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Abstract. We study genus one curves that arise as 2-, 3- and 4-coverings
of elliptic curves. We describe efficient algorithms for testing local solubility
and modify the classical formulae for the covering maps so that they work in
all characteristics. These ingredients are then combined to give explicit bounds
relating the height of a rational point on one of the covering curves to the height
of its image on the elliptic curve. We use our results to improve the existing
methods for searching for rational points on elliptic curves.

1. Introduction

Let E be an elliptic curve over a number field K. An n-covering of E is smooth
curve of genus one C together with a morphism π : C → E, with C and π both
defined over K, such that the diagram
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// E

commutes for some isomorphism ψ : C ∼=E defined over K. An n-descent cal-
culation computes equations for the everywhere locally soluble n-coverings of E.
Finding rational points on these n-coverings can assist in computing generators
for the Mordell-Weil group E(K). Indeed if C(K) is non-empty then π(C(K)) is
a coset of nE(K) in E(K).

Suppose that C is everywhere locally soluble, i.e. C(Kv) 6= ∅ for all places v
of K. By [Ca, Proof of Theorem 1.3] there exists a K-rational divisor D on C
with D ∼ ψ∗(n.O), where O is the identity on E. The complete linear system |D|
defines a morphism C → Pn−1. If n = 2 then C → P1 is a double cover ramified
at 4 points. If n ≥ 3 then C ⊂ Pn−1 is a genus one normal curve of degree n. The
map π : C → E may be recovered as P 7→ [nP −D] ∈ Pic0(C) = E where D is now
the hyperplane section on C. In the cases n = 2, 3, 4 equations for C take the form
of a binary quartic, ternary cubic or quadric intersection. The Jacobian elliptic

Date: 12th October 2010.
1



2 T.A. FISHER AND G.F. SILLS

curve E and covering map π are then given by formulae from classical invariant
theory as surveyed in [AKM3P].

It is expected that points on C(K) will be smaller (and hence easier to find)
than their images in E(K). This statement is made precise using the theory of
heights. Let h be the logarithmic height on C relative to the hyperplane section
D, and hE the x-coordinate logarithmic height on E. Then as pointed out in [Sto]
there exist constants B1 and B2 such that

(1.1) B1 ≤ h(P )−
1

2n
hE(πP ) ≤ B2

for all P ∈ C(K). To prove this one first notes that since n2.O ∼ [n]∗O we have
2nD ∼ π∗(2.O). The existence of bounds B1 and B2 then follows by standard
results about heights; see for example [HS, Theorem B.3.2].

We restrict to n = 2, 3 or 4. In these cases n-descent has been implemented in
the computer algebra system Magma [BCP] at least over K = Q. The algorithms
for 3-descent are described in [SS], [CFOSS] and those for 4-descent in [MSS], [W].
In Sections 2, 3 and 4 we

• describe algorithms for testing whether C(Kv) 6= ∅,
• modify the formulae for the covering map π : C → E so that they work in

all characteristics, and
• compute explicit bounds B1 and B2 in (1.1).

Recent work on higher descents and on computing the Cassels-Tate pairing (see
[Cre], [Don], [F4], [Sta]) relies on being able to efficiently compute local points.
This prompted us to improve the local solubility tests currently implemented in
Magma. The material in Section 2 should however contain few surprises for ex-
perts. The main reason for including it here is as a preliminary to our work on
height bounds. The latter is also the motivation for the formulae in Section 3,
although these too may be of independent interest.

It is possible to compute bounds B1 and B2 in (1.1) using elimination theory.
However this method gives rather poor results. Instead we compute our bounds as
sums of local contributions. This generalises work of Siksek [Si2] who considered
the case where π is multiplication-by-2 on E. As he observes it is worth putting
some effort into obtaining good bounds, as this can significantly reduce the size
of the region we end up searching. We give some examples in Section 5.

The bounds B1 and B2 depend on our choice of equations for C and E. Let us
take K = Q. For E we take the global minimal Weierstrass equation

(1.2) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with a1, a3 ∈ {0, 1} and a2 ∈ {0,±1}. For C we take an equation that is minimised
and reduced as described in [CFS]. Roughly speaking one expects that minimising
improves the bounds at the finite places, and reducing improves the bounds at the
infinite places. However there can be more than one choice of minimisation. We
find that the bounds can vary significantly between these choices. In Section 5 we
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include an example where these ideas allow us to improve the search for rational
points on C (and hence on E).

1.1. Genus one models. The following notation is recalled from [CFS], [F1].
We call the equations defining an n-covering (where n = 2, 3 or 4) a genus one
model. More precisely we make the following definition.

Definition 1.1. Let R be any ring.

(i) A genus one model of degree 2 over R is a generalised binary quartic

y2 + P (x1, x2)y = Q(x1, x2),

sometimes abbreviated (P,Q), where P and Q are homogeneous forms of

degree 2 and 4 with coefficients in R. A transformation of genus one models

is given by y ← µ−1y + r0x
2
1 + r1x1x2 + r2x

2
2 for some µ ∈ R× and r =

(r0, r1, r2) ∈ R3, followed by xj ←
∑
nijxi for some N = (nij) ∈ GL2(R).

We write G2(R) for the group of all such transformations g = [µ, r,N ] and

define det g = µ detN .

(ii) A genus one model of degree 3 over R is a ternary cubic U ∈ R[x1, x2, x3].

A transformation of genus one models is given by multiplying the cubic

through by µ ∈ R×, followed by xj ←
∑
nijxi for some N = (nij) ∈

GL3(R). We write G3(R) for the group of all such transformations g =

[µ,N ] and define det g = µ detN .

(iii) A genus one model of degree 4 over R is a quadric intersection, i.e. a

pair of homogeneous polynomials Q1, Q2 ∈ R[x1, . . . , x4] of degree 2. A

transformation of quadric intersections is given by Qi ←
∑
mijQj for some

M = (mij) ∈ GL2(R) and xj ←
∑
nijxi for some N = (nij) ∈ GL4(R).

We write G4(R) for the group of all such transformations g = [M,N ] and

define det g = detM detN .

We say that genus one models are R-equivalent if they are in the same orbit for
the action of Gn(R). Notice that by our conventions the action of Gn(R) on the
space of genus one models is a left action.

An invariant of weight k is a polynomial F in the coefficients of a genus one
model such that F ◦g = (det g)kF for all g ∈ Gn. Let c4, c6 and ∆ = (c34−c

2
6)/1728

be the classical invariants of weights 4, 6 and 12. We fix the scaling of these
invariants as described in [CFS], [F1], i.e so that the models y2 + x1x2y = 0,
x1x2x3 = 0 and x1x2 = x3x4 = 0 have invariants c4 = 1 and c6 = −1. For example
the binary quartic y2 = ax4 + bx3z + cx2z2 + dxz3 + ez4 has invariants

c4 = 24(12ae− 3bd+ c2)

c6 = 25(72ace− 27ad2 − 27b2e+ 9bcd− 2c3).
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A genus one model Φ over a field K is non-singular if the variety CΦ it defines is
a smooth curve of genus one, and K-soluble if CΦ(K) 6= ∅. It is shown in [F1] that
Φ is non-singular if and only if ∆(Φ) 6= 0. Moreover if char(K) 6= 2, 3 then (by
an observation originally due to Weil in the cases n = 2, 3) the Jacobian elliptic
curve E = Jac(CΦ) has Weierstrass equation

(1.3) y2 = x3 − 27c4(Φ)x− 54c6(Φ).

Functions for computing with genus one models, their transformations and invari-
ants have been contributed to Magma [BCP] by the first author.

2. Testing for local solubility

Let K be a finite extension of Qp with ring of integers OK , maximal ideal πOK ,
residue field k and normalised discrete valuation v : K× → Z. Reduction mod π
will be denoted x 7→ x̃. If f is a polynomial with coefficients in K then we write
v(f) for the minimum valuation of a coefficient.

Let Φ be a non-singular genus one model over K of degree n ∈ {2, 3, 4}. In this
section we give algorithms for deciding whether Φ is K-soluble. Our algorithm in
the case n = 2 is essentially the same as that in [BSD], [Bru], [Cr], [MSS] and is
included only for completeness. The cases n = 3, 4 can also be handled by the
general method for complete intersections described in [Bru]. However this general
method involves looping over all k-points on the reduction, and is therefore ineffi-
cient when k is large. We overcome this problem by making use of the geometry
of singular genus one models. We have contributed our algorithms (over K = Qp)
to Magma [BCP], and from the next release (Version 2.17) they will be called by
default when equations of the relevant form are passed to IsLocallySoluble.

The basic algorithms are listed in Section 2.1. They depend on methods for
deciding whether there are any smooth k-points on the reduction (see Section 2.2)
and for finding all non-regular k-points (see Section 2.3). It is clear by Hensel’s
lemma that when an answer is returned then that answer is correct. If the al-
gorithms failed to terminate then from the resulting infinite sequence of trans-
formation we could construct a singular point on the original curve. Thus our
assumption that Φ is non-singular ensures that the algorithms terminate. We
omit the details since we give an alternative proof in Section 4.4.

In practice we first replace Φ by a minimal model, i.e. a K-equivalent model
over OK with v(∆(Φ)) minimal. Algorithms for doing this are described in [CFS].
Let E = Jac(CΦ) be the Jacobian elliptic curve and ∆E its minimal discriminant.
Then v(∆(Φ)) = v(∆E) + 12ℓ where ℓ is a non-negative integer called the level of
Φ. Notice that applying a transformation g ∈ Gn(K) changes the level by v(det g).
In [CFS] it is shown that the minimal level is 0 if and only if CΦ(Knr) 6= ∅ where
Knr is the maximal unramified extension of K. Therefore our local solubility tests
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are only needed for models of level 0. This extra hypothesis will be useful in
Section 2.3.

We mention as an aside that if the Tamagawa number c(E) is coprime to n
then a further simplification is possible. Indeed by the following lemma we have
CΦ(K) 6= ∅ if and only if CΦ(Knr) 6= ∅, and so the algorithms in [CFS] already give
a test for local solubility.

Lemma 2.1. The restriction map H1(K,E) → H1(Knr, E) has kernel of order

c(E).

