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Abstract. We compute bounds on the coefficients of the equations
defining everywhere locally soluble n-coverings of elliptic curves over the
rationals for n = 2, 3, 4. Our proofs use recent work of the author with
Cremona and Stoll on the minimisation of genus one curves, together
with standard results from the geometry of numbers. We use the same
methods to give a criterion (satisfied by only a finite number of “small”
elliptic curves) for ruling out the existence of elements of order 3 in the
Tate-Shafarevich group.

1. Introduction

Let E/Q be an elliptic curve and n ≥ 2 an integer. The Selmer group
S(n)(E/Q) parametrises the everywhere locally soluble n-coverings π : C →
E. By global class field theory the curve C admits a Q-rational divisor of
degree n and hence can be written as either a double cover of P1 (case n = 2)
or a genus one normal curve C ⊂ Pn−1 (case n ≥ 3). The aim of a descent
calculation is to compute the Selmer group S(n)(E/Q) as an abelian group
and to represent its elements by equations for the covering curves C. In view
of the short exact sequence

(1.1) 0 → E(Q)/nE(Q) → S(n)(E/Q) → X(E/Q)[n] → 0

this gives information about both the Mordell-Weil group E(Q) and the
Tate-Shafarevich group X(E/Q). Indeed the covering curves can be used
either to help search for points of infinite order in E(Q) or to exhibit explicit
elements of X(E/Q).

There are two different approaches to explicit 2-descent on an elliptic
curve. The number field method computes S(2)(E/Q) as a subgroup of
L×/(L×)2 where L is a product of number fields. The Selmer group ele-
ments are then converted to binary quartics using a method that relies on
an explicit version of the Hasse principle for conics. In contrast the invariant
theory method bounds the coefficients of the required binary quartics, and
then uses these bounds to make an exhaustive search. The invariant theory
method was used by Birch and Swinnerton-Dyer in their pioneering computer
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calculations [BSD] and subsequently developed by Cremona in his program
mwrank. The development of computer algebra packages able to compute
the class group and units of number fields has since made the number field
method equally suitable for computation.

The number field method has been generalised to p-descent (see [DSS],
[SS], [CFOSS]) and is practical for p = 3 (and p = 5 in small examples). The
method relies on an explicit version of the local-to-global principle for the
p-torsion of the Brauer group of Q. The number field method also extends
to 4-descent and 8-descent, as described in [MSS], [Wo], [S]. The invariant
theory method in the case n = 3 was investigated in [DS], but does not
appear to generalise in any practical way to n > 2.

The equations defining an n-covering C of E depend on a choice of co-
ordinates on Pn−1. It is obviously desirable to make a change of co-ordinates
so that the equations have small integer coefficients. In practice this is
achieved by the combination of two techniques, termed minimisation and re-
duction. In the minimisation stage spurious prime factors are removed from
a suitably defined discriminant. In the reduction stage an integer unimodular
change of co-ordinates is made to further reduce the size of the coefficients
(without changing the discriminant). Minimisation and reduction are impor-
tant for both the number field and invariant theory methods. In the number
field method the equations computed typically have very large coefficients,
and we need to minimise and reduce to get sensible answers. In the invariant
theory method minimisation and reduction are used at the outset to obtain
the bounds upon which the method relies.

In joint work with Cremona and Stoll [CFS] the author has described
efficient algorithms for minimising and reducing n-coverings for n = 2, 3, 4.
(The work on minimisation applies over an arbitrary local field.) It has been
found in numerical examples that elements of the Tate-Shafarevich group
typically have quite small coefficients and that the size of the coefficients
tends to decrease with n. In this note we give some theoretical support for
these observations. In fact we give bounds on the coefficients depending only
on the naive height of E. In principle this generalises the invariant theory
method to n = 3, 4 although the result is certainly not a practical algorithm.
In view of this we concentrate on giving a single bound for all the coefficients
and do not keep track of certain implied constants. Thus our treatment in
the cases n = 2, 3 differs from that in [BSD], [DS].

In the cases n = 2, 3, 4 we represent Selmer group elements by equations
of the following form.

Definition 1.1. A genus one model of degree n ∈ {2, 3, 4} is

(i) if n = 2, a binary quartic, i.e. a homogeneous polynomial of degree 4
in 2 variables,
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(ii) if n = 3, a ternary cubic, i.e. a homogeneous polynomial of degree 3
in 3 variables,

(iii) if n = 4, a quadric intersection, i.e. a pair of homogeneous polyno-
mials of degree 2 in 4 variables.

We recall that the minimal discriminant of an elliptic curve E/Q is

∆E = (c34 − c26)/1728

where c4 and c6 are the usual quantities associated to a globally minimal
Weierstrass equation for E. In Theorem 1.2 below we instead work with the
naive height of E which we define as

HE = max(|c4|1/4, |c6|1/6).
We write ||Φ||∞ for the maximum absolute value of a coefficient of a genus
one model Φ. The notation f � g should be understood to mean that f ≤ cg
for some absolute constant c > 0.

Theorem 1.2. Let E/Q be an elliptic curve and let n ∈ {2, 3, 4}.
(a) Each ξ ∈ S(n)(E/Q) can be represented by a genus one model Φ with

integer coefficients and

||Φ||∞ � H6
E.

(b) If ξ is non-zero in S(n)(E/Q) then this bound may be improved to

||Φ||∞ � H4
E.

(c) If the image of ξ in X(E/Q) has exact order n then

||Φ||∞ � H6−n
E .

We remark that Theorem 1.2(a) gives a proof that S(n)(E/Q) is finite,
and hence by (1.1) a proof of the weak Mordell-Weil theorem for n = 2, 3, 4.
This proof differs from the usual proofs in that we work entirely over the
rationals, i.e. we do not need to make any field extensions.

The formulae in Lemmas 3.11 and 3.12 of [CFS] suggest that the exponents
of HE in Theorem 1.2(a) and (b) might be best possible. We suspect that
the exponent of HE in Theorem 1.2(c) is also best possible in view of the
models

n = 2 y2 = λ0x
4 + x2z2 + λ1z

4

n = 3 λ0x
3
0 + λ1x

3
1 + λ3x

3
3 − x0x1x2 = 0

n = 4

{
λ0x

2
0 + x1x3 − λ2x

2
2 = 0

λ1x
2
1 + x0x2 − λ3x

2
3 = 0

that arise in the context of descent by cyclic isogeny (see [F1, §1.2] for the
cases n = 3, 4).
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We expect that Theorem 1.2 generalises to the case n = 5. (See [F3] for
the definition of a genus one model of degree 5.)

In favourable circumstances, the geometry of numbers can be used to
construct a rational point on a smooth plane cubic. We turn this into a
criterion for ruling out the existence of elements of order 3 in the Tate-
Shafarevich group.

