cy and cg, except in the case
n = 2 where it may only be possible to find a model with invariants 2*c4 and
26C6.

Proor: This is [CFS, Theorem 1.1]. In [CFS| we gave a more general
definition of genus one model of degree 2. The models considered here are
obtained by completing the square. This has the effect of multiplying the
invariants ¢, and cg by 2* and 26. O

Our treatment of reduction differs from that in [CFS]. In that paper our
goal was to find a practical algorithm for reducing, whereas here we are
interested in bounding coefficients. In Section 3 we prove

Proposition 2.8. Let n € {2,3,4}. Let ® be a non-singular real genus
one model of degree n with invariants cy and cg. Then ® is properly R-

equivalent to a genus one model ® with ||®'||c < HOE™/" where H =
max(|ca] /4, |e|M/°).

Since ¢4 and ¢g are polynomials of degrees 4n/(6 —n) and 6n/(6 —n) the
exponent of H in Proposition 2.8 is best possible. Combining the last two
propositions we immediately deduce

Theorem 2.9. Let n € {2,3,4}. Let C be an everywhere locally soluble
n-covering of an elliptic curve E/Q. Then C can be defined by an integer
coefficient genus one model that is properly R-equivalent to a genus one model

O with ||®'|]s < HE™/M,

We write ||z]| = (3. 22)'/2 for the usual Euclidean norm. In Section 4 we
use the geometry of numbers to deduce Theorem 1.2 from Theorem 2.9. The
key fact here is

Lemma 2.10 (Minkowski). Let A C R"™ be a rank n lattice with covolume 1.
Then there are linearly independent vectors vy, ..., v, € A with [, [|vi]] <
72/2 where ' is Hermite’s constant.

PROOF: See for example [PZ, p197]. In fact for n < 4 we can take vy, ..., v,
a basis for A. O
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The exact value of Hermite’s constant is known for n < 8.

n|1 2 345 6 7 8
w1 4/3 2 4 8 64/3 64 256

We use Lemma 2.10 to give upper bounds on all of the ||v;||. For this we
need lower bounds on some of the ||v;||. The hypotheses in parts (a), (b)
and (c) of Theorem 1.2 are used to give successively better lower bounds,
and hence successively better upper bounds.

3. NORMAL FORMS FOR GENUS ONE MODELS OVER THE REALS
In this section we prove Proposition 2.8.

Lemma 3.1. Let E/R be an elliptic curve and n > 2 an integer.
(i) If n is odd or Ap < 0 then H'(R, E[n]) = 0.
(ii) If n is even and Ag > 0 then H (R, E[n]) = (Z/2Z)? and the ob-
struction map HY(R, E[n]) — Br(R) has kernel of size 3.

PROOF: We recall that E[n] & (Z/nZ)? has a basis S, T with S € E(R) and
. =T if A >0
“(T)_{ S—T if Ag<0

where o denotes complex conjugation. It is easy to compute H(R, E[n])
using the rule

€A:a+o(a) =0}
(R, A) =

(R, 4) {b—0o(b):be A}

Now suppose n is even and Ag > 0. Then E(R) = Z/2Z x R/Z and the

exact sequence
0 — E(R)/nE(R) — H'(R, E[n])
shows that ker(Ob) has size at least 2. Let (,
H'(R, E[n]) x H'(R, E[n]) — Br(R)
defined by the Weil pairing and cup product. It is shown in [O], [Z] that

(§,m) = Ob(£ +n) — Ob(§) — Ob(n)

for all £,n € H'(R, E[n]). Since the Tate pairing is non-degenerate, the
obstruction map is not linear, and hence ker(Ob) has size 3. O

— Hl(R, E)[n] —0
) be the Tate pairing

Let E//R be an elliptic curve and let ¢4 and ¢g be the invariants of a fixed
Weierstrass equation. Lemma 2.4 identifies the proper R-equivalence classes
of genus one models with invariants ¢4 and ¢s with ker(Ob) ¢ HY(R, E[n]).
Our strategy for proving Proposition 2.8 is therefore the following. According
as we are in case (i) or (ii) of Lemma 3.1 we exhibit either 1 or 3 real genus
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one models with the given invariants. In case (ii) we then check that these
models are not equivalent over the reals.