Proof: By [M, Proposition 3.8] and the inflation-restriction exact sequence the
kernel is isomorphic to H1(k,ΦE) where ΦE is the component group of the Néron
model of E. Since ΦE is finite and c(E) = #ΦE(k) the result follows by the exact
sequence

0−→H0(k,ΦE)−→ΦE
1−Frob
−→ ΦE−→H

1(k,ΦE)−→0.

2

2.1. Algorithms. Let Φ be a non-singular genus one model over K of degree
n ∈ {2, 3, 4}. Our algorithms for deciding whether CΦ(K) 6= ∅ start by making
two simplifications. First by clearing denominators we may assume that Φ is
defined over OK . Then by calling the algorithm n times (with the co-ordinates
permuted) it suffices to look for points on a standard affine piece with co-ordinates
in OK . We remark that if char(k) 6= 2 then the first algorithm simplifies in the
obvious way by completing the square.

Algorithm 2.2. IsLocallySoluble(h,g)

INPUT: Polynomials h(x), g(x) ∈ OK [x] with deg(h) ≤ 2 and deg(g) ≤ 4.

OUTPUT: TRUE/FALSE (solubility of y2 + h(x)y = g(x) for x, y ∈ OK)

(i) Make a substitution y ← y + r0x
2 + r1x + r2 (with ri ∈ OK) so that if

possible v(h) ≥ 1 and v(g) ≥ 1. If now v(h) ≥ 1 and v(g) ≥ 2 then replace

h and g by π−1h and π−2g and repeat Step (i).

(ii) Consider the affine curve

Γ = {y2 + h̃(x)y = g̃(x)} ⊂ A2
k.

If there are smooth k-points on Γ then return TRUE.

(iii) Find all non-regular k-points on Γ. These are the singular points (ũ, ṽ)

on Γ with the property that for some (and hence all) lifts u, v ∈ OK of

ũ, ṽ ∈ k we have v2 + h(u)v ≡ g(u) (mod π2).

(iv) For each non-regular k-point (ũ, ṽ) on Γ lift ũ ∈ k to u ∈ OK and put

h1(x) = h(u+ πx), g1(x) = g(u+ πx). If IsLocallySoluble(h1,g1) then

return TRUE.

(v) Return FALSE.
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Algorithm 2.3. IsLocallySoluble(g)

INPUT: A polynomial g(x, y) ∈ OK [x, y] of total degree ≤ 3.

OUTPUT: TRUE/FALSE (solubility of g(x, y) = 0 for x, y ∈ OK)

(i) Divide g by πv(g) so that now v(g) = 0.

(ii) Consider the affine curve

Γ = {g̃(x, y) = 0} ⊂ A2
k.

If there are smooth k-points on Γ then return TRUE.

(iii) Find all non-regular k-points on Γ. These are the singular points (ũ, ṽ)

on Γ with the property that for some (and hence all) lifts u, v ∈ OK of

ũ, ṽ ∈ k we have g(u, v) ≡ 0 (mod π2).

(iv) For each non-regular k-point (ũ, ṽ) on Γ lift ũ, ṽ ∈ k to u, v ∈ OK and put

g1(x, y) = g(u+ πx, v + πy). If IsLocallySoluble(g1) then return TRUE.

(v) Return FALSE.

Algorithm 2.4. IsLocallySoluble(g1,g2)

INPUT: Polynomials g1, g2 ∈ OK [x, y, z] of total degree ≤ 2.

OUTPUT: TRUE/FALSE (solubility of g1(x, y, z) = g2(x, y, z) = 0 for x, y, z ∈ OK)

(i) Replace g1 and g2 by linear combinations so that g̃1 and g̃2 are linearly

independent over k. If g̃1 and g̃2 have a common linear factor then make a

change of coordinates so that this factor is x. Then replace gi(x, y, z) by

π−1gi(πx, y, z) for i = 1, 2 and repeat Step (i).

(ii) Consider the affine curve

Γ = {g̃1(x, y, z) = g̃2(x, y, z) = 0} ⊂ A3
k.

If there are smooth k-points on Γ then return TRUE.

(iii) Find all non-regular k-points on Γ. These are the points (ũ, ṽ, w̃) on Γ

that are singular on {g̃ = 0} for some g = λg1 +µg2 (where λ, µ ∈ OK not

both divisible by π) with the property that for some (and hence all) lifts

u, v, w ∈ OK of ũ, ṽ, w̃ ∈ k we have g(u, v, w) ≡ 0 (mod π2).

(iv) For each non-regular k-point (ũ, ṽ, w̃) on Γ lift ũ, ṽ, w̃ ∈ k to u, v, w ∈ OK
and put

hi(x, y, z) = gi(u+ πx, v + πy, w + πz)

for i = 1, 2. If IsLocallySoluble(h1,h2) then return TRUE.

(v) Return FALSE.

Remark 2.5. The algorithms may be adapted to return a certificate in the case Φ

is locally soluble. This certificate takes the form of a transformation of genus one

models g such that gΦ has smooth k-points on its reduction. A smooth k-point on
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the reduction is easily found (e.g. by intersecting with random hyperplanes). We

may then use Hensel’s lemma to compute a local point to any desired precision.

This is the second returned argument of Magma’s IsLocallySoluble.

2.2. Testing for smooth points. We show how to decide whether a genus one
model defined over a finite field k has any smooth k-points. For small k there is no
difficulty in looping over all k-points and testing to see which if any are smooth.
For larger k this can be rather inefficient.

First we recall the classification of singular genus one models over an alge-
braically closed field K. Notice that we are only interested in models that define
a curve.

Lemma 2.6. The GL2(K)-orbits of singular binary quartics have the following

representatives.

binary quartic geometric description

A1 y2 = x3z + x2z2 a rational nodal curve

A2 y2 = x2z2 two rational curves

B1 y2 = x3z a rational cuspidal curve

B2 y2 = x4 two rational curves

D y2 = 0 a double line

Proof: These cases correspond to the number and multiplicity of the repeated
roots of the binary quartic. 2

Lemma 2.7. Assume char(K) 6= 3. Then the GL3(K)-orbits of non-zero singular

ternary cubics have the following representatives.

ternary cubic geometric description

A1 xyz − y3 − z3 a rational nodal cubic

A2 xyz − y3 a conic and a line

A3 xyz three lines

B1 y2z − x3 a rational cuspidal cubic

B2 x2y − y2z a conic and a line

B3 x2y − xy2 three lines

C x2y a line and a double line

D x3 a triple line

Proof: This is standard. See for example [Dol, Section 10.3]. 2
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Lemma 2.8. Assume char(K) 6= 2. Then the GL2(K)×GL4(K)-orbits of quadric

intersections (Q1, Q2), with Q1 and Q2 coprime, have the following representatives.

(The final column relates to Lemma 2.13 below.)

quadric intersection geometric description Segre symbol m

A1 x1x3 − x2
2 − x

2
4, x2x4 − x2

3 a rational nodal quartic [112] 0

A2 x1x3 − x2
2, x2x4 − x2

3 a twisted cubic and a line [22] 0

A3 x1x4 − x2
2 − x

2
3, x2x3 two conics [11(11)] 1

A4 x1x3 − x2
2, x2x4 a conic and two lines [2(11)] 1

A5 x1x3, x2x4 four lines [(11)(11)] 2

B1 x1x4 − x2
2, x2x4 − x2

3 a rational cuspidal quartic [13] 0

B2 x1x4 − x2x3, x2x4 − x2
3 a twisted cubic and a line [4] 0

B3 x1x3 + x1x4 − x2
2, x3x4 two conics [1(21)] 1

B4 x1x3 − x2
2 + x2x4, x3x4 a conic and two lines [(31)] 1

B5 x2x3 − x3x4, x2x4 − x3x4 four lines [111] 3

C1 x2x3 − x3x4, x2x4 − x3x4 a conic and a double line [1{3}] 1

C2 x1x3 + x2x4, x1x4 two lines and a double line [(22)] 1

C3 x2x3 − x2x4, x3x4 two lines and a double line [12] 2

C4 x2x3 − x2
4, x3x4 a line and a triple line [3] 1

D1 x2
1 − x2x3, x

2
4 a double conic [1(111)] −

D2 x1x4 + x2x3, x
2
4 two double lines [(211)] −

D3 x2x3, x
2
4 two double lines [1(11)] −

D4 x2x4 − x2
3, x

2
4 a quadruple line [(21)] −

D5 x2
3, x

2
4 a quadruple line [11] −

Proof: The classification (at least over K = C) is due to Segre. See for example
[Bro], [DLLP], [HP]. 2

Remark 2.9. The restrictions on the characteristic of K in Lemmas 2.7 and 2.8

are necessary. For example if char(K) = 3 then the cuspidal cubics y2z = x3+λx2y

are inequivalent for λ = 0 and λ 6= 0. Likewise if char(K) = 2 then the cuspidal

quadric intersections x1x4 +λx2x3−x2
2 = x2x4−x2

3 = 0 are inequivalent for λ = 0

and λ 6= 0.
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Figures 1, 2 and 3 illustrate the classifications in Lemmas 2.6, 2.7 and 2.8.
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C D

Figure 1 Figure 2

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5
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D1 D2 D3 D4 D5

Figure 3
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Let Φ be a genus one model over a finite field k. To decide whether there are
any smooth k-points on CΦ we employ the following lemmas.

Remark 2.10. The algorithms in Section 2.1 in fact ask whether there are any

smooth k-points on some affine piece Γ of CΦ. It can happen that all the smooth

k-points lie on the hyperplane at infinity, either because k is small or because all

relevant components are contained in that hyperplane. In terms of our original

task of deciding K-solubility this simply means that we find a point sooner than

expected.

In the case n = 2 we assume char(k) 6= 2. In particular we may complete the
square so that our models are given by binary quartics.

Lemma 2.11. Assume char(k) 6= 2 and let F ∈ k[x, z] be a binary quartic.

(i) If F is identically zero then CF has no smooth k-points.

(ii) If F is non-zero, but factors as F (x, z) = αG(x, z)2, then CF has a smooth

k-point if and only if α ∈ (k×)2.

(iii) In all other cases CF has a smooth k-point.

Proof: This is clear by Lemma 2.6. 2

We write k for the algebraic closure of k.

Lemma 2.12. Let U ∈ k[x, y, z] be a non-zero ternary cubic.

(i) If U factors over k as a product of linear forms then CU has a smooth k-

point if and only if one of these linear forms is defined over k and is not a

repeated factor.

(ii) In all other cases CU has a smooth k-point.

