MINIMISATION AND REDUCTION OF 5-COVERINGS OF
ELLIPTIC CURVES

TOM FISHER

ABSTRACT. We consider models for genus one curves of degree 5, which arise
in explicit 5-descent on elliptic curves. We prove a theorem on the existence of
minimal models with the same invariants as the minimal model of the Jacobian
elliptic curve and give an algorithm for computing such models. Finally we
describe how to reduce genus one models of degree 5 defined over Q.

INTRODUCTION

Let E be an elliptic curve defined over a number field K. An n-covering of E is
a morphism 7 : C' — E where C' is a smooth curve of genus one, and m = [n] o ¢
for some isomorphism 9 : C — E defined over K. An n-descent on E computes
the everywhere locally soluble n-coverings of E. For such n-coverings we have
Y*(n.0g) ~ D for some K-rational divisor D on C. The complete linear system
|D| defines a morphism C' — P"~!. Thus in the cases n = 2, 3,4 we may represent
C by a binary quartic, ternary cubic, or pair of quadrics in 4 variables. In the case
n = 5 we obtain curves C' C P* of degree 5 that are defined by the 4 x 4 Pfaffians
of a 5 x 5 alternating matrix of linear forms.

The question naturally arises as to how we can choose co-ordinates on P"~! so
that the equations for C' have small coefficients. In the cases n = 2, 3,4 this was
answered in [CFS], using the combination of two techniques called minimisation
and reduction. In this paper we extend to the case n = 5. We establish results on
minimisation over an arbitrary local field (immediately implying results over any
number field of class number 1), whereas those for reduction are specific to the
case K = Q. Implementations of our algorithms in the case K = Q are available
in MAGMA [BCP].

1. GENUS ONE MODELS

A genus one model (of degree 5) is a 5 x 5 alternating matrix of linear forms in
variables x1,...,z5. We write X5(R) for the space of all genus one models with
coefficients in a ring R. Models ® and ®’ are R-equivalent if & = [A, B]® for some
A, B € GL5(R). Here the action of A is via ® — A®AT and the action of B is
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via (@y(21,. .., 25)) = (Pg(2h, ..., 25)) where 2 = S, Bijx;. The determinant
of the transformation g = [A, B] is det g = (det A)? det B.

We write Pf(®) for the row vector (py,...,ps) where p; is (—1)""! times the
Pfaffian of the 4 x 4 submatrix obtained by deleting the ith row and column of ®.
This choice of signs is made so that Pf(®)® = 0. For A € GL5(R) we note that
Pf(APAT) = Pf(®) adj A.

A genus one model ¢ € X5(K) over a field K is non-singular if the subscheme
Cy = {rank ® < 2} C P* defined by the 4 x 4 Pfaffians of ® is a smooth curve of
genus one. We write K[Xj;] for the polynomial ring in the 50 coefficients of a genus
one model. A polynomial F' € K[Xj] is an invariant of weight k if Fog = (det g)*F
for all g = [A, B] with A, B € GL5(K). Taking A and B to be scalar matrices
shows that an invariant of weight k is a homogeneous polynomial of degree 5k.

Theorem 1.1. Let ¢y, cs, A € Z[X5] be the invariants of weights 4,6, 12, satisfying
cy — 2 = 1728/, and scaled as specified in [F1].
(i) A model ® € X;5(K) is non-singular if and only if A(®) # 0.
(ii) There exist ay,ag, as, ay, as € Z[X5| and by, by, bg € Z[X5| satisfying
(1) bg = CL% + 4@2, b4 = aias + 2&4, b6 = CL?)’ + 4&6,
Cy = b% - 2464, Cg = —bg + 36b2b4 - 216b6

(iii) If ® € X5(K) is non-singular then Co has Jacobian elliptic curve
y2 + a2y + asy = x>+ a2x2 + asx + ag
where a; = a;(P).
For the proof of Theorem 1.1(ii) we use the following lemma.

Lemma 1.2. Let ¢y, c6,A € R =7[xq,...,xN] be primitive polynomials satisfying
c3—c2 = 1728A. If there exists ay € R satisfying aicy+ce =0 (mod 4) then there
exist ag, ag, ay, ag, by, by, bg € R satisfying (1).

PROOF: By unique factorisation in F3[xy,...,zy]| and the Chinese Remainder
Theorem there exists by € R with ¢, = b2 (mod 3), ¢g = —b3 (mod 3) and by = a?
(mod 4). Then bycy + ¢ = 0 (mod 12) and ¢} = ¢ = b3c; (mod 24). Since ¢4 is
primitive it follows that ¢, = 03 (mod 24). Next putting # = by in an identity of
Kraus [K],
(2% — ¢c4)? = (2% — 3wey — 2¢6) (2 + 2¢6) + 3(zes + c6)* + 3 — i,

we deduce b3 — 3bacy — 2c6 = 0 (mod 432). We put by = (b3 — ¢4)/24 and bg =
(b3 — 3bacy — 2¢6)/432. Then 0 = ¢} — 2 = 16b3(babg — b3) (mod 64) and so
bobg = b2 (mod 4). By unique factorisation in Fo[zy, ..., x| there exists az € R
with by = ajaz (mod 2). Then b3 = a?a3 (mod 4) and bg = a3 (mod 4). We put
as = (by — a?)/4, ay = (by — ajaz)/2 and ag = (bg — a3)/4. O
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PrROOF OF THEOREM 1.1: (i) This is [F1, Theorem 4.4(ii)].

(ii) By Lemma 1.2 it suffices to construct a; € Z[Xj5] with a?cy +cg =0 (mod 4).
In [F1, Section 10] we constructed an invariant a; € Fy[X5] of weight 1 and showed
that together with A it generates the ring of invariants in characteristic 2. In par-
ticular ¢, = a} (mod 2) and ¢5 = a® (mod 2). So if we lift a; to Z[X;] then
ajcy + cg = 2f for some f € Z[X5]. Since a; is an invariant mod 2, a? is an in-
variant mod 4, and f is an invariant mod 2. Therefore f = Aa® (mod 2) for some
A € {0,1}. Hence a?cs + cg = 0 (mod 4). Specialising to one of the Weierstrass
models in [F1, Section 6] shows that the sign is +.

(iii) It is shown in [F1, Theorem 4.4(iii)] that if K is a perfect field with charac-
teristic not 2 or 3 then Cg has Jacobian y* = 2% — 27¢4(®)x — 54c¢s(P). The proof
is now identical to that of [CFS, Theorem 2.10]. This generalises a result of Artin,
Rodriguez-Villegas and Tate [ARVT] in the case n = 3. O

2. MINIMISATION THEOREMS

Let K be a discrete valuation field, with ring of integers Ok, and normalised
valuation v : K* — Z. We assume throughout that the residue field £ is perfect.
A genus one model ® € X5(K) is integral if it has coefficient in O. If ® is
non-singular and integral then, by Theorem 1.1 and the standard formulae for
transforming Weierstrass equations, we have v(A(®)) = v(Ag) + 12((P) where
Apg is the minimal discriminant of E' = Jac(Cs) and ¢(®) is a non-negative integer
we call the level. We say that ® is minimal if v(A(P)), or equivalently the level,
is minimal among all integral models K-equivalent to ®. Notice that if &’ = g
for some g = [A, B] with A, B € GL5(K) then ¢(®’) = {(P) + v(det g).

Theorem 2.1. Let & € X;5(K) be non-singular.

(i) (Weak minimisation theorem) If Co(K) # 0 then ® is K-equivalent to an
integral model of level 0.

(i) (Strong minimisation theorem) If Co(L) # O where L is an unramified
extension of K then ® is K-equivalent to an integral model of level 0.

In this section we prove the weak minimisation theorem. In Section 3 we describe
an explicit algorithm for minimising. Inspection of this algorithm shows that the
minimal level is unchanged by an unramified extension. Theorem 2.1(ii) then
follows from Theorem 2.1(i). In Section 7 we prove a converse to the strong
minimisation theorem, thereby showing this result is best possible.

