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Abstract. In this paper we give a new formula for adding 2-coverings and

3-coverings of elliptic curves, that avoids the need for any field extensions. We

show that the 6-coverings obtained can be represented by pairs of cubic forms.

We then prove a theorem on the existence of such models with integer coefficients

and the same discriminant as a minimal model for the Jacobian elliptic curve.

This work has applications to finding rational points of large height on elliptic

curves.

1. Introduction

Let E be an elliptic curve defined over a number field K. For each n ≥ 2 there
is an exact sequence

0→ E(K)/nE(K)→ Sel(n)(E/K)→X(E/K)[n]→ 0

where the n-Selmer group Sel(n)(E/K) is finite and effectively computable. It gives
information about both the Mordell-Weil group E(K) and the Tate-Shafarevich
group X(E/K). Elements of the Selmer group may be represented by n-coverings
of E. Coverings π : C → E and π′ : C ′ → E are isomorphic if there is an
isomorphism α : C → C ′ with π = π′ ◦ α. An n-covering π : C → E is then, by
definition, a twist of the trivial n-covering [n] : E → E, where [n] is multiplication-
by-n on E. In particular C is a smooth curve of genus one defined over K. The
n-Selmer group Sel(n)(E/K) is the set of K-isomorphism classes of n-coverings for
which C has points everywhere locally. A theorem of Cassels [10] tells us that
every such n-covering admits a K-rational divisor of degree n, and so (for n ≥ 3)
may be embedded in Pn−1 as a curve of degree n.

If m and n are coprime integers then it is immediate that

Sel(mn)(E/K) ∼= Sel(m)(E/K)× Sel(n)(E/K).

Moreover, if we are given an m-covering Cm → E and an n-covering Cn → E then
the fibre product Cmn = Cm ×E Cn is an mn-covering. We would like to realise
these constructions explicitly, that is, given equations for Cm and Cn as curves of
degree m and n in Pm−1 and Pn−1, find equations for Cmn as a curve of degree mn
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in Pmn−1. This problem has applications to finding generators of E(K) of large
height. The solution in [14] in the case (m,n) = (2, 3) involves calculations in an
extension of the number field K, typically of degree 9. In Section 2 we give a new
formula that removes the need for any field extensions.

For the application to point searching, it is important that we give equations
for our n-coverings with respect to a good choice of co-ordinates on Pn−1. This is
both to make the equations have smaller coefficients, and the rational points we are
searching for have smaller height. This problem can be solved by a combination
of minimisation and reduction, as described in [13] in the cases n = 2, 3, 4 and
[17] in the case n = 5. By minimisation we mean changing co-ordinates so that
the data defining our n-covering still has integer coefficients, yet prime factors are
removed where possible from some suitably defined discriminant.

In this paper we represent 6-coverings C ⊂ P5 by pairs of cubic forms defining
the secant variety SecC. We then define a discriminant function, and prove results
on minimisation analogous to those in the papers cited above. It turns out that
if we add minimal models for a 2-covering and a 3-covering, using the formula in
Section 2, then the model we get for a 6-covering is not minimal. Therefore in
numerical examples we should still make a change of co-ordinates before searching
for rational points.

In a remarkable series of papers [2], [3], [4], [5], Bhargava and Shankar have

shown for n = 2, 3, 4, 5 that the average number of elements in Sel(n)(E/Q) of
order n is exactly n, when elliptic curves E/Q are ordered by naive height. (The

average size of Sel(n)(E/Q) is then the sum of the divisors of n.) They conjecture
that the same is true for all integers n ≥ 2, and indeed proving this for larger n
would improve the upper bound they give for the average rank of an elliptic curve.
Their method relies on counting orbits of lattice points in an affine space, under
the action of a suitable linear algebraic group. The representations and invariants
required for n = 2, 3, 4 are classical: see [1], [26], [28], [29]. The corresponding
results for n = 5 were obtained in [15], [18]. We think it is unlikely there is any
directly analogous construction for n > 5 for the following reasons.

(1) In the cases n = 2, 3, 4, 5 the n-coverings are represented by collections
of forms of degree 6 − n. The representations studied have dimension
10n/(6−n), and the rings of invariants are generated in degrees 4n/(6−n)
and 6n/(6− n).

(2) The modular curve X(n) has genus 0 for n = 2, 3, 4, 5 but not for n > 5.
(3) In [18] the cases n = 2, 3, 4, 5 are related to the exceptional Lie groups

G2, F4, E7, E8.
(4) None of the representations studied in [6] appear to be suitable.

However, one might still hope that some construction can be made to tackle
the above conjecture, say for n = 6. Put more simply, we would like to know how
to write down genus one curves of degree 6 at random. We do not know a good
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answer to this question, but our work might provide a useful starting point for
further investigations.

In Sections 3 and 4 we study the secant variety of a genus one curve of degree
n, first in general, and then in the case n = 6. Some of the results are justified
by explicit formulae recorded in Section 5. One application of the invariants in
the cases n = 2, 3, 4, 5 is that they give a formula for the Jacobian elliptic curve.
In Section 6 we prove an analogue of this in the case n = 6. We then present
our results on minimisation in Section 7, and finally give a numerical example in
Section 8 to illustrate the application of our work to finding rational points of
large height on an elliptic curve.

We work throughout over a field K with charK 6= 2, 3.
A genus one normal curve is a smooth curve of genus one C ⊂ Pn−1 embedded

by a complete linear system of degree n. This last condition is equivalent to
demanding that C has degree n, and is not contained in a hyperplane. We write
(x1 : . . . : xn) for our co-ordinates on Pn−1. We also write L(D) for the Riemann-
Roch space of a divisor D on C, and H for the divisor of a hyperplane section.
We may identify L(H) with the space of linear forms on Pn−1, and more generally
SdL(H) with the space of forms (i.e. homogeneous polynomials) of degree d in
K[x1, . . . , xn]. The word “normal” in the definition of a genus one normal curve
refers to the fact that these curves are projectively normal, i.e., the natural map
SdL(H) → L(dH) is surjective for all d ≥ 1. Taking d = 2 shows that the space
of quadrics vanishing on C has dimension n(n+ 1)/2− 2n = n(n− 3)/2. If n ≥ 4
then these quadrics generate the homogeneous ideal I(C), and so in particular
define C. Proofs of these standard facts may be found for example in [7], [15],
[22], [23].