3.1. Binary quartics. As suggested in Lemma 3.1 we split into cases ac-
cording to the sign of the discriminant.

Lemma 3.2. Let E/R be an elliptic curve with positive discriminant. We
fix a Weierstrass equation

(3.1) y* = (z—e1)(z —ex)(w — e3)

where ey, eg,e3 € R. Then every real binary quartic with the same invariants
as (3.1) is properly R-equivalent to exactly one of Fy, Fy, F3 where

Fi(z,2) = a;(z* + 2*) + 20,2722
and for i, 7,k a cyclic permutation of 1,2,3 we put
ai:(ei—ej)/él, bz:(ez+e]_2€k)/4

PROOF: A direct calculation shows that the quartics Fj(z, z) have the same
invariants as (3.1). Without loss of generality e; < ey < e3. Since

AF; (2, 2) = (e; — ;) (2% — 2°)* + 4(e; — ex) 2?2

it is clear that Fi(x,2) < 0 and F3(x,2) > 0 for all (z : 2) € P}(R), whereas
Fy(z,z) = 0 has 4 roots in P*(R). Hence the F}(x, z) are not equivalent over
the reals. O

The analogous result for negative discriminants is the following.

Lemma 3.3. Let E/R be an elliptic curve with negative discriminant. We
fix a Weierstrass equation

(3.2) y* = (z—e1)(z —ex)(w — e3)

where ey, ey € C are complex conjugates and e3 € R. Then every real binary
quartic with the same invariants as (3.2) is properly R-equivalent to

F(x,2) = a(z* — 2*) + 2b2°2?
where

a = (e; —ey) /4, b= (e1+ ey — 2e3)/4.

PROOF: A direct calculation shows that the quartic F'(x, z) has the same
invariants as (3.2). O

The proof of Proposition 2.8 in the case n = 2 is completed by the following
trivial lemma.

Lemma 3.4. Let ey, eq,e3 be the roots of f(x) = 23 — 27cyx — 5dcg. Then
max(|e1], |ez], es]) < H? where H = maX(|C4|1/4a |06|1/6)-
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PROOF: Since f(e;) = 0 we have |e;|® < max(|csei],|cs]). The result is
immediate. U

3.2. Recall of analytic formulae. Before proceeding with the proof of
Proposition 2.8 in the cases n = 3,4 we recall some standard analytic for-
mulae. For 7 € § = {z € C: Im(z) > 0} and o € Q we write ¢* = ™7,
The Dedekind n-function

(3.3) n(r) =g [0 - ¢

satisfies the functional equation

(3.4) n(=1/7) = /(7).

A useful formula in this context is the Jacobi triple product identity
35)  JJa-0 -t =) (1)
n>1 nez

The spaces of modular forms of level 1 and weight k£ = 4,6 are spanned
by the Eisenstein series

Ei(1) =14 240 Z o3(n)q" E¢(t) =1-— 5042 o5(n)q"”

n>1 n>1

where 0, (n) = -, d". The discriminant modular form is
A1) = n(7)*" = (Eu(7)* — Eo(7)*)/1728.

The Eisenstein series E4 and FEg are related to the invariants ¢4 and c¢g as
follows.