Theorem 1.3. Let E be an elliptic curve over Q with j-invariant j and
minimal discriminant ∆E. Let

B = min{|x| : x ∈ C a root of (X − 33)(X − 35)3 + jX3 = 0}.

If |∆E| < 1
64
B3 then X(E/Q)[3] = 0.

Since B is bounded as a function of j this theorem applies to only finitely
many elliptic curves. In Cremona’s tables [C], which go up to conductor
130000, we find 92 elliptic curves satisfying the condition of the theorem,
and all of these have conductor less than 1000. Their ranks are distributed
as follows

rank 0 1 2
# curves 49 41 2

There is no difficulty in verifying by 3-descent (see [SS]) that each of these
curves has X(E/Q)[3] = 0. The interest of Theorem 1.3 instead lies in its
method of proof, and in the hope that similar criteria might be found for
ruling out elements of order n in X(E/Q) for other integers n.

Example 1.4. Let E be the elliptic curve

y2 + y = x3 + x2 − 2x.

Then ∆E = 389, j = 21273/389 and 1
64
B3 = 528.57930586 . . .. Theorem 1.3

shows that X(E/Q)[3] = 0. In fact E(Q) ∼= Z2 and the (inverse pairs of)
non-trivial elements of S(3)(E/Q) ∼= (Z/3Z)2 are represented by the ternary
cubics

F1(x, y, z) = x2z − xy2 − 2xyz + xz2 + y2z + yz2

F2(x, y, z) = x2z − xy2 + 2xyz − yz2 − z3

F3(x, y, z) = x2y − xy2 − xz2 − y2z − 2yz2

F4(x, y, z) = x2y + xy2 − 2xyz + xz2 − y2z − yz2.

2. Background and overview

2.1. Invariants of genus one models. We work over a field K of charac-
teristic zero and write K for its algebraic closure. The space of genus one
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models of degree n = 2, 3, 4 is acted on by the group Gn defined as follows

G2 = Gm ×GL2 [µ,N ] : F 7→ µ2(F ◦N)

G3 = Gm ×GL3 [µ,N ] : F 7→ µ(F ◦N)

G4 = GL2 ×GL4 [M,N ] : (Q1, Q2)
T 7→M(Q1 ◦N,Q2 ◦N)T .

Let det : Gn → Gm be the character defined by [µ,N ] 7→ µ detN , respectively
[M,N ] 7→ detM detN . An invariant of weight k is a polynomial in the
coefficients of a genus one model satisfying

(2.1) I(gΦ) = det(g)kI(Φ)

for all g ∈ Gn. The action of the centre of Gn shows that I is homogeneous
of degree kn/(6 − n). In each of the cases n = 2, 3, 4 the ring of invariants
is generated by invariants c4 and c6 of weights 4 and 6. See [F3, §7], [CFS]
for explicit formulae. We put ∆ = (c34 − c26)/1728. It is shown in [AKM3P],
[F3] that Φ is non-singular (i.e. defines a smooth curve of genus one) if and
only if ∆(Φ) 6= 0, and that the Jacobian elliptic curve is

(2.2) y2 = x3 − 27c4(Φ)x− 54c6(Φ).

Definition 2.1. Genus one models Φ1 and Φ2 are K-equivalent if they are
in the same orbit for the action of Gn(K). They are properly K-equivalent
if Φ2 = gΦ1 for some g ∈ Gn(K) with det g = 1.

Lemma 2.2. Non-singular genus one models Φ1 and Φ2 are properly K-
equivalent if and only if they have the same invariants.

Proof: The first implication is clear by (2.1). For the converse, we see by
Propositions 4.6 and 4.7 in [F3] that every non-singular model is properly
K-equivalent to a model of the form

n = 2 y2 = x3z + Axz3 +Bz4

n = 3 y2z = x3 + Axz2 +Bz3

n = 4 x2 − zt = y2 − xt− Axz −Bz2 = 0.

It then suffices to note that these “Weierstrass models” are uniquely deter-
mined by their invariants. In fact c4 = −48A and c6 = −864B. 2

A non-singular genus one model Φ defines both a smooth curve of genus
one C and a regular 1-form ω on C. Writing Fi for the partial derivative of
F with respect to xi we have

n = 2 y2 = F (x0, x1) ω = x2
0d(x1/x0)/2y

n = 3 F (x0, x1, x2) = 0 ω = x2
0d(x1/x0)/F2

n = 4 F = G = 0 ω = x2
0d(x1/x0)/(F2G3 − F3G2).
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It is shown in [F3, Proposition 5.19] that if Φ2 = gΦ1 and γ : C2 → C1 is
the morphism determined by g then

(2.3) γ∗ω1 = (det g)ω2.

2.2. Galois cohomology. We consider pairs (C → S, ω) where C → S is
a morphism from a smooth curve of genus one C to a Brauer-Severi variety
S, and ω is a regular 1-form on C. An isomorphism between (C1 → S1, ω1)
and (C2 → S2, ω2) is a pair of isomorphisms φ : C1

∼= C2 and ψ : S1
∼= S2

such that φ∗ω2 = ω1 and the diagram

C1
//

φ
��

S1

ψ
��

C2
// S2

commutes.
Let n ≥ 2 be an integer. Let E/K be an elliptic curve with invariant

differential ωE. We map E → Pn−1 via the complete linear system |n.0E|.
We recall that objects defined over K are called twists if they are isomorphic
over K.

Lemma 2.3. The twists of (E → Pn−1, ωE), up to K-isomorphism, are
parametrised by H1(K,E[n]).

Proof. This is [F2, Lemma 2.3]. �

The obstruction map, defined in [O], [CFOSS], is

Ob : H1(K,E[n]) → Br(K)

(C → S, ω) 7→ [S].

In general this map is not a group homomorphism. Nonetheless we write
ker(Ob) for the inverse image of the identity.

Lemma 2.4. Let E/K be an elliptic curve and let n ∈ {2, 3, 4}. Then the
genus one models of degree n with the same invariants as a fixed Weierstrass
equation for E, up to proper K-equivalence, are parametrised by ker(Ob) ⊂
H1(K,E[n]).

Proof: A non-singular genus one model Φ defines a smooth curve of genus
one C → Pn−1 and a regular 1-form ω on C. Conversely, every twist (C →
S, ω) of (E → Pn−1, ωE) with S ∼= Pn−1 arises in this way. Let ΦE be a genus
one model defining (E → Pn−1, ωE). By (2.2) it has the same invariants as
some Weierstrass equation for E. We see by (2.3) that Φ1 and Φ2 are properly
equivalent if and only if they determine isomorphic pairs (C1 → Pn−1, ω1)
and (C2 → Pn−1, ω2). Thus ker(Ob) parametrises the genus one models
properly K-equivalent to ΦE, up to proper K-equivalence. By Lemma 2.2
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the genus one models properly K-equivalent to ΦE are those with the same
invariants as ΦE. 2

Remark 2.5. The subset ker(Ob) ⊂ H1(K,E[n]) contains the identity and
is closed under taking inverses. A binary quartic represents the identity if
and only if it has a K-rational root. A ternary cubic, respectively quadric
intersection, represents the identity if and only if it has a K-rational point
of inflection, respectively hyperosculating point.