We refer to [CFS, Section 2| for notation and results analogous to those in
Section 1 for genus one models of degree 4, i.e. quadric intersections. Let E be
an elliptic curve over K, and D a K-rational divisor on F of degree n = 4 or 5.
The complete linear system |D| defines an embedding £ C P"~!. The image is
defined by a genus one model ® € X,,(K), and this model is uniquely determined,



4 TOM FISHER

up to K-equivalence, by the pair (E,[D]). Moreover every non-singular model
® € X,(K) with Co(K) # 0 arises in this way. Therefore Theorem 2.1(i) is an
immediate consequence of the following.

Theorem 2.2. Let E/K be an elliptic curve, with integral Weierstrass equation
(2) y? 4+ arzy + asy = 2° + agx® + aux + ag,
and let D € Divg(E) be a divisor on E of degree n = 4 or 5. Then (E,[D]) can

be represented by an integral genus one model with the same discriminant as (2).

The case n = 4 is proved in [CFS, Theorem 3.8]. To deduce the case n = 5 from
the case n = 4 we use the following lemma.

Lemma 2.3. Let D € Divg(E) be a divisor of degree 4 and let P € E(K).
Let U;, o, B; for i = 1,2,3 be linear forms in xq,...,x4 over K. The following
statements are equivalent.

(i) The pair (E,[D]) is represented by the quadric intersection
Elozl + 62042 + 63043 =0
Py + bafa + U303 =0

and P is the point defined by {1 = ly = {3 = 0.
(ii) The pair (E,[D + P]) is represented by the genus one model of degree 5

(3)

0 v oy ay a3
0 B B2 s
(4) 0l —b
- 0 4
0
where v = x5 and P is the point (xy :...:25)=(0:...:0:1).

PROOF: An isomorphism ¢ : Cy — C5, between the curves C; and Cj5 defined
by (3) and (4), is given by
Y (my t @yt wg xy) = (0l 0l s xsl; x4l 0B — aB)
(where 1, j, k are any cyclic permutation of 1,2, 3) with inverse
V(o e ay i wy i ws) o (21 Ty s X Ty).
This isomorphism identifies the points {¢; = ¢, = l3 =0} € Cy(K) and (0 : ... :
0:1) € C5(K). To prove the equivalence of (i) and (ii) we note that if Cy C P3

meets some plane in the divisor D = P, + P, + P3 + P4 then the points ¢ (F;) and
(0:...:0:1) are a hyperplane section for C5 C P*. O



MINIMISATION AND REDUCTION 5

Lemma 2.4. The genus one models (3) and (4) have the same invariants.

PROOF: Let ® be the matrix (4) and write P = Pf(®) = (py,...,ps). According
to [F1, Section 5.4] there are invariant differentials wy on Cy = {p; = po = 0} C P?
and w5 on Cs = {rank ® < 2} C P* given by

__xjd(za/x1)
Y Q. T)
where
T
0y — Op1 Opa  Opi1 Opo and 0 oP 0® OP

n 8[)33 8%4 8I4 61’3 n 85E3 @135 8x4 ’

In the expression for {25 we have written the partial derivative of a matrix as a
short-hand for the matrix of partial derivatives. Since the only entries of ® to
involve x5 are in the top left 2 x 2 submatrix, it is clear that 2, = £{5. Hence the
isomorphism 1 : Cy — Cj identifies the invariant differentials wy and ws (up to
sign). It follows by [F'1, Proposition 5.23] that (3) and (4) have the same invariants
ca, cg and A. O

PROOF OF THEOREM 2.2: Let D € Divg(F) be a divisor of degree 4, and let P €
E(K). We show that if the theorem holds for D then it holds for D + P. Suppose
(E,[D]) is represented by an integral quadric intersection with discriminant A.
Since O is a principal ideal domain, SL;(Of) acts transitively on P3(K). So we
may assume P is the point (1 : 25 : 23 :24) = (0:0:0:1). Our model is now of
the form (3) with ¢; = z; for i = 1,2,3. We may choose the linear forms «a; and
B; to have coefficients in O. Then the genus one model (4) is an integral model
of discriminant A representing the pair (E,[D + P]). 0

3. MINIMISATION ALGORITHMS

For ® € X5(Ok) we write ¢ € X5(k) for its reduction mod 7. The singular locus
Sing Cy is the set of points P € Cy with tangent space of dimension greater than 1.
(We make this definition regardless of whether C, is a curve. In particular all
points on components of dimension at least 2 are singular.) For example, if ¢
takes the form (4) with v = x5 and ¢;, o;, §; linear forms in xq, ..., z4, then P =
(0 :...:0: 1) is singular if and only if ¢;,¢5, {3 are linearly dependent. An
integral genus one model ® € X5(O) is saturated if its 4 x 4 Pfaffians py, ..., ps
are linearly independent mod 7. We write [,,, for the m x m identity matrix.

Our algorithm for minimising genus one models of degree 5 generalises the
algorithm for models of degree 3 in [CFS, Section 4B].

Theorem 3.1. Let ® € X;5(Ok) be saturated and of positive level.
(i) The singular locus Sing Cy does not span P*.
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(i) Let B € GL5(Ogk) represent a change of co-ordinates on P* mapping the
linear span of the singular locus in (i) to {xy1 = ... = x5 = 0}. Then
there exist A € GLs(K) and p € K* such that [A, pDiag(ly,, 7l5_,)B]®
1s an integral model of the same or smaller level.

(iii) If ® is non-minimal then repeating the procedure in (i) either gives a non-
saturated model or decreases the level after finitely many iterations.

As it stands Theorem 3.1 does not give an algorithm for minimising since we
must show how to find A and p in (ii), and show how to decrease the level of a
non-saturated model. We do this in Theorem 3.2 below. Theorem 3.1 is proved in
Sections 4 and 5. In Section 6 we bound the number of iterations required in (iii).

Theorem 3.2. Let ® € X5(Ok) be non-singular. Let {y be the minimum of the
levels of all integral models that are K -equivalent to ® via a transformation of the
form [A, pl5] where A € GLs5(K) and pp € K*.

(i) We may compute an integral model of the form [A, uls|® with level £y as
follows:

Step 1: Write Pf(®) = (p1,...,p5). Compute A = (a;;) € GL5(K)
and quadrics qi, ..., qs € Ok[r1,...,x5] such that p; = Z?:1 a;;q; and
G, - - -, qs are linearly independent mod w. Then replace ® by [A, ul5]|P
where p € K* is chosen so that ® has coefficients in Ok not all in
7Ok .

Step 2: Replace ® by [A, I5]® where A € GL5(Ok) is chosen so that the
first two rows of ® are divisible by w¢, with e > 0 as large as possible.
Then divide the first row and column by €.

(ii) If the model computed in Step 1 is non-saturated, then we may compute an
integral model of level smaller than £y by modifying Step 2 so that we divide
the first two rows and columns by w¢, and then make a transformation of
the form [Is, B] to preserve integrality.

ProoF: With the notation of Step 1 we have
Pf(APAT) = Pf(®)adj A = (q1,...,q5)Aadj A = (det A)(q1, - - -, g5)-
So after Step 1 we have Pf(®) = (Aqi, ..., Ags) where \ := p*det A € Ox. We

split into the cases v(A) = 0 and v(\) > 1. First we need two lemmas.

Lemma 3.3. Let &, € X;5(Ok) be non-singular models with ® = [A, ul5)® for
some A € GL5(K) and p € K*.
(1) If @ is saturated then ((®') > £(P) with equality if and only if ® and P’
are O -equivalent.
(ii) If ® and @' are of the form output by Step 1 then they are Ok -equivalent.
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PROOF: We have Pf(®') = Pf(®)M where M := p? adj A.

