MINIMAL MODELS FOR 6-COVERINGS
OF ELLIPTIC CURVES

TOM FISHER

ABSTRACT. In this paper we give a new formula for adding 2-coverings and
3-coverings of elliptic curves, that avoids the need for any field extensions. We
show that the 6-coverings obtained can be represented by pairs of cubic forms.
We then prove a theorem on the existence of such models with integer coefficients
and the same discriminant as a minimal model for the Jacobian elliptic curve.
This work has applications to finding rational points of large height on elliptic
curves.

1. INTRODUCTION

Let E be an elliptic curve defined over a number field K. For each n > 2 there
is an exact sequence

0 — E(K)/nE(K) — Sel™(E/K) — III(E/K)[n] = 0

where the n-Selmer group Sel™ (E/K) is finite and effectively computable. It gives
information about both the Mordell-Weil group E(K) and the Tate-Shafarevich
group III(E/K). Elements of the Selmer group may be represented by n-coverings
of E. Coverings 7 : C — FE and 7’ : C' — FE are isomorphic if there is an
isomorphism « : C' — C’" with 7 = 7’ o . An n-covering = : C' — FE is then, by
definition, a twist of the trivial n-covering [n| : E — E, where [n] is multiplication-
by-n on E. In particular C' is a smooth curve of genus one defined over K. The
n-Selmer group Sel™ (E/K) is the set of K-isomorphism classes of n-coverings for
which C' has points everywhere locally. A theorem of Cassels [10] tells us that
every such n-covering admits a K-rational divisor of degree n, and so (for n > 3)
may be embedded in P*~! as a curve of degree n.
If m and n are coprime integers then it is immediate that

Sel™(E/K) = Sel™(E/K) x Sl (E/K).

Moreover, if we are given an m-covering C,,, — E and an n-covering C,, — E then
the fibre product C,,, = C,, xg C, is an mn-covering. We would like to realise
these constructions explicitly, that is, given equations for ), and C,, as curves of
degree m and n in P! and P* !, find equations for C,,, as a curve of degree mn
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in P~ This problem has applications to finding generators of F(K) of large
height. The solution in [14] in the case (m,n) = (2,3) involves calculations in an
extension of the number field K, typically of degree 9. In Section 2 we give a new
formula that removes the need for any field extensions.

For the application to point searching, it is important that we give equations
for our n-coverings with respect to a good choice of co-ordinates on P"~!. This is
both to make the equations have smaller coefficients, and the rational points we are
searching for have smaller height. This problem can be solved by a combination
of minimisation and reduction, as described in [13] in the cases n = 2,3,4 and
[17] in the case n = 5. By minimisation we mean changing co-ordinates so that
the data defining our n-covering still has integer coefficients, yet prime factors are
removed where possible from some suitably defined discriminant.

In this paper we represent 6-coverings C' C P® by pairs of cubic forms defining
the secant variety Sec C'. We then define a discriminant function, and prove results
on minimisation analogous to those in the papers cited above. It turns out that
if we add minimal models for a 2-covering and a 3-covering, using the formula in
Section 2, then the model we get for a 6-covering is not minimal. Therefore in
numerical examples we should still make a change of co-ordinates before searching
for rational points.

In a remarkable series of papers [2], [3], [4], [5], Bhargava and Shankar have
shown for n = 2,3,4,5 that the average number of elements in Sel(")(E /Q) of
order n is exactly n, when elliptic curves F/Q are ordered by naive height. (The
average size of Sel™ (E/Q) is then the sum of the divisors of n.) They conjecture
that the same is true for all integers n > 2, and indeed proving this for larger n
would improve the upper bound they give for the average rank of an elliptic curve.
Their method relies on counting orbits of lattice points in an affine space, under
the action of a suitable linear algebraic group. The representations and invariants
required for n = 2,3,4 are classical: see [1], [26], [28], [29]. The corresponding
results for n = 5 were obtained in [15], [18]. We think it is unlikely there is any
directly analogous construction for n > 5 for the following reasons.

(1) In the cases n = 2,3,4,5 the n-coverings are represented by collections
of forms of degree 6 — n. The representations studied have dimension
10n/(6 —n), and the rings of invariants are generated in degrees 4n /(6 —n)
and 6n/(6 —n).

(2) The modular curve X (n) has genus 0 for n = 2,3,4,5 but not for n > 5.

(3) In [18] the cases n = 2,3,4,5 are related to the exceptional Lie groups
G, Fy, Er, Es.

(4) None of the representations studied in [6] appear to be suitable.

However, one might still hope that some construction can be made to tackle
the above conjecture, say for n = 6. Put more simply, we would like to know how
to write down genus one curves of degree 6 at random. We do not know a good
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answer to this question, but our work might provide a useful starting point for
further investigations.

In Sections 3 and 4 we study the secant variety of a genus one curve of degree
n, first in general, and then in the case n = 6. Some of the results are justified
by explicit formulae recorded in Section 5. One application of the invariants in
the cases n = 2,3,4,5 is that they give a formula for the Jacobian elliptic curve.
In Section 6 we prove an analogue of this in the case n = 6. We then present
our results on minimisation in Section 7, and finally give a numerical example in
Section 8 to illustrate the application of our work to finding rational points of
large height on an elliptic curve.

We work throughout over a field K with char K # 2, 3.