2. Adding 2-coverings and 3-coverings

In this section we give an explicit formula for adding a 2-covering and a 3-
covering of an elliptic curve, to give a 6-covering. We assume that the 2-covering
is represented by a binary quartic, and the 3-covering is represented by a ternary
cubic. In other words we assume that these curves have trivial obstruction, in
the sense of [11], [12], [24]. This hypothesis is always satisfied by Selmer group
elements (by the result of Cassels [10] cited above), and more generally in all cases
where the 6-covering we are trying to compute has trivial obstruction.

First we need to review some classical invariant theory of binary quartics and
ternary cubics. See for example [1], [13], [15], [26], [28], [29]. For f a form in n
variables, say x1, . . . , xn, and M an n × n matrix, we write f ◦M for the form
obtained by substituting xi ←

∑n
j=1mijxj.

The invariants of the binary quartic

F (x, z) = ax4 + bx3z + cx2z2 + dxz3 + ez4
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are

c4 = 24(12ae− 3bd+ c2),

c6 = 25(72ace− 27ad2 − 27b2e+ 9bcd− 2c3),

and ∆ = (c34 − c26)/1728. These are invariants of weight 4, 6 and 12, in the sense
that

c4(F ◦M) = (detM)4c4(F ),

c6(F ◦M) = (detM)6c6(F ),

∆(F ◦M) = (detM)12∆(F ),

for all M ∈ GL2. More generally the invariants of y2+A(x, z)y = B(x, z), where A
and B are forms of degree 2 and 4, are the invariants of 1

4
A2+B. These are integer

coefficient polynomials in the coefficients of A and B. The Hessian H = H(F ) is
the binary quartic obtained as 1

3
times the determinant of the matrix of second

partial derivatives of F . Explicitly,

H = (8ac− 3b2)x4 + (24ad− 4bc)x3z + (48ae+ 6bd− 4c2)x2z2

+ (24be− 4cd)xz3 + (8ce− 3d2)z4.

It satisfies the covariance property H(F ◦M) = (detM)2(H◦M) for all M ∈ GL2.
The invariants of the ternary cubic

G(x, y, z) = ax3 + by3 + cz3 +a2x
2y+a3x

2z+ b1xy
2 + b3y

2z+ c1xz
2 + c2yz

2 +mxyz

are certain polynomials c4, c6 and ∆ = (c34 − c26)/1728 in Z[a, b, c, . . . ,m]. They
are again invariants of weights 4, 6 and 12. The Hessian H′ = H′(G) is the
ternary cubic obtained as −1

2
times the determinant of the matrix of second partial

derivatives of G. The invariants may be computed from the relation

H′(λG+ µH′) = 3(c4λ
2µ+ 2c6λµ

2 + c24µ
3)G+ (λ3 − 3c4λµ

2 − 2c6µ
3)H′.

The contravariants P = P (G) and Q = Q(G) are the ternary cubics determined
by

P = (−1/xyz)×

∣∣∣∣∣∣∣∣∣
∂G
∂x

(0, z,−y) ∂G
∂y

(0, z,−y) ∂G
∂z

(0, z,−y)

∂G
∂x

(−z, 0, x) ∂G
∂y

(−z, 0, x) ∂G
∂z

(−z, 0, x)

∂G
∂x

(y,−x, 0) ∂G
∂y

(y,−x, 0) ∂G
∂z

(y,−x, 0)

∣∣∣∣∣∣∣∣∣
and

P (λG+ µH′) = (λ3 + 3c4λµ
2 + 4c6µ

3)P + 3(λ2µ− c4µ3)Q.

We write M−T for the inverse transpose of M . Then P and Q have the covariance
properties P (G ◦M) = (detM)4(P ◦M−T ) and Q(G ◦M) = (detM)6(Q ◦M−T )
for all M ∈ GL3.
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A binary quartic F , or ternary cubic G, with non-zero discriminant ∆ defines a
smooth curve of genus one. This is either a double cover C2 → P1 with equation
y2 = F (x, z), or a plane cubic C3 ⊂ P2 with equation G(x, y, z) = 0. With c4 and
c6 defined as above, the Jacobian is the elliptic curve E with Weierstrass equation
y2 = x3 − 27c4x− 54c6.

For f a polynomial which is homogeneous of degree d in each of the sets of vari-
ables x1, x2 and y1, y2, y3, we write {f} for the polynomial in z11, z12, z13, z21, z22, z23
obtained by substituting

xi1 . . . xidyj1 . . . yjd 7→
∑
σ∈Sd

zi1jσ(1) . . . zidjσ(d) .

Let H be the Hessian of a binary quartic F . Let P and Q be the contravariants
of a ternary cubic G. Then for i = 1, 2 we put

ei =

{
∂F

∂xi
(x1, x2)P (y1, y2, y3)

}
, fi =

{
∂F

∂xi
(x1, x2)Q(y1, y2, y3)

}
,

gi =

{
∂H
∂xi

(x1, x2)P (y1, y2, y3)

}
, hi =

{
∂H
∂xi

(x1, x2)Q(y1, y2, y3)

}
.

Theorem 2.1. Suppose that F and G have the same invariants c4, c6 and ∆.

Then

(i) The partial derivatives of f1 − g1 and f2 − g2 define a genus one normal

curve C6 ⊂ P5 with C6
∼= C2 ×E C3.

(ii) The morphism C6 → C3 is given by the 2 × 2 minors of the matrix (zij),

i.e.

(z12z23 − z13z22 : z13z21 − z11z23 : z11z22 − z12z21).
(iii) The composite of the morphism C6 → C2 and the double cover C2 → P1 is

given by

(−e2 : e1) = (−f2 : f1) = (−g2 : g1) = (−h2 : h1)

where it is possible that some (but not all) of these pairs of forms vanish

identically on C6.

Proof. We write 2 and 3 for the standard representations of GL2 and GL3. Then

as representations of GL2×GL3 we have

S2(2⊗ 3) ∼= (∧22⊗ ∧23)⊕ (S22⊗ S23).