(i) Since @ is saturated, M has entries in Og. Hence £(®')—{(®) = sv(det M) > 0
with equality if and only if M € GL;(Ok). If M € GL;(Ok) then replacing
[A, 1l5] by [ANA, A\"2ul5] for suitable A € K* we may assume A € GL5(Ox). Since
® and @ have the same level they must therefore be Ox-equivalent.

(ii) Since Pf(®) and Pf(®’) are scalar multiples of bases for the same Og-module,
some scalar multiple of M belongs to GLs(Of). Replacing [A, uls] by [AA, A™2ul;s]
for suitable A € K* we may assume A € GL5(Ok). Since ® and ¢’ are primitive

they must therefore be Og-equivalent. O

Lemma 3.4. Let ¢ € X5(k) be a genus one model all of whose 4 x 4 Pfaffians are
tdentically zero. Then ¢ s k-equivalent to either

0 Oy 3 by U5 0 21 29 0 O
0 0 0 0 0 23 0 0
0 0 O or 0 00
— 0 0 — 00
0 0
where Uy, ..., U5 are linear forms.
ProOF: This is clear. O

We now complete the proof of Theorem 3.2. If v(A) = 0 then & is saturated and
we are done by Lemma 3.3(i). So suppose e := v(A) > 1. In Step 1 the matrix A
has entries in Og. So v(u) < 0 and the level is increased by

2v(det A) + 5v(u) < 2v(p? det A) = 2e.

Lemma 3.3(ii) shows that when we apply Step 1 to both ® and the model implicit
in the definition of ¢; then we obtain models that are Og-equivalent. So it will
suffice to show that Step 2 reduces the level by 2e, whereas the modified version
in (ii) reduces the level by more than 2e.

Since Pf(®) = (Aqy,...,Aqs) we have (q1,...,q5)® = 0. The reduction of ®
takes one of the forms specified in Lemma 3.4. In the first case we have ¢;¢; = 0
(mod ) for j = 2,...,5. This contradicts the choices of ¢y, ..., g5 and p in Step 1.
So we must be in the second case. Replacing ® by an Og-equivalent model we may
assume it takes the form (4) with ¢; = x; for i = 1,2,3 and oy, an, ag, 81, B2, B3,y
linear forms that vanish mod 7. By row and column operations we may assume
ay € (xg,...,x5) and a3 € (x3,...,x5). Then since 7°|(z101 + 20y + T3003)
we have 7°¢|aq, ag, az. Likewise we may assume 7€ | [y, f, 33. The remaining
Pfaffians show that 7€ | 7. Steps 2 and its modified version in (ii) now reduce the
level by 2e and 3e respectively. O
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Corollary 3.5. For the proof of Theorem 3.1 we are free to replace ® by an
Ok -equivalent model, and to replace K by an unramified field extension.

PrROOF: Let ®,Py € X;5(Ok) be Og-equivalent models and @7, P, € X5(Ok)
the models returned by Theorem 3.1(ii). Lemma 3.3(i) and [CFS, Lemma 4.1]
together show that if @) is saturated and ¢(®}) = ¢(P,) then ®| and P, are
Og-equivalent. Therefore the number of iterations required in Theorem 3.1(iii)
depends only on the Og-equivalence class of ®.

For the final statement we note that the performance of the algorithms in The-
orems 3.1 and 3.2 is unchanged by an unramified field extension. O

Replacing K by its strict Henselisation, we may assume in the next three sections
that K is Henselian and its residue field k is algebraically closed.
4. THE SINGULAR LOCUS

In this section and the next we prove Theorem 3.1.

Lemma 4.1. Let ¢ € X5(k) be a genus one model. Suppose I' C C, is either a
line or a (non-singular) conic. Then either I' C SingCy or

L if ea(o) = cs(9) = 0,

#(I' N Sing C¢,> =
2 otherwise.
ProorF: (i) If C, contains the line I' = {x3 = x4 = x5 = 0}, but not every point
on I' is singular, then (unless Cy4 is a cone — which is an easy special case with
c4(¢) = c(¢) = 0) we may suppose ¢ is

0 21 o *
0 *x o (O

0 v 0

— 0 x5

0

where «, 3,7, 6 and the entries *x are linear forms in x3, x4, 5. By row and column
operations (and substitutions for z; and x3) we may suppose «, 3,7, do not
involve x5. We write o = 33 + oy, ..., 0 = d3x3 + d4x4 and put

) = det Y3 7a —a3a4t.
e, = de ((63 5) " \Bs B

By the Jacobian criterion we have

I'NSingCyp ={(s:t:0:0:0) | ¢(s,t) =0}
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A calculation using Lemma 2.4 shows that c4(¢) = A(q)? and cs(¢) = —A(q)?
where A(q) is the discriminant of the binary quadratic form g.

(ii) Suppose Cy4 contains the conic I' = {f(x1,29,23) = x4 = x5 = 0}, but
not every point on I' is singular. Let Pf(¢) = (p1,...,ps). Replacing ¢ by an
equivalent model we may suppose p;(z1,xs2,23,0,0) = 0 for i = 1,2,3,4 and
ps (1, x2,23,0,0) = f. Since Pf(¢)¢p = 0, and I is not contained in any component
of Cy4 of higher dimension, we may further suppose the last column of ¢ has entries
x4, T5,0,0,0. The monomials appearing in the invariants ¢, and ¢4 are limited by
the fact they are invariant under all pairs of diagonal matrices. These restrictions
show that ¢4(¢) and cg(¢) are unchanged if we set x4 = x5 = 0 in all entries of ¢
outside the last row and column. Writing f = > .. a;;zx; and ¢34 = > biz; we
put

1<

2a1; a2 a3z b
aip  2az  ax by
aiz  ay  2asz b3

b1 bo bs 0

A calculation using Lemma 2.4 shows that c4(¢) = §% and c(¢) = —d°. By a
change of co-ordinates we may suppose f = z;x3—x3. Then ¢ is the discriminant of
the binary quadratic form ¢(s,t) = ¢34(s?, st,t?,0,0) and by the Jacobian criterion

['NSingCy = {(s®: st :t*:0:0) | q(s,t) = 0}. 0

Lemma 4.2. Let ¢ € X5(k) be a genus one model. Suppose the 4 x 4 Pfaffians
D1, .., ps are linearly independent and cy(¢) = cs(¢) = 0. Then either Sing Cy is
a linear subspace of P* or ¢ is equivalent to a model of the form

0 & a 6 n
0 v ¢ =5
(5) 0 z5 O
— 0 O
0
where £,m,a, B,7,0 are linear forms in x1,...,xs.

Proor: If P, P, € Sing C, are distinct and the line ¢ between them is contained in
C4 then by Lemma 4.1 we have ¢ C SingCy4. So either SingC, is a linear subspace
of P* or there exist Pj, P, € SingC, joined by a line not contained in C;. We
move these points to (1 : 0:...:0)and (0:1:...:0). Writing ¢ = >_ x;M,,
the matrices M; and Ms have rank 2 but their sum has rank 4. Therefore ¢
is equivalent to a model with ¢15 = x1, ¢34 = x5 and all other ¢;; (for i < j)
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linear forms in x3, x4, z5. Since P; and P, are singular, ¢35 and ¢45 are linearly
dependent, and ¢15 and ¢o5 are linearly dependent. So the space of linear forms
spanned by the entries of the last column has dimension at most 2. In fact it has
dimension exactly 2, since py, ..., ps are linearly independent.