A genus one normal curve is a smooth curve of genus one C' C P! embedded
by a complete linear system of degree m. This last condition is equivalent to
demanding that C' has degree n, and is not contained in a hyperplane. We write
(z1:...:x,) for our co-ordinates on P"~1. We also write £(D) for the Riemann-
Roch space of a divisor D on C', and H for the divisor of a hyperplane section.
We may identify £(H) with the space of linear forms on P"~!, and more generally
SeL(H) with the space of forms (i.e. homogeneous polynomials) of degree d in
K[zy,...,2,). The word “normal” in the definition of a genus one normal curve
refers to the fact that these curves are projectively normal, i.e., the natural map
SIL(H) — L(dH) is surjective for all d > 1. Taking d = 2 shows that the space
of quadrics vanishing on C' has dimension n(n+1)/2 —2n =n(n—3)/2. If n > 4
then these quadrics generate the homogeneous ideal I(C'), and so in particular
define C. Proofs of these standard facts may be found for example in [7], [15],
[22], [23].

2. ADDING 2-COVERINGS AND 3-COVERINGS

In this section we give an explicit formula for adding a 2-covering and a 3-
covering of an elliptic curve, to give a 6-covering. We assume that the 2-covering
is represented by a binary quartic, and the 3-covering is represented by a ternary
cubic. In other words we assume that these curves have trivial obstruction, in
the sense of [11], [12], [24]. This hypothesis is always satisfied by Selmer group
elements (by the result of Cassels [10] cited above), and more generally in all cases
where the 6-covering we are trying to compute has trivial obstruction.

First we need to review some classical invariant theory of binary quartics and
ternary cubics. See for example [1], [13], [15], [26], [28], [29]. For f a form in n
variables, say x1,...,%,, and M an n X n matrix, we write f o M for the form
obtained by substituting z; < > 7, mj;z;.

The invariants of the binary quartic

F(z,2) = az* + b2’z + ca®2? + doz® + ez?
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are
¢y = 2*(12ae — 3bd + %),
ce = 2°(T2ace — 27ad* — 27b%e + 9bed — 2¢%),

and A = (¢} — ¢2)/1728. These are invariants of weight 4, 6 and 12, in the sense
that

cs(F o M) = (det M)*cy(F
ce(F o M) = (det M)%cs(F
A(F o M) = (det M)2A(F),

)7
)

)

for all M € GLy. More generally the invariants of y?+ A(z, 2)y = B(z, z), where A
and B are forms of degree 2 and 4, are the invariants of Z—ILA2 + B. These are integer
coefficient polynomials in the coefficients of A and B. The Hessian ‘H = H(F') is

the binary quartic obtained as % times the determinant of the matrix of second

partial derivatives of F. Explicitly,
H = (8ac — 3b%)a* + (24ad — 4bc)x>z + (48ae + 6bd — 4c?)x*2*
+ (24be — ded) w2 + (8ce — 3d?) 2™

It satisfies the covariance property H(F o M) = (det M)?(Ho M) for all M € GL,.
The invariants of the ternary cubic

G(z,y,2) = ax® + by’ +c2® + apr®y + asx?z + bioy® +bsy?z + cro2® + ey + mayz

are certain polynomials ¢y, ¢ and A = (¢} — ¢2)/1728 in Z[a, b, ¢, ..., m]. They
are again invariants of weights 4, 6 and 12. The Hessian H' = H'(G) is the
ternary cubic obtained as —% times the determinant of the matrix of second partial
derivatives of G. The invariants may be computed from the relation

H' (NG + pH') = 3(ca P+ 2c6Ai® + 1) G + (N = 3eahp® — 2c6p®)H' .

The contravariants P = P(G) and @@ = Q(G) are the ternary cubics determined
by

P:(—l/xyz)x g_G —Z,O,l') E(—Z,O,l) _G(_Za()?w)

—~

x y
%(ya -, O) %(ya -, 0) %(yv -, O)
and

PG + uH') = (VN + 3ca A + degp®) P+ 3(N2 1 — capt®) Q.
We write M~ for the inverse transpose of M. Then P and @Q have the covariance
properties P(G o M) = (det M)*(P o M~T) and Q(G o M) = (det M)5(Q o M~T)
for all M € GLs.
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A binary quartic F', or ternary cubic G, with non-zero discriminant A defines a
smooth curve of genus one. This is either a double cover Cy — P! with equation
y> = F(x,z), or a plane cubic C3 C P? with equation G(z,y,z) = 0. With ¢; and
c¢ defined as above, the Jacobian is the elliptic curve E with Weierstrass equation
y? = 2% — 27cyw — Hdcs.

For f a polynomial which is homogeneous of degree d in each of the sets of vari-
ables x1, 5 and y1, Yo, y3, we write { f } for the polynomial in 211, 212, 213, 221, 222, 223
obtained by substituting

Tiy oo LTiyYjy - Yjg 7 E Zilja(l)"'zidja(d)'
oESy

Let H be the Hessian of a binary quartic F. Let P and () be the contravariants
of a ternary cubic GG. Then for 1 = 1,2 we put

oF oF
€; = {8% (1’1,$2)p(y17y2>y3)} ) Ji= {8371- ($1,$2)Q<ylay2>y3)} )

OH oH
9i = {8% ($1,562>P(19173/271/3)} ) h; = {axi (561,132)Q(y1,y2,y3)} :

Theorem 2.1. Suppose that F' and G have the same invariants cy,cg and A.
Then
(i) The partial derivatives of fi — g1 and fo — go define a genus one normal
curve Cg C P? with Cg = Cy x g Cs.
(ii) The morphism Cs — Cs is given by the 2 x 2 minors of the matriz (z;;),
i.e.
(212223 — 213222 1 213221 — 211423 : 211722 — 2’122’21)-
(iii) The composite of the morphism Cs — Co and the double cover Cy — P! is
given by

(—62 : 61) = (—f2 : fl) = (—92 : 91) = (—hz : hl)

where it is possible that some (but not all) of these pairs of forms vanish
identically on Cg.