Proof: This is clear by Lemma 2.7. 2

Now let Φ = (Q1, Q2) be a model of degree 4. It is clear that if there is a rank 1
quadric in the pencil

(2.1) {λQ1 + µQ2 | (λ : µ) ∈ P1(k)}

then CΦ has no smooth k-points.

Lemma 2.13. Assume char(k) 6= 2 and let Φ = (Q1, Q2) be a quadric intersection

over k with Q1 and Q2 coprime. Suppose the pencil (2.1) over k contains no rank 1

quadrics and exactly m rank 2 quadrics.

(i) If m = 0 then CΦ has a smooth k-point.

(ii) If m = 1 then CΦ has a smooth k-point if and only if the rank 2 quadric in

the pencil factors over k.

(iii) If m ≥ 2 then CΦ is (set-theoretically) a union of lines.
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Proof: This follows from the classification in Lemma 2.8. (The integer m is
recorded in the statement of the lemma. It is replaced by a dash in cases where
there is a rank 1 quadric.) 2

It remains to test for smooth k-points in the case CΦ is a union of lines. Let A
and B be the 4 by 4 symmetric matrices corresponding to Q1 and Q2. Let M be
the generic 4 by 4 skew-symmetric matrix. The Fano scheme is the subscheme of
P5 defined by the vanishing of the Pfaffian of M and all entries of the matrices
MAM and MBM . The points of the Fano scheme correspond to the lines on the
quadric intersection. In particular the Fano scheme is zero-dimensional.

Lemma 2.14. Assume char(k) 6= 2 and let Φ be a quadric intersection such that

CΦ is (set-theoretically) a union of lines. Then CΦ has a smooth k-point if and

only if the Fano scheme has a smooth k-point.

Proof: It suffices to show that a line has multiplicity one if and only if it cor-
responds to a smooth point on the Fano scheme. We checked this using the
classification in Lemma 2.8. 2

Remark 2.15. Assume char(k) 6= 2, 3. Then one way to test whether a binary

quartic F is the square of a polynomial over k is to test whether F and its Hessian

(which is again a binary quartic) are linearly dependent. Likewise if Φ is a genus

one model of degree 3 or 4 and CΦ is a curve then CΦ is a union of lines if and only

if Φ and its Hessian are linearly dependent. For the definition of the Hessian in

the case n = 4 see [F3].

2.3. Finding the non-regular points. We keep the notation for local fields
introduced at the start of Section 2. In particular K is a finite extension of Qp

with ring of integers OK and residue field k.
We show how to find the k-rational non-regular points on the reduction of a

genus one model over K. (See the algorithms of Section 2.1 for the definition of a
non-regular point.) If k is small or the singular locus is zero-dimensional then there
is no difficulty in looping over all singular points on the reduction and testing to
see which if any are non-regular. For larger k this can be rather inefficient. Instead
we employ the following lemmas.

Recall that by the results in [CFS] we may assume that our models have level 0
and so in particular are minimal. Notice also that, taking into account the trans-
formations in Step (i) that immediately follow each recursion, the algorithms in
Section 2.1 never increase the level.

Lemma 2.16. Assume char(k) 6= 2 and let y2 = F (x, z) be a minimal binary

quartic over K. Then the non-regular points are some (but not necessarily all) of

the roots of F1(x, z) ≡ 0 (mod π) where F1 = π−v(F )F .
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Proof: Since F is minimal we have v(F ) = 0 or 1. The rest is clear. 2

Lemma 2.17. Let F (x, y, z) be a minimal ternary cubic over K. If the singular

locus of the reduction has positive dimension then by a change of co-ordinates we

may assume that

F (x, y, z) = f0x
3 + f1(y, z)x

2 + πf2(y, z)x+ πf3(y, z)

where the fi are binary forms of degree i. There are then at most 3 non-regular

points and these are the roots of x ≡ f3(y, z) ≡ 0 (mod π).

Proof: Since F is minimal we have v(F ) = 0 and v(f3) = 0. The rest is clear. 2

Assume char(k) 6= 2 and consider the quadric intersection xTAx = xTBx = 0
where A = (aij) and B = (bij) are 4 by 4 symmetric matrices over OK . Then
(1 : 0 : 0 : 0) is a non-regular point on the reduction if and only if, after using a
matrix in GL2(OK) to replace A and B by suitable linear combinations, we have
π2 | a11, π | a12, a13, a14 and π | b11.

Lemma 2.18. Assume char(k) 6= 2 and let Q1 = Q2 = 0 be a minimal quadric

intersection over K. We write A and B for the 4 by 4 symmetric matrices cor-

responding to Q1 and Q2 and put F (x, z) = det(Ax + Bz). (If Q1 = Q2 = 0 has

level 0 then the so-called doubling y2 = F (x, z) is again minimal.)

(i) Suppose (x : z) = (1 : 0) is a non-regular point on y2 = F (x, z) and let

s = 4− rank Ã. By a change of co-ordinates we may assume

(2.2) A =



πA1 πA2

πAT2 A3



 B =



B1 B2

BT
2 B3





where A1 and B1 are s by s matrices. Let q1 and q2 be the quadratic forms

corresponding to A1 and B1. Then there are at most 4 solutions to

q1(x1, . . . , xs) ≡ q2(x1, . . . , xs) ≡ xs+1 ≡ . . . ≡ x4 ≡ 0 (mod π)

and each of these is a non-regular point on Q1 = Q2 = 0.

(ii) If we loop over all non-regular points on y2 = F (x, z), moving each to

(x : z) = (1 : 0) in turn, then all non-regular points on Q1 = Q2 = 0 arise

as described in (i).

Proof: (i) Since Q1 = Q2 = 0 is minimal we have s ≤ 3. If s = 2 then the binary
quadratic forms q1 and q2 cannot both vanish mod π as this would contradict
minimality. Likewise if s = 3 then q1 and q2 are ternary quadratic forms with no
common factor. So by Bezout’s theorem there are at most 4 solutions.
(ii) Suppose (1 : 0 : 0 : 0) is a non-regular point. If we replace Q1 and Q2 by
suitable linear combinations then A and B are given by (2.2) with s = 1 and
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A1 ≡ B1 ≡ 0 (mod π). It follows that det(Ax+Bz) = ax4 + bx3z+ . . . with π2 | a
and π | b. Then (1 : 0) is a non-regular point on y2 = F (x, z). 2

Remark 2.19. These lemmas show that for a model of level 0 the number of non-

regular points is bounded independent of the size of the residue field. This has the

interpretation that the OK-scheme defined by the model is normal. Alternative

proofs (taking a more geometric approach in the case n = 4) are given in [Sa].

2.4. Real solubility. A section on testing local solubility would be incomplete
without some discussion of the real place. However we have nothing new to add.
For models of degree 3 and for models of degree 2 and 4 with negative discriminant
real solubility is automatic. A binary quartic with positive discriminant has either
0 or 4 real roots, and in the former case is soluble over the reals if and only if the
leading coefficient is positive. For real solubility of quadric intersections we refer
to [Si1, Chapter 6].

3. Covering maps

Let Φ be a non-singular genus one model over a fieldK with char(K) 6= 2, 3. The
starting point for this section is the survey article [AKM3P] that gives formulae
for the covering map π : CΦ → E where E is the Jacobian elliptic curve with
Weierstrass equation (1.3). The formulae are given by covariants coming from
classical invariant theory.

Our height bounds in Section 4 will be computed as sums of local contributions.
To compute the correct contributions at primes dividing 2 and 3 we modify the
formulae in [AKM3P]. The first step is to give a Weierstrass equation for the
Jacobian

(3.1) y2 + a1(Φ)xy + a3(Φ)y = x3 + a2(Φ)x2 + a4(Φ)x+ a6(Φ)

that works in all characteristics. This is accomplished in [ARVT], [CFS], where the
a-invariants a1, a2, a3, a4, a6 are obtained from c4 and c6 by working back through
the formulae

(3.2)
b2 = a2

1 + 4a2, b4 = 2a4 + a1a3, b6 = a2
3 + 4a6,

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6.

We recall formulae for the a-invariants below. It is important to note however
that they are not invariants in the sense of Section 1.1. Likewise our modified
formulae for the covering maps will not be covariants. Nonetheless we still need
to understand how they change under transformations of genus one models.
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3.1. Generalised binary quartics. We recall that a genus one model of degree 2
is a generalised binary quartic y2 + P (x1, x2)y = Q(x1, x2) where

P (x1, x2) = lx2
1 +mx1x2 + nx2

2

Q(x1, x2) = ax4
1 + bx3

1x2 + cx2
1x

2
2 + dx1x

3
2 + ex4

2.

Let g = 1
4
P 2 +Q be the binary quartic obtained by completing the square. It has

covariants h = 1
3
(g2

12−g11g22) and k = 1
12

(g2h1−g1h2) where the subscripts denote
partial derivatives. In [CFS] the a-invariants of (P,Q) are defined as

a1 = m

a2 = −ln + c

a3 = ld+ nb

a4 = −l2e− lnc− n2a− 4ae+ bd

a6 = −l2ce+ lmbe− lnbd −m2ae+mnad− n2ac− 4ace + ad2 + b2e.

The b-invariants b2, b4, b6 and c-invariants c4, c6 are then given by (3.2). We put
F = 4g = P 2 + 4Q and

Z = 2y + P

X = 1
3
(h− b2g)

Y = k − 1
2
a1XZ −

1
2
a3FZ.

Lemma 3.1. (i) Z,X, Y have coefficients in Z[l,m, n, a, b, c, d, e].

(ii) Let (P,Q) be a non-singular generalised binary quartic defined over K. Then

E = Jac C(P,Q) has Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

and the 2-covering map C(P,Q) → E is given by (x1 : x2 : y) 7→ (X/Z2, Y/Z3).

Proof: (i) A direct calculation.
(ii) The formula for E is recalled from [CFS]. The classical syzygy

27k2 = h3 − 3c4g
2h− 2c6g

3

becomes

Y 2 + a1XY Z + a3Y ZF = X3 + a2X
2F + a4XF

2 + a6F
3

− (a1X + a3F )2(y2 + Py −Q).