Replacing ¢ by an equivalent model we may assume it has last column with
entries x4, r5,0,0,0. The transformation used here does not move P, and P, but
may change the matrices M; and M. Let I' = {z4 = x5 = p5 = 0} C Cp. Then P,
and P, are contained in I' but the line between them is not. It follows that I is
either a non-singular conic or a pair of concurrent lines. In either case Lemma 4.1
shows that I' C SingC,. By the Jacobian criterion it follows that ¢34 € (x4, 5).
However ¢34 is non-zero since py, ..., ps are linearly independent. Therefore ¢ is
equivalent to a model of the form (5). O

Lemma 4.3. Let ® € X;5(Ok) be a saturated non-singular model with reduction
¢ of the form (5). Suppose SingC, has linear span {Ty4+1 = ... = x5 = 0}.
(i) There exist A € GL5(K) and p € K* such that [A, pDiag(lLy,, m15—_,)]|P is
an integral model of the same or smaller level.
(ii) Suppose that either 6 = 0 and ®y5 = 0 (mod 72), or P35 = Py5 = 0
(mod 72). Then there is a transformation as in (i) that decreases the level.

PrOOF: Computing the 4 x 4 Pfaffians of (5) we find

First suppose 7,9, x5 are linearly dependent. By an Og-equivalence we may
assume 0 = 0. Then {y = 25 = 0} C SingC, C {x5 = 0}. Therefore m = 3 or 4.
The required transformations are as follows.

‘ m =3 ‘ m =4
A = Diag(m,1,1,1,1), pu=n"1'| A= Diag(m,m1,1,1), pu=7"
A = Diag(m,1,1,1,1), pu=7n"1|A=Diag(r, 1,1, 7 L7, pu=1

(i)

(i)
Now suppose 7,9, x5 are linearly independent. Since ® is saturated 7, x5 are
linearly independent. A calculation shows that SingC, is the first of the two

components in (6). Therefore m = 2 or 3. If m = 2 then we may assume (3,7, 9,7
are linear combinations of x3, x4, 5. The required transformations are as follows

‘ m =2 ‘ m =3
A = Diag(m,1,1,1,1), pu=x" A =Diag(1,1,1,1,7 1), p=1
A =Diag(1,1,1,7 1,77, pu=1|A=Diag(m,7,1,1,7 1), p=x"
O

We now prove the first two parts of Theorem 3.1. Let ® € X5(Ok) be saturated
and of positive level. Lemma 4.2 shows that either SingC, is a linear subspace

(i)
(i)
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or C, is contained in a hyperplane. Since Cy is defined by 5 linearly independent
quadrics it cannot be all of P*. This proves Theorem 3.1(i).

The proof of Theorem 3.1(ii) in the case ¢ takes the form (5) was already given in
Lemma 4.3(i). So by Lemma 4.2 we may assume Sing Cy = {@11 = ... = x5 = 0}.
We apply Lemma 3.4 to the reduction mod 7 of [I5, Diag(l,,, 715_,,)]®. In the
second case of that lemma we have m > 3. We take A = Diag(1,1,1,1,7})
and g = 1. Otherwise we are in the first case. If m > 2 then we take A =
Diag(m,1,1,1,1) and g = 7. It remains to treat the case m = 1, in other words
the case Sing C, is a point.

By [F1, Lemma 5.8] every component of Cy has dimension at least 1. So if Sing C,
is just a point then there are also smooth points on C4. Since K is Henselian it
follows that Co(K) # 0 and so, by Theorem 2.1(i), ® is non-minimal. With this
extra hypothesis we show in the next section that the singular point on C, is
non-regular (as a point on the Ok-scheme Cg).

We may suppose ¢12 = 7 and all other ¢;; (for i < j) are linear forms in
To,...,x5. Since P = (1:0:...:0) is singular, ¢34, P35, P45 are linearly depen-
dent. So replacing ® by an Og-equivalent model we may assume ¢45 = 0. In the
presence of the stronger condition that P is non-regular we may further arrange
that the coefficient of z1 in ®45 is divisible by 7%, Taking A = Diag(1,1,1,7 !, 7~ !)
and g = 1 now preserves the level.

5. WEIGHTS AND SLOPES

In this section we complete the proof of Theorem 3.1.
Definition 5.1. (i) The set of weights is
r1<ry<...<r5 S <8< ... <S5,
2 Z?:l rp=1+ Z?Zl Sq
(i) A weight for ® € X5(Ok) is (r,s) € W such that the model
(7) [Diag(m~",...,7 "), Diag(n®, ..., 7%)]®

W= (rs) €2’ x2°

has coefficients in Og.
(iii) Let w = (r,s) and w’ = (1, ") be weights. Then w dominates w' if

max(r; + 1 — s, 0) > max(r; + 15 — s, 0)
forall1<i<j<band 1<k <5,

Let1=(1,1,...,1). Then A € Z acts on W as (r,s) — (r+A1,s+2A1). Since
weights in the same Z-orbit determine the same transformation (7) we may regard
such weights as equivalent.
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Lemma 5.2. Let ® € X5(Ok) be an integral genus one model.
(i) If ® is non-minimal then it is Ok-equivalent to a model with a weight.
(i1) If ® has weight w and w dominates w' then ® has weight w'.

PROOF: (i) By hypothesis there exist A, B € GLs(K) with [A, B]® integral and
2v(det A) + v(det B) = —1. We put A and B in Smith normal form.

(ii) Let & = (®;;) with ®;; = >, a;jkx,. Then @ has weight (r, s) if and only if
v(azjg) > max(r; +r; — s,0) forall 1 <i<j<band 1 <k <5. O

Lemma 5.3. Let ® € X5(Ok) have weight (r,s) € W with either ri + 14 > s1
orrg+ry>s. Then P=(1:0:...:0) € Cy is a singular point. Moreover if
s1 < sg then P is non-reqular (as a point on the O -scheme Cg ).

ProOF: We write ¢ = > a;M;. If r; + r4 > s; then the only non-zero entries of
M are in the top left 3 x 3 submatrix. If ro 4+ r3 > s; then the only non-zero
entries of M; are in the first row and column. In both cases rank M; < 2 and
so P € Cyg. If My = 0 then P is singular (and non-regular). So we may assume
M, # 0. We are free to multiply rows of ® by units in O and to subtract O-
multiples of later rows from earlier rows (it being understood that we also make
the corresponding column operations). In particular these operations do not upset
our hypothesis that ® has weight (r, s). Let E;; be the 5 x 5 matrix with a 1 in the
(1, 7)-place and zeros elsewhere. By row and column operations we reduce to the
case My = E;; — Ej;; where (i,7) € {(1,2),(1,3),(1,4),(1,5),(2,3)}. Leta<b<c
be chosen such that {7, j,a,b,c} = {1,...,5}. Since r; +7; < s1 < 55 it follows by
the definition of W that

Sg+ 84+ 85 < (ro+71p) 4+ (ra +7e) + (rp + 7).

Therefore at least one of the following three inequalities holds:

§3 < Tg+Tp — ¢ab7 qbaca ¢bc S <$4a IL‘5>,
Sq4 < Tg+Te - ¢ac; ¢bc S <.I5>,
S5 < Ty + Te - ¢bCIO.

Since the tangent space at P is {¢u = ¢ac = ¢pc = 0} it follows that P € C, is a
singular point.

If s < s3 then the same argument shows there is some Og-linear combination
of ®up, Py, Ppe (With not all coefficients in 7O ) that not only vanishes mod ,
but whose coefficient of x; vanishes mod 72. Hence P is non-regular. O
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Lemma 5.4. Let (r,s) € W be a weight with ri +14 < s and 1o+ 13 < s1. Then

(r,s) dominates one of the weights wy, ..., wy in the following table.

T T2 T3 T4 T5|81 S2 83 S4 S5
wy|0 O 0 0 1|70 0 0 0 1
wp|O O 1 1 1}1 1 1 1 1
w30 O 1 1 21 1 1 2 2
wy| O 1 1 2 212 2 2 2 3
ws |0 1 1 2 3|12 2 2 3 4
wg| 0 1 1 2 3|12 2 3 3 3
wy| 0 1 2 3 413 3 4 4 5

Proor: We checked the lemma by writing a computer program using the simplex
algorithm. See the proof of Lemma 6.1 for details. O

Definition 5.5. The slope of ® € X;5(Ok) is the least possible value of v(det B)
for B € GL5(K) a matrix with entries in O for which there exist A € GL5(K)
and p € K* such that [A, uB]® is an integral model of smaller level.