Taking Galois cohomology of the short exact sequence 0 → E[2] → E[4] →
E[2] → 0 gives an exact sequence

E(K)[2]−→H1(K,E[2])
ι∗−→ H1(K,E[4])

[2]∗−→ H1(K,E[2]).

Lemma 2.6. The maps ι∗ and [2]∗ have the following interpretations.

(i) The binary quartic F (x, z) = ax4 + bx3z + cx2z2 + dxz3 + ez4 is
mapped by ι∗ to the quadric intersection

x0x2 − x2
1 = x2

3 − ax2
0 − bx0x1 − cx2

1 − dx1x2 − ex2
2 = 0.

(ii) The quadric intersection (Q1, Q2) where Qi(x) = xTAix for i = 1, 2
is mapped by [2]∗ to the binary quartic

F (x, z) = det(A1x+ A2z).

Proof: (i) Let C2 be the curve defined by y2 = F (x, z) and C4 ⊂ P3 the
image of C2 under the 2-uple embedding

(x : y : z) 7→ (x2 : xz : z2 : y).

If C ′
2 and C ′

4 are related in the same way as C2 and C4 then each isomorphism
(C2 → P1) ∼= (C ′

2 → P1) induces an isomorphism (C4 → P3) ∼= (C ′
4 → P3)

compatible with the 2-uple embeddings. Hence twisting (C2 → P1) by ξ ∈
H1(K,E[2]) has the effect of twisting (C4 → P3) by ι∗ξ ∈ H1(K,E[4]).

(ii) Let C4 be the curve Q1 = Q2 = 0 and C2 the curve y2 = F (x, z). Weil
[We, Chapter II, Appendix III] constructs a morphism ω : C4 × C4 → C2

with the property that

ω(P,Q) = ω(P ′, Q′) ⇐⇒ P +Q ∼ P ′ +Q′.

For fixed P ∈ C4 the map Q 7→ ω(P,Q) induces a map on Jacobians that is
independent of the choice of P . This map is an isomorphism and we use it
to identify the Jacobians of C4 and C2. Then P 7→ ω(P, P ) is a morphism
that induces multiplication-by-2 on the Jacobians. Explicit formulae for this
covering map are given in [AKM3P], [MSS]. If C ′

4 and C ′
2 are related in

the same way as C4 and C2 then each isomorphism (C4 → P3) ∼= (C ′
4 →

P3) induces an isomorphism (C2 → P1) ∼= (C ′
2 → P1) compatible with the
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covering maps. Hence twisting (C4 → P3) by ξ ∈ H1(K,E[4]) has the effect
of twisting (C2 → P1) by [2]∗ξ ∈ H1(K,E[2]). 2

2.3. Minimisation and reduction. We quote the following result on min-
imisation.

Proposition 2.7. Let n ∈ {2, 3, 4}. Let C be an everywhere locally soluble
n-covering of an elliptic curve E/Q. Let c4 and c6 be the invariants of a
minimal Weierstrass equation for E. Then C can be defined by an integer
coefficient genus one model with invariants c4 and c6, except in the case
n = 2 where it may only be possible to find a model with invariants 24c4 and
26c6.

Proof: This is [CFS, Theorem 1.1]. In [CFS] we gave a more general
definition of genus one model of degree 2. The models considered here are
obtained by completing the square. This has the effect of multiplying the
invariants c4 and c6 by 24 and 26. 2

Our treatment of reduction differs from that in [CFS]. In that paper our
goal was to find a practical algorithm for reducing, whereas here we are
interested in bounding coefficients. In Section 3 we prove

Proposition 2.8. Let n ∈ {2, 3, 4}. Let Φ be a non-singular real genus
one model of degree n with invariants c4 and c6. Then Φ is properly R-
equivalent to a genus one model Φ′ with ||Φ′||∞ � H(6−n)/n where H =
max(|c4|1/4, |c6|1/6).

Since c4 and c6 are polynomials of degrees 4n/(6− n) and 6n/(6− n) the
exponent of H in Proposition 2.8 is best possible. Combining the last two
propositions we immediately deduce

Theorem 2.9. Let n ∈ {2, 3, 4}. Let C be an everywhere locally soluble
n-covering of an elliptic curve E/Q. Then C can be defined by an integer
coefficient genus one model that is properly R-equivalent to a genus one model

Φ′ with ||Φ′||∞ � H
(6−n)/n
E .

We write ||x|| = (
∑
x2
i )

1/2 for the usual Euclidean norm. In Section 4 we
use the geometry of numbers to deduce Theorem 1.2 from Theorem 2.9. The
key fact here is

Lemma 2.10 (Minkowski). Let Λ ⊂ Rn be a rank n lattice with covolume 1.
Then there are linearly independent vectors v1, . . . , vn ∈ Λ with

∏n
i=1 ||vi|| ≤

γ
n/2
n where γ nn is Hermite’s constant.

Proof: See for example [PZ, p197]. In fact for n ≤ 4 we can take v1, . . . , vn
a basis for Λ. 2
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The exact value of Hermite’s constant is known for n ≤ 8.

n 1 2 3 4 5 6 7 8
γ nn 1 4/3 2 4 8 64/3 64 256

We use Lemma 2.10 to give upper bounds on all of the ||vi||. For this we
need lower bounds on some of the ||vi||. The hypotheses in parts (a), (b)
and (c) of Theorem 1.2 are used to give successively better lower bounds,
and hence successively better upper bounds.

3. Normal forms for genus one models over the reals

In this section we prove Proposition 2.8.

Lemma 3.1. Let E/R be an elliptic curve and n ≥ 2 an integer.

(i) If n is odd or ∆E < 0 then H1(R, E[n]) = 0.
(ii) If n is even and ∆E > 0 then H1(R, E[n]) ∼= (Z/2Z)2 and the ob-

struction map H1(R, E[n]) → Br(R) has kernel of size 3.

Proof: We recall that E[n] ∼= (Z/nZ)2 has a basis S, T with S ∈ E(R) and

σ(T ) =

{
−T if ∆E > 0
S − T if ∆E < 0

where σ denotes complex conjugation. It is easy to compute H1(R, E[n])
using the rule

H1(R, A) =
{a ∈ A : a+ σ(a) = 0}
{b− σ(b) : b ∈ A}

.