In other words, the 21-dimensional space of quadrics in z11, z12, z13, z21, z22, z23
naturally decomposes into subspaces of dimensions 3 and 18. The first of these

is spanned by the 2 × 2 minors in (ii). We may project onto the second factor

by substituting zij = xiyj, and a section for this map, respecting the action of

GL2×GL3, is given by f 7→ 1
2
{f}.
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The curve C6 in (i) is defined by the 9 quadrics

(1)

{
∂2F

∂xi∂xj
(x1, x2)

∂Q

∂yk
(y1, y2, y3)−

∂2H
∂xi∂xj

(x1, x2)
∂P

∂yk
(y1, y2, y3)

}
for 1 ≤ i ≤ j ≤ 2 and 1 ≤ k ≤ 3.

By the covariance properties of F,H, P and Q we are free to change co-ordinates

by any pair of matrices in GL2×GL3 with the same determinant. We are also

free to extend our field K. We may therefore reduce to the case where C2 → P1

and C3 ⊂ P2 are copies of the same elliptic curve E, and the maps to projective

space are via the complete linear systems |2.0E| and |3.0E|. If E has Weierstrass

equation y2 = x3 + ax+ b then

F (x, z) = x3z + axz3 + bz4,

H(x, z) = −3(x4 − 2ax2z2 − 8bxz3 + a2z4),

and

G(x, y, z) = y2z − x3 − axz2 − bz3,
P (y1, y2, y3) = 2(ay31 + 9by1y

2
2 + 3y1y

2
3 − 6ay22y3),

Q(y1, y2, y3) = 24(2by31 − ay21y3 − 2a2y1y
2
2 − 9by22y3 + y33).

By direct calculation, the quadrics (1) define the image of E embedded in P5 via

(2)

z11 z12 z13

z21 z22 z23

 =

x3 + 3ax+ 4b −2xy ax2 + 6bx− a2

−3x2 − a −2y x3 − ax− 2b

 .

We checked, using the discriminant condition 4a3 + 27b2 6= 0, that the rational

functions on the right are a basis for the Riemann-Roch space L(6.0E). The image

is therefore a genus one normal curve.

Since the fibre product of the trivial 2-covering and the trivial 3-covering is the

trivial 6-covering, it only remains to prove that the maps in (ii) and (iii) are [2]E
and [3]E, where [n]E is multiplication-by-n on E. For the first of these we simply

checked that the 2× 2 minors of (2) define [2]E. The x-coordinate of [3]E(x, y) is

given by θ3/ψ
2
3 where

θ3 = x9 − 12ax7 − 96bx6 + . . .+ 3(3a4 + 32ab2)x+ 8(a3b+ 8b3),

ψ3 = 3x4 + 6ax2 + 12bx− a2.

After making the substitution (2) we find

(e1, e2) = (−48aψ2
3, 48aθ3), (f1, f2) = (−864bψ2

3, 864bθ3),

(g1, g2) = (−864bψ2
3, 864bθ3), (h1, h2) = (2304a2ψ2

3,−2304a2θ3).
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Since the numerical factors are of the form 2r3s, and we cannot have a = b = 0,

this proves (iii). �

3. Secant varieties

In this section we work over an algebraically closed field and review some geo-
metric facts about secant varieties of genus one normal curves. Many of the results
have been generalised to higher secant varieties, see for example [9].

Let C ⊂ Pn−1 be a genus one normal curve of degree n. We write H for the
divisor of a hyperplane section, and identify the Riemann-Roch space L(H) with
the space of linear forms on Pn−1. If D is an effective divisor on C of degree d < n
then the subspace L(H − D) ⊂ L(H) defines a linear subvariety D ⊂ Pn−1 of
dimension d−1. For example if D is the sum of two points P,Q ∈ C then D is the
secant line PQ if P 6= Q, and the tangent line TPC if P = Q. The secant variety
SecC is the Zariski closure of the union of all secant lines, equivalently the union
of all lines D for D a degree 2 effective divisor on C. If n ≥ 5 and P ∈ D for two
such divisors D, then it is easy to show (see [16, Lemma 2.6]) that P ∈ C.

Lemma 3.1. If n ≥ 5 then SecC ⊂ Pn−1 is an irreducible variety of dimension 3.

Proof. See [20, Proposition 11.24]. �

We write I(X) for the homogeneous ideal of a projective variety X. Suppose
we know a basis for the space of quadrics in I(C). The next lemma shows it is
easy to solve for the cubic forms in I(SecC) by linear algebra.

Lemma 3.2. If n ≥ 6 then I(SecC) is generated by cubics. A cubic form f

vanishes on SecC if and only if it is singular at every point on C, equivalently
∂f
∂xi
∈ I(C) for all 1 ≤ i ≤ n.

Proof. The first statement is a special case of results in [9], [19].

Now let P1, . . . , Pn be any points on C spanning Pn−1. We choose co-ordinates

so that P1 = (1 : 0 : . . . : 0), P2 = (0 : 1 : . . . : 0), etc. For each 1 ≤ i < j ≤ n the

secant variety contains the line PiPj. So if f ∈ I(SecC) is a form of degree d, then

f can contain no monomials involving xi and xj only. Therefore d ≥ 3. Moreover

if d = 3 then f is singular at P1. Since P1 ∈ C was arbitrary, f is singular at every

point of C.

Conversely, suppose f is singular at every point of C. Then for distinct points

P,Q ∈ C the restriction of f to the line PQ is a binary cubic with at least

two double roots. Therefore f vanishes on the line PQ, and it follows that f ∈
I(SecC). �

Lemma 3.3. If n ≥ 5 then C is the singular locus of SecC.
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Proof. If P ∈ C then the line PQ is contained in the tangent space TP SecC

for every Q ∈ C. Since C spans Pn−1 it follows that TP SecC = Pn−1. Since

SecC ⊂ Pn−1 is a proper subvariety (by Lemma 3.1) it follows that the singular

locus of SecC contains C. The reverse inclusion is proved in [9, Proposition 8.15],

[19, Proposition 5.1]. In fact if P ∈ D for D a degree 2 effective divisor on C, and

P 6∈ C, then TP SecC = 2D. �

The next two lemmas count the dimension of the space of cubics in I(SecC).
The exact statements are also of interest.