We now complete the proof of Theorem 3.1. Since & € X5(Ok) is non-minimal
it has a slope o, say. Lemma 3.3(i) shows that if ¢ = 0 then ® is non-saturated.
So we may assume o > 0. By Lemma 5.2 (and Corollary 3.5) we may replace ®
by an Ok-equivalent model with a weight, say (r,s). Moreover we may assume
the weight realises the slope, i.e. o = > (s; — 51).

Suppose that either r; +r4 > s1 or ro + 73 > s1. Since ¢ > 0 there exists

1 <m < 4 such that s; = ... = s, < Syur1. Lemma 5.3 shows (by first making
unimodular transformations involving only z1, ..., z,,) that
(8) {IL‘m+1 =...=T5 = 0} C SlngC¢ .

Moreover if m = 1 then the point we have constructed is non-regular. (This is
needed to complete the proof of Theorem 3.1(ii) at the end Section 4.)
Regardless of whether we have equality in (8) it follows that if the level is
preserved then the slope is decreased. So after finitely many iterations @ is either
non-saturated or has weight (r, s) with r +ry < s; and 5 + r3 < s1. In this last
case Lemmas 5.2 and 5.4 show that ® has weight w for some w € {wy, ..., w7}. If
w € {w, wy, we} then & is non-saturated. If w € {ws, w;} then ® is Ok-equivalent
to a model with weight ws. (This is achieved by a unimodular transformation
involving only the second and third rows and columns, respectively a unimodular
transformation involving only z3 and z4.) Finally if w € {ws,w,} then ® is
Ok-equivalent to a model of the form considered in Lemma 4.3(ii)
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6. THE NUMBER OF ITERATIONS

We have shown that if we start with a non-minimal model then iterating the
procedure in Theorem 3.1(ii) eventually gives a non-saturated model or decreases
the level. In this section we show that the maximum number of iterations required
is 5. (In our MAGMA implementation we count the use of Theorem 3.2 to decrease
the level of a non-saturated model as a further iteration. With this convention the
maximum number of iterations is 6.)

Lemma 6.1. Let (r,s) € W be a weight. Then (r,s) dominates one of the weights
Wi, ..., Wy in the following table. (The weights in Lemma 5.4 appear with new
numberings. We have marked these weights in bold.)

T1 T2 T3 Ty T5|S1 S2 S3 Si S5| Ay T1 T2 T3 T4 T5|S1 S2 83 Si S5| Ay
w; 0000 O0-10 0O0O|1|lweg|0 1 1 2 2|1 2 2 3 3|7
wa |OO OO0 10 0O0O0 1|1 )lwy|0 1 1 2 2|1 2 2 2 4|6
wg |00 1 1 1[1 1 1 1 1|1 {ws|0 1 12 2[1 123 4|7
wy (001 1 1 111 1 1 2 2]1|lwp|0 1 1 2 32 2 3 3 3|6
ws (000 0 1 110 0 1 1 1]3||wel|0 1 1 2 3(2 2 2 3 4|7
wg |00 01 1[0 00 1 23 |wy|01 1231 23 3 4|13
w; (000 1 1 1[0 01 2 23 |we|0 11231 223 5|12
wg |00 1 1 1[0 1 1 1 23 ||ws|0 122 3[23 3 3 4|9
wo |01 1 222 2 2 2 3[3||wu|0 122 3[22 34 4[9
Wio|0 01 1 21 1 1 2 24| ws|0 122 3|1 33 44|10
wip |00 1 1 2(0 0 2 2 35 |wyel|0 1 2 2 3|1 2 3 4 5|15
w2001 1 2/0 1 2 2 2[8|wer|0 1 23 43 3 4 4 5/[12
wiz |00 1 1 20 1 1 2 3|8 ||wyg|0 1 2 3 4|2 3 4 5 5|20
wy |01 11 211 2 2 2 2[4 ||wy|0 1 2 3 4|1 3 4 5 6|22
wis 001 1121 12 2 3|4

ProOF: We define a standard inequality to be an inequality of the form r; +r; <
S +m where 1 <17 < 7 <5, 1< k <5 and m is a non-negative integer.
The condition that (r,s) € W does not dominate w, is equivalent to a list of A,
standard inequalities, at least one of which must hold, where A, is as given in the
table. For example, (r,s) ? w; if and only if 1 + ry < sy, whereas (r,s) 2 ws if
and only if r1 + 7y < syorry+r; < sy+1orry+1r5 < s5. (We have used the
conditions r; < ... <75 and s; < ... < s5 to remove redundant inequalities.)
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We wrote a program using the simplex algorithm to maximise Y (2r; — s;) for
(r,s) € R subject to 0 <7y < ... <715, 0< s, <...<s;5, and a list of standard
inequalities. Our program starts with the basic feasible solution (r,s) = (0,0). If
there is a finite maximum, and it is less than 1, then (by definition of W) there
are no weights satisfying these inequalities. If the maximum is 1 then we add the
constraint Y (2r; —s;) = 1. We then use the simplex algorithm to maximise each
of the functions r; +r; — s; in turn. In the case of a finite maximum a we obtain
an additional standard inequality r; + r; < s, + max(|«],0). Then running our
original program on the enlarged set of standard inequalities we may still be able
to show that > (2r; —s;) < 1.

After processing the inequalities coming from wy, ..., w, for v = 1,...,29 the
number of cases remaining were as follows:

1,1, 1,1, 3, 5,8, 13, 16, 30, 31, 49, 58, 47, 60,
64, 58, 53, 45, 36, 39, 34, 25, 15, 14, 10, 3, 1, 0.

The final zero indicates that no cases remain, and this proves the lemma. The
proof of Lemma 5.4 is similar but easier. O

If & € X;5(Of) is non-minimal then by Lemmas 5.2 and 6.1 it has slope at most
14. This already shows that the algorithm in Theorem 3.1(iii) takes at most 14
iterations. The next lemma improves this bound to 7 iterations.

Lemma 6.2. If the procedure in Theorem 3.1(ii) returns a saturated model with
the same level then the slope goes down by at least 2.

ProoF: We revisit the proof of Theorem 3.1(iii) at the end of Section 5. If
the slope goes down by only one then SingCy spans a hyperplane. If SingC, is
a hyperplane then the proof of Theorem 3.1(ii) at the end of Section 4 shows
that the level is decreased. Otherwise by Lemma 4.2 we may assume ¢ takes the
form (5). We then follow the proof of Lemma 4.3(i) with m = 4. After applying
the transformation suggested there, the second row of ¢ has at most one non-zero
entry. This implies that ® is non-saturated. O

The next lemma will be used to show that only 5 iterations are required.

Lemma 6.3. Let ® € X;5(Ok) be non-minimal and of slope greater than 10. Then
replacing ® by an Ok -equivalent model we may assume it has weight weg and the
coefficient of xy in ®;; is a unit for

(1,7,k) € {(1,2,1),(1,4,2),(1,5,3),(2,3,2),(2,4,3),(2,5,4),(3,4,4), (3,5,5) }.
ProOF: By Lemma 5.2 we know that ® is Og-equivalent to a model with one of
the 29 weights listed in Lemma 6.1. For all but one of these weights (r, s) we have

Z?:1(Si — 1) < 10. The remaining case is wag. If one of the coefficients listed is
not a unit then ® has weight w, for some v € {1,5,13,26, 16,21, 8,12}. O
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We write [j,...,5] for a linear combination of z;, ..., x5, and underline in cases
where we know the coefficient is non-zero. Lemma 6.3 shows that ® € X;5(Ok)
has reduction ¢ € X5(k) of the form

0 [1,2,3,4,5] [2,3,4,5] [2,3,4,5] [3,4,5]
0 2,3,4,5] [3,4,5] [4,5]

0 [4,5] [5]

0 0

0
Let Pf(¢) = (p1,...,ps). By considering the partial derivatives of py, ps, ps with
respect to x1, Tq, x3 we see that if P = (z1:...: x5) € SingC, then x5 = 0. Then
since P € Cy we have 74 = 13 = x5 = 0. So (1:0:...:0) is the unique singular

point.
Our algorithm applies the transformation

[Diag(1,1,1,7 ', 7 1), Diag(1, w, 7, 7, 7)].