Lemma 3.5. Let E be an elliptic curve over C with Weierstrass equation
(3.6) 2+ azy + asy = 23 + asr? + aux + ag

Let A be the period lattice obtained by integrating dx/(2y + ayx + ag). If we
choose a basis wy, wy for A so that T = wy/wy € § then the invariants cy and
ce of the Weierstrass equation (3.6) are given by ¢, = (i—’;)kEk(T)

PRrROOF: The Weierstrass p-function

-5+ 2 ()

0ANEA

satisfies the equation

(3.7) 0 (2)? = 4p(2)° — g2(2) — g3
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where go = 60G4(A), g3 = 140G¢(A). Moreover for k > 4 we have

M= Y - A

0£AEA

Hence go = (2”)4E (1) and g5 = 2}6(2”)6E6( ). The uniformisation map

¢ with ¢* (dx/(Qy + a1z + az)) = dz is given by
¢:C/A — E(C)
2= (p(2) = 1502, 30/ (2) — ai(p(2) — 13b2) — a3)

where by = a? + 4ay. A calculation comparing (3.6) and (3.7) now shows
that ¢y = 12¢g5 and cg = 216g3. O

3.3. Ternary cubics. Differentiating the Jacobi triple product identity (3.5)
with respect to z and putting z = ¢ we obtain

(3.8) 77(7-)3 = Z<_1)nnq(2n+1)2/8 _ q1/8 H(l . qn)B.

nez n>1

Lemma 3.6. For k = 4,6 we have

Ex(r) = fiu(n(3)*,V2Tn(37)%) /n(7)*

where
fa(a,b) = a* + \/igagb + 2a*b* + \/igab?’ + v
s(a,b) = a® + 2v/3a’b + 5a*b? — 5a%b* — 2v/3ab® — b°
fo(

PROOF: Let Fy(7) = fr(n(3)?, V2T (37)3) /n(T)F. Tt is easily seen that the
g-expansions of Fy(7) and F6( ) each have leading term 1.
Let ¢, = ¢*™/™. By (3.8) we have

NG = G = (1= G) Y (—1)ngr/

n=1 mod 3
(1 N Cg) Z( )3n+1(3n + 1) 3(2n+1)2/8
neL

=3(¢s — 1)n(37)°.
Hence

277(37')3
Son(r)

D a3’
n(r+1)  n(r)
It is readily verified that

fu(a+iGb, ¢sb) = fu(a,b).

(3.9)
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Hence Fi(7+1) = Fj(7). A straightforward calculation using the functional
equation (3.4) shows that Fy(—1/7) = 7%F},(7). Since the space of modular
forms of level 1 and weight k = 4,6 is 1-dimensional it follows that E; = F}.

a

Lemma 3.7. Let E/R be an elliptic curve with Weierstrass equation

(3.10) Y+ a1y + asy = 2° + asx® + aux + ag.

Let A = Zwy + Zwy be the period lattice obtained by integrating dx/(2y +
a1x + az). We may assume that w; € Ryg and 7 = wy/wy € $H with Re(r) €
{0,3/2}. Then every real ternary cubic with the same invariants as (3.10)
s properly R-equivalent to

F(z,y,2) = a(z® +y° + 2°) — 3(a + V3b)zyz

where

G )

PROOF: Since Re(7) € {0,3/2} it is clear that ¢'/? is real, and hence a and
b are real. For k = 4,6 we compute

cx(F) = 3" fia,0) = C0)* fu(n(3)°, V2T0(37)°) /(1)* = (20)* Bu(7).

It follows by Lemma 3.5 that F' has the same invariants as (3.10). O
The proof of Proposition 2.8 in the case n = 3 is completed by

Lemma 3.8. For 7 € $ with Re(r) € {0,3/2} we have

n(r/3)°

n(r) |’

(3.11) maX(

2|} < max(| By (7], | Eo(7)] )
PrOOF: The functional equation (3.4) shows we are free to replace 7 by
—1/7. Likewise (3.9) shows we may replace 7 by 7 + 1. So if the bound
holds on some subset of §), then it will hold on any SLs(Z)-translate of that
subset (possibly with a different implied constant).