Proof. We write 2 and 3 for the standard representations of GL, and GL3. Then
as representations of GLy x GL3 we have

S?(2®3) = (A2 A%3) & (572 ® 573).
In other words, the 21-dimensional space of quadrics in 21, 212, 213, 221, 222, 223
naturally decomposes into subspaces of dimensions 3 and 18. The first of these
is spanned by the 2 x 2 minors in (ii). We may project onto the second factor

by substituting z;; = z;y;, and a section for this map, respecting the action of
GLs x GLg, is given by f — 2{f}.
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The curve Cg in (i) is defined by the 9 quadrics

2 2
(1) {%(ﬂh,xz)g—i(yl?yz,%) - %(%%2)2—;(9173/2,93)}
forl1<i<j<2and1<k<3.

By the covariance properties of F,H, P and () we are free to change co-ordinates
by any pair of matrices in GLy x GL3 with the same determinant. We are also
free to extend our field K. We may therefore reduce to the case where Cy — P!
and C3 C P? are copies of the same elliptic curve F, and the maps to projective
space are via the complete linear systems |2.0g| and |3.0g|. If E has Weierstrass
equation y? = 2% 4+ ax + b then

F(x,2) = 2°2 + axz® + b2*,
H(z,2) = —3(z* — 2a2°2* — 8bxz® + a*2?),

and

3 _axz® — b3,

G(I‘, Y, Z) = y2z -
P(y1,y2,y3) = 2(ay; + 9byrys + 3y1y5 — 6aysys),
Qy1,y2,y3) = 24(2@% - @?J%ys - 26129193 - 9by§y3 + ?Jg’)

By direct calculation, the quadrics (1) define the image of E embedded in P° via
211 212 213 2%+ 3ax +4b —2xy ax® + 6bx — a?

(2) =

291 %22 %93 —32%—a -2y 2 —axr—2b

We checked, using the discriminant condition 4a® + 27b% # 0, that the rational
functions on the right are a basis for the Riemann-Roch space £(6.0g). The image
is therefore a genus one normal curve.

Since the fibre product of the trivial 2-covering and the trivial 3-covering is the
trivial 6-covering, it only remains to prove that the maps in (ii) and (iii) are [2]g
and [3|g, where [n|g is multiplication-by-n on E. For the first of these we simply
checked that the 2 x 2 minors of (2) define [2]g. The z-coordinate of [3|g(z,y) is
given by 03 /12 where

05 = 2 — 12a2" — 96b2°® + ... + 3(3a* + 32ab*)x + 8(a’b + 8b°),
s = 321 + 6az? + 12bx — a®.
After making the substitution (2) we find
(e1,e2) = (—48a1)3, 48abs), (f1, f2) = (—864by3, 864b0s),

(91,92) = (—864by3, 864b63), (ha, ho) = (230403, —2304a6;).
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Since the numerical factors are of the form 2"3°, and we cannot have a = b = 0,
this proves (iii). d

3. SECANT VARIETIES

In this section we work over an algebraically closed field and review some geo-
metric facts about secant varieties of genus one normal curves. Many of the results
have been generalised to higher secant varieties, see for example [9].

Let C' C P"! be a genus one normal curve of degree n. We write H for the
divisor of a hyperplane section, and identify the Riemann-Roch space £(H) with
the space of linear forms on P*~1. If D is an effective divisor on C of degree d < n
then the subspace L(H — D) C L(H) defines a linear subvariety D C P*! of
dimension d — 1. For example if D is the sum of two points P,Q € C then D is the
secant line PQ if P # @, and the tangent line TpC if P = (). The secant variety
Sec C' is the Zariski closure of the union of all secant lines, equivalently the union
of all lines D for D a degree 2 effective divisor on C. If n > 5 and P € D for two
such divisors D, then it is easy to show (see [16, Lemma 2.6]) that P € C.

Lemma 3.1. Ifn > 5 then Sec C C P! is an irreducible variety of dimension 3.

Proof. See [20, Proposition 11.24]. O

We write 1(X) for the homogeneous ideal of a projective variety X. Suppose
we know a basis for the space of quadrics in /(C'). The next lemma shows it is
easy to solve for the cubic forms in I(Sec C) by linear algebra.

Lemma 3.2. If n > 6 then I(SecC) is generated by cubics. A cubic form f
vanishes on Sec C' if and only if it s singular at every point on C, equivalently
AL € I(C) forall1 <i<n.

Proof. The first statement is a special case of results in [9], [19].

Now let P, ..., P, be any points on C spanning P"~!. We choose co-ordinates
sothat P, =(1:0:...:0), B =(0:1:...:0), etc. Foreach 1 <i < j <mn the
secant variety contains the line P,P;. So if f € I(SecC) is a form of degree d, then
f can contain no monomials involving z; and z; only. Therefore d > 3. Moreover
if d = 3 then f is singular at P,. Since P, € C was arbitrary, f is singular at every
point of C.

Conversely, suppose f is singular at every point of C'. Then for distinct points
P, Q) € C the restriction of f to the line P(@) is a binary cubic with at least
two double roots. Therefore f vanishes on the line PQ), and it follows that f €
I(SecC). O

Lemma 3.3. Ifn > 5 then C is the singular locus of Sec C'.
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Proof. If P € C' then the line P() is contained in the tangent space Tp SecC
for every Q € C. Since C spans P! it follows that T SecC = P""!. Since
SecC' C P"! is a proper subvariety (by Lemma 3.1) it follows that the singular
locus of Sec C' contains C'. The reverse inclusion is proved in [9, Proposition 8.15],
[19, Proposition 5.1]. In fact if P € D for D a degree 2 effective divisor on C, and
P ¢ C, then TpSecC = 2D. U

The next two lemmas count the dimension of the space of cubics in I(Sec C).
The exact statements are also of interest.