The result is a model ® with weight wes = (0,1,2,2,3;1,2,3,4,5) whose reduction
¢ takes the form

0 [l] 0 [2,3,4,5] [§,4,5]
0 0 (345 [45
0 [4,5] [5]
0 [5]
0

A calculation similar to that above shows that SingC, = {23 = x4 = x5 = 0}.
Our algorithm applies the transformation

[Diag(m,1,1,1,1), Diag(7 ', 77 1,1, 1)]

The result is a model ® with weight wq3 = (0,0,1,1,2;0,1,1,2,3) whose reduction
¢ takes the form

0 1] 0 2] 0
0 2] [2,3,45] [4,5]

0 [45]  [3]

0 [5]

0

A calculation similar to that above shows that SingC, = {72 = 24 = x5 = 0}.

The next transformation [Diag(1,7,1,1,1), Diag(7~!, 1,771 1, 1)] gives a model
with weight w5 = (0,1,1,1,2;1,1,2,2,3). So after 3 iterations the slope is at
most 4. It follows by Lemma 6.2 that at most 5 iterations are required.
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Example 6.4. The simplest example of a genus one model satisfying the condi-
tions of Lemma 6.3 is

0 T 0 To T3

0 Lo T3 T4

O = 0 x4 x5
— 0 0
0

We find that Cs is a rational curve with a cusp, parametrised by
(5:t) = (=5 3% %% st 1P).

In this case our algorithm takes the maximum of exactly 5 iterations to give a non-
saturated model. (The first 3 iterations are already described above.) Although
the model in this example is singular, there are m-adically close non-singular mod-
els that are treated in the same way by our algorithm.

7. INSOLUBLE MODELS

In this section we prove a result converse to the strong minimisation theorem.
This is analogous to the results for models of degrees n = 2, 3,4 proved in [CFS,
Section 5]. As in Section 2 we work over a discrete valuation field K. We write K"
for the strict Henselisation of K. (If K is a p-adic field then this is the maximal
unramified extension.)

Theorem 7.1. If & € X5(K) is non-singular and Co(K™") = () then the minimal
level is at least 1, and is equal to 1 if char(k) # 5.

As in Section 6 we write [j,...,5] for a linear combination of z;,..., x5, and
underline in cases where we require the coefficient is non-zero.

Definition 7.2. A genus one model ® € X;5(O) is critical if it has reduction
mod 7 of the form

0 [1,2,3,4,5 [23,4,5 (3,45 [45
0 3,45 45 [3)

0 50

0 0
0

and 7 1®35, 71,5 have reductions mod 7 of the form [1,2,3,4,5], [2, 3,4, 5].
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We show in the next three lemmas that critical models are insoluble, minimal
and of positive level. We then show that every insoluble model & € Xj5(K) is
K-equivalent to a critical model.

Lemma 7.3. Critical models are insoluble over K.

PROOF: Suppose (z1,...,75) € K® is a non-zero solution with min{v(x;)} = 0.
By considering the 4 x 4 Pfaffians we successively deduce 7 | x5, 7|2y, ..., 7| 2.
In particular min{v(z;)} > 0. This is the required contradiction. O

Since the definition of a critical model is unchanged by an unramified field
extension, it follows immediately that critical models are insoluble over K*".

Lemma 7.4. Critical models are minimal.

PROOF: It is easy to see that critical models are saturated. Moreover every point
on Cy = {3 = 4 = x5 = 0} is singular. Our algorithm (see Theorem 3.1)
makes the transformation [Diag(m,1,1,1,1), 7! Diag(1, 1,7, 7, 7)]. This gives an
integral model of the same level, that is Ok-equivalent (by a pair of cyclic permu-
tation matrices) to a critical model.

If & were non-minimal then our algorithm would succeed in reducing the level.
But on the contrary, when given a critical model, our algorithm endlessly cycles
between five Og-equivalence classes. O

The next lemma describes the possible levels of a critical model. To treat the
cases char(k) = 2,3 we need to work with the a-invariants defined in Section 1.
Although these are not SL5 x SLs-invariant, if we make our choices of ay, by, az so
as not to introduce any new monomials when we lift to characteristic 0, then they
will be invariant under all pairs of diagonal matrices. It follows by the proof of
Lemma 1.2 that aq, ..., ag are isobaric, i.e.

a; o [Diag(Mr, ..., As), Diag(ua, ..., us)] = ([ ] A)* (J [ ) s
Lemma 7.5. The level of a critical model is at least 1 and equal to 1 if char(k) # 5.

PROOF: Applying [Diag(1, 7=/, 772/5 773/5 7=4/5) Diag(r'/?, #2/°, 73/5 74/ 1)]
to a critical model ® gives a model with coefficients in Ok [7'/?]. Tt follows by the
isobaric property that 7" | a;(®) for all i. Hence ® has positive level.

The model with coefficients in Og[7'/?] has reduction

0 Mixy poxe —p3xTz —AaTs

0 Asw3  paTy  —psTs
0 A5T5 1T
0 )\21‘2

0
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for some Ay, ..., A5, 1 ..., us € k™. The invariants of this model are

ca(\, ) = A 228031 + 49402 1% — 228 1% + 1,

ce(\, 1) = =A% + 522511 4+ 10005\ 1 + 1000502 pu* — 522 p° — b,
and A\, 1) = Au(A? — 11 p — p?)5, where A = [[A; and p = [] ;. Computing
a resultant shows that if char(k) # 5 then ¢4(A\, 1) and A(A, 1) have no common

roots. Therefore the critical model ® we started with satisfies either v(cy(P)) =4
or v(A(®)) = 12. It follows that ® has level at most 1. O

Remark 7.6. The following example of a critical model of level 2 over K = Q5
shows that the hypothesis char(k) # 5 cannot be removed from Lemma 7.5.

0 1 9 —3 —24
0 x3 x4 —x5
0 x5 3513
— 0 529
0

We recall that the minimal level is unchanged by an unramified field extension.
Replacing K by K" we may assume for the rest of this section that K is Henselian
and its residue field k is algebraically closed. To complete the proof of Theorem 7.1
we show

Theorem 7.7. If ® € X5(Ok) is minimal and Co(K) = 0 then ® is Ok -equivalent
to a critical model.

We start the proof of Theorem 7.7 with the following lemma.

Lemma 7.8. If & € X;5(Ok) is minimal then its reduction ¢ € X5(k) has the
following properties.

(i) The 4 x 4 Pfaffians of ¢ are linearly independent.
(ii) The subscheme Cy, C P* does not contain a plane.
(iii) The entries of ¢ span the space of linear forms on P*.

PRrROOF: (i) This follows by Theorem 3.2 and Lemma 3.3(i).

(ii) Suppose Cy4 contains the plane {4 = x5 = 0}. By Lemma 3.4 we may assume
the reduction mod = of [I5, Diag(1, 1,1, 7, 7)]® takes one of the two forms given
in the lemma. We decrease the level by applying either [Diag(w,1,1,1,1), 7 ;]
or [Diag(1,1,1,7!,771), B] where B is chosen to preserve integrality.