Now suppose n is even and ∆E > 0. Then E(R) ∼= Z/2Z × R/Z and the
exact sequence

0 → E(R)/nE(R) → H1(R, E[n]) → H1(R, E)[n] → 0

shows that ker(Ob) has size at least 2. Let ( , ) be the Tate pairing

H1(R, E[n])×H1(R, E[n]) → Br(R)

defined by the Weil pairing and cup product. It is shown in [O], [Z] that

(ξ, η) = Ob(ξ + η)−Ob(ξ)−Ob(η)

for all ξ, η ∈ H1(R, E[n]). Since the Tate pairing is non-degenerate, the
obstruction map is not linear, and hence ker(Ob) has size 3. 2

Let E/R be an elliptic curve and let c4 and c6 be the invariants of a fixed
Weierstrass equation. Lemma 2.4 identifies the proper R-equivalence classes
of genus one models with invariants c4 and c6 with ker(Ob) ⊂ H1(R, E[n]).
Our strategy for proving Proposition 2.8 is therefore the following. According
as we are in case (i) or (ii) of Lemma 3.1 we exhibit either 1 or 3 real genus
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one models with the given invariants. In case (ii) we then check that these
models are not equivalent over the reals.

3.1. Binary quartics. As suggested in Lemma 3.1 we split into cases ac-
cording to the sign of the discriminant.

Lemma 3.2. Let E/R be an elliptic curve with positive discriminant. We
fix a Weierstrass equation

(3.1) y2 = (x− e1)(x− e2)(x− e3)

where e1, e2, e3 ∈ R. Then every real binary quartic with the same invariants
as (3.1) is properly R-equivalent to exactly one of F1, F2, F3 where

Fi(x, z) = ai(x
4 + z4) + 2bix

2z2

and for i, j, k a cyclic permutation of 1, 2, 3 we put

ai = (ei − ej)/4, bi = (ei + ej − 2ek)/4.

Proof: A direct calculation shows that the quartics Fi(x, z) have the same
invariants as (3.1). Without loss of generality e1 < e2 < e3. Since

4Fi(x, z) = (ei − ej)(x
2 − z2)2 + 4(ei − ek)x

2z2

it is clear that F1(x, z) < 0 and F3(x, z) > 0 for all (x : z) ∈ P1(R), whereas
F2(x, z) = 0 has 4 roots in P1(R). Hence the Fi(x, z) are not equivalent over
the reals. 2

The analogous result for negative discriminants is the following.

Lemma 3.3. Let E/R be an elliptic curve with negative discriminant. We
fix a Weierstrass equation

(3.2) y2 = (x− e1)(x− e2)(x− e3)

where e1, e2 ∈ C are complex conjugates and e3 ∈ R. Then every real binary
quartic with the same invariants as (3.2) is properly R-equivalent to

F (x, z) = a(x4 − z4) + 2bx2z2

where

a = (e1 − e2)/4i, b = (e1 + e2 − 2e3)/4.

Proof: A direct calculation shows that the quartic F (x, z) has the same
invariants as (3.2). 2

The proof of Proposition 2.8 in the case n = 2 is completed by the following
trivial lemma.

Lemma 3.4. Let e1, e2, e3 be the roots of f(x) = x3 − 27c4x − 54c6. Then
max(|e1|, |e2|, |e3|) � H2 where H = max(|c4|1/4, |c6|1/6).
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Proof: Since f(ei) = 0 we have |ei|3 � max(|c4ei|, |c6|). The result is
immediate. 2

3.2. Recall of analytic formulae. Before proceeding with the proof of
Proposition 2.8 in the cases n = 3, 4 we recall some standard analytic for-
mulae. For τ ∈ H = {z ∈ C : Im(z) > 0} and α ∈ Q we write qα = e2πiατ .
The Dedekind η-function

(3.3) η(τ) = q1/24
∏
n≥1

(1− qn)

satisfies the functional equation

(3.4) η(−1/τ) =
√

τ
i
η(τ).

A useful formula in this context is the Jacobi triple product identity

(3.5)
∏
n≥1

(1− q2n)(1− q2n−1z)(1− q2n−1z−1) =
∑
n∈Z

(−1)nqn
2

zn.

The spaces of modular forms of level 1 and weight k = 4, 6 are spanned
by the Eisenstein series

E4(τ) = 1 + 240
∑
n≥1

σ3(n)qn E6(τ) = 1− 504
∑
n≥1

σ5(n)qn

where σm(n) =
∑

d|n d
m. The discriminant modular form is

∆(τ) = η(τ)24 = (E4(τ)
3 − E6(τ)

2)/1728.

The Eisenstein series E4 and E6 are related to the invariants c4 and c6 as
follows.

Lemma 3.5. Let E be an elliptic curve over C with Weierstrass equation

(3.6) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Let Λ be the period lattice obtained by integrating dx/(2y + a1x+ a3). If we
choose a basis ω1, ω2 for Λ so that τ = ω2/ω1 ∈ H then the invariants c4 and
c6 of the Weierstrass equation (3.6) are given by ck = (2π

ω1
)kEk(τ).

Proof: The Weierstrass ℘-function

℘(z) =
1

z2
+

∑
0 6=λ∈Λ

(
1

(z − λ)2
− 1

λ2

)
satisfies the equation

(3.7) ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3
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where g2 = 60G4(Λ), g3 = 140G6(Λ). Moreover for k ≥ 4 we have

Gk(Λ) =
∑

0 6=λ∈Λ

1

λk
=

2ζ(k)

ωk1
Ek(τ).

Hence g2 = 1
12

(2π
ω1

)4E4(τ) and g3 = 1
216

(2π
ω1

)6E6(τ). The uniformisation map

φ with φ∗(dx/(2y + a1x+ a3)) = dz is given by

φ : C/Λ → E(C)

z 7→
(
℘(z)− 1

12
b2,

1
2
℘′(z)− a1(℘(z)− 1

12
b2)− a3

)
where b2 = a2

1 + 4a2. A calculation comparing (3.6) and (3.7) now shows
that c4 = 12g2 and c6 = 216g3. 2

3.3. Ternary cubics. Differentiating the Jacobi triple product identity (3.5)
with respect to z and putting z = q we obtain

(3.8) η(τ)3 =
∑
n∈Z

(−1)nnq(2n+1)2/8 = q1/8
∏
n≥1

(1− qn)3.

Lemma 3.6. For k = 4, 6 we have

Ek(τ) = fk(η(
τ
3
)3,
√

27η(3τ)3)/η(τ)k

where

f4(a, b) = a4 + 4√
3
a3b+ 2a2b2 + 4√

3
ab3 + b4

f6(a, b) = a6 + 2
√

3a5b+ 5a4b2 − 5a2b4 − 2
√

3ab5 − b6.