Since F ≡ Z2 mod (y2 + Py −Q) this gives the required map. 2
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For use in later sections we put F2 = F = P 2 + 4Q and G2 = X. Explicitly

F2 = (l2 + 4a)x4
1 + (2lm+ 4b)x3

1x2 + (2ln+m2 + 4c)x2
1x

2
2 + (2mn+ 4d)x1x

3
2

+ (n2 + 4e)x4
2,

G2 = (−l2c+ lmb−m2a− 4ac+ b2)x4
1 + (−2l2d+ 2lnb− 4mna− 8ad)x3

1x2

+ (−4l2e− lmd+ 2lnc−mnb− 4n2a− 16ae− 2bd)x2
1x

2
2

+ (−4lme + 2lnd− 2n2b− 8be)x1x
3
2 + (−m2e+mnd − n2c− 4ce+ d2)x4

2.

In [S] these polynomials were denoted 4G and G̃. We describe how they change
under transformations of genus one models.

Lemma 3.2. (i) If (P ′, Q′) = [µ, (r0, r1, r2), I2](P,Q) then

F ′
2(x, z) = µ2F2(x, z)

G′
2(x, z) = µ4(G2(x, z) + (lr2 + 2r0r2 + nr0)F2(x, z)).

(ii) If (P ′, Q′) = [1, 0, ( α β
γ δ )](P,Q) then

F ′
2(x, z) = F2(αx+ γz, βx+ δz)

G′
2(x, z) = (αδ − βγ)2G2(αx+ γz, βx+ δz)− λF2(αx+ γz, βx+ δz)

where λ = 2α2γ2a+ αγ(αδ + βγ)b+ 2αβγδc+ βδ(αδ + βγ)d+ 2β2δ2e.

Proof: A direct calculation. 2

3.2. Ternary cubics. A genus one model of degree 3 is a ternary cubic

U(x1, x2, x3) = ax3
1 + bx3

2 + cx3
3 + fx2

2x3 + gx2
3x1 + hx2

1x2

+ ix2x
2
3 + jx3x

2
1 + kx1x

2
2 +mx1x2x3.

It has Hessian H = −(1/2) det(Uij) and covariants

Θ = (1/3)

∣∣∣∣∣∣∣∣∣∣

U11 U12 U13 H1

U21 U22 U23 H2

U31 U32 U33 H3

H1 H2 H3 0

∣∣∣∣∣∣∣∣∣∣

, J = (1/18)

∣∣∣∣∣∣∣

U1 U2 U3

H1 H2 H3

Θ1 Θ2 Θ3

∣∣∣∣∣∣∣
,
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where the subscripts denote partial derivatives. In [ARVT], [CFS] the a-invariants
of U are defined as

a1 = m

a2 = −(fj + gk + hi)

a3 = 9abc− afi− bgj − chk − fgh− ijk

a4 = −3(abgi+ acfk + bchj) + af 2g + ai2k + bg2h+ bij2

+ cfh2 + cjk2 + fgjk + fhij + ghik

a6 = −27a2b2c2 + 9abc(afi+ bgj + chk) + . . .+ abcm3.

The b-invariants b2, b4, b6 and c-invariants c4, c6 are then given by (3.2). We put
b8 = (b2b6 − b24)/4 and

Z = 1
4
(H + b2U)

X = 1
192

(Θ− 16b2Z
2 − 12b22ZU + b32U

2)

Y = 1
2
( 1

384
J − (a1XZ + a3Z

3 + a3XU + a1b6ZU
2 + a1b8U

3)).

Lemma 3.3. (i) Z,X, Y have coefficients in Z[a, b, c, f, g, h, i, j, k,m].

(ii) Let U be a non-singular ternary cubic defined over K. Then E = Jac CU has

Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

and the 3-covering map CU → E is given by (x1 : x2 : x3) 7→ (X/Z2, Y/Z3).

Proof: (i) A direct calculation.
(ii) The formula for E is recalled from [ARVT], [CFS]. The classical syzygy

12J2 = Θ3 − 3c4ΘH
4 − 2c6H

6 − 9c4Θ
2HU + 12c6ΘH

3U + 21c24H
5U

+ 6c6Θ
2U2 + 9c24ΘH

2U2 − 72c4c6H
4U2 − 24c4c6ΘHU

3

+ (27c34 + 64c26)H
3U3 + 9c34ΘU

4 − 48c24c6H
2U4 + 9c44HU

5

becomes

Y 2 + a1XY Z + a3Y Z
3 = X3 + a2X

2Z2 + a4XZ
4 + a6Z

6

− a3XY U + (4a1a3 + 9a4)X
2ZU + γ1XZ

3U + γ2Z
5U − (7a2

3 + 27a6)X
2U2

− (a1a
2
3 + 4a1a6)Y ZU

2 + γ3XZ
2U2 + γ4Z

4U2 + γ5Y U
3 + γ6XZU

3

+ γ7Z
3U3 + γ8XU

4 + γ9Z
2U4 + γ10ZU

5 + γ11U
6

where the γi are certain polynomials in Z[a1, a2, a3, a4, a6]. This gives the required
formula for the 3-covering map. 2

For use in later sections we put F3 = Z2 and G3 = X. We describe how these
polynomials change under transformations of genus one models.
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Lemma 3.4. (i) If U ′ = [µ, I3]U then F ′
3 = µ6F3 and G′

3 = µ8G3.

(ii) If U ′ = [1, N ]U and xj =
∑
nijx

′
i where N = (nij) then

(3.3)
F ′

3(x
′
1, x

′
2, x

′
3) = ((detN)4F3 + αZU + βU2)(x1, x2, x3)

G′
3(x

′
1, x

′
2, x

′
3) = ((detN)6G3 + λF3 + γZU + δU2)(x1, x2, x3)

for some λ, α, β, γ, δ ∈ Z[n11, n12, . . . , n33, a, b, c, . . . ,m]. Moreover if N is diagonal

then λ = 0.

Proof: (i) This is clear.
(ii) Since H and Θ are covariants we have

H ′(x′1, x
′
2, x

′
3) = (detN)2H(x1, x2, x3)

Θ′(x′1, x
′
2, x

′
3) = (detN)6Θ(x1, x2, x3).

Let ξ = 1
12

(b′2 − (detN)2b2). Then (3.3) holds with λ = −(detN)4ξ and

α = 6(detN)2ξ, β = 9ξ2,

γ = −(detN)2ξ(2b′2 − 9ξ), δ = −3ξ2(b′2 − 3ξ).

A generic calculation shows that b′2 ≡ (detN)2b2 (mod 12). Moreover if N is
diagonal then b′2 = (detN)2b2 and so in that case λ = 0. 2

3.3. Quadric intersections. A genus one model of degree 4 is a pair of quadratic
forms (Q1, Q2) in variables x1, . . . , x4. We write

Q1(x1, . . . , x4) =
∑

i≤j

aijxixj = 1
2

4∑

i,j=1

Aijxixj

Q2(x1, . . . , x4) =
∑

i≤j

bijxixj = 1
2

4∑

i,j=1

Bijxixj

where A = (Aij) and B = (Bij) are the matrices of second partial derivatives of
Q1 and Q2. Let Q∗

1 =
∑

i≤j a
∗
ijxixj and Q∗

2 =
∑

i≤j b
∗
ijxixj be the quadrics whose

matrices of second partial derivatives are adjA and adjB. There are covariants

T1 =

4∑

i,j=1

∑

r≤s

b∗rs(AijArs − AisAjr)xixj

T2 =

4∑

i,j=1

∑

r≤s

a∗rs(BijBrs − BisBjr)xixj

J = (1/4)
∂(Q1, Q2, T1, T2)

∂(x1, x2, x3, x4)
.
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It is noted in [CFS] that if Γ =
∑

i≤j cijxixj is a quadric in 4 variables then

det

(
∂2Γ

∂xi∂xj

)
= pf(Γ)2 + 4 rd(Γ)

where pf(Γ) = c12c34 + c13c24 + c14c23 and rd(Γ) ∈ Z[c11, c12, . . . , c44]. Writing
pf(xQ1 + zQ2) = lx2 +mxz + nz2 we put

Y = 1
2

(
J − lT 2

1 +mT1T2 − nT
2
2 +mn(lT1 +mT2)Q1 + lm(mT1 + nT2)Q2

+l2n3Q2
1 + lmn(ln +m2)Q1Q2 + l3n2Q2

2

)
.

Lemma 3.5. (i) T1, T2, Y have coefficients in Z[a11, a12, . . . , b44].

(ii) Let (Q1, Q2) be a non-singular quadric intersection defined over K. Then

(P,Q) = (pf(xQ1 + zQ2), rd(xQ1 + zQ2)) is a non-singular generalised binary

quartic and the 4-covering map C(Q1,Q2) → E = Jac C(Q1,Q2) is the composite of

C(Q1,Q2) → C(P,Q) ; (x1 : . . . : x4) 7→ (T1 : −T2 : Y )

and the 2-covering map C(P,Q) → E.

Proof: (i) A direct calculation.
(ii) The formula for (P,Q) is recalled from [CFS]. There is a classical syzygy
satisfied by Q1, Q2, T1, T2, J and the coefficients of

(3.4) F (x, z) = det(Ax+Bz).

Setting Q1 = Q2 = 0 it reduces to J2 ≡ F (T1,−T2) mod (Q1, Q2). We have
F = P 2 + 4Q and 2Y ≡ J − P (T1,−T2) mod (Q1, Q2). Therefore

4(Y 2 + P (T1,−T2)Y −Q(T1,−T2)) = S1Q1 + S2Q2

for some S1, S2 in Z[a11, a12, . . . , b44][x1, . . . , x4]. Since the generic quadrics Q1 and
Q2 are coprime mod 2 a similar identity holds without the factor of 4. Hence

Y 2 + P (T1,−T2)Y ≡ Q(T1,−T2) mod (Q1, Q2)

as required. 2

The a-invariants of (Q1, Q2) are defined to be the a-invariants of (P,Q). The
transformations of genus one models defined in Section 1.1 have the following effect
on (P,Q) and on T1 and T2.

Lemma 3.6. If (Q′
1, Q

′
2) = [M,N ](Q1, Q2) then (P ′, Q′) = [detN, r,M ](P,Q) for

some r = (r0, r1, r2) where the ri are integer coefficient polynomials in the entries

of M and N and the coefficients of Q1 and Q2. Moreover if N is diagonal then

r = 0.
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Proof: If N = I4 then the result is clear. So suppose (Q′
1, Q

′
2) = [I2, N ](Q1, Q2).