Let P ∈ C be any point. We choose co-ordinates x1, . . . , xn so that L(H − iP )
has basis x1, . . . , xn−i for i = 0, 1, 2. In other words P = (0 : . . . : 0 : 1) and
TPC = {(0 : . . . : 0 : λ : µ)}. We write C ′ and C ′′ for the genus one normal curves
with hyperplane sections H −P and H − 2P obtained by projecting away from P
and TPC.

Lemma 3.4. (i) If f ∈ I(SecC) is a cubic then

(3) f(x1, . . . , xn) = xng(x1, . . . , xn−2) + h(x1, . . . , xn−1)

for some quadric g ∈ I(C ′′) and cubic h.

(ii) The space of cubics vanishing on SecC has dimension at most n(n−4)(n−5)/6.

Proof. (i) We write f(x1, . . . , xn) =
∑
xrn−1x

s
ngrs(x1, . . . , xn−2). Since f vanishes

on TPC we have grs = 0 whenever r+s = 3. Since ∂f
∂xi
∈ I(C) for all 1 ≤ i ≤ n−2

we also have g11 = g02 = 0. Therefore f is of the form (3) and

g =
∂f

∂xn
∈ I(C) ∩K[x1, . . . , xn−2] = I(C ′′).

(ii) In the case n = 5 it is known (see [22, VIII.2.5]) that SecC ⊂ P4 is a hyper-

surface of degree 5. So there are no cubic forms in I(SecC). The proof is now by

induction on n ≥ 6. By (i), and the observation that

I(SecC) ∩K[x1, . . . , xn−1] = I(SecC ′),

the space of cubic forms in I(SecC) has dimension at most

(n− 1)(n− 5)(n− 6)

6
+

(n− 2)(n− 5)

2
=
n(n− 4)(n− 5)

6
,

where the first term is our inductive upper bound for the dimension of the space of

cubics in I(SecC ′), and the second term is the dimension of the space of quadrics

in I(C ′′). �

As before, we identify the Riemann-Roch space L(H) with the space of linear
forms on Pn−1. LetD1, D2 be divisors on C withD1+D2 = H. We write Φ(D1, D2)
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for the matrix of linear forms representing (with respect to some choices of bases
for L(D1) and L(D2)) the multiplication map

L(D1)× L(D2)→ L(H).

It is clear that Φ(D1, D2) has rank at most 1 on C, and hence rank at most 2 on
SecC. So the 2× 2 minors are quadrics in I(C) and the 3× 3 minors are cubics
in I(SecC).

Lemma 3.5. The space of cubics spanned by the 3 × 3 minors of the matrices

Φ(D1, D2) has dimension at least n(n− 4)(n− 5)/6.

Proof. See [16, Lemma 2.1]. �

Combining Lemmas 3.4 and 3.5 shows that the space of cubics in I(SecC) has
dimension exactly n(n− 4)(n− 5)/6.

4. Pencils of cubic forms

We drop our assumption that K is algebraically closed, and write K for the
algebraic closure. The Hessian H(F ) of a cubic form F ∈ K[x1, . . . , x6] is the
form of degree 6 obtained as the determinant of the 6× 6 matrix of second partial
derivatives of F . To avoid confusion with our earlier notation, we will now write
h = h(f) for the Hessian of a binary quartic.

Theorem 4.1. Let C ⊂ P5 be a genus one normal curve of degree 6 with secant

variety defined by cubic forms F1 and F2. Then, working over K, there are exactly

four “special” cubics F in the pencil spanned by F1 and F2, with H(F ) a scalar

multiple of F 2. Moreover

(i) Each cubic in the pencil spanned by F1 and F2 has singular locus C, with

the exception of the special cubics which have singular locus a Veronese

surface.

(ii) There is a binary quartic f ∈ K[s, t], with roots corresponding to the special

cubics, and cubic forms G1, G2 ∈ K[x1, . . . , x6] satisfying

(4)
H(sF1 + tF2) = 1

3
h(s, t)(sF1 + tF2)

2 − 2f(s, t)(sF1 + tF2)(sG1 + tG2)

− 1
3
f(s, t)(∂

2f
∂t2
F 2
1 − 2 ∂2f

∂s∂t
F1F2 + ∂2f

∂s2
F 2
2 )

where h is the Hessian of f , as defined in Section 2.

(iii) The covering map from C to its Jacobian factors via a quadratic twist of

y2 = f(x, z).

Proof. For the first part of the proof we may take K = K. Let D1 and D2

be degree 3 divisors on C with D1 + D2 = H. Then det Φ(D1, D2) is a cubic

form vanishing on SecC and so belongs to the pencil spanned by F1 and F2.
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By Lemmas 3.4 and 3.5 the pencil is spanned by cubics of this form. We now

show that every cubic in the pencil is of this form. We say that divisor pairs

(D1, D2) and (D′1, D
′
2) are equivalent if D1 ∼ D′1 or D1 ∼ D′2. It is shown in [16,

Lemma 2.9], following [25, 9.22.1], that if (D1, D2) and (D′1, D
′
2) are inequivalent

then SecC = {det Φ(D1, D2) = det Φ(D′1, D
′
2) = 0} ⊂ P5. In particular these two

cubic forms are linearly independent.

We claim that the map (D1, D2) 7→ Φ(D1, D2) is a bijection between the equiv-

alence classes of divisor pairs and the pencil of cubics spanned by F1 and F2. To

prove this let C be the image of an elliptic curve E embedded in P5 by |6.0E|.
Then writing

det Φ(2.0E + P, 4.0E − P ) = s(P )F1 + t(P )F2,

for P ∈ E, we can see that s/t is a rational function on E. It therefore defines

a morphism (s : t) : E → P1. By the previous paragraph, this morphism is

non-constant, and indeed has fibres of the form {P,−P}. It must therefore be

surjective. This proves the claim.

By considering P ∈ E[2] we see there are four cubics in the pencil of the form

det Φ(D1, D2) with D1 ∼ D2. In these cases we may choose bases for L(D1) and

L(D2) so that Φ(D1, D2) is a generic 3× 3 symmetric matrix, say

M =


x11 x12 x13

x12 x22 x23

x13 x23 x33

 .