Proof: Let Fk(τ) = fk(η(
τ
3
)3,
√

27η(3τ)3)/η(τ)k. It is easily seen that the
q-expansions of F4(τ) and F6(τ) each have leading term 1.

Let ζn = e2πi/n. By (3.8) we have

η( τ
3
)3 − ζ−1

24 η(
τ+1
3

)3 = (1− ζ3)
∑

n≡1 mod 3

(−1)nnq(2n+1)2/24

= (1− ζ3)
∑
n∈Z

(−1)3n+1(3n+ 1)q3(2n+1)2/8

= 3(ζ3 − 1)η(3τ)3.

Hence

(3.9)
η( τ+1

3
)3

η(τ + 1)
=
η( τ

3
)3

η(τ)
+
√

27iζ2
3

η(3τ)3

η(τ)
.

It is readily verified that

fk(a+ iζ2
3b, ζ3b) = fk(a, b).
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Hence Fk(τ +1) = Fk(τ). A straightforward calculation using the functional
equation (3.4) shows that Fk(−1/τ) = τ kFk(τ). Since the space of modular
forms of level 1 and weight k = 4, 6 is 1-dimensional it follows that Ek = Fk.

2

Lemma 3.7. Let E/R be an elliptic curve with Weierstrass equation

(3.10) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let Λ = Zω1 + Zω2 be the period lattice obtained by integrating dx/(2y +
a1x+ a3). We may assume that ω1 ∈ R>0 and τ = ω2/ω1 ∈ H with Re(τ) ∈
{0, 3/2}. Then every real ternary cubic with the same invariants as (3.10)
is properly R-equivalent to

F (x, y, z) = a(x3 + y3 + z3)− 3(a+
√

3b)xyz

where

a =
1√
27

(
2π

ω1

)
η(τ/3)3

η(τ)
b =

(
2π

ω1

)
η(3τ)3

η(τ)
.

Proof: Since Re(τ) ∈ {0, 3/2} it is clear that q1/3 is real, and hence a and
b are real. For k = 4, 6 we compute

ck(F ) = 33k/2fk(a, b) = (2π
ω1

)kfk(η(
τ
3
)3,
√

27η(3τ)3)/η(τ)k = (2π
ω1

)kEk(τ).

It follows by Lemma 3.5 that F has the same invariants as (3.10). 2

The proof of Proposition 2.8 in the case n = 3 is completed by

Lemma 3.8. For τ ∈ H with Re(τ) ∈ {0, 3/2} we have

(3.11) max
(∣∣∣η(τ/3)3η(τ)

∣∣∣ , ∣∣∣η(3τ)3η(τ)

∣∣∣) � max(|E4(τ)|1/4, |E6(τ)|1/6).

Proof: The functional equation (3.4) shows we are free to replace τ by
−1/τ . Likewise (3.9) shows we may replace τ by τ + 1. So if the bound
holds on some subset of H, then it will hold on any SL2(Z)-translate of that
subset (possibly with a different implied constant).

We only need to establish the bound for Im(τ) large and Im(τ) small,
since the result will then follow by a compactness argument. (Note that E4

and E6 have no common zeros in H.) As Im(τ) → ∞ we have q → 0 and
the result is clear. By the action of SL2(Z) this implies the result for Im(τ)
small. 2
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3.4. Quadric intersections. Putting z = −q,±1 in the Jacobi triple prod-
uct identity (3.5) we obtain functions

(3.12)

θ2(τ) =
∑
n∈Z

q(2n+1)2/4 = 2q1/4

∞∏
n=1

(1− q2n)(1 + q2n)2

θ3(τ) =
∑
n∈Z

qn
2

=
∞∏
n=1

(1− q2n)(1 + q2n−1)2

θ4(τ) =
∑
n∈Z

(−1)nqn
2

=
∞∏
n=1

(1− q2n)(1− q2n−1)2.

Lemma 3.9. For k = 4, 6 we have

Ek(τ) = fk(θ2(τ), θ3(τ)) = ( 1
2i

)kfk(θ3(
τ
4
), θ4(

τ
4
))

where

f4(a, b) = a8 + 14a4b4 + b8

f6(a, b) = a12 − 33a8b4 − 33a4b8 + b12.

Proof: Let Fk(τ) = fk(θ2(τ), θ3(τ)). It is clear that F4(τ) and F6(τ) are
power series in q with constant term 1. So to prove the first equality it
suffices to show that Fk(−1/τ) = τ kFk(τ) for k = 4, 6.

The expressions for the θj(τ) as products allow us to rewrite them in terms
of the Dedekind η-function:

θ2(τ) = 2
η(4τ)2

η(2τ)
, θ3(τ) =

η(2τ)5

η(τ)2η(4τ)2
, θ4(τ) =

η(τ)2

η(2τ)
.

By the functional equation (3.4) and the expressions for the θj(τ) as sums,
we deduce

(3.13)
θ2(−1/τ) =

√
τ
2i
θ4(

τ
4
) =

√
τ
2i

(−θ2(τ) + θ3(τ))

θ3(−1/τ) =
√

τ
2i
θ3(

τ
4
) =

√
τ
2i

(θ2(τ) + θ3(τ)).

It is readily verified that

fk(−a+ b, a+ b) = (2i)kfk(a, b).

Hence

Fk(−1/τ) = fk(θ2(−1/τ), θ3(−1/τ))

= ( τ
2i

)kfk(−θ2(τ) + θ3(τ), θ2(τ) + θ3(τ))

= τ kFk(τ).
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Since the space of modular forms of level 1 and weight k = 4, 6 is 1-
dimensional it follows that Ek = Fk. The second expression for Ek is obtained
by replacing τ by −1/τ and using (3.13). 2

As suggested in Lemma 3.1 we split into cases according to the sign of the
discriminant.

Lemma 3.10. Let E/R be an elliptic curve with positive discriminant and
with Weierstrass equation

(3.14) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let Λ = Zω1+Zω2 be the period lattice obtained by integrating dx/(2y+a1x+
a3). We may assume that ω1 ∈ R>0 and τ = ω2/ω1 ∈ H with Re(τ) = 0.
Then every real quadric intersection with the same invariants as (3.14) is
properly R-equivalent to exactly one of (Q1, Q2), (Q′

1, Q
′
2), (Q′′

1, Q
′′
2) where

Q1 = a(x2
0 + x2

2)− 2bx1x3 Q′
1 = a(x2

0 − x2
2)− 2bx1x3

Q2 = a(x2
1 + x2

3)− 2bx0x2 Q′
2 = a(x2

1 − x2
3)− 2bx0x2

Q′′
1 = b(x2

0 + x2
2)− 2ax1x3

Q′′
2 = b(x2

1 + x2
3)− 2ax0x2

and

a = 1
2

√
π

ω1

θ4(τ/4) b = 1
2

√
π

ω1

θ3(τ/4).