We only need to establish the bound for Im(7) large and Im(7) small,
since the result will then follow by a compactness argument. (Note that F,
and Eg have no common zeros in §.) As Im(7) — oo we have ¢ — 0 and
the result is clear. By the action of SLy(Z) this implies the result for Im(7)
small. O
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3.4. Quadric intersections. Putting z = —¢, =1 in the Jacobi triple prod-
uct identity (3.5) we obtain functions

Oa(r) =y qCm V= 2 [T = ) (1 + )
nez n=1
(312) 03(7’) = an2 — H(]_ _ q2n)(1 + q2n—1)2
nez n=1
04(1) = z:(—l)"q"2 — H(l — (1 — g2,
nez n=1

Lemma 3.9. For k = 4,6 we have
Ei(7) = fr(02(7),05(1)) = ()" fic(0a(3), 04(5))

where

fa(a,b) = a® 4 14a*b* + 0°

fo(a,b) = a'? — 33ab* — 33a*b® + b'2.
PROOF: Let Fy(7) = fr(02(7),03(7)). It is clear that Fy(7) and Fy(7) are
power series in ¢ with constant term 1. So to prove the first equality it
suffices to show that Fy(—1/7) = 7*F}(7) for k = 4,6.

The expressions for the 6;(7) as products allow us to rewrite them in terms
of the Dedekind n-function:

() oo @)’ ) =
R o e A e )

By the functional equation (3.4) and the expressions for the 6;(7) as sums,
we deduce

02(=1/7) = \/504(3) = \/E(=05(7) + 8(7))
03(—1/7) = \/505(3) = /£ (6a(7) + B5(7)).

It is readily verified that
fe(—a+b,a+b) = (20)" fr(a,b).

(3.13)

Hence
iy (=1/7) = fi(02(=1/7),05(—1/7))
= (5:)" fi(=0a(7) + 03(7), 05(7) + b5(7))
= Tka(T).
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Since the space of modular forms of level 1 and weight £ = 4,6 is 1-
dimensional it follows that E; = F},. The second expression for Fj, is obtained
by replacing 7 by —1/7 and using (3.13). O

As suggested in Lemma 3.1 we split into cases according to the sign of the
discriminant.

Lemma 3.10. Let E/R be an elliptic curve with positive discriminant and
with Weierstrass equation

(3.14) v+ ary + asy = o + asx? + agr + ag.

Let A = Zwi+Zwy be the period lattice obtained by integrating dx/(2y+ayz+
as). We may assume that wy € Rog and 7 = we/wy € §H with Re(r) = 0.

Then every real quadric intersection with the same invariants as (3.14) is
"

properly R-equivalent to exactly one of (Q1,Q2), (Q},Q%), (QF,QY) where
Q1 = a(x) + 23) — 2bxi73 Q) = a(xfy — x3) — 2br 73

Q2 = a(2? + 23) — 2bzowy QY = a(x? — x3) — 2bwowy

1= b(xg + 23) — 207,73

b= b(z] + 23) — 2ax07,

o= %\/594(7/4) b= g\/wflegw@.

PROOF: In the notation of Lemma 3.9 all three quadric intersections have
invariants 28 f4(a, b) and —2'%fg(a,b). For k = 4,6 we compute
(40)* fila, b) = (Z0)* fi(0a(3), 03(5)) = (Z0) En(7).

It follows by Lemma 3.5 that these quadric intersections have the same in-
variants as (3.14). It remains to show that they are pairwise inequivalent
over the reals.