Let P € C be any point. We choose co-ordinates x1, ..., z, so that L(H — iP)
has basis z1,...,2,; for i = 0,1,2. In other words P = (0 : ... : 0 : 1) and
TpC={(0:...:0:X:p)}. We write C" and C” for the genus one normal curves
with hyperplane sections H — P and H — 2P obtained by projecting away from P
and TpC.

Lemma 3.4. (i) If f € I(SecC) is a cubic then

(3) flz, oo xn) = xpg(x1, .o Tp2) + h(xy, ..., 2p1)

for some quadric g € I1(C") and cubic h.
(ii) The space of cubics vanishing on Sec C' has dimension at most n(n—4)(n—>5)/6.

Proof. (i) We write f(z1,...,2,) = > al x5 g.s(x1,...,2,_2). Since f vanishes

on TpC we have g,, = 0 whenever r+s = 3. Since g—ai el(C)foralll1 <i<n-—2
we also have g11 = goo = 0. Therefore f is of the form (3) and

_9f

9= oz,

(i) In the case n = 5 it is known (see [22, VIII.2.5]) that Sec C' C P* is a hyper-

surface of degree 5. So there are no cubic forms in I(Sec C'). The proof is now by

S ](C) N K[I’l, . ,In_g] = ](C”)

induction on n > 6. By (i), and the observation that
I(SecC)N K|z1,...,xp1] = I(SecC"),
the space of cubic forms in I(Sec C') has dimension at most
(n—1)(n —5)(n —6) N (n—2)(n—>5) n(n—4)(n—>5)

6 2 6 ’
where the first term is our inductive upper bound for the dimension of the space of

cubics in I(Sec C'), and the second term is the dimension of the space of quadrics
in I(C"). O

As before, we identify the Riemann-Roch space £(H) with the space of linear
forms on P"~1. Let Dy, Dy be divisors on C' with Dy+Dy = H. We write ®(Dy, Dy)
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for the matrix of linear forms representing (with respect to some choices of bases
for £(D;) and £(D)) the multiplication map

It is clear that ®(D;, Ds) has rank at most 1 on C, and hence rank at most 2 on
Sec C'. So the 2 x 2 minors are quadrics in /(C') and the 3 x 3 minors are cubics

in I(SecC).

Lemma 3.5. The space of cubics spanned by the 3 x 3 minors of the matrices
®(Dy, Dy) has dimension at least n(n —4)(n —5)/6.

Proof. See [16, Lemma 2.1]. O

Combining Lemmas 3.4 and 3.5 shows that the space of cubics in I(Sec C') has
dimension exactly n(n —4)(n —5)/6.

4. PENCILS OF CUBIC FORMS

We drop our assumption that K is algebraically closed, and write K for the
algebraic closure. The Hessian H(F') of a cubic form F € Klxy,..., 4] is the
form of degree 6 obtained as the determinant of the 6 x 6 matrix of second partial
derivatives of F'. To avoid confusion with our earlier notation, we will now write
h = h(f) for the Hessian of a binary quartic.

Theorem 4.1. Let C C P5 be a genus one normal curve of degree 6 with secant
variety defined by cubic forms Fy and Fy. Then, working over K , there are exactly
four “special” cubics F' in the pencil spanned by Fy and Fy, with H(F') a scalar
multiple of F%. Moreover

(i) Each cubic in the pencil spanned by Fy and Fy has singular locus C', with
the exception of the special cubics which have singular locus a Veronese

surface.
(ii) There is a binary quartic f € K{s,t], with roots corresponding to the special
cubics, and cubic forms Gy,Gy € K[z, ..., x¢| satisfying

(4) H(SFl + tFQ) = %h(S,t)(SFl -+ tF2)2 — 2f(8,t)(SF1 -+ th)(SGl + tGg)
— Lf(s, ) (ZLF? 2 2L BBy 4 T D)
where h is the Hessian of f, as defined in Section 2.

(iii) The covering map from C' to its Jacobian factors via a quadratic twist of
2
y* = flz,2).

Proof. For the first part of the proof we may take K = K. Let D; and D,
be degree 3 divisors on C' with Dy + Dy = H. Then det ®(Dq, Dy) is a cubic
form vanishing on Sec C' and so belongs to the pencil spanned by F} and F5.
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By Lemmas 3.4 and 3.5 the pencil is spanned by cubics of this form. We now
show that every cubic in the pencil is of this form. We say that divisor pairs
(Dy, D) and (D}, D) are equivalent if Dy ~ D} or Dy ~ Dj. It is shown in [16,
Lemma 2.9], following [25, 9.22.1], that if (D;, D2) and (D}, D}) are inequivalent
then Sec C' = {det ®(Dy, Dy) = det ®(D}, D}) = 0} C P°. In particular these two
cubic forms are linearly independent.

We claim that the map (Dy, Dy) — ®(Dy, Ds) is a bijection between the equiv-
alence classes of divisor pairs and the pencil of cubics spanned by F; and F,. To
prove this let C' be the image of an elliptic curve E embedded in P° by |6.0g].
Then writing

det (2.0 + P, 4.0 — P) = s(P)F, + t(P)F,

for P € E, we can see that s/t is a rational function on E. It therefore defines
a morphism (s : t) : £ — P! By the previous paragraph, this morphism is
non-constant, and indeed has fibres of the form {P, —P}. It must therefore be
surjective. This proves the claim.

By considering P € E[2] we see there are four cubics in the pencil of the form
det ®(Dy, Dy) with Dy ~ D,. In these cases we may choose bases for £(D;) and
L(Ds) so that ®(Dy, Ds) is a generic 3 x 3 symmetric matrix, say

X111 T12 T13

M = T12 T2 T23
T13 T3 T33

Then F = det M satisfies H(F') = —16F2. Moreover the partial derivatives of F,
equivalently the 2 x 2 minors of M, define a Veronese surface, i.e. the image of
the 2-uple embedding P? — P°.