We must show that

P ′(x, z) = (detN)P (x, z) + 2r(x, z)

Q′(x, z) = (detN)2Q(x, z) − (detN)P (x, z)r(x, z)− r(x, z)2

for some r(x, z) = r0x
2+r1xz+r2z

2 where the ri are integer coefficient polynomials
in the entries of N and the coefficients of Q1 and Q2. But in characteristic 2 we
recognise P (x, z) = pf(xQ1 + zQ2) as the Pfaffian of a skew-symmetric matrix.
This gives the formula for P ′. The formula for Q′ follows since P ′2 + 4Q′ =
(detN)2(P 2 + 4Q). Moreover if N is diagonal then P ′(x, z) = (detN)P (x, z) and
so in that case r = 0. 2

Lemma 3.7. (i) If (Q′
1, Q

′
2) = [( α β

γ δ ), I4](Q1, Q2) then

(3.5)
T ′

1 = (αδ − βγ)2(δT1 + γT2) + ν1Q1 + ν2Q2

T ′
2 = (αδ − βγ)2(βT1 + αT2) + ν3Q1 + ν4Q2

where the νi are integer coefficient polynomials in α, β, γ, δ and the coefficients of

Q1 and Q2.

(ii) If (Q′
1, Q

′
2) = [I2, N ](Q1, Q2) and xj =

∑
nijx

′
i where N = (nij) then

T ′
i (x

′
1, . . . , x

′
4) = (detN)2Ti(x1, . . . , x4)

for i = 1, 2.

Proof: (i) Let a, b, c, d, e be the coefficients of (3.4) and a′, b′, c′, d′, e′ their ana-
logues for (Q′

1, Q
′
2). Direct calculation shows that (3.5) holds with

ν1 = 1
6
(γc′ + 3αd′ − (αδ − βγ)2(γc+ 3δd))

ν2 = 1
6
(δc′ + 3βd′ − (αδ − βγ)2(δc+ 3γb))

ν3 = 1
6
(αc′ + 3γb′ − (αδ − βγ)2(αc+ 3βd))

ν4 = 1
6
(βc′ + 3δb′ − (αδ − βγ)2(βc+ 3αb)).

Writing a′, b′, c′, d′, e′ as polynomials in α, β, γ, δ, a, b, c, d, ewe find that ν1, ν2, ν3, ν4

belong to Z[α, β, γ, δ, a, b, c, d, e]. These formulae are related to the covariance of
the Hessian as defined in [F3].
(ii) Let M1 and M2 be the matrices of second partial derivatives of T1 and T2.
Direct calculation shows that

adj(adj(A)x+ adj(B)z) = a2Ax3 + aM1x
2z + eM2xz

2 + e2Bz3.

The covariance of T1 and T2 then follows from properties of the adjugate. 2

For use in later sections we put F4 = F2(T1,−T2) and G4 = G2(T1,−T2) where
F2 and G2 are the polynomials associated to the model (P,Q) in Lemma 3.5(ii).
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3.4. A geometric observation. Let Φ be a genus one model of degree n ∈
{2, 3, 4} over a field K. Let E be the (possibly singular) curve defined by the
Weierstrass equation with coefficients the a-invariants of Φ. The formulae in the
last three sections define a map π : CΦ → E. If Φ is non-singular then CΦ is a
smooth curve of genus one, E is the Jacobian elliptic curve and π is the n-covering
map. However to understand what happens at primes of bad reduction we are also
interested in singular models.

The composite CΦ
π
→ E

x
→ P1 is given by (Fn : Gn) where Fn and Gn are the

homogeneous polynomials of degree 2n associated to Φ.

Theorem 3.8. Let Φ be a genus one model of degree n ∈ {2, 3, 4} over a field

K. Let P ∈ CΦ say P = (x1 : x2 : y) or (x1 : . . . : xn). Then Fn(x1, . . . , xn) =

Gn(x1, . . . , xn) = 0 if and only if P is singular or lies on a component of CΦ of

degree at most n− 2.

Proof: We split into the cases n = 2, 3, 4.
Case n = 2. The generalised binary quartic

y2 + (lx2 +mxz + nz2)y = ax4 + bx3z + cx2z2 + dxz3 + ez4.

has associated polynomials

F2(x, z) = (l2 + 4a)x4 + (2lm+ 4b)x3z + (2ln+m2 + 4c)x2z2 + . . .

G2(x, z) = (−l2c+ lmb−m2a− 4ac+ b2)x4 + . . .

By Lemma 3.2 we may assume that P is the point (x : z : y) = (1 : 0 : 0) and so
a = 0. Then F2(1, 0) = G2(1, 0) = 0 if and only if l = b = 0. This is the condition
for P to be a singular point.
Case n = 3. A genus one model of degree 3 is a ternary cubic

U(x1, x2, x3) = ax3
1 + bx3

2 + cx3
3 + fx2

2x3 + gx2
3x1 + hx2

1x2

+ ix2x
2
3 + jx3x

2
1 + kx1x

2
2 +mx1x2x3.

By Lemma 3.4 we may assume that P is the point (x1 : x2 : x3) = (1 : 0 : 0) and
a = h = 0. We compute

F3(1, 0, 0) = j4k2

G3(1, 0, 0) = b2j6 − bj5km+ fj5k2.

Thus F3(1, 0, 0) = G3(1, 0, 0) = 0 if and only if j = 0 or b = k = 0. These are the
conditions that P is either a singular point or lies on a line.
Case n = 4. By Lemmas 3.2, 3.6 and 3.7 we may assume that P is the point
(1 : 0 : 0 : 0) and Φ = (Q1, Q2) takes the form

Q1(x1, . . . , x4) = λx1x3 + q1(x2, x3, x4)

Q2(x1, . . . , x4) = µx1x4 + q2(x2, x3, x4).



HEIGHT BOUNDS FOR COVERINGS OF ELLIPTIC CURVES 21

We compute T1(1, 0, 0, 0) = λ2µ2b22 and T2(1, 0, 0, 0) = λ2µ2a22. If λµ = 0 or
a22 = b22 = 0 then F4(P ) = G4(P ) = 0 and P is a either a singular point or lies
on a line. Otherwise we may assume that λ = µ = b22 = 1 and a22 = 0. Then P
maps to the point (x : z : y) = (1 : 0 : 0) on the generalised binary quartic

y2 + (a24x
2 + (a23 + b24)xz + b23z

2)y = −(a23a24 + a44)x
3z+

− (a23b24 + a24b23 − a34 + b44)x
2z2 − (a33 + b23b24 − b34)xz

3 − b33z
4.

Our proof in the case n = 2 shows that F4(P ) = G4(P ) = 0 if and only if
a24 = a44 = 0. This is the condition for some quadric in the pencil spanned by Q1

and Q2 (in fact it can only be Q1) to factor as a product of two linear forms. It is
therefore also the condition for P to lie on a conic. 2

Remark 3.9. We suspect that some analogue of Theorem 3.8 holds for n-coverings

more generally. However our method of proof, using invariant theory and explicit

formulae, is unlikely to generalise to larger n.

4. Height bounds

Let E be an elliptic curve over a number field K. An n-descent calculation on
E computes equations for the everywhere locally soluble n-coverings π : C → E.
It is expected that a point P ∈ C(K) will have smaller height than its image in
E(K), and that therefore searching on the covering curves makes it easier to find
generators for E(K). Of course such an expectation can only be realised if our
equations for C are given relative to some reasonably good choice of co-ordinates.
In [CFS] it is explained (at least over K = Q) how to make such choices of co-
ordinates when n = 2, 3 or 4. We determine explicit height bounds in these cases.

4.1. Local height bounds. Let Φ be a non-singular genus one model of degree
n ∈ {2, 3, 4} over a number field K. Let MK , respectively M0

K , be the set of places,
respectively finite places, of K. We write Kv for the completion of K at v ∈ MK

and normalise the absolute values | · |v on Kv so that the product formula holds.
The height of a point P = (x1 : . . . : xn) ∈ Pn−1(K) is

h(P ) = log
∏

v∈MK

max(|x1|v, . . . , |xn|v).

Let Fn and Gn be the polynomials associated to Φ as defined in Section 3. For
v ∈MK we define

δv(Φ) = sup
P∈CΦ(Kv)

max(|Fn(x)|v, |Gn(x)|v)

max(|x1|v, . . . , |xn|v)2n

εv(Φ) = inf
P∈CΦ(Kv)

max(|Fn(x)|v, |Gn(x)|v)

max(|x1|v, . . . , |xn|v)2n
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where P = (x1 : x2 : y) or (x1 : . . . : xn). These definitions are independent of the
scaling of the xi since Fn and Gn are homogeneous of degree 2n.

Theorem 4.1. Let Φ be a non-singular genus one model over K.

(i) For any v ∈MK we have 0 < εv(Φ) ≤ δv(Φ) <∞.

(ii) If v ∈M0
K and Φ is v-integral then 0 < εv(Φ) ≤ δv(Φ) ≤ 1.

(iii) If v ∈M0
K and Φ has good reduction mod v then εv(Φ) = δv(Φ) = 1.

(iv) Let h and hE be the heights on CΦ and E = Jac(CΦ) relative to CΦ → Pn−1

and the Weierstrass equation (3.1). Let π : CΦ → E be the covering map.

Then for P ∈ CΦ(K) we have

(4.1) −
∑

v

log δv(Φ) ≤ 2nh(P )− hE(πP ) ≤ −
∑

v

log εv(Φ).

Proof: (i) We are assuming that Φ is non-singular. So by Theorem 3.8 there
does not exist P ∈ CΦ(Kv) with Fn(P ) = Gn(P ) = 0. Since CΦ(Kv) is compact it
follows that 0 < εv(Φ) ≤ δv(Φ) <∞.
(ii) Let Ov be the valuation ring of Kv. If Φ has coefficients in Ov then so do Fn
and Gn. We scale the xi so that max(|x1|v, . . . , |xn|v) = 1. Then |Fn(x)|v ≤ 1 and
|Gn(x)|v ≤ 1. Hence δv(Φ) ≤ 1.
(iii) Again we scale the xi so that max(|x1|v, . . . , |xn|v) = 1. Then by Theorem 3.8
applied to the reduction of Φ mod v we have max(|Fn(x)|v, |Gn(x)|v) = 1. Hence
εv(Φ) = δv(Φ) = 1.
(iv) If P ∈ CΦ(K), say P = (x1 : x2 : y) or (x1 : . . . : xn), then

h(P ) = log
∏

v∈MK

max(|x1|v, . . . , |xn|v)

and

hE(πP ) = log
∏

v∈MK

max(|Fn(x)|v, |Gn(x)|v).