Proof: In the notation of Lemma 3.9 all three quadric intersections have
invariants 28f4(a, b) and −212f6(a, b). For k = 4, 6 we compute

(4i)kfk(a, b) = ( iπ
ω1

)kfk(θ4(
τ
4
), θ3(

τ
4
)) = (2π

ω1
)kEk(τ).

It follows by Lemma 3.5 that these quadric intersections have the same in-
variants as (3.14). It remains to show that they are pairwise inequivalent
over the reals.

Since Re(τ) = 0 we have q > 0 and hence b > a > 0. We put c = 4
√
b4 − a4.

Then Q1 = Q2 = 0 has real point (in fact a hyperosculating point)

(x0 : x1 : x2 : x3) = (
√
b2 + c2 :

√
ab :

√
b2 − c2 :

√
ab).

Rather more obviously Q′
1 = Q′

2 = 0 has real point

(x0 : x1 : x2 : x3) = (
√

2b/a : 1 : 0 : 1).

On the other hand, since the quadratic form

Q′′
1 +Q′′

2 = b−a
2

(
(x0 + x2)

2 + (x1 + x3)
2
)

+ a+b
2

(
(x0 − x2)

2 + (x1 − x3)
2
)

is positive definite, there are no real solutions to Q′′
1 = Q′′

2 = 0.
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Finally we claim that (Q1, Q2) and (Q′
1, Q

′
2) are not equivalent over the

reals. Let A1, A2 be the matrices of second partial derivatives of Q1, Q2 and
likewise for Q′

1, Q
′
2. We compute

det(xA1 + zA2) = −24(a2x2 − b2z2)(b2x2 − a2z2)

det(xA′1 + zA′2) = 24(a2x2 + b2z2)(b2x2 + a2z2).

The first of these quartics has four real roots, whereas the second has no real
roots. This proves our claim 2

The analogous result for negative discriminants is the following.

Lemma 3.11. Let E/R be an elliptic curve with negative discriminant and
with Weierstrass equation

(3.15) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let Λ = Zω1+Zω2 be the period lattice obtained by integrating dx/(2y+a1x+
a3). We may assume that ω1 ∈ R>0 and τ = ω2/ω1 ∈ H with Re(τ) = 1/2.
Then every real quadric intersection with the same invariants as (3.15) is
properly R-equivalent to (Q1, Q2) where

Q1 = a(x2
0 − x2

2)− 2bx1x3

Q2 = a(x2
1 − x2

3)− b(x2
0 + x2)

and

a = 1
2

√
2π

ω1

ζ−1
8 θ2(τ) b = 1

2

√
2π

ω1

θ3(τ).

Proof: Since Re(τ) = 1/2 it is clear from (3.12) that a and b are real. In
the notation of Lemma 3.9 the quadric intersection (Q1, Q2) has invariants
28f4(ζ8a, b) and 212f6(ζ8a, b). We compute

4kfk(ζ8a, b) = (2π
ω1

)kfk(θ2(τ), θ3(τ)) = (2π
ω1

)kEk(τ).

It follows by Lemma 3.5 that (Q1, Q2) has the same invariants as (3.15). 2

The proof of Proposition 2.8 in the case n = 4 is completed by

Lemma 3.12. For τ ∈ H with Re(τ) ∈ {0, 1/2} we have

(3.16) max(|θ2(τ)|, |θ3(τ)|) � max(|E4(τ)|1/8, |E6(τ)|1/12).
and

(3.17) max(|θ3(
τ
4
)|, |θ4(

τ
4
)|) � max(|E4(τ)|1/8, |E6(τ)|1/12).

Proof: The first two equalities in (3.13) show that (3.16) is equivalent
to (3.17) with τ replaced by −1/τ . The second two equalities in (3.13) show
that (3.16) and (3.17) are equivalent. It is clear from the definitions of θ2

and θ3 that we may replace τ by τ + 1. So if either bound holds on some
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subset of H then both bounds hold on any SL2(Z)-translate of that subset
(possibly with different implied constants).

We only need to establish the bounds for Im(τ) large and Im(τ) small,
since the result will then follow by a compactness argument. (Note that E4

and E6 have no common zeros in H.) As Im(τ) → ∞ we have q → 0 and
the result is clear. By the action of SL2(Z) this implies the result for Im(τ)
small. 2

4. Genus one models and the geometry of numbers

In this section we use the geometry of numbers to deduce Theorem 1.2
from Theorem 2.9.

4.1. Binary quartics. By Theorem 2.9 and Lemma 2.10 we have

Lemma 4.1. Let C be an everywhere locally soluble 2-covering of an elliptic
curve E/Q. Then C can be defined by an integer coefficient binary quartic
whose coefficient of x4−jzj is bounded in absolute value by Aµ4−j

1 µj2 where
A� H2

E and µ1µ2 � 1.

The binary quartic representing C is non-singular, i.e. it has no repeated
roots in P1(Q). Under the hypothesis of Theorem 1.2(b) it has no Q-rational
root (see Remark 2.5). Since n = 2 the bound claimed in Theorem 1.2(c) is
the same as that in Theorem 1.2(b). The proof of Theorem 1.2 in the case
n = 2 is completed by

Lemma 4.2. Let Φ be an integer coefficient binary quartic. Suppose that
the coefficient of x4−jzj is bounded in absolute value by Aµ4−j

1 µj2.

(i) If Φ has no repeated root in P1(Q) then ||Φ||∞ ≤ A3(µ1µ2)
6.

(ii) If Φ has no root in P1(Q) then ||Φ||∞ ≤ A2(µ1µ2)
4.

Proof: Without loss of generality µ1 ≤ µ2.
(i) If Aµ3

1µ2 < 1 then Φ has no x4 or x3z terms and therefore a repeated
root at (1 : 0). By hypothesis this does not happen. Therefore Aµ3

1µ2 ≥ 1
and

||Φ||∞ ≤ Aµ4
2 ≤ A3(µ1µ2)

6.

(ii) If Aµ4
1 < 1 then Φ has no x4 term and therefore a root at (1 : 0). By

hypothesis this does not happen. Therefore Aµ4
1 ≥ 1 and

||Φ||∞ ≤ Aµ4
2 ≤ A2(µ1µ2)

4.

2
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4.2. Ternary cubics. By Theorem 2.9 and Lemma 2.10 we have

Lemma 4.3. Let C be an everywhere locally soluble 3-covering of an elliptic
curve E/Q. Then C can be defined by an integer coefficient ternary whose
coefficient of xiyjzk is bounded in absolute value by Aµi1µ

j
2µ

k
3 where A� HE

and µ1µ2µ3 � 1.