The identity (4) is well-behaved under the natural action of GLy x GLg. Specif-
ically, if the identity is satisfied by (F7, F3) and f, then it is also satisfied by

5 F F. F F d M
(5) (ma1 By + mor By, magFy + mooFh)  an detM(fo )
for any M € GLs, and by

(6) (FioN,FooN) and (detN)f

for any N € GLg. Therefore (ii) follows from any of the special cases computed
in Section 5.

To complete the proof of (i) it remains to show that if (s : t) € P! is not a root
of f then sF) 4+ tF; is not a special cubic, and its partial derivatives define C'.
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Taking s = 1 in (4) and using Euler’s identity we have
(7) H(F, +tFy) = —4f(1,0)*F)  (mod (Fy + tF)).

In particular if f(1,¢) # 0 then Fy+tF, is not a special cubic, and indeed it does not
even divide its own Hessian. If the partial derivatives of a cubic form F' vanish at
apoint P = (ay : ...: ag), then by Euler’s identity the vector (aq,...,ag) is in the
kernel of the matrix of second partial derivatives of F' evaluated at P. Therefore
H(F) vanishes at P. If f(1,¢) # 0 and P is singular on {F; +tF, = 0} C P it now
follows by (7) that Fy(P) = 0. But then P € SecC and it follows by Lemma 3.3
that P € C. This completes the proof of (i).

We now drop our assumption that K is algebraically closed. To complete the
proof of (ii) we must show that Gy, G and f have coefficients in K. However
by a change of co-ordinates defined over K we may assume that C' is of the form
described in Theorem 2.1. We are then done by the last of the special cases

computed in Section 5. This also proves (iii). O

Remarks 4.2. (i) The identity (4) only defines f up to sign. It can be com-
puted by using (7) to solve for f(1,t)? for several values of ¢ and then
interpolating.

(ii) The geometric interpretation of the cubic forms Gy, G is that Fy, Fy, G1, G
are a basis for the space of cubic forms vanishing on the tangent variety
of C.

(iii) The set of special cubics is a torsor under F[2|, where FE is the Jacobian
of C'. This can be seen either by considering the divisors D on C with
2D ~ H, or as a consequence of Theorem 4.1(iii).

(iv) It is shown in [16, Theorem 1.3] that if Dy, Dy are degree 3 divisors on
C with Dy + Dy = H and Dy o Dj then the 2 x 2 minors of ®(Dy, Dy)
generate [(C).

5. EXPLICIT FORMULAE

We check the identity (4) first in the case of an elliptic curve £ embedded via
6.0g|, then for a binary quartic 3-uply embedded, then for a ternary cubic 2-
uply embedded, and finally for the sum of a binary quartic and ternary cubic as
computed using Theorem 2.1. (For the general definition of a d-uple embedding
see [21, p13].)

Let E be the elliptic curve y?> = 2% + ax + b. The embedding of F in P5 via
6.0g| is given by (21 :...:16) = (1 : 2 :y:2%: 2y : 2°) and has image C C P°
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defined by quadrics

2
g1 = T1X4 — Ty, g6 = T1Te — Tal4,
_ 2 + 4 b 2 _ 2
g2 = T2X4 — Ty T AT1T2 L1, q7 = To2Te — Ty,
g3 = 15 — T2Z3, ds = T3Tg — T4Ts,
2 2
(s = ToXs — T3y, g9 = T4Te — T5 + araxy + bas.

G5 = T35 — l‘i — azry1ry — bryxg,
By Lemma 3.2 the cubics defining Sec C' are
Fy = (w6 + avy + br1)q1 — 1122 + 22000375 — 1374,
Fy = x6q0 — :Egmg + 2x31475 — 25 — 1174 (azy + 2025) + b,

These are of the form specified in Lemma 3.4, where C” C P? is the quadric
intersection defined by ¢; and ¢,. We remark that if ¢’ C P* is the genus one
normal curve of degree 5 defined by ¢, ..., g5 then Sec C’ is defined by the quintic
form

(9xj
By following the proof of Theorem 4.1 we find that F} and F5 are the determinants
of the matrices

9q;
2((]2F1 - qug) = det ( 4 ) .
4,7=1,...,5

Ty T T3 T T4 T3+ \/1—?$1

To T4 T and Ty Te Ts + \/Bl'g

Ts Ty T 23— Vbry 15— Vbro T4+ axy
3 Ts g 3 5

where xf = x¢+axy+bry. Moreover (4) is satisfied with f(s,t) = 4(s3t+ast® —bt?)
and
G, = 2(:61:1:2 + 2x§x6 4+ 2ax172T6 + 2bxfx6 — 6x2x§ — daxix3T5 + 33:?’1 + 6a:c§a:4
+ a’zixy — 4bx12] + 6bal + 3’z x5 + Sabrixy + 4b%xY),
Gy = Z(xgxé — dxsrsT6 + 3xix6 + 2ax 1246 — 4bx1 X276 + a%%x(j + 2ax1x§ + 8bx1x31s
+ 6axyx; + 1202105 — 6azizy + 2abriry — 12bx9x3 + 3a’xh + 6abriws + 4b2231y).
More general formulae are obtained if we start with a binary quartic
F(z,2) = az® + br’z + ca?2? + da2® + ez?,

defining a double cover Cy — P!, and then embed Cy in P° via

(o:m i mg a3 :yo: ) = (2% 2?2122 2wy« 2y).