Then F = detM satisfies H(F ) = −16F 2. Moreover the partial derivatives of F ,

equivalently the 2 × 2 minors of M , define a Veronese surface, i.e. the image of

the 2-uple embedding P2 → P5.

The identity (4) is well-behaved under the natural action of GL2×GL6. Specif-

ically, if the identity is satisfied by (F1, F2) and f , then it is also satisfied by

(5) (m11F1 +m21F2,m12F1 +m22F2) and
1

detM
(f ◦M)

for any M ∈ GL2, and by

(6) (F1 ◦N,F2 ◦N) and (detN)f

for any N ∈ GL6. Therefore (ii) follows from any of the special cases computed

in Section 5.

To complete the proof of (i) it remains to show that if (s : t) ∈ P1 is not a root

of f then sF1 + tF2 is not a special cubic, and its partial derivatives define C.
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Taking s = 1 in (4) and using Euler’s identity we have

(7) H(F1 + tF2) ≡ −4f(1, t)2F 2
2 (mod (F1 + tF2)).

In particular if f(1, t) 6= 0 then F1+tF2 is not a special cubic, and indeed it does not

even divide its own Hessian. If the partial derivatives of a cubic form F vanish at

a point P = (a1 : . . . : a6), then by Euler’s identity the vector (a1, . . . , a6) is in the

kernel of the matrix of second partial derivatives of F evaluated at P . Therefore

H(F ) vanishes at P . If f(1, t) 6= 0 and P is singular on {F1+tF2 = 0} ⊂ P5 it now

follows by (7) that F2(P ) = 0. But then P ∈ SecC and it follows by Lemma 3.3

that P ∈ C. This completes the proof of (i).

We now drop our assumption that K is algebraically closed. To complete the

proof of (ii) we must show that G1, G2 and f have coefficients in K. However

by a change of co-ordinates defined over K we may assume that C is of the form

described in Theorem 2.1. We are then done by the last of the special cases

computed in Section 5. This also proves (iii). �

Remarks 4.2. (i) The identity (4) only defines f up to sign. It can be com-

puted by using (7) to solve for f(1, t)2 for several values of t and then

interpolating.

(ii) The geometric interpretation of the cubic formsG1, G2 is that F1, F2, G1, G2

are a basis for the space of cubic forms vanishing on the tangent variety

of C.

(iii) The set of special cubics is a torsor under E[2], where E is the Jacobian

of C. This can be seen either by considering the divisors D on C with

2D ∼ H, or as a consequence of Theorem 4.1(iii).

(iv) It is shown in [16, Theorem 1.3] that if D1, D2 are degree 3 divisors on

C with D1 + D2 = H and D1 6∼ D2 then the 2 × 2 minors of Φ(D1, D2)

generate I(C).

5. Explicit formulae

We check the identity (4) first in the case of an elliptic curve E embedded via
|6.0E|, then for a binary quartic 3-uply embedded, then for a ternary cubic 2-
uply embedded, and finally for the sum of a binary quartic and ternary cubic as
computed using Theorem 2.1. (For the general definition of a d-uple embedding
see [21, p13].)

Let E be the elliptic curve y2 = x3 + ax + b. The embedding of E in P5 via
|6.0E| is given by (x1 : . . . : x6) = (1 : x : y : x2 : xy : x3) and has image C ⊂ P5
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defined by quadrics

q1 = x1x4 − x22, q6 = x1x6 − x2x4,
q2 = x2x4 − x23 + ax1x2 + bx21, q7 = x2x6 − x24,
q3 = x1x5 − x2x3, q8 = x3x6 − x4x5,
q4 = x2x5 − x3x4, q9 = x4x6 − x25 + ax2x4 + bx22.

q5 = x3x5 − x24 − ax1x4 − bx1x2,
By Lemma 3.2 the cubics defining SecC are

F1 = (x6 + ax2 + bx1)q1 − x1x25 + 2x2x3x5 − x23x4,
F2 = x6q2 − x2x25 + 2x3x4x5 − x34 − x1x4(ax4 + 2bx2) + bx32.

These are of the form specified in Lemma 3.4, where C ′′ ⊂ P3 is the quadric
intersection defined by q1 and q2. We remark that if C ′ ⊂ P4 is the genus one
normal curve of degree 5 defined by q1, . . . , q5 then SecC ′ is defined by the quintic
form

2(q2F1 − q1F2) = det

(
∂qi
∂xj

)
i,j=1,...,5

.

By following the proof of Theorem 4.1 we find that F1 and F2 are the determinants
of the matricesx1 x2 x3

x2 x4 x5

x3 x5 x′6

 and

 x2 x4 x3 +
√
bx1

x4 x6 x5 +
√
bx2

x3 −
√
bx1 x5 −

√
bx2 x4 + ax1


where x′6 = x6+ax2+bx1. Moreover (4) is satisfied with f(s, t) = 4(s3t+ast3−bt4)
and

G1 = 2(x1x
2
6 + 2x23x6 + 2ax1x2x6 + 2bx21x6 − 6x2x

2
5 − 4ax1x3x5 + 3x34 + 6ax22x4

+ a2x21x4 − 4bx1x
2
3 + 6bx32 + 3a2x1x

2
2 + 8abx21x2 + 4b2x31),

G2 = 2(x2x
2
6 − 4x3x5x6 + 3x24x6 + 2ax1x4x6 − 4bx1x2x6 + a2x21x6 + 2ax1x

2
5 + 8bx1x3x5

+ 6ax2x
2
4 + 12bx1x

2
4 − 6ax23x4 + 2abx21x4 − 12bx2x

2
3 + 3a2x32 + 6abx1x

2
2 + 4b2x21x2).

More general formulae are obtained if we start with a binary quartic

F (x, z) = ax4 + bx3z + cx2z2 + dxz3 + ez4,

defining a double cover C2 → P1, and then embed C2 in P5 via

(x0 : x1 : x2 : x3 : y0 : y1) = (x3 : x2z : xz2 : z3 : xy : zy).