The hypotheses of parts (b) and (c) of Theorem 1.2 are that C has no
Q-rational point of inflection, respectively that C has no Q-rational point.
The proof of Theorem 1.2 in the case n = 3 is completed by

Lemma 4.4. Let Φ be an integer coefficient ternary cubic defining a plane
cubic curve C ⊂ P2. Suppose that the coefficient of xiyjzk is bounded in
absolute value by Aµi1µ

j
2µ

k
3.

(i) If C is non-singular then ||Φ||∞ ≤ A6(µ1µ2µ3)
6.

(ii) If C is non-singular and has no Q-rational point of inflection then
||Φ||∞ ≤ A4(µ1µ2µ3)

4.
(iii) If C has no Q-rational points then ||Φ||∞ ≤ A3(µ1µ2µ3)

3.

Proof: Without loss of generality µ1 ≤ µ2 ≤ µ3.
(i) If Aµ2

1µ3 < 1 then Φ has no x3, x2y or x2z terms and therefore C is
singular at (1 : 0 : 0). If Aµ3

2 < 1 then Φ has no x3, x2y, xy2, or y3 terms.
This would imply that C contains the line z = 0 and is therefore singular.
Accordingly we have Aµ2

1µ3 ≥ 1 and Aµ3
2 ≥ 1. It follows by the identity

Aµ3
3(Aµ

2
1µ3)

3(Aµ3
2)

2 = A6(µ1µ2µ3)
6

that ||Φ||∞ ≤ Aµ3
3 ≤ A6(µ1µ2µ3)

6.
(ii) If Aµ1µ

2
2 < 1 then Φ has no x3, x2y or xy2 terms and therefore C meets

the line z = 0 with multiplicity at least 3. This would imply that either C
is singular or that (1 : 0 : 0) is a point of inflection. Accordingly we have
Aµ1µ

2
2 ≥ 1. Exactly as in the proof of (i) we have Aµ2

1µ3 ≥ 1. It follows by
the identity

Aµ3
3(Aµ1µ

2
2)

2Aµ2
1µ3 = A4(µ1µ2µ3)

4

that ||Φ||∞ ≤ Aµ3
3 ≤ A4(µ1µ2µ3)

4.
(iii) If Aµ3

1 < 1 then (1 : 0 : 0) is a Q-rational point on C. Therefore
Aµ3

1 ≥ 1 and ||Φ||∞ ≤ Aµ3
3 ≤ A3(µ1µ2µ3)

3. 2

4.3. Quadric intersections. By Theorem 2.9 and Lemma 2.10 we have

Lemma 4.5. Let C be an everywhere locally soluble 4-covering of an elliptic
curve E/Q. Then C can be defined by an integer coefficient quadric inter-
section (Q1, Q2) whose coefficient of xjxk in Qi is bounded in absolute value

by Aλiµjµk, where A� H
1/2
E , λ1λ2 � 1 and µ1µ2µ3µ4 � 1.
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Suppose that rank(xQ1 + zQ2) < 4 for some (x : z) ∈ P1(Q). Then by
Remark 2.5 and Lemma 2.6(ii) the element ξ4 ∈ H1(Q, E[4]) corresponding
to C satisfies [2]∗ξ4 = 0. Hence ξ4 = ι∗(ξ2) for some ξ2 ∈ H1(Q, E[2]). Since
C is everywhere locally soluble ξ2 has trivial obstruction, i.e. it is represented
by a binary quartic. We can therefore represent C by a quadric intersection
of the form specified in Lemma 2.6(i). In this case Theorem 1.2(b) follows
from the result for n = 2. Since ξ2 and ξ4 have the same images in X(E/Q)
the hypothesis of Theorem 1.2(c) is not satisfied.

The proof of Theorem 1.2 in the case n = 4 is completed by

Lemma 4.6. Let Φ = (Q1, Q2) be an integer coefficient quadric intersection
defining a degree 4 curve C ⊂ P3. Suppose that the coefficient of xjxk in Qi

is bounded in absolute value by Aλiµjµk.

(i) If C is non-singular then ||Φ||∞ ≤ A12(λ1λ2)
6(µ1µ2µ3µ4)

6.
(ii) If C is non-singular and there are no Q-rational singular quadrics

in the pencil spanned by Q1 and Q2 then

||Φ||∞ ≤ A8(λ1λ2)
4(µ1µ2µ3µ4)

4.

(iii) If C has no Q-rational points and there are no Q-rational singular
quadrics in the pencil spanned by Q1 and Q2 then

||Φ||∞ ≤ A4(λ1λ2)
2(µ1µ2µ3µ4)

2.

Proof: Without loss of generality λ1 ≤ λ2 and µ1 ≤ µ2 ≤ µ3 ≤ µ4.
(i) We make the following observations:

• If Aλ2µ1µ3 < 1 then (1 : 0 : 0 : 0) is a singular point on C.
• If Aλ2µ

2
2 < 1 then C contains the line {x3 = x4 = 0}.

• If Aλ1µ
2
3 < 1 then Q1 has rank at most 2.

• If Aλ1µ2µ4 < 1 then Q1 has rank at most 2.

We are given that C is non-singular, and so none of the above inequalities
can hold. We further note that if both Aλ2µ

2
1 < 1 and Aλ1µ1µ4 < 1 then

(1 : 0 : 0 : 0) is a singular point on C. We therefore split into the cases
Aλ2µ

2
1 ≥ 1 and Aλ1µ1µ4 ≥ 1. In the first case it follows by the identity

(Aλ2µ
2
1)

2(Aλ2µ
2
2)(Aλ1µ

2
3)

2(Aλ1µ2µ4)
2(Aλ2µ

2
4) = A8(λ1λ2)

4(µ1µ2µ3µ4)
4

that ||Φ||∞ ≤ Aλ2µ
2
4 ≤ A8(λ1λ2)

4(µ1µ2µ3µ4)
4. In the second case it follows

by the identity

(Aλ2µ1µ3)
2(Aλ2µ

2
2)

3(Aλ1µ
2
3)

2(Aλ1µ1µ4)
4(Aλ2µ

2
4) = A12(λ1λ2)

6(µ1µ2µ3µ4)
6

that ||Φ||∞ ≤ Aλ2µ
2
4 ≤ A12(λ1λ2)

6(µ1µ2µ3µ4)
6.

(ii) We replace the third and fourth observations in (i) by

• If Aλ1µ2µ3 < 1 then Q1 has rank at most 3.
• If Aλ1µ1µ4 < 1 then Q1 has rank at most 3.
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It follows by the identity

(Aλ2µ1µ3)
2(Aλ2µ

2
2)(Aλ1µ2µ3)

2(Aλ1µ1µ4)
2(Aλ2µ

2
4) = A8(λ1λ2)

4(µ1µ2µ3µ4)
4

that ||Φ||∞ ≤ Aλ2µ
2
4 ≤ A8(λ1λ2)

4(µ1µ2µ3µ4)
4.