The image has secant variety defined by
Fy = (axg + bxy + cxo + das)(zoxe — 22) + e(xori — 2212003 + 23) — (2oy? — 22190y1 + T203),

Fy = (bxo + cx1 + dxo + ex3)(z123 — :c%) + a(a:gxg, — 2z0x129 + :c:%) — (a:lyf — 2xoyoy1 + x3y(2)).
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Moreover the identity (4) is satisfied with f(s,t) = 4F(—t, s), and Gy, G2 certain
cubic forms with coefficients in Z|a, b, ¢, d, €].

Alternatively we start with a ternary cubic G(xy,xs, x3) defining C3 C P? and
then embed Cj in P° via

. . . . . — (2. . L2 C 2
((L’H X192 - X113 - T2  XTa3 . ZL’33) = (l‘l L X1T2 P XT3 P Ty L XT3 - l’g)

The image has secant variety defined by

11 T12 T13

Fi=det | x5 x99 w93 |,
Tr13 T3 X33

3
e oae
B=% > (3%ijpg — TipTjq) Thr-

e 0,02 ;0 0r,07,0%,
Let R3 = Z[a,b,c,...]| where a,b,c... are the coefficients of G. Then F; and F
have coefficients in R3 and (4) is satisfied with f(s,t) = 4(s3t — 3cyst® — 2¢t?),
where ¢4 and ¢g are the invariants of G. If by, by, bg € R are as defined in [13] then
Fy = 5 (F» + byFy) has coefficients in Rs. Moreover F; and F} satisfy (4) with

f(s,t) = 45 + bys*t? + 2byst® + bgt™.

Finally we start with a generalised binary quartic y? + A(z, 2)y = B(z, 2) and a
ternary cubic G(x,y, z) with the same invariants ¢4, cg and A. We put F(z,z) =
%A(m, 2)? + B(z, 2), and define e;, f;, g;, h; as in Section 2. Then putting

F = %(fz —gi) and G;= %A(Q@i — hi)

for i = 1,2, the identity (4) is satisfied with f(s,t) = 4AF(s,t). This is proved
by a generic calculation, which is made feasible by reducing to the special case
considered in the proof of Theorem 2.1. Suppose that the Weierstrass equations,
computed using [13, Theorem 2.10], for the Jacobians of y? + A(z, 2)y = B(z, 2)
and G(x,y,z) = 0 are related by x <— = + r and y < y + sz + t. Then a generic
calculation shows that the coefficients of F}, Fy, G1, Gy are integer coefficient poly-
nomials in 7, s,t and the coefficients of A, B and G. The reason for introducing
r,s,t is to avoid having denominators of the form 293°.

6. COMPUTING THE JACOBIAN

Suppose we are given equations for a genus one curve C' that is either a double
cover of P! (case n = 2) or a genus one normal curve of degree n > 3. If n =
2,3,4,5 then the invariants in [1], [15] give a formula for the Jacobian of C. If
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n = 6 then Theorem 4.1(iii) and Remark 4.2(i), together with the invariants in
the case n = 2, determine the Jacobian up to quadratic twist. In this section we
explain how Theorem 2.1 can be used to compute the Jacobian exactly.

By Lemma 3.2 we may solve for cubic forms F} and F, defining SecC'. We
know by Lemma 3.3 that the partial derivatives of F; and F; define C'. In fact,
by the formulae in Section 5, they generate I(C'). The 12 partial derivatives of Fj
and F5, in the 9-dimensional space of quadrics vanishing on C', therefore satisfy 3
linear dependence relations.

By properties of the obstruction map, as cited in Section 2, we know that C'is of
the form arising in Theorem 2.1, up to a change of co-ordinates on P5 defined over
K. We now find this change of co-ordinates, up to the action of GLy(K) x GL3(K).
The cubic forms f; — g; and fy — go in Theorem 2.1 satisfy

INfi—g1)  O(fa—go)
Ozax, B 021,
for k = 1,2,3. Therefore substituting

2 3
xi:E E QijkZjk

j=1 k=1
into F} and Fj, for suitable constants a; i, gives cubic forms F{, Fj € K[z, .., 23]
satisfying
oF,  OF,;
LI R
Oz1p  Ozgp

for k =1,2,3. By the chain rule

6 2 OF,

> Dty =0

i=1 j=1 ¢
for k = 1,2,3. The coefficients of the 3 linear dependence relations mentioned
above, are therefore exactly the numbers we need to write down the required
change of co-ordinates on P°.

We have now reduced to the case where C' = Cj is as described in Theorem 2.1.
In particular the 2 x 2 minors of the matrix (z;;) define a morphism Cs — Cj,
where C} is a plane cubic. We can solve for an equation for C3 by linear algebra.
The Jacobian of Cg is now the same as that of C'3, which may be computed using
the classical formulae cited above.

7. MINIMAL MODELS

We represent a genus one normal curve of degree 6 by a pair of cubic forms defin-
ing its secant variety. In this section we define the discriminant of such a model.
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We then prove a result on the existence of models with the same discriminant as
a minimal Weierstrass equation for the Jacobian elliptic curve.

Definition 7.1. Let Fy, Fy € Kl[xy,...,x6) be cubic forms defining the secant
variety of a genus one normal curve of degree 6. The discriminant of (Fy, F}) is

A(F, Fy) = 272A(f)
where f is the binary quartic in Theorem 4.1, and A(f) is as defined in Section 2.

Since Theorem 4.1 only determines f up to sign, Definition 7.1 relies on the fact
that the discriminant of a binary quartic has even degree (in fact degree 6). Since
f has distinct roots we have A(Fy, Fy) # 0.

Lemma 7.2. If (M, N) € GLy x GLg then
A(mHF{ + m12F2/7m21F1/ + mQQFQ') = (det M)ﬁ(det N)6A(F1, FQ)
where F{ = Fy o N and Fj = Fy0o N.