The image has secant variety defined by

F1 = (ax0 + bx1 + cx2 + dx3)(x0x2 − x21) + e(x0x
2
3 − 2x1x2x3 + x32)− (x0y

2
1 − 2x1y0y1 + x2y

2
0),

F2 = (bx0 + cx1 + dx2 + ex3)(x1x3 − x22) + a(x20x3 − 2x0x1x2 + x31)− (x1y
2
1 − 2x2y0y1 + x3y

2
0).
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Moreover the identity (4) is satisfied with f(s, t) = 4F (−t, s), and G1, G2 certain

cubic forms with coefficients in Z[a, b, c, d, e].

Alternatively we start with a ternary cubic G(x1, x2, x3) defining C3 ⊂ P2 and

then embed C3 in P5 via

(x11 : x12 : x13 : x22 : x23 : x33) = (x21 : x1x2 : x1x3 : x22 : x2x3 : x23)

The image has secant variety defined by

F1 = det


x11 x12 x13

x12 x22 x23

x13 x23 x33

 ,

F2 = 1
6

3∑
i,j,k,p,q,r=1

∂3G

∂xi∂xj∂xk

∂3G

∂xp∂xq∂xr
(3xijxpq − xipxjq)xkr.

Let R3 = Z[a, b, c, . . .] where a, b, c . . . are the coefficients of G. Then F1 and F2

have coefficients in R3 and (4) is satisfied with f(s, t) = 4(s3t − 3c4st
3 − 2c6t

4),

where c4 and c6 are the invariants of G. If b2, b4, b6 ∈ R3 are as defined in [13] then

F ′2 = 1
12

(F2 + b2F1) has coefficients in R3. Moreover F1 and F ′2 satisfy (4) with

f(s, t) = 4s3t+ b2s
2t2 + 2b4st

3 + b6t
4.

Finally we start with a generalised binary quartic y2 +A(x, z)y = B(x, z) and a

ternary cubic G(x, y, z) with the same invariants c4, c6 and ∆. We put F (x, z) =
1
4
A(x, z)2 +B(x, z), and define ei, fi, gi, hi as in Section 2. Then putting

Fi = 1
72

(fi − gi) and Gi = 1
72

∆(c4ei − hi)

for i = 1, 2, the identity (4) is satisfied with f(s, t) = 4∆F (s, t). This is proved

by a generic calculation, which is made feasible by reducing to the special case

considered in the proof of Theorem 2.1. Suppose that the Weierstrass equations,

computed using [13, Theorem 2.10], for the Jacobians of y2 + A(x, z)y = B(x, z)

and G(x, y, z) = 0 are related by x ← x + r and y ← y + sx + t. Then a generic

calculation shows that the coefficients of F1, F2, G1, G2 are integer coefficient poly-

nomials in r, s, t and the coefficients of A,B and G. The reason for introducing

r, s, t is to avoid having denominators of the form 2a3b.

6. Computing the Jacobian

Suppose we are given equations for a genus one curve C that is either a double

cover of P1 (case n = 2) or a genus one normal curve of degree n ≥ 3. If n =

2, 3, 4, 5 then the invariants in [1], [15] give a formula for the Jacobian of C. If
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n = 6 then Theorem 4.1(iii) and Remark 4.2(i), together with the invariants in

the case n = 2, determine the Jacobian up to quadratic twist. In this section we

explain how Theorem 2.1 can be used to compute the Jacobian exactly.

By Lemma 3.2 we may solve for cubic forms F1 and F2 defining SecC. We

know by Lemma 3.3 that the partial derivatives of F1 and F2 define C. In fact,

by the formulae in Section 5, they generate I(C). The 12 partial derivatives of F1

and F2, in the 9-dimensional space of quadrics vanishing on C, therefore satisfy 3

linear dependence relations.

By properties of the obstruction map, as cited in Section 2, we know that C is of

the form arising in Theorem 2.1, up to a change of co-ordinates on P5 defined over

K. We now find this change of co-ordinates, up to the action of GL2(K)×GL3(K).

The cubic forms f1 − g1 and f2 − g2 in Theorem 2.1 satisfy

∂(f1 − g1)
∂z2k

=
∂(f2 − g2)
∂z1k

for k = 1, 2, 3. Therefore substituting

xi =
2∑
j=1

3∑
k=1

aijkzjk

into F1 and F2, for suitable constants aijk, gives cubic forms F ′1, F
′
2 ∈ K[z11, . . . , z23]

satisfying
∂F ′1
∂z1k

+
∂F ′2
∂z2k

= 0

for k = 1, 2, 3. By the chain rule

6∑
i=1

2∑
j=1

aijk
∂Fj
∂xi

= 0

for k = 1, 2, 3. The coefficients of the 3 linear dependence relations mentioned

above, are therefore exactly the numbers we need to write down the required

change of co-ordinates on P5.

We have now reduced to the case where C = C6 is as described in Theorem 2.1.

In particular the 2 × 2 minors of the matrix (zij) define a morphism C6 → C3,

where C3 is a plane cubic. We can solve for an equation for C3 by linear algebra.

The Jacobian of C6 is now the same as that of C3, which may be computed using

the classical formulae cited above.

7. Minimal models

We represent a genus one normal curve of degree 6 by a pair of cubic forms defin-

ing its secant variety. In this section we define the discriminant of such a model.
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We then prove a result on the existence of models with the same discriminant as

a minimal Weierstrass equation for the Jacobian elliptic curve.

Definition 7.1. Let F1, F2 ∈ K[x1, . . . , x6] be cubic forms defining the secant

variety of a genus one normal curve of degree 6. The discriminant of (F1, F2) is

∆(F1, F2) = 2−12∆(f)

where f is the binary quartic in Theorem 4.1, and ∆(f) is as defined in Section 2.

Since Theorem 4.1 only determines f up to sign, Definition 7.1 relies on the fact

that the discriminant of a binary quartic has even degree (in fact degree 6). Since

f has distinct roots we have ∆(F1, F2) 6= 0.

Lemma 7.2. If (M,N) ∈ GL2×GL6 then

∆(m11F
′
1 +m12F

′
2,m21F

′
1 +m22F

′
2) = (detM)6(detN)6∆(F1, F2)

where F ′1 = F1 ◦N and F ′2 = F2 ◦N .