Taking logs in the definitions of δv(Φ) and εv(Φ) and summing over v ∈MK gives
the result. Notice that by (i) we are taking logs of positive numbers, and by (iii)
the sums are finite. 2

If v ∈M0
K with uniformiser πv then

(4.2) δv(Φ) = |πv|
2minAv(Φ)
v and εv(Φ) = |πv|

2maxAv(Φ)
v

where Av(Φ) is the set of Tamagawa distances defined and computed in the next
two sections. An alternative description of the Tamagawa distances in Section 4.4
explains the choice of name. The computation of δv(Φ) and εv(Φ) for v a real
place is the subject of Section 4.5.
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4.2. Computing the Tamagawa distances. Let K be a finite extension of Qp

with ring of integers OK , maximal ideal πOK , residue field k and normalised
discrete valuation v : K× → Z. The corresponding absolute value is |x| = c−v(x)

for some constant c > 1. Reduction mod π will be denoted x 7→ x̃.
Let Φ a non-singular genus one model over K of degree n ∈ {2, 3, 4}. Let Fn

and Gn be the polynomials depending on Φ as defined in Section 3.

Definition 4.2. The set of Tamagawa distances A = A(Φ) is defined by
{

max(|Fn(x)|, |Gn(x)|)

max(|x1|, . . . , |xn|)2n
: P ∈ CΦ(K)

}
=
{
|π|2α : α ∈ A(Φ)

}
.

where P = (x1 : x2 : y) or (x1 : . . . : xn). In particular CΦ(K) 6= ∅ if and only if

A(Φ) 6= ∅.

Definition 4.3. A transformation of genus one models g ∈ Gn(K) is integral,

respectively diagonal, if it satisfies the following conditions.

n g integral diagonal

2 [µ, r,N ] µ ∈ O×
K , r ∈ O

3
K , N ∈ GL2(OK) r = 0 and N diagonal

3 [µ,N ] µ ∈ O×
K , N ∈ GL3(OK) N diagonal

4 [M,N ] M ∈ GL2(OK), N ∈ GL4(OK) M and N diagonal.

The first part of the following theorem shows that if Φ and Φ′ are OK-equivalent
then they have the same set of Tamagawa distances. The second part describes
the effect of a diagonal transformation that preserves the level.

Theorem 4.4. Let Φ and Φ′ be genus one models over OK with Φ′ = gΦ for some

g ∈ Gn(K), say g = [µ, r,N ], [µ,N ] or [M,N ]. Let P ∈ CΦ(K), say P = (x1 : x2 :

y) or (x1 : . . . : xn), and P ′ ∈ CΦ′(K), say P ′ = (x′1 : x′2 : y′) or (x′1 : . . . : x′n),

with xj =
∑
nijx

′
i where N = (nij). If either (i) g is integral or (ii) det g ∈ O×

K

and g is diagonal then

max(|F ′
n(x

′)|, |G′
n(x

′)|) = | detN |−2 max(|Fn(x)|, |Gn(x)|).

Proof: Let (r2, s2) = (2, 4), (r3, s3) = (6, 8), (r4, s4) = (12, 14). By Lemmas 3.2,
3.4, 3.6 and 3.7 we have
(

F ′
n(x

′
1, . . . , x

′
n)

G′
n(x

′
1, . . . , x

′
n)

)
= (detN)−2

(
(det g)rn 0

λ (det g)sn

)(
Fn(x1, . . . , xn)

Gn(x1, . . . , xn)

)

for some λ ∈ K. These lemmas also show that (i) if g is integral then λ ∈ OK and
(ii) if g is diagonal then λ = 0. Taking absolute values gives the result. 2

We use Theorems 3.8 and 4.4 to modify our local solubility algorithms in Sec-
tion 2 to give algorithms for computing the set of Tamagawa distances. Our
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presentation differs from these earlier algorithms in that we do not restrict atten-
tion to (points whose reduction lies on) an affine piece until after the first iteration.
For models of degrees 3 and 4 we use the subalgorithms in Section 4.3 to compute
the contributions from lines and conics. The proof that our algorithms terminate
(for Φ non-singular) is given in Section 4.4.

Algorithm 4.5. TamagawaDistances(P,Q,Affine)

INPUT: A generalised binary quartic Φ = (P,Q) over OK and a boolean Affine.

OUTPUT: A finite set of non-negative integers A such that
{

max(|F2(x)|, |G2(x)|)

max(|x1|, |x2|)4
: (x1 : x2 : y) ∈ CΦ(K)†

}
= {|π|2α : α ∈ A}

where CΦ(K)† = {P ∈ CΦ(K) : P̃ ∈ Γ} and Γ is the curve over k defined by

{y2 + P̃ (x1, x2)y = Q̃(x1, x2)} ⊂ P(1, 1, 2) if Affine = FALSE

{y2 + P̃ (x, 1)y = Q̃(x, 1)} ⊂ A2 if Affine = TRUE.

(i) Set A = ∅.
(ii) If there are smooth k-points on Γ then set A = {0}.

(iii) Find all non-regular k-points on Γ. Use an OK-transformation to move

each such point to (x1 : x2 : y) = (0 : 1 : 0). Then compute

A1 = TamagawaDistances(P1, Q1, TRUE)

where P1(x1, x2) = π−1P (πx1, x2), Q1(x1, x2) = π−2Q(πx1, x2), and set

A = A ∪ {α + 1 : α ∈ A1}.

(iv) Return A.

Algorithm 4.6. TamagawaDistances(U,Affine)

INPUT: A ternary cubic U ∈ OK [x, y, z] and a boolean Affine.

OUTPUT: A finite set of non-negative integers A such that
{

max(|F3(x)|, |G3(x)|)

max(|x1|, |x2|, |x3|)6
: (x1 : x2 : x3) ∈ CU(K)†

}
= {|π|2α : α ∈ A}

where CU (K)† = {P ∈ CU (K) : P̃ ∈ Γ} and Γ is the curve over k defined by

{Ũ(x, y, z) = 0} ⊂ P2 if Affine = FALSE

{Ũ(x, y, 1) = 0} ⊂ A2 if Affine = TRUE.

(i) Set A = ∅.

(ii) If Γ contains an absolutely irreducible component of degree 2 or 3 then set

A = {0}.
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(iii) Find all k-rational lines that are components of Γ of multiplicity one. Com-

pute the contribution α of each such line using Proposition 4.8 and put

A = A ∪ {α}.

(iv) Find all non-regular k-points on Γ. Use a transformation in GL3(OK) to

move each such point to (0 : 0 : 1). Then compute

A1 = TamagawaDistances(U1, TRUE)

where U1(x, y, z) = π−2U(πx, πy, z) and set A = A ∪ {α + 2 : α ∈ A1}.

(v) Return A.

Algorithm 4.7. TamagawaDistances(Q1,Q2,Affine)

INPUT: A quadric intersection Φ = (Q1, Q2) over OK and a boolean Affine.

OUTPUT: A finite set of non-negative integers A such that
{

max(|F4(x)|, |G4(x)|)

max(|x1|, . . . , |x4|)8
: (x1 : . . . : x4) ∈ CΦ(K)†

}
= {|π|2α : α ∈ A}

where CΦ(K)† = {P ∈ CΦ(K) : P̃ ∈ Γ} and Γ is the curve over k defined by

{Q̃1(x1, . . . , x4) = Q̃2(x1, . . . , x4) = 0} ⊂ P3 if Affine = FALSE

{Q̃1(x, y, z, 1) = Q̃2(x, y, z, 1) = 0} ⊂ A3 if Affine = TRUE.

(i) Set A = ∅.

(ii) If Γ contains an absolutely irreducible component of degree 3 or 4 then set

A = {0}.

(iii) Find all k-rational lines and conics that are components of Γ of multi-

plicity one. Compute the contribution α of each such component using

Propositions 4.9 and 4.10 and put A = A ∪ {α}.

(iv) Find all non-regular k-points on Γ. Use a transformation in GL4(OK) to

move each such point to (0 : 0 : 0 : 1) and a transformation in GL2(OK) to

arrange that ∂Q1

∂xj
(0, 0, 0, 1) ≡ 0 (mod π) for 1 ≤ j ≤ 4 andQ1(0, 0, 0, 1) ≡ 0

(mod π2). Then compute

A1 = TamagawaDistances(Q1′ , Q2′, TRUE)

where

Q′
1(x1, . . . , x4) = π−2Q1(πx1, πx2, πx3, x4)

Q′
2(x1, . . . , x4) = π−1Q2(πx1, πx2, πx3, x4)

and set A = A ∪ {α + 3 : α ∈ A1}.

(v) Return A.
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4.3. Contributions from lines and conics. Let Φ be a non-singular genus one
model over OK . Suppose that the reduction of CΦ mod π contains a k-rational
curve C as a component of multiplicity one. (The multiplicity one condition is
equivalent to requiring that all but finitely many k-points on C are smooth points
on the reduction.) Theorem 3.8 shows that if C has degree n − 1 or n then the
points P ∈ CΦ(K) whose reduction is a smooth point on C contribute α = 0 to
the set of Tamagawa distances. In this section we determine the contributions in
the remaining cases, namely when n = 3 and C is a line, and when n = 4 and C
is a conic or line.

Proposition 4.8. Let U ∈ OK [x, y, z] be a non-singular ternary cubic whose

reduction contains a k-rational line L as a component of multiplicity one. Then

there is an integer α such that

max(|F3(x)|, |G3(x)|)

max(|x|, |y|, |z|)6
= |π|2α

for all (x : y : z) ∈ CU(K) whose reduction is a smooth point on L. Moreover if L

is the line {x = 0} then α may be computed as follows.

(i) Set α = 0.

(ii) Replace U by π−1U(πx, y, z) and let α = α + 1.

(iii) Write U(x, y, z) = f0x
3 + f1(y, z)x

2 + f2(y, z)x+ f3(y, z) where the fi are

binary forms of degree i. If f̃2 | f̃3 say

f3(y, z) ≡ (ay + bz)f2(y, z) (mod π)

for some a, b ∈ OK then substitute x← x− ay − bz and go to Step (ii).

(iv) Return α.