Proof. This follows from (5), (6), and properties of the discriminant of a binary
quartic, namely that it has degree 6 and weight 12. U

Let Ok be a discrete valuation ring with uniformiser 7, discrete valuation v,
residue field k, and field of fractions K. As usual we assume char K # 2, 3.

Theorem 7.3. Suppose that Fy and Fy have coefficients in Ok, and that their
reductions mod @ (which we denote Fy and Fy) are linearly independent over k.
Then the binary quartic f has coefficients in Ok.

Proof. Suppose H(Fy) = aF} (mod Fy) for some a € K. If a is not in O then
F divides 722 . Then F; and F, have a common quadratic factor, and F; + 572
divides 722 for at most two £ € k. It follows by (7) that 2f(1,t) € Ok for
all t € Ok, avoiding at most two residue classes mod 7. If |k| > 7 we see by
interpolation that 2f has coefficients in Og. In general we may reduce to this
case by making an unramified extension.

A generic calculation shows that if F' is a cubic form in zq,...,xs then the
coefficients of %LH(F ) are integer coefficient polynomials in the coefficients of F.
The above arguments then show that f has coefficients in O. (|

Theorem 7.4. Let C' C P be a genus one normal curve of degree 6 defined over
K. Suppose that C(K) # (). Then, after a change of co-ordinates on P defined
over K, the secant variety Sec C' is defined by cubic forms Fy, Fy € Oklz1,. .., zg]
with A(Fy, Fy) = Ap, where Ag is the minimal discriminant of the Jacobian E
of C.
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Proof. 1f C is an elliptic curve £ embedded by |6.0g|, or the 3-uple embedding of
a binary quartic, or the 2-uple embedding of a ternary cubic, then the theorem
already follows from the formulae in Section 5, and the corresponding results for
2-coverings and 3-coverings in [13]. If however we use Theorem 2.1 to add a
binary quartic and ternary cubic then we only get Fi, Fy € Oklzy, ..., x¢] with
A(Fy, F5) = A%L. In other words, adding a minimal 2-covering and a minimal
3-covering does not give a minimal 6-covering.

In general we argue as follows. We first observe that if P € C'(K) then there is a
unique point @ € C(K) such that C' has hyperplane section 5P +@. The complete
linear system |P + Q| defines a morphism C' — P!. This gives an equation for C
of the form y? + A(x,2)y = B(z,z) where A and B are binary forms of degrees
2 and 4. By [13, Theorem 3.4] we may change co-ordinates on P! (and make a
substitution for y) so that y? + A(x, z)y = B(x, 2) has coefficients in O, yet has
discriminant Ag. Since SLy(Of) acts transitively on P!(K) we may assume that
P and @ are the points on C above (z : 2) = (1: 0). By a substitution y <+ y+ A\z?
we may further assume that ) is the point (z: z:y) = (1:0:0). Setting z =1
gives an affine equation

y? + (12> + ma +n)y = ba® + ca’ +dr +e
where P and @) are now the points at infinity. We have z € L(P 4+ Q), y €
L(2P + Q) and bx —ly € L(2P). The embedding C C 5 via |5P + Q| is given by
(1:...i2¢) = (L:z:y: (br —ly)z: (br —ly)y : (bx — ly)*x).
The image differs from the curve we started with by a change of co-ordinates
defined over K. It has secant variety defined by cubics
F = bem%x4 — lem%% — bzexlx% + 2lbex1xox3 + bdx11974 — ldT1 2275 — ZQemx% — nbr1r3x4
+ Inzix375 + czlxi — MT1TAT5 + T1T4T6 — xw% — dexg + (2lbd + an)zgxg — bcx%@l
— (lc — mb)x3xs — baizg — (1%d + 2lnb)m2x§ + 2lcxor3Ty + 2bxoT3T5 + lTOT3TE
— lzgwaws + Pnxy — (Im + b)xdey — lxdzs + lrza],
and
Fy = —ex%xﬁ + 2bex1xoxy — dxixoxrs — 2lex1x3ry + NX123TE + dacw:i — NT1T4T5 — b2€:c§’
+ QIbexgxg + nbx%% — cx%xﬁ — l26x2x§ — nbroxsry — INTox3T5 + MToT3T6 + cxgxi
— T2T4%e + xgxg + lnm%m + x%:cﬁ - mwgmi — 2237475 + xz.
Moreover the identity (4) is satisfied with f(s,t) = A(s,t)* + 4B(s,t) and Gy, G,
certain cubic forms with coefficients in Z[l,m,n, b, c,d,e]. Then A(Fy, Fy) = Ag
as required. Il
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We say that pairs of cubic forms (F, Fy) and (F7, F}) are K-equivalent if they
are related by the action of GLy(K) x GLg(K), as specified in (5) and (6).

Definition 7.5. Let Fy, F» € Oklry,...,x6) be cubic forms defining the secant
variety of a genus one normal curve of degree 6. We say that (Fy, Fy) is minimal
if v(A(Fy, Fy)) is minimal among all pairs of cubics forms with coefficients in O
that are K-equivalent to (Fi, F3).

Corollary 7.6. Let C C IP5 be a genus one normal curve of degree 6 defined over
K. Let Ag be the minimal discriminant of the Jacobian elliptic curve E. Then
(i) If Fy and Fy have coefficients in Ok then 22A(Fy, Fy) € Ok.
(il) A minimal model (Fy, Fy) for C exists. Moreover v(A(Fy, Fy)) = v(Ag) +
60 for some integer ¢ > —1 — 2v(2) we call the minimal level.
(iii) If v(Ag) < 6 and char(k) # 2 then ¢ > 0. If in addition C(K) # 0 then
¢=0.