Proof. This follows from (5), (6), and properties of the discriminant of a binary

quartic, namely that it has degree 6 and weight 12. �

Let OK be a discrete valuation ring with uniformiser π, discrete valuation v,

residue field k, and field of fractions K. As usual we assume charK 6= 2, 3.

Theorem 7.3. Suppose that F1 and F2 have coefficients in OK, and that their

reductions mod π (which we denote F 1 and F 2) are linearly independent over k.

Then the binary quartic f has coefficients in OK.

Proof. Suppose H(F1) ≡ αF 2
2 (mod F1) for some α ∈ K. If α is not in OK then

F 1 divides F
2

2 . Then F 1 and F 2 have a common quadratic factor, and F 1 + ξF 2

divides F
2

2 for at most two ξ ∈ k. It follows by (7) that 2f(1, t) ∈ OK for

all t ∈ OK , avoiding at most two residue classes mod π. If |k| ≥ 7 we see by

interpolation that 2f has coefficients in OK . In general we may reduce to this

case by making an unramified extension.

A generic calculation shows that if F is a cubic form in x1, . . . , x6 then the

coefficients of 1
4
H(F ) are integer coefficient polynomials in the coefficients of F .

The above arguments then show that f has coefficients in OK . �

Theorem 7.4. Let C ⊂ P5 be a genus one normal curve of degree 6 defined over

K. Suppose that C(K) 6= ∅. Then, after a change of co-ordinates on P5 defined

over K, the secant variety SecC is defined by cubic forms F1, F2 ∈ OK [x1, . . . , x6]

with ∆(F1, F2) = ∆E, where ∆E is the minimal discriminant of the Jacobian E

of C.
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Proof. If C is an elliptic curve E embedded by |6.0E|, or the 3-uple embedding of

a binary quartic, or the 2-uple embedding of a ternary cubic, then the theorem

already follows from the formulae in Section 5, and the corresponding results for

2-coverings and 3-coverings in [13]. If however we use Theorem 2.1 to add a

binary quartic and ternary cubic then we only get F1, F2 ∈ OK [x1, . . . , x6] with

∆(F1, F2) = ∆7
E. In other words, adding a minimal 2-covering and a minimal

3-covering does not give a minimal 6-covering.

In general we argue as follows. We first observe that if P ∈ C(K) then there is a

unique point Q ∈ C(K) such that C has hyperplane section 5P+Q. The complete

linear system |P + Q| defines a morphism C → P1. This gives an equation for C

of the form y2 + A(x, z)y = B(x, z) where A and B are binary forms of degrees

2 and 4. By [13, Theorem 3.4] we may change co-ordinates on P1 (and make a

substitution for y) so that y2 +A(x, z)y = B(x, z) has coefficients in OK , yet has

discriminant ∆E. Since SL2(OK) acts transitively on P1(K) we may assume that

P and Q are the points on C above (x : z) = (1 : 0). By a substitution y ← y+λx2

we may further assume that Q is the point (x : z : y) = (1 : 0 : 0). Setting z = 1

gives an affine equation

y2 + (lx2 +mx+ n)y = bx3 + cx2 + dx+ e

where P and Q are now the points at infinity. We have x ∈ L(P + Q), y ∈
L(2P +Q) and bx− ly ∈ L(2P ). The embedding C ⊂ P5 via |5P +Q| is given by

(x1 : . . . : x6) = (1 : x : y : (bx− ly)x : (bx− ly)y : (bx− ly)2x).

The image differs from the curve we started with by a change of co-ordinates
defined over K. It has secant variety defined by cubics

F1 = bex21x4 − lex21x5 − b2ex1x
2
2 + 2lbex1x2x3 + bdx1x2x4 − ldx1x2x5 − l2ex1x

2
3 − nbx1x3x4

+ lnx1x3x5 + cx1x
2
4 −mx1x4x5 + x1x4x6 − x1x

2
5 − b2dx32 + (2lbd + nb2)x22x3 − bcx22x4

− (lc−mb)x22x5 − bx22x6 − (l2d + 2lnb)x2x
2
3 + 2lcx2x3x4 + 2bx2x3x5 + lx2x3x6

− lx2x4x5 + l2nx33 − (lm + b)x23x4 − lx23x5 + lx3x
2
4,

and

F2 = −ex21x6 + 2bex1x2x4 − dx1x2x6 − 2lex1x3x4 + nx1x3x6 + dx1x
2
4 − nx1x4x5 − b2ex32

+ 2lbex22x3 + nbx22x5 − cx22x6 − l2ex2x
2
3 − nbx2x3x4 − lnx2x3x5 + mx2x3x6 + cx2x

2
4

− x2x4x6 + x2x
2
5 + lnx23x4 + x23x6 −mx3x

2
4 − 2x3x4x5 + x34.

Moreover the identity (4) is satisfied with f(s, t) = A(s, t)2 + 4B(s, t) and G1, G2

certain cubic forms with coefficients in Z[l,m, n, b, c, d, e]. Then ∆(F1, F2) = ∆E

as required. �
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We say that pairs of cubic forms (F1, F2) and (F ′1, F
′
2) are K-equivalent if they

are related by the action of GL2(K)×GL6(K), as specified in (5) and (6).

Definition 7.5. Let F1, F2 ∈ OK [x1, . . . , x6] be cubic forms defining the secant

variety of a genus one normal curve of degree 6. We say that (F1, F2) is minimal

if v(∆(F1, F2)) is minimal among all pairs of cubics forms with coefficients in OK
that are K-equivalent to (F1, F2).

Corollary 7.6. Let C ⊂ P5 be a genus one normal curve of degree 6 defined over

K. Let ∆E be the minimal discriminant of the Jacobian elliptic curve E. Then

(i) If F1 and F2 have coefficients in OK then 212∆(F1, F2) ∈ OK.

(ii) A minimal model (F1, F2) for C exists. Moreover v(∆(F1, F2)) = v(∆E) +

6` for some integer ` ≥ −1− 2v(2) we call the minimal level.

(iii) If v(∆E) < 6 and char(k) 6= 2 then ` ≥ 0. If in addition C(K) 6= ∅ then

` = 0.