Proof: Writing

U(x, y, z) = f0x
3 + f1(y, z)x

2 + f2(y, z)x+ f3(y, z)

we are given that v(f3) ≥ 1 and v(f2) = 0. If P = (u : v : w) ∈ CU(K) reduces to
a smooth point on L then u ≡ 0 and f2(v, w) 6≡ 0 (mod π). In Step (ii) we replace
P by (π−1u : v : w). The increase of α by 1 is justified by Theorem 4.4(ii) with
[µ,N ] = [π−1,Diag(π, 1, 1)]. After this transformation we still have f2(v, w) 6≡ 0
(mod π) but now

U(x, y, z) ≡ f2(y, z)x+ f3(y, z) (mod π).

Hence P reduces to a smooth point on the rational curve parametrised by

(s : t) 7→ (−f̃3(s, t) : sf̃2(s, t) : tf̃2(s, t))

If f̃2 | f̃3 then this is a line and the substitution in Step (iii) moves the line to
{x = 0}. We then return to Step (ii). Otherwise we have a curve of degree 2 or 3
and by Theorem 3.8 there is no further contribution to the Tamagawa distance.
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We show in the next section that the algorithm terminates. 2

Proposition 4.9. Let Φ = (Q1, Q2) be a non-singular quadric intersection over

OK whose reduction contains a k-rational conic C as a component of multiplicity

one. Then there is an integer α such that

max(|F4(x)|, |G4(x)|)

max(|x1|, . . . , |x4|)8
= |π|2α

for all (x1 : . . . : x4) ∈ CΦ(K) whose reduction is a smooth point on C. Moreover

if C is contained in the plane {x1 = 0} then α may be computed as follows.

(i) Set α = 0.

(ii) Make a GL2(OK)-transformation so that Q̃1 vanishes on {x1 = 0}. Replace

(Q1, Q2) by (π−1Q1(πx1, x2, x3, x4), Q2(πx1, x2, x3, x4)) and let α = α + 1.

(iii) Write Qi(x1, . . . , x4) = λix
2
1 + ℓi(x2, x3, x4)x1 + qi(x2, x3, x4) for i = 1, 2.

If q̃1 belongs to the ideal generated by ℓ̃1 and q̃2 say

q1 ≡ (a2x2 + a3x3 + a4x4)ℓ1 + bq2 (mod π)

for some a2, a3, a4, b ∈ OK then substitute x1 ← x1 − (a2x2 + a3x3 + a4x4)

and go to Step (ii).

(iv) Return α.

Proof: To simplify the notation in the proof we first make a substitution in
x2, x3, x4 so that the conic C is parametrised by (s : t) 7→ (0 : s2 : st : t2).

We write Qi = λix
2
1 + ℓi(x2, x3, x4)x1 + qi(x2, x3, x4) for i = 1, 2. After the

GL2(OK)-transformation in Step (ii) we have v(q1) ≥ 1. We put

g(s, t) = ℓ̃1(s
2, st, t2).

By the Jacobian criterion (0 : s2 : st : t2) is a smooth point on the reduction if
and only if g(s, t) 6= 0. Our hypothesis that C has multiplicity one is therefore
equivalent to the statement that g is not identically zero.

Suppose P = (u1 : . . . : u4) reduces to a smooth point on C. Then (assuming
u1, . . . , u4 belong to OK but not all to πOK) we have ℓ1(u2, u3, u4) 6≡ 0 (mod π).
In Step (ii) we replace P by (π−1u1 : u2 : u3 : u4). The increase of α by 1 is
justified by Theorem 4.4(ii) with [M,N ] = [Diag(π−1, 1),Diag(π, 1, 1, 1)]. This
transformation changes neither ℓ1 nor q2 but we now have

Q1(x1, . . . , x4) ≡ x1ℓ1(x2, x3, x4) + q1(x2, x3, x4) (mod π)

Q2(x1, . . . , x4) ≡ q2(x2, x3, x4) (mod π).

Hence P reduces to a smooth point on the rational curve parametrised by

(s : t) 7→ (−f(s, t) : g(s, t)s2 : g(s, t)st : g(s, t)t2)
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where f(s, t) = q̃1(s
2, st, t2). Since g is not identically zero this is a curve of

degree 2, 3 or 4. If it has degree 2 then in Step (iii) we move it to lie in the plane
{x1 = 0} and return to Step (ii). Otherwise we have a curve of degree 3 or 4 and
by Theorem 3.8 there is no further contribution to the Tamagawa distance.

We show in the next section that the algorithm terminates. 2

Proposition 4.10. Let Φ = (Q1, Q2) be a non-singular quadric intersection over

OK whose reduction contains a k-rational line L as a component of multiplicity

one. Then there is an integer α such that

max(|F4(x)|, |G4(x)|)

max(|x1|, . . . , |x4|)8
= |π|2α

for all (x1 : . . . : x4) ∈ CΦ(K) whose reduction is a smooth point on L. Moreover

if L is the line {x1 = x2 = 0} then α may be computed as follows.

(i) Set α = 0.

(ii) Replace Qi by π−1Qi(πx1, πx2, x3, x4) for i = 1, 2 and let α = α+ 2.

(iii) Write Q1 =
∑

i≤j aijxixj and Q2 =
∑

i≤j bijxixj, and put

C =



a13 a23

b13 b23



 , D =



a14 a24

b14 b24



 .

Then compute g(s, t) = det(sC̃ + tD̃) and


 f1(s, t)

f2(s, t)



 = adj(sC̃ + tD̃)



 Q̃1(0, 0, s, t)

Q̃2(0, 0, s, t)



 .

(iv) If g divides both f1 and f2 say

f1(s, t) = (λ̃1s+ µ̃1t)g(s, t)

f2(s, t) = (λ̃2s+ µ̃2t)g(s, t)

for some λ1, λ2, µ1, µ2 ∈ OK then substitute x3 ← x3 + λ1x1 + λ2x2 and

x4 ← x4 + µ1x1 + µ2x2 and go to Step (ii).

(v) If f1, f2 and g have a common linear factor then solve for a linear form

ℓ ∈ OK [x1, . . . , x4] with

ℓ̃(−f1(s, t),−f2(s, t), g(s, t)s, g(s, t)t) = 0.

Make a GL4(OK)-transformation so that ℓ = x1. Then run the algorithm

of Proposition 4.9 on (Q1, Q2) and add the answer to α.

(vi) Return α.
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Proof: By the Jacobian criterion (0 : 0 : s : t) is a smooth point on the reduction
if and only if g(s, t) 6= 0, where g is as defined in Step (iii). Our hypothesis
that L has multiplicity one is therefore equivalent to the statement that g is not
identically zero.

Suppose P = (u1 : . . . : u4) ∈ CΦ(K) reduces to a smooth point on L. Then
(assuming u1, . . . , u4 belong to OK but not all to πOK) we have g(ũ3, ũ4) 6= 0.
In Step (ii) we replace P by (π−1u1 : π−1u2 : u3 : u4). The increase in α by
2 is justified by Theorem 4.4(ii) with [M,N ] = [Diag(π−1, π−1),Diag(π, π, 1, 1)].

Solving for the first two co-ordinates of P̃ in terms of the last two we find it is a
smooth point on the rational curve parametrised by

(s : t) 7→ (−f1(s, t) : −f2(s, t) : g(s, t)s : g(s, t)t).

Since g is not identically zero this is a curve of degree 1, 2 or 3. These cases are
treated in Steps (iv),(v) and (vi).

We show in the next section that the algorithm terminates. 2

4.4. Bounds on the Tamagawa distances. We recall from Section 1.1 that the
discriminant is a certain polynomial in the coefficients of a genus one model. In
this section we bound the Tamagawa distances in terms of the valuation of the
discriminant. In particular this proves that our algorithms terminate. We then
give an alternative description of the Tamagawa distances.

Lemma 4.11. Let D = (dij) be the 2 by 5 matrix over Z[l,m, n, a, b, c, d, e] whose

entries are the coefficients of F2 and G2 as defined in Section 3.1. Then

∆ = −27m2
15 + 4m14m25 −m13m35

where mij = d1id2j − d1jd2i.

Proof: A direct calculation. 2

Our algorithms for computing the Tamagawa distances (see Sections 4.2 and 4.3)
only make transformations that preserve the level.

Definition 4.12. Let g ∈ Gn(K) be a transformation of genus one models of

degree n ∈ {2, 3, 4}, say g = [µ, r,N ], [µ,N ] or [M,N ]. Then g is a transformation

of type r with 0 < r < n if det(g) ∈ O×
K and the Smith normal form of N is

Diag(In−r, πIr).

We establish the following bounds on the Tamagawa distances.
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Theorem 4.13. Let Φ be a genus one model over OK of degree n ∈ {2, 3, 4}.

Then the set of Tamagawa distances A(Φ) is bounded by

maxA(Φ) ≤






1
2
v(∆) if n = 2

v(∆) if n = 3

2v(∆) if n = 4

where ∆ = ∆(Φ). Moreover if v(∆) = 1 then A(Φ) = {0}.

Proof: We split into the cases n = 2, 3, 4.
Case n = 2. Let y2 + P (x, z)y = Q(x, z) be a generalised binary quartic with
coefficients l,m, n and a, b, c, d, e. By Lemma 4.11 the discriminant ∆ belongs to
the ideal (n2, nd, d2, e) in Z[l,m, n, a, b, c, d, e]. But if α is a Tamagawa distance
then (P,Q) is OK-equivalent to a model with πα |n, d and π2α | e. Hence π2α |∆
and α ≤ 1

2
v(∆).

Case n = 3. We label the coefficients of our ternary cubic as

U(x1, x2, x3) = ax3
1 + bx3

2 + cx3
3 + fx2

2x3 + gx2
3x1 + hx2

1x2

+ ix2x
2
3 + jx3x

2
1 + kx1x

2
2 +mx1x2x3.

Let I1 = (a, h, k, b) and I2 = (b, f, i, c) in Z[a, b, c, . . . ,m]. We checked using
Magma that the discriminant ∆ belongs to I1I

2
2 .

Let α be a Tamagawa distance. Then α = α1 + 2α2 where Algorithm 4.6 per-
forms αr transformations of type r. The ternary cubic passed to the subalgorithm
in Proposition 4.8 is OK-equivalent to one with πα1 | a, h, k, b and πα2 | b, f, i, c.
Since ∆ ∈ I1I2

2 it follows that α = α1 + 2α2 ≤ v(∆). By symmetry we also have
∆ ∈ I2

1I2 and so α1, α2 ≤
1
2
v(∆). In particular if v(∆) = 0 then α = 0.