Since Re(7) = 0 we have ¢ > 0 and hence b > a > 0. We put ¢ = v/b* — a’.
Then @1 = @2 = 0 has real point (in fact a hyperosculating point)

(o : 21 1 o : w3) = (VB2 + 2 - Vab : Vb2 — &2 : Vab).
Rather more obviously @} = Q4 = 0 has real point

(o a1 1wy x3) = (1/2b/a:1:0:1).

and

On the other hand, since the quadratic form
T+ QY= b‘T“ ((Z‘o + 29)? + (21 + x3)2) + “T“’ ((xo —29)? + (2 — x3)2)

is positive definite, there are no real solutions to Q] = Q4 = 0.
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Finally we claim that (@1, @2) and (@, Q5) are not equivalent over the
reals. Let Ay, As be the matrices of second partial derivatives of 1, Q> and
likewise for @}, Q5. We compute

det(xA; + 24;) = —2*(a*x? — b222)(V*2? — a?2?)

det(z A + zAL) = 2*(a2® + b*2%) (b*2? + a*2?).
The first of these quartics has four real roots, whereas the second has no real
roots. This proves our claim O

The analogous result for negative discriminants is the following.

Lemma 3.11. Let E/R be an elliptic curve with negative discriminant and
with Weierstrass equation

(3.15) y? + a1y + asy = 2° + agx® + asx + ag.

Let A = Zw,+7Zw, be the period lattice obtained by integrating dz /(2y+a;x+
as). We may assume that wy € Rog and T = we/w; € § with Re(r) = 1/2.
Then every real quadric intersection with the same invariants as (3.15) is
properly R-equivalent to (Q1,Q2) where

Q1 = a(xf — x3) — 2br 73
Q2 = a(x} — x3) — b(xg + 72)
and
a=1 3—71@192(7) b=1/2Tg,(r).
PROOF: Since Re(7) = 1/2 it is clear from (3.12) that a and b are real. In

the notation of Lemma 3.9 the quadric intersection (@1, Q2) has invariants
28 f4(Csa, b) and 2 fg(Cga, b). We compute

4" fi(Gsa, b) = (2)* fu(0a(7), 05(7)) = (2)" E(r).
It follows by Lemma 3.5 that (@1, Q2) has the same invariants as (3.15). O
The proof of Proposition 2.8 in the case n = 4 is completed by

Lemma 3.12. For 7 € ) with Re(r) € {0,1/2} we have

(3.16) max([05(7)], [05(r)|) < max(| Ey(7)["/%, | Es(T)['/*2).
and
(3.17) max(|03(%)], [0a(5)]) < max(|Es(T)|"%, | Es()]"?).

PROOF: The first two equalities in (3.13) show that (3.16) is equivalent
to (3.17) with 7 replaced by —1/7. The second two equalities in (3.13) show
that (3.16) and (3.17) are equivalent. It is clear from the definitions of 6
and 63 that we may replace 7 by 7 4+ 1. So if either bound holds on some
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subset of $) then both bounds hold on any SLy(Z)-translate of that subset
(possibly with different implied constants).

We only need to establish the bounds for Im(7) large and Im(7) small,
since the result will then follow by a compactness argument. (Note that Ey
and Eg have no common zeros in §).) As Im(7) — oo we have ¢ — 0 and
the result is clear. By the action of SLy(Z) this implies the result for Im(7)
small. O

4. GENUS ONE MODELS AND THE GEOMETRY OF NUMBERS

In this section we use the geometry of numbers to deduce Theorem 1.2
from Theorem 2.9.

4.1. Binary quartics. By Theorem 2.9 and Lemma 2.10 we have

Lemma 4.1. Let C be an everywhere locally soluble 2-covering of an elliptic
curve E/Q. Then C can be defined by an integer coefficient binary quartic
whose coefficient of £%727 is bounded in absolute value by Aui ™ 1, where
A< HE and pyps < 1.

The binary quartic representing C' is non-singular, i.e. it has no repeated
roots in P'(Q). Under the hypothesis of Theorem 1.2(b) it has no Q-rational
root (see Remark 2.5). Since n = 2 the bound claimed in Theorem 1.2(c) is
the same as that in Theorem 1.2(b). The proof of Theorem 1.2 in the case
n = 2 is completed by

Lemma 4.2. Let ® be an integer coefficient binary quartic. Suppose that
the coefficient of %727 is bounded in absolute value by Apy 1.