(iii) If Aλ2µ
2
1 < 1 then (1 : 0 : 0 : 0) is a Q-rational point on C. Therefore

Aλ2µ
2
1 ≥ 1. We have already seen in (ii) that Aλ1µ2µ3 ≥ 1. It follows by

the identity

(Aλ2µ
2
1)(Aλ1µ2µ3)

2(Aλ2µ
2
4) = A4(λ1λ2)

2(µ1µ2µ3µ4)
2

that ||Φ||∞ ≤ Aλ2µ
2
4 ≤ A4(λ1λ2)

2(µ1µ2µ3µ4)
2.

2

5. A criterion for X(E/Q)[3] = 0

In this section we prove Theorem 1.3. We will need the following lemma
whose proof is just an exercise in calculus.

Lemma 5.1. Let a, b ∈ R and put c = (a2 +
√

3ab+ b2)1/2. Let

F (x, y, z) = a(x3 + y3 + z3)− 3(a+
√

3b)xyz.

Then |F (x)| ≤ max(|a|, |b|, |c|)||x||3 for all x = (x, y, z) ∈ R3.

Proof: Let (x, y, z) be a local maximum of F on the sphere x2+y2+z2 = 1.
Then we have

rank

(
Fx Fy Fz
x y z

)
≤ 1.

We compute

yFx − xFy = 3(x− y)(axy + (a+
√

3b)(x+ y)z).

If x, y, z are distinct then a+
√

3b = a or −a/2. In the first case we have
b = 0 and xy + yz + zx = 0. But then x+ y + z = ±1 and F (x, y, z) = ±a.
In the second case we have xy = yz = zx, and this contradicts that x, y, z
are distinct.

If x = y = z then F (x, y, z) = ±b. So without loss of generality x 6= y = z.
Then

axy + (a+
√

3b)(x+ y)y = 0.

If y = 0 we get F (x, y, z) = ±a. Otherwise

x = −(a+
√

3b)ξ

y = (2a+
√

3b)ξ
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for some ξ ∈ R. We compute

x2 + y2 + z2 = 9ξ2(a2 + 10
9

√
3ab+ b2)

F (x, y, z) = 27ξ3(a2 +
√

3ab+ b2)(a2 + 10
9

√
3ab+ b2)

Eliminating ξ gives

|F (x, y, z)| = a2 +
√

3ab+ b2

(a2 + 10
9

√
3ab+ b2)1/2

If ab ≥ 0 then |F (x, y, z)| ≤ |c|. Otherwise if |a| ≥ |b| we have

(a2 +
√

3ab+ b2)2 − a2(a2 + 10
9

√
3ab+ b2) = ( 2√

3
a+ b)3b ≤ 0

and hence |F (x, y, z)| ≤ |a|. The case |b| ≥ |a| is similar. 2

Proof of Theorem 1.3: Let E/Q be an elliptic curve. We aim to show
that (under suitable hypotheses) X(E/Q)[3] = 0. By (1.1) it is equivalent
to show that every ξ ∈ S(3)(E/Q) maps to zero in X(E/Q).

Let ξ ∈ S(3)(E/Q). Then ξ corresponds to an everywhere locally soluble 3-
covering π : C → E. Our aim is to show that C(Q) 6= ∅. By Proposition 2.7
we know that C can be defined by an integer coefficient ternary cubic f
with the same invariants as a minimal Weierstrass equation for E. We fix
a minimal Weierstrass equation for E and let τ = ω2/ω1 ∈ H be as in
Lemma 3.7. Then f = F ◦ g for some g ∈ SL3(R) where

F (x, y, z) = a(x3 + y3 + z3)− 3(a+
√

3b)xyz

and

a =
1√
27

(
2π

ω1

)
η(τ/3)3

η(τ)
b =

(
2π

ω1

)
η(3τ)3

η(τ)
.

Let γ = a+ iζ2
3b and c = |γ| = (a2 +

√
3ab+ b2)1/2. The lattice Λ = g(Z3) ⊂

R3 has covolume 1. Hence by Lemma 2.10 there exists 0 6= x ∈ Λ with
||x||3 ≤

√
2. If max(|a|, |b|, |c|) < 1/

√
2 then by Lemma 5.1 we have

|F (x)| ≤ max(|a|, |b|, |c|) ||x||3 < 1.

Since F (x) = f(u, v, w) for some u, v, w ∈ Z it follows that F (x) = 0. Hence
C(Q) 6= ∅ and ξ maps to zero in X(E/Q).

It remains to show that the condition max(|a|, |b|, |c|) < 1/
√

2 is equivalent
to the hypothesis of the theorem. By (3.9) we have

γ =
1√
27

(
2π

ω1

)
η( τ+1

3
)3

η(τ + 1)
, γ =

1√
27

(
2π

ω1

)
η( τ−1

3
)3

η(τ − 1)
.
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We now put

α1(τ) = −η( τ
3
)12 α3(τ) = η( τ+1

3
)12

α2(τ) = −36η(3τ)12 α4(τ) = η( τ−1
3

)12

and claim that

(5.1)
4∏
i=1

(X − αi(τ)) = (X − 33η(τ)12)(X − 3η(τ)12)3 + E4(τ)
3η(τ)12X.

It is routine to check using (3.3) and (3.4) that

α1(τ + 1) = −α3(τ) α1(−1/τ) = −τ 6α2(τ)

α2(τ + 1) = −α2(τ) α2(−1/τ) = −τ 6α1(τ)

α3(τ + 1) = −α4(τ) α3(−1/τ) = −τ 6α4(τ)

α4(τ + 1) = −α1(τ) α4(−1/τ) = −τ 6α3(τ).

Hence the square of each coefficient of the left hand side of (5.1) is a mod-
ular form of level 1. The claim is then proved by comparing the first few
coefficients of the q-expansions. By Lemma 3.5 we have ∆E = (2π

ω1
)12∆(τ)

and j = E4(τ)
3/∆(τ). Finally we compute

max(|a|, |b|, |c|) < 1√
2

⇐⇒ 1√
27

(2π
ω1

) max
(
|η( τ

3
)|3,

√
27|η(3τ)|3, |η( τ+1

3
)|3

)
< 1√

2
|η(τ)|

⇐⇒ 26|∆E|max{|x|3 : x a root of (5.1)} < 318|η(τ)|36

⇐⇒ 26|∆E|max{|x|3 : x a root of (X − 33)(X − 3)3 + jX = 0} < 318

⇐⇒ 26|∆E| < min{|x|3 : x a root of (X − 33)(X − 35)3 + jX3 = 0}.
This final condition is the hypothesis of the theorem. 2
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