Proof. (i) Since F1 and F2 are linearly independent over K, we can use Lemma 7.2

to reduce to the case where F 1 and F 2 are linearly independent over k. Then by

Theorem 7.3, f has coefficients in OK and so 212∆(F1, F2) = ∆(f) ∈ OK . We

expect that ∆(F1, F2) ∈ OK . It may be possible to prove this by adapting the

identity (4), so that f is replaced by a generalised binary quartic. This would be

analogous to the proof of [13, Lemma 2.9] in the case n = 4.

(ii) By (i) we have v(∆(F1, F2)) ≥ −12v(2), and so minimal models exist. If f

has coefficients in OK then by [13, Lemma 3.2] and Theorem 4.1(iii) we have

v(∆(f)) or v(∆(πf)) = v(∆E) + 12m

for some integer m ≥ 0. It follows that ` ≥ −1− 2v(2). We expect that ` ≥ 0 in

all cases.

(iii) This is immediate from (i) and Theorem 7.4. In fact, arguing as in the proof

of (ii), the condition v(∆E) < 6 could be weakened to v(∆E) < v(∆E′) where E ′

is the quadratic twist of E by π. �

Our results have the following global application. A curve C/Q is said to be

everywhere locally soluble if C(R) 6= ∅ and C(Qp) 6= ∅ for all primes p.

Corollary 7.7. Let C/Q be an everywhere locally soluble 6-covering of an elliptic

curve E/Q. Then C is isomorphic to a genus one normal curve in P5 with secant

variety defined by cubic forms F1, F2 ∈ Z[x1, . . . , x6] with ∆(F1, F2) equal to the

minimal discriminant of E.

Proof. Cassels [10] showed that if an n-covering of an elliptic curve is everywhere

locally soluble then it admits a Q-rational divisor of degree n. We may therefore
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embed C ⊂ P5 as a genus one normal curve of degree 6. The result now follows

from Theorem 7.4 (with K = Qp) and strong approximation for SL2× SL6 over Q.

�

8. Example

Let E/Q be the elliptic curve

y2 + y = x3 + x2 − 20404558x− 35483149947.

This is an elliptic curve with Mordell-Weil rank 2 and prime conductor p =

1631859133 taken from the Stein-Watkins database [27]. We used Magma [8]

to compute everywhere locally soluble 2- and 3-coverings of E represented by the

binary quartic

F = (733/4)x4 + 181x3z + 3979x2z2 + 1943xz3 + 21117z4,

and ternary cubic

G = 17x3− 14x2y− 10x2z− 57xy2 + 36xyz+ 41xz2− 43y3− 52y2z− 104yz2−5z3.

Theorem 2.1 computes equations for the 6-covering of E that is the sum of F

and G. The secant variety of this curve is defined by cubics

F1 = 41175z311 − 12589z211z12 + 17791z211z13 − 1178025z211z21

+ 111252z211z22 − 163938z211z23 − 26576z11z
2
12 + 6300z11z12z13

...
...

+ 1633757z221z23 − 2666032z21z
2
22 + 649908z21z22z23 + 3188136z21z

2
23

− 652977z322 + 455246z222z23 − 3402998z22z
2
23 + 1121925z323,

and

F2 = −392675z311 + 111252z211z12 − 163938z211z13 − 1887994z211z21

+ 175400z211z22 − 260852z211z23 + 268818z11z
2
12 − 65625z11z12z13

...
...

+ 3726130z221z23 − 5804300z21z
2
22 + 1394862z21z22z23 + 7094292z21z

2
23

− 1502332z322 + 1070278z222z23 − 7608418z22z
2
23 + 2490164z323.

The coefficients of F1 and F2 are integers with maximum absolute value 11718351.

These cubics are linearly independent mod q for all primes q, and have discriminant
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∆(F1, F2) = p7. The ad hoc methods for minimisation and reduction in [14,

Section 6.3] suggest making the substitution

(8)



z11

z12

z13

z21

z22

z23


=



18 16 −6 3 −34 −19

−4 −7 −15 16 23 −32

−21 2 5 −17 −4 −4

18 −1 −23 −4 −2 36

−12 −27 −3 12 −8 1

10 1 −2 −31 11 −18





x1

x2

x3

x4

x5

x6


.

The determinant of this matrix is p, and after making this substitution both cubics

are divisible by p. The secant variety is now defined by

F ′1 = 15x31 − 12x21x2 − 44x21x3 − 76x21x4 + 43x21x5 + 57x21x6 − 3x1x
2
2

+ 46x1x2x3 − 39x1x2x4 + 23x1x2x5 − 77x1x2x6 + 64x1x
2
3

...
...

− 207x3x
2
6 − 31x34 + 76x24x5 − x24x6 − 29x4x

2
5 + 55x4x5x6

− 79x4x
2
6 + 5x35 − 52x25x6 + 15x5x

2
6 + 122x36,

and

F ′2 = −27x31 − 9x21x2 + 150x21x3 − 43x21x4 + 175x21x5 − 162x21x6

+ 53x1x
2
2 + 158x1x2x3 − 9x1x2x4 − 10x1x2x5 − 245x1x2x6

...
...

− 543x3x5x6 − 123x3x
2
6 + 143x34 + 58x24x5 + 59x24x6 − 74x4x

2
5

+ x4x5x6 − 247x4x
2
6 + 7x35 − 136x25x6 + 495x5x

2
6 + 111x36.

The coefficients of F ′1 and F ′2 are integers with maximum absolute value 542. These

cubics are linearly independent mod q for all primes q, and have discriminant

∆(F ′1, F
′
2) = p.

On the singular locus of {F ′1 = F ′2 = 0} ⊂ P5 the Magma function PointSearch

finds the point

(3859214977 : −4307304051 : 6829067848 : −2044256038 : 1674518872 : 1893140020)
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By the substitution (8) this corresponds toz11 z12 z13

z21 z22 z23

 =

139461472460 142496392463 35031066301

10314359739 −13465342697 −68341834433

 .

The 2× 2 minors of this matrix define a point

(9266759548221841924682 : −9892375880512983270619 : 3347655573075237871777)

on the plane cubic {G = 0} ⊂ P2. By the classical formulae for the 3-covering

map (see [1]), this maps down to a point P ∈ E(Q) with canonical height ĥ(P ) ≈
307.45928.
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