(iii) This is clear, as we could otherwise decrease the level by dividing one of the
co-ordinates by . O
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Lemma 7.9. Let ¢ € X5(k) be a genus one model satisfying the conclusions of
Lemma 7.8. Suppose that every point on Cy is singular. Then ¢ is k-equivalent to

0 0 21 x3 x4 0 1 0 x3 x4 0 1 x99 x3 24
0 29 x4 x5 0 x99 x4 x5 0 x3 x4 x5

0 25 O or 0 25 O or 0 25 O

— 0 O — 0 O — 0 0

0 0 0

Our proof of Lemma 7.9 uses the following classification of degenerations of the
twisted cubic. (Only the last sentence of the statement is needed.)

Lemma 7.10. Let ¢ be a 3 x 2 matriz of linear forms in R = klry,...,x4).
Suppose the 2 X 2 minors of ¥ are linearly independent and no linear combination
of them has rank 1. Then v is GLy X GL3 x GL4-equivalent to one of the following:

Ty To T1 X9 Ty To ry O
(9) Ty x3 |, r9 w3 |, 0 z3], Ty T3
T3 T4 zqs 0 zqs 0 0 x3

In particular the locus of smooth points on T' = {rank < 1} C P? spans P3.

PROOF: We may realise I as the intersection of the image of the Segre embedding
P! x P?2 — P5 with a linear subspace P3. So every component of I' has dimension
at least 1. If every component has dimension 1 then by the Buchsbaum-Eisenbud
acyclicity criterion there is a minimal free resolution

(10) 0—R(-3)% % R(-2)* L R

where M is the vector of 2 x 2 minors of ¢. If in addition dimTp " = 1 for every
P €T then by an argument using Serre’s criterion (see [E, Section 18.3]) the ideal
in R generated by the 2 x 2 minors of ¢ is a prime ideal. By (10) the Hilbert

polynomial is
t+3 t+1 t
h(t) = -3 2 =3t + 1.

Therefore I' is a twisted cubic and 1 is equivalent to the first of the matrices in (9).
In all other cases there exists P € I' with dim7pI' > 1. First suppose
rank ¢)(P) = 1. Moving P to (1:0:0:0) we may suppose

IrT «
o p
v 0

Y=
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where «, 3,7, 0 are linear forms in x9, x3, x4. Our hypotheses on the 2 x 2 minors
ensure that a, 3,7 are linearly independent; say they are xs, x3, 4. By row and
column operations (and a substitution for z;) we may assume ¢ is a multiple of
x9. This gives the second and third cases in (9).

Now suppose rank¢)(P) = 0. Let @ € I' be any other point. If rank¢(Q) = 0
then the 2 x 2 minors are binary quadratic forms, and so some linear combination
has rank 1. Therefore rank¢(Q)) = 1. If dimTy ' > 1 then our earlier analysis
applies (and in fact gives a contradiction). Otherwise we may assume

I 0
v=1a x
ﬁ xs3

where «, § are linear forms in xq,z3. (The zero in the top right has been cleared
by row operations.) Since auwg — [xo is a rank 2 quadratic form in xs, 23 we can
make a change co-ordinates so that I' = {x129 = x123 = 2923 = 0}. Then 1) is
equivalent to the last of the matrices in (9).

For the final statement, we note that the 4 cases correspond geometrically to
(1) a twisted cubic, (ii) a conic and a line, (iii) three non-concurrent lines, and (iv)
three concurrent lines. In each case I spans P? and the only singular points are
the points where the components meet. O

PrROOF OF LEMMA 7.9: Let P € C, be a singular point. Moving P to (1:0:0:
0:0) we may assume ¢ takes the form

0 =1 l o 51

0 l3 ay B
0 a3 B3
— 0 O
0
where ¢;, a;, 3; are linear forms in xs, ..., x5. Let ¢ be the top right 3 x 2 submatrix

and let I' C P? be the curve defined by its 2 x 2 minors. Since the 2 x 2 minors
of 1 are a subset of the 4 x 4 Pfaffians of ¢, they are linearly independent. In
particular az and 3 cannot both vanish identically. Without loss of generality as
is non-zero.

Suppose no linear combination of the 2 x 2 minors of 1) has rank 1. Then by
Lemma 7.10 there is a smooth point Q = (x5 : z3 : x4 : x5) on I' with a3(Q) # 0.
Solving for z; gives a smooth point (zy : @3 : ... : x5) on Cys. Thisis a contradiction.
Therefore some linear combination of the 2 x 2 minors of 1) has rank 1. It is then
easy to see that ¢ is k-equivalent to a model of the form (5).
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By properties (i) and (ii), 7, x5 are linearly independent and =, §, x5 are linearly
independent. However if 1, , d, x5 were linearly independent then taking them to
be zy,..., x5 would give that (0:1:0:0:0) is a smooth point on Cs. By row
and column operations we may therefore suppose n = § (= x4 say).

By property (ii), (3, x4, 25 are linearly independent and ~, x4, x5 are linearly
independent. By row and column operations (and substitutions for the z;) we
may suppose 3 = x3 and v = x5 or x3. If ¥ = x5 then by further row and column
operations (and substitutions for the x;) we may suppose « is a multiple of z;.
The lemma now follows using property (iii). O

PROOF OF THEOREM 7.7: Since K is Henselian any smooth point on Cy lifts to
a K-point on Cg. So we may assume ¢ takes one of the three forms in Lemma 7.9.
In the first two cases ¢ defines a pair of concurrent lines with multiplicities 2 and 3.
(These cases may be distinguished by the dimension of the tangent space at the
point of intersection). In the third case it defines a line with multiplicity 5.

We apply the transformation [Diag(1,1,1,1,7~'), Diag(1, 1,1, 7, m)]. This gives
an integral model of the same level. So the reduction must again be k-equivalent
to one of the three models in Lemma 7.9. We tidy up by an Og-equivalence that
cyclically permutes the rows and columns, and makes substitutions for x4 and x5.
The reduction ¢ € X;5(k) now takes the form

0 24 25 a [ 0 24 5 a [ 0 24 5 a [
0 0 x1 x5 0 =1 0 a3 0 1 29 x3

0 xo O or 0 xo O or 0 23 O

— 0 0 — 0 0 — 0 0

0 0 0

where a and (3 are linear forms in x, xs, 3.

In the first case (0: 0:0:1:0) is a point with tangent space of dimension 3
and C, contains points not on the line {x; = 29 = x3 = 0}. So the transformation
has moved us to the second case.

In second case we obtain a contradiction as follows. If o = x1 + A\zo + pxs
then adding p times the fifth row/column to the third row/column, and making
substitutions for z; and x5 we may assume g = 0. Then (0:0:1:0:0) is a
smooth point on Cy4. Likewise if 3 = x1 + Axg + pas then subtracting A times the
fourth row/column from the second row/column and making substitutions for z;
and x4 we may assume A = 0. Then (0:1:0:0:0) is a smooth point on C,. We
are forced to the conclusion that neither o nor 3 involves ;. But then Cy contains
the plane {z5 = z3 = 0} and by Lemma 7.8 this contradicts that ® is minimal.

In the third case we show that if the transformation above brings us back to the
third case, then the original model is critical. If 3 = x1 + Azo + puxs then adding A
times the fourth row/column to the third row/column, and making substitutions
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for x; and x5 we may assume A = 0. Then C, contains the lines {zy = 23 = 23 = 0}
and {z; = x3 = x5 = 0}. So if the transformation returns us to third case then /3
cannot involve x;. Since C4 does not contain a plane, and the 4 x 4 Pfaffians of ¢
are linearly independent, o must involve z; and ( must involve z5. It follows by
Definition 7.2 that the original model is Ok-equivalent to a critical model. O

8. REDUCTION

Let C C P* be a genus one normal curve of degree 5 defined over Q. We may
represent it by a non-singular genus one model ® € X;(Z). Running the algorithm
in Section 3 locally at p, for all primes p dividing the discriminant A(®), we obtain
a Q-equivalent model (still with coefficients in Z) whose discriminant is minimal
in absolute value. If C' is everywhere locally soluble then this discriminant is
the minimal discriminant of £ = Jac(C). It remains to make a GL;5(Z) change
of co-ordinates on P* so that (after running the LLL algorithm on the space of 5
quadrics defining the curve) the coefficients (and not just the invariants) are small.
The general method, described in [CFS, Section 6], is to run the LLL algorithm
on the Gram matrix for the (unique) Heisenberg invariant inner product. In this
section we outline how to compute this inner product in the case n = 5.