(i) If @ has no repeated oot in P1(Q) then ||®|]o < A3(p1p2)°.
(i) If ® has no root in PL(Q) then ||®||o < A%(uypo)™.

Proor: Without loss of generality p; < po.

(i) If Apdps < 1 then @ has no x* or 232 terms and therefore a repeated
root at (1 :0). By hypothesis this does not happen. Therefore Au3uy > 1
and

||(I)||oo < AN% < A3(N1[L2)6.

(ii) If Auf < 1 then ® has no z* term and therefore a root at (1 :0). By
hypothesis this does not happen. Therefore Auf > 1 and

|9]|oe < Apiy < A (papio)".
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4.2. Ternary cubics. By Theorem 2.9 and Lemma 2.10 we have

Lemma 4.3. Let C be an everywhere locally soluble 3-covering of an elliptic
curve E/Q. Then C can be defined by an integer coefficient ternary whose
coefficient of 'y? 2" is bounded in absolute value by A,u’i,ug,u'g where A < Hg
and pupaps < 1.

The hypotheses of parts (b) and (c¢) of Theorem 1.2 are that C has no
Q-rational point of inflection, respectively that C' has no Q-rational point.
The proof of Theorem 1.2 in the case n = 3 is completed by

Lemma 4.4. Let ® be an integer coefficient ternary cubic defining a plane
cubic curve C' C P2, Suppose that the coefficient of x'y’z* is bounded in
absolute value by Aps pd k.

(i) If C is non-singular then ||®||s < AS(u1p2p13)°.
(i) If C' is non-singular and has no Q-rational point of inflection then

19]|00 < A*(p1pi2p3)".
(iii) If C has no Q-rational points then ||P||o < A3(p1p2p3)?.

ProoF: Without loss of generality 1y < po < ps.

(i) If A2z < 1 then @ has no z®, z?y or x22z terms and therefore C' is
singular at (1:0:0). If Au3 < 1 then ® has no 3, 2%y, xy?, or 3> terms.
This would imply that C contains the line z = 0 and is therefore singular.
Accordingly we have Ap2us > 1 and Ap3 > 1. It follows by the identity

Apz(Apips)* (Aps)* = A (i papss)°

that [| Do < Apg < A%(u1p2p3)°.

(i) If Apyp3 < 1 then ® has no 23, 2%y or zy? terms and therefore C meets
the line z = 0 with multiplicity at least 3. This would imply that either C
is singular or that (1 : 0 : 0) is a point of inflection. Accordingly we have
Apip3 > 1. Exactly as in the proof of (i) we have Au2us > 1. It follows by
the identity

A (Ap i) Apipg = A (papiopis)’
that |[®|e < Auj < A*(p1p12413)".
(iii) If Ap? < 1 then (1 : 0 : 0) is a Q-rational point on C. Therefore
Apd > 1 and [|®||o < Apd < A% (papaps)®. O

4.3. Quadric intersections. By Theorem 2.9 and Lemma 2.10 we have

Lemma 4.5. Let C' be an everywhere locally soluble 4-covering of an elliptic
curve E/Q. Then C can be defined by an integer coefficient quadric inter-
section (Q1, Q2) whose coefficient of x;x), in Q; is bounded in absolute value

by AN, where A < H}E/Q, AMA2 < 1 and pypopsps < 1.
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Suppose that rank(zQ; + 2Q3) < 4 for some (z : z) € PY(Q). Then by
Remark 2.5 and Lemma 2.6(ii) the element &, € H'(Q, E[4]) corresponding
to C satisfies [2].&; = 0. Hence &; = 1.(&) for some & € H'(Q, E[2]). Since
C' is everywhere locally soluble & has trivial obstruction, i.e. it is represented
by a binary quartic. We can therefore represent C' by a quadric intersection
of the form specified in Lemma 2.6(i). In this case Theorem 1.2(b) follows
from the result for n = 2. Since & and &, have the same images in III(£/Q)
the hypothesis of Theorem 1.2(c) is not satisfied.