Proof. (i) Since F; and F5 are linearly independent over K, we can use Lemma 7.2
to reduce to the case where F; and F, are linearly independent over k. Then by
Theorem 7.3, f has coefficients in O and so 212A(Fy, Fy) = A(f) € Og. We
expect that A(Fy, Fy) € Ok. It may be possible to prove this by adapting the
identity (4), so that f is replaced by a generalised binary quartic. This would be
analogous to the proof of [13, Lemma 2.9] in the case n = 4.

(ii) By (i) we have v(A(F1, Fp)) > —12v(2), and so minimal models exist. If f
has coefficients in Ok then by [13, Lemma 3.2] and Theorem 4.1(iii) we have

v(A(f)) or v(A(rf)) = v(Ag) + 12m

for some integer m > 0. It follows that ¢ > —1 — 2v(2). We expect that ¢ > 0 in
all cases.

(iii) This is immediate from (i) and Theorem 7.4. In fact, arguing as in the proof
of (ii), the condition v(Ag) < 6 could be weakened to v(Ag) < v(Ag) where E’
is the quadratic twist of £ by 7. U

Our results have the following global application. A curve C'/Q is said to be
everywhere locally soluble if C(R) # () and C(Q,) # 0 for all primes p.

Corollary 7.7. Let C'/Q be an everywhere locally soluble 6-covering of an elliptic
curve E/Q. Then C' is isomorphic to a genus one normal curve in P° with secant
variety defined by cubic forms Fy, Fy € Z[zy, ..., x¢] with A(Fy, Fy) equal to the
manimal discriminant of E.

Proof. Cassels [10] showed that if an n-covering of an elliptic curve is everywhere
locally soluble then it admits a Q-rational divisor of degree n. We may therefore
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embed C' C P’ as a genus one normal curve of degree 6. The result now follows
from Theorem 7.4 (with K = Q,,) and strong approximation for SLy x SL¢ over Q.
O

8. EXAMPLE

Let E/Q be the elliptic curve
y? +y =2 + 22 — 20404558z — 35483149947

This is an elliptic curve with Mordell-Weil rank 2 and prime conductor p =
1631859133 taken from the Stein-Watkins database [27]. We used Magma [§]
to compute everywhere locally soluble 2- and 3-coverings of E represented by the
binary quartic

F = (733/4)x"* + 1812%2 4 3979222 + 194322 + 2111724,
and ternary cubic
G = 172% — 142%y — 102%2 — 57xy* 4 36xy2 + 4laz® — 43y° — 52y° 2 — 104y 2* — 52°.

Theorem 2.1 computes equations for the 6-covering of F that is the sum of F
and GG. The secant variety of this curve is defined by cubics

Fy = 4117527 — 1258927, 215 + 1779127, 213 — 117802527, 291
4 11125222 299 — 16393822, 293 — 2657621122, + 6300211 212213

+ 163375723, 293 — 2666032291 25, + 64990821 229 203 + 3188136291 255
— 65297725, + 45524625, 203 — 3402998299255 + 1121925235,

and

Fy = —3926752%, + 11125227, 215 — 16393822, 213 — 188799422 25,
+ 17540027, 292 — 26085227, 293 + 26881821127, — 65625211 212213

+ 372613023, 223 — 580430021 25, + 1394862251 299293 + 709429225, 22,
— 150233225, + 107027825, 203 — 7608418295255 + 2490164 25,.

The coefficients of F; and F5 are integers with maximum absolute value 11718351.
These cubics are linearly independent mod ¢ for all primes ¢, and have discriminant
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A(Fy, F5) = p’. The ad hoc methods for minimisation and reduction in [14,
Section 6.3] suggest making the substitution

11 18 16 -6 3 =34 —19\ [
212 —4 -7 —-15 16 23 =32 | s
» ag| |21 2 5 1T 4 4| |
2 18 -1 -23 —4 -2 36 ||
229 ~12 —27 -3 12 -8 1 s
203 10 1 -2 —-31 11 -18) \x

The determinant of this matrix is p, and after making this substitution both cubics
are divisible by p. The secant variety is now defined by
F| = 1523 — 122225 — 44025 — 60204 + 432225 + 572226 — 3210

+ 46212923 — 39x1T9x4 + 23T1X905 — TTX1T2T6 + 64x1x§

— 207:63372 — 31;1:?’1 + 76:Uia:5 — xZ:cG — 291:43:§ + 5dbx4x5T6

— T9z47f + 5a3 — 522376 + 157527 + 12227,
and

Fy = 2723 — iy + 1502323 — 4307w, + 1752725 — 1627776

+ 53351:133 + 158x 12223 — 9212924 — 1021209005 — 2452120926

— 543x3x506 — 123x3x§ + 143962 + 58xix5 + 59xix6 — 74x4x§
+ T4x5T6 — 2473:433% + 7x§ — 136x§x6 + 495:155902 + 111332.

The coefficients of F] and F} are integers with maximum absolute value 542. These
cubics are linearly independent mod ¢ for all primes ¢, and have discriminant
A(F 1,7 F. 2/) =D

On the singular locus of {F] = Fj = 0} C P° the Magma function PointSearch
finds the point

(3859214977 : —4307304051 : 6829067848 : —2044256038 : 1674518872 : 1893140020)
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By the substitution (8) this corresponds to

211 212 213 139461472460 142496392463 35031066301

291 222 293 10314359739 —13465342697 —68341834433
The 2 x 2 minors of this matrix define a point
(9266759548221841924682 : —9892375880512983270619 : 3347655573075237871777)

on the plane cubic {G = 0} C P?. By the classical formulae for the 3-covering
map (see [1]), this maps down to a point P € F(Q) with canonical height h(P) ~
307.45928.
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