We recall that the Heisenberg group is the subgroup of SL5(C) consisting of
matrices My that describe the action of T' € E[5] on C' C P* by translation. For
T # 0p we call the 5 points in P* fixed by My a syzygetic 5-tuple. It may be
shown (for example by adapting the proof of [F2, Proposition 4.1] or using that
H'(R, E[5]) is trivial) that ® is SLs(R) x SL5(R)-equivalent to a model in Hesse
form:

0 axrg bry —bry —axs

0 axy brs —bxy
(11) 0 axy bz
— 0 ary
0

The invariants of this model are

ey = a® + 228a°b° 4 494a'°p'° — 228a°b'° + b,
cs = —a® + 522a%°b° 4 10005a*°6'° + 10005a'°6* — 522a°b% — b3,

and A = D® where D = ab(a'® — 11a°0° — b'°). For a model in Hesse form the
Heisenberg group is generated by Diag(1,(,...,(?*), where ¢ is a primitive 5th
root of unity, and a cyclic permutation matrix. Since these matrices are unitary,
the Heisenberg invariant inner product is the standard inner product on R®.
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The Hessian, introduced in [F2], is an SLj x SLs-equivariant polynomial map
H : X5 — X5 with the property that the Hessian of (11) is of the same form with
a and b replaced by —9dD/0b and 0D/0a.

Theorem 8.1. Let & € X;5(C) be a non-singular genus one model with invariants
cy and cg. Let A be the 3 x 5 matriz of quadrics such that A& + pH (P) has 4 x 4

Pfaffians
{)\QAM + /\,U/Agl + M2A3i 1= 1, ey 5}

Then X = {rank A < 1} C P* consists of 30 points and the syzygetic 5-tuples for
Cs are the fibres of the map a: X — P? given by the first (or indeed any) column
of A. The image of « is the set of 6 points (x :y : z) € P? satisfying

0 b5x Y 6cyx + 2
(12) rank | . y 6cz— 2z 8cex <2

y —z 8¢ 9c2x
PRroOF: It suffices to prove this for ® in Hesse form. Then X" is defined by

vy af a3 ap 2
(13) rank | z124 Tows 173 Tows wexs | <1

ToTy T3Ty ToLy ToTi T1To

and by [BHM, Proposition 1] is a set of 30 points. Evaluating the columns of (13)
at these points we obtain (1 :0:0) and (1:¢": (%) for i = 0,...,4. These are
the points (£ : 7 : v) € P? satisfying

En v 0
(14) rank | v & 0 —np| <2
0 0 n v

The remaining statements follow by direct calculation. In particular our de-
scription (12) of the image of « is checked by making the substitution

x ab b? —a? &
_ aD | 30D _opdD _o 9D

y| =|-a3 +b0% 2b%s 2a; n
_oDoD aDy2  _(9Dy2

< b da (%a) (%) v

We note that this change of co-ordinates, and the matrix relating the 3 x 3 minors
of (12) and (14), each have determinant a constant times a power of D. O

After computing the Hessian exactly (using the algorithm in [F2, Section 11]) we
use Theorem 8.1 to compute the syzygetic 5-tuples numerically. We then compute
a Gram matrix for the Heisenberg invariant inner product as follows.
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Proposition 8.2. Let C C P* a genus one normal curve defined over R.
(i) Ezactly two of the syzygetic 5-tuples for C' are defined over R, say
Y = {yy; =0:i<j} C P
Z ={zz=0:i<j}CP
where Yo, ..., Ys and 2o, ..., z4 are linear forms in Clxy, ..., z4].
(ii) One of the 5-tuples in (1) has 5 real points and the other has 1 real point.
We may therefore arrange that yo, . ..,ys and zy have real coefficients and
that the pairs z1, z4 and zy, z3 are complex conjugates.

(iii) The Heisenberg invariant quadratic form spans the 1-dimensional real vec-
tor space

<y§a s 7yi> N <Z§7 2124, 2,’223>.

ProoF: For C in Hesse form we may take y; = z; and z; = Z?zo (Yz;. In this
case the Heisenberg invariant quadratic form is 23 + ... + 3. O

9. EXAMPLES

Wuthrich [W] constructed an element of order 5 in the Tate-Shafarevich group
of the elliptic curve F/Q with Weierstrass equation

v  +ay +y =23 + 2 — 31462 + 39049.
His example (see also [F'1, Section 9]) is defined by the 4 x 4 Pfaffians of

0 310x1 + 3x2 + 16225 —34x1 — dbxo — 14xs 10271 + 28x4 + 1625 80x1 — 3214
0 6x1 + 3x0 + 225 —6x1 + 7oy — 4xy —14x9 — 813
0 —x3 229
— 0 —4xq
0

This model has discriminant 2'*2A 5 where Ag is the minimal discriminant of E.
In other words, the model is minimal at all primes except p = 2, where the level
is 11. Minimisation and reduction suggest the change of co-ordinates

T 0 4 —8 4 8 T
T 0 O 0 0 16 T2
z3 | < |10 —4 4 0 12 T3
T4 4 5 =15 2 7 Ty
x5 4 —-12 20 -12 -8 x5
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so that Wuthrich’s example simplifies to

0 x2+ x5 —x5 —z1 + 22 x4
0 To—T3+Ty X1 +Tog+T3—T4—T5 T1—T2—T3— T4— Ts
d = 0 T1 — Lo + 223 — 24 — X5 —Xo9 — T4 + T
- 0 —.%'3—.%4—2.%5
0

Our MAGMA function DoubleGenusOneModel, described in [F'3], computes a genus
one model &’ that represents twice the class of ® in the 5-Selmer group. This model
has entries

1o = 3534132778z + 3583651940z — 881947110z3 — 323014538x4 + 3395115339z5,
15 = 5079379222z — 2965539950z + 110222028603 + 1282159086874 + 640276471x5,

14 = —10098238458x1 — 1274966110z — 787381617023 — 3456923272x4 — 623539295,
15 = —12929747724x1 — 679051181022 — 1111330527023 — 1516176315624 + 32419370335,

53 = —3381247332z1 + 3810679160z + 5919634530z3 + 753268524 — 12450854265,
®), = —357286025871 — 556948073022 — 953739600x3 — 213804681224 — 8581452445,
b5 = —467414926621 — 94363149022 — 67544881603 + 75153504624 + 117685567xs,

@4, = —1851228934x1 + 5238146110z — 16558841023 — 20704115064 + 6781057485,
45 = —6992835070z1 — 3744630360z + 3130208220x3 — 45237813104 + 4337394255,
)5 = 780078472x1 + 20397638202 — 450062790x3 — 7105731722x4 + 1625466111xs5.

The discriminant of @ is A%. In particular this model is non-minimal at all bad
primes of E. Minimisation and reduction suggest the change of co-ordinates

1 92 -36 —153 129 —-131 1
T2 —54 84 5 —-206 139 T2
z3 | — | =63 —-174 —-60 =79 53 T3
T4 —111 106 206 —115 —162 T4
5 314 —466 158 —328 —12 Ts5

so that @’ simplifies to

0 —z4+a5 23—24+2x5 @T2—oT5 T1— T2+ T3—T4— 275
0 1+ T —ZT9 — I3 —x9 + Ts
0 T4 —I1
— 0 r1+ x4 — X5

0
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