The proof of Theorem 1.2 in the case n = 4 is completed by

Lemma 4.6. Let & = (1, Q2) be an integer coefficient quadric intersection
defining a degree 4 curve C' C P?. Suppose that the coefficient of z;zy in Q;
is bounded in absolute value by AN;p;py.
(i) If C is non-singular then ||®||o < AN A2)® (11 popzng)®.
(ii) If C' is non-singular and there are no Q-rational singular quadrics
in the pencil spanned by Q1 and Qo then

1®]]0c < A¥( N Xo)* (papioprapes)’.

(iii) If C' has no Q-rational points and there are no Q-rational singular
quadrics in the pencil spanned by Q1 and Qo then

||‘I)Hoo < A4(>\1)\2)2(M1H2#3#4)2-

Proor: Without loss of generality Ay < Ay and py < o < g < puyg.
(i) We make the following observations:

o If Adypypus < 1 then (1:0:0:0) is a singular point on C.

o If AXyu3 < 1 then C contains the line {3 = 2, = 0}.

o If A\ < 1 then @) has rank at most 2.

o If A\jpuspy < 1 then @1 has rank at most 2.
We are given that C' is non-singular, and so none of the above inequalities
can hold. We further note that if both A\yu? < 1 and AXjuips < 1 then
(1:0:0:0) is a singular point on C. We therefore split into the cases
Adop? > 1 and AXjpqjug > 1. In the first case it follows by the identity

(Adapif)* (Adopiz) (AN p3)* (ANipiagia)* (Adopi) = A (Mdo)* (paprapiapea)*
that ||®||ee < AXoui < AS(NAo)* (1 ptpizpes)*. In the second case it follows
by the identity

(Adapin i) (Adopz)* (AN p3)* (AN prpa)  (Adopi) = A (MiAo)® (g piopapia)®
that [|®[|oc < Adopi < AP(MA2) (1 pizpisgia)®

(ii) We replace the third and fourth observations in (i) by

o If ANjpuouz < 1 then @1 has rank at most 3.
o If A\ip1p04 < 1 then @1 has rank at most 3.
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It follows by the identity

(AXapirfi3)? (AXopu3) (AN propiz) 2 (AN prapa) 2 (Adopi) = A3 (M A2)* (1 piopizpea)*

that ||®lec < Adapif < A¥(MiAo)* (1 pizpiapia)’.

(iii) If Adgp? < 1 then (1:0:0:0) is a Q-rational point on C. Therefore
Adlop? > 1. We have already seen in (ii) that AXjuopus > 1. Tt follows by
the identity

(Adopi}) (AXipapis)*(Adapy) = A* (N A2)? (i pzpiapia)?
that ||®]]ee < Adopd < A* (N A2)? (1 pafiapes)?.

5. A CRITERION FOR III(E/Q)[3] =0

In this section we prove Theorem 1.3. We will need the following lemma
whose proof is just an exercise in calculus.

Lemma 5.1. Let a,b € R and put ¢ = (a® + +/3ab + b*)"/2. Let
F(z,y,2) = a(@® +y° + 2°) — 3(a + V3b)zyz.
Then |F(x)| < max(|al, 0], |c)||[x||? for all x = (z,y, z) € R3.

PROOF: Let (z,y, z) be a local maximum of F' on the sphere z%+1y*+2? = 1.

Then we have
rank (Fx Fy Fz) <1.
xr Yy oz
We compute

yF, — 2F, = 3(x — y)(azy + (a + V3b)(z + y)2).

If z,y, z are distinct then a + v/3b = a or —a/2. In the first case we have
b=0and zy + yz + zx = 0. But then x + y + z = £1 and F(z,y, 2) = *+a.
In the second case we have zy = yz = zz, and this contradicts that z,vy, z
are distinct.

If 2 =y = z then F(x,y, 2) = £b. So without loss of generality = # y = 2.
Then

azy + (a + V/3b)(z + y)y = 0.
If y =0 we get F(x,y,2) = £a. Otherwise
x = —(a+ V3b)¢
y = (2a + V/3b)¢
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for some £ € R. We compute
2+ y? + 22 = 9€%(a® + LV/3ab + b?)
F(z,y,2) = 27€*(a® + V3ab + b*)(a* + LV/3ab + b?)
Eliminating & gives
a? + v/3ab + b?
(a® + 22v/3ab + b2)1/2
If ab > 0 then |F(z,y, 2)| < |c|. Otherwise if |a| > |b| we have

(a® + V3ab +1°)* — a*(a® + 2 V3ab + 1) = (Z5a +)*b <0

and hence |F(x,y, z)| < |a|. The case |b| > |a| is similar. O

|F(z,y, 2)| =

PROOF OF THEOREM 1.3: Let E/Q be an elliptic curve. We aim to show
that (under suitable hypotheses) III(E/Q)[3] = 0. By (1.1) it is equivalent
to show that every ¢ € S®)(E/Q) maps to zero in III(E/Q).

Let € S (3)(E /Q). Then & corresponds to an everywhere locally soluble 3-
covering 7 : C'— E. Our aim is to show that C(Q) # (). By Proposition 2.7
we know that C' can be defined by an integer coefficient ternary cubic f
with the same invariants as a minimal Weierstrass equation for £. We fix
a minimal Weierstrass equation for £ and let 7 = wy/w; € H be as in
Lemma 3.7. Then f = F o g for some g € SL3(R) where

F(x,y,2) = a(@® + y* + 2*) — 3(a + V3b)zyz

() (e
V27 \wi n(r) wi ) n(r)
Let v = a+i¢2b and ¢ = |y| = (a® + v/3ab+ b*)'/2. The lattice A = g(Z?) C

R3 has covolume 1. Hence by Lemma 2.10 there exists 0 # x € A with
|1x]|® < /2. If max(|al, |b], |¢|) < 1/v/2 then by Lemma 5.1 we have

|F(x)| < max(lal, [0] [e]) []x]]* < 1.

and

Since F(x) = f(u,v,w) for some u,v,w € Z it follows that F'(x) = 0. Hence
C(Q) # 0 and € maps to zero in HI(E/Q).

It remains to show that the condition max(|al, |b|, |¢|) < 1/v/2 is equivalent
to the hypothesis of the theorem. By (3.9) we have
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We now put
ai(T) = —n(%)lz az(T) = n(TTl)lz
0a(7) = ~3%n(37)'” oulr) = (75"
and claim that
4
(5.1) [ = ai(m) = (X = 3%n(r)*)(X = 30(7)"*)* + Ea(r)*n(r)*X.
i=1
It is routine to check using (3.3) and (3.4) that
a(t+ 1) = —az(r ar(—1/7) = —1Say(r

(7) )
ag(T+ 1) = —as(7) as(—1/7)
(7) as(—1/7) =
ay(t+1) = —ay(7) ay(—1/7) = —7%as(7).

Hence the square of each coefficient of the left hand side of (5.1) is a mod-
ular form of level 1. The claim is then proved by comparing the first few
coefficients of the g-expansions. By Lemma 3.5 we have Ap = (i—’lr)mA(T)
and j = FE4(7)3/A(7). Finally we compute

max(Jal, [b], |e]) <

az(T+1) = —ay(r —7%y (7

(7)
—7% (1)

(7)

(

= (&) max (In(3)P VTGP, In(ZF) < i)
<= 2°|Ag|max{|z|® : x a root of (5.1)} < 3'8|n(1)|*
<= 2°|Ag|max{|z|® :  a root of (X —3*)(X —3)> +jX =0} < 3'®
<= 2°|Ag| < min{|z|® : 2 a root of (X — 3%*)(X —3°)% + X3 =0}.
This final condition is the hypothesis of the theorem. O
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