Case n = 4. In Section 3.3 we saw that the quadric intersection (Q1, Q2) has the
same discriminant as the generalised binary quartic

(4.3) y2 + pf(xQ1 + zQ2)y = rd(xQ1 + zQ2).

As usual we label the coefficients l,m, n and a, b, c, d, e. By Lemma 4.11 the
discriminant ∆ belongs to J1J2 where J1 = (n2, nd, d2, e) and J2 is the ideal
generated by the 2× 2 minors of D.

Let α be a Tamagawa distance. Then α = α1 + 2α2 + 3α3 where Algorithm 4.7
performs α3 transformations of type 3, then α2 transformations of type 2 and then
α1 transformations of type 1. Notice that a transformation of type r has inverse of
type 4−r. The quadric intersection passed to the subalgorithm in Proposition 4.9
is both OK-equivalent to a model (Q1, Q2) with

Q2(0, x2, x3, x4) ≡ 0 (mod πα1),

and OK-equivalent to a model (Q′
1, Q

′
2) with

Q′
1(x1, x2, 0, 0) ≡ Q′

2(x1, x2, 0, 0) ≡ 0 (mod πα2).
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We may therefore assume that πα1 |n, d and π2α1 | e, and (using Lemma 3.6 to
check the conclusion is unaffected by an OK-equivalence) that (4.3) is reducible
mod πα2 , i.e. there are binary quadratic forms t1 and t2 satisfying

pf(xQ1 + zQ2) ≡ t1(x, z) + t2(x, z) (mod πα2)

rd(xQ1 + zQ2) ≡ −t1(x, z)t2(x, z) (mod πα2).

This last condition implies that the 2 by 2 minors of the matrix D in Lemma 4.11
vanish mod πα2. Since ∆ ∈ J1J2 it follows that 2α1 + α2 ≤ v(∆). The same
argument gives 2α3 + α2 ≤ v(∆). Hence α = 1

2
(2α1 + α2) + 3

2
(2α3 + α2) ≤ 2v(∆).

By Lemma 4.11 we also have ∆ ∈ J2
2 and so α1, α2, α3 ≤

1
2
v(∆). In particular if

v(∆) = 0 then α = 0.
We have shown in the cases n = 2, 3, 4 that if v(∆) = 1 then A(Φ) ⊂ {0}.

To prove equality it remains to show that any such model is K-soluble. Since
v(∆) = 1 we have v(∆E) = 1 and so by Tate’s algorithm the Tamagawa number
c(E) is also 1. By Lemma 2.1 it suffices to prove Knr-solubility and this follows
by the results in [CFS]. 2

Corollary 4.14. When the input is a non-singular genus one model the algorithms

in Sections 2.1, 4.2 and 4.3 terminate.

Proof: For the algorithms in Sections 4.2 and 4.3 this is immediate from our
bounds on the Tamagawa distances. Taking into account the transformations
in Step (i) that immediately follow each recursion, the algorithms in Section 2.1
never increase the level. So after finitely many iterations the level is preserved.
Thereafter each iteration is a transformation of type n − 1. By the proof of
Theorem 4.13 the number of such iterations is bounded by 1

2
v(∆). 2

Remark 4.15. If we think of the algorithms as performing a tree search, then

Theorem 4.13 bounds the depth of the search, and Section 2.3 (on non-regular

points) bounds the breadth of the search. From both points of view it is clearly

desirable that we first minimise our model using the algorithms in [CFS].

For the rest of this section we assume that Φ is K-soluble and of level 0. The
set of Tamagawa distances A(Φ) has the following alternative interpretation. Let
N be the set of all matrices N in GLn(K) such that for some transformation
g = [µ, r,N ], [µ,N ] or [M,N ] in Gn(K) the model gΦ is minimal (equivalently is
integral of level 0). Let N0 ⊂ N be the subset where the reduction of gΦ defines a
curve with a k-rational component of multiplicity one and degree n− 1 or n. Let
G be the subgroup of GLn(K) generated by GLn(OK) and the scalar matrices.
Then

A(Φ) = {v(detNi) : 1 ≤ i ≤ m}
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where N1, . . . , Nm are a set of representatives for G \ N0 scaled so that each Ni

has entries in OK not all in πOK .
Theorem 4.13 shows that the set G \ N0 is finite. Alternatively this follows by

work of Sadek [Sa] who computes #(G\N ). If n > 2 then the same methods show
that #(G \ N0) is the Tamagawa number c(E) of E = Jac(CΦ). This is still true
when n = 2 if we adopt the convention that models of degree 2 whose reduction
mod π have two k-rational components are counted twice.

It is natural to consider the graph with vertex set G \ N and (directed) edges
corresponding to the transformations of types 1, 2, . . . , n− 1. We recall that c(E)
is the number of k-rational components of the special fibre of the Néron model.
For each such component there is a preferred vertex where the component is seen
as a curve of degree n − 1 or n. These vertices make up the set G \ N0. We
may interpret A(Φ) as the set of distances (weighted by type) from the vertex
corresponding to Φ to each of these special vertices. This explains why we call
A(Φ) the set of Tamagawa distances.

These graphs are investigated further in [S] with particular attention given to
the case n = 4 and E with multiplicative reduction. These investigations suggest
that the bounds in Theorem 4.13 are best possible.

4.5. Calculation at the infinite place. Since our examples in Section 5 are
over K = Q we will only consider real places. (If n = 2 then the complex places
are already treated in [CPS].)

Let Φ be a non-singular genus one model over R of degree n ∈ {2, 3, 4}. We
assume CΦ(R) 6= ∅. Let Fn and Gn be the polynomials associated to Φ as defined
in Section 3 and let r ∈ R. In this section we compute

δ(Φ, r) = sup
P∈CΦ(R)

max(|Fn(x)|, |rFn(x) +Gn(x)|)

max(|x1|, . . . , |xn|)2n

ε(Φ, r) = inf
P∈CΦ(R)

max(|Fn(x)|, |rFn(x) +Gn(x)|)

max(|x1|, . . . , |xn|)2n

where P = (x1 : x2 : y) or (x1 : . . . : xn). These definitions are slightly more
general than those in Section 4.1 as previously we took r = 0.

Proposition 4.16. We can compute δ(Φ, r), respectively ε(Φ, r), by taking the

maximum, respectively minimum, over all points P ∈ CΦ(R) satisfying one of the

following conditions:

(i) P = (x1 : . . . : xn) with xi = ±xj for some i 6= j,

(ii) Fn(P ) = ±(rFn(P ) +Gn(P )),

(iii) n = 2 and F2(P ) = 0,
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(iv) according as n = 2, 3, 4,

∂f

∂xi
(P ) = 0,

∂(U, f)

∂(xi, xj)
(P ) = 0,

∂(Q1, Q2, f)

∂(xi, xj , xk)
(P ) = 0,

where f = Fn or rFn +Gn and i, j, k are distinct.

Proof: Since CΦ(R) is non-empty we may identify it as the real locus of an elliptic
curve. In particular it is isomorphic as a smooth real manifold to either one or
two copies of the circle R/Z. We are asked to find the maxima and minima of a
continuous real-valued function on this manifold. In (i) and (ii) we consider the
points where this function is not differentiable, and in (iii) and (iv) we consider
the points where its derivative vanishes. We recall by Theorem 3.8 that there are
no points P ∈ CΦ with Fn(P ) = Gn(P ) = 0. Condition (iii) is needed since after
completing the square CΦ has equation y2 = F2(x1, x2). 2

We check that the set of points P in Proposition 4.16 is finite. In case (i) it
suffices to note (by Bezout’s theorem) that CΦ has finite intersection with any
hyperplane. In cases (ii) and (iii) we recall that (Fn : Gn) defines a non-constant
morphism CΦ → P1 and therefore has finite fibres. If there were infinitely many
points P satisfying one of the conditions in case (iv) then (after permuting the
co-ordinates if necessary) we would have

λFn + µGn ≡ x2n
1 (mod I)

for some (λ : µ) ∈ P1(R), where I = 0, (U), (Q1, Q2) according as n = 2, 3, 4. In
particular the form

∂(F2, G2)

∂(x1, x2)
or

∂(U, F3, G3)

∂(x1, x2, x3)
or

∂(Q1, Q2, F4, G4)

∂(x1, x2, x3, x4)

would be divisible by x2n−1
1 . However the invariant theory in Section 3 shows that

these forms meet CΦ in distinct points: namely π−1(E[2] \ {0}) in the case n = 2
and π−1(E[2]) in the cases n = 3, 4. This is the required contradiction.

Proposition 4.16 allows us to compute δ(Φ, r) and ε(Φ, r) numerically. The case
n = 2 is already covered in [Si2], [CPS]. See [S, Section 2.5] for a worked example.
In the cases n = 3, 4 we use the Gröbner basis machinery in Magma. In Section 5
we consider models over Q, so the Gröbner bases can be computed exactly.

5. Examples

5.1. Explicit bounds. Let E/Q be an elliptic curve with global minimal Weier-
strass equation (1.2) and discriminant ∆E . Let C = CΦ be an n-covering of E,
where Φ is a non-singular genus one model of degree n ∈ {2, 3, 4}. We assume that
C(Qp) 6= ∅ and Φ is minimal at all primes p. Therefore by [CFS, Theorem 3.4] we
have ∆(Φ) = ∆E . In particular C and E have the same primes of bad reduction.
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In Sections 4.2 and 4.3 we computed a finite set of integers Ap = Ap(Φ) at
each bad prime p. The Weierstrass equations (1.2) and (3.1) are related by a
substitution

x← x+ r y ← y + sx+ t

for some r, s, t ∈ Z. In Section 4.5 we computed the real contributions δ∞(Φ, r)
and ε∞(Φ, r). The height bounds B1 and B2 in (1.1) are now given by

B1 = −(1/2n) log δ∞(Φ, r) + (1/n)
∑

p |∆E

minAp(Φ) log p

B2 = −(1/2n) log ε∞(Φ, r) + (1/n)
∑

p |∆E

maxAp(Φ) log p

This follows from (4.1) and (4.2), except that in changing our choice of Weierstrass
equation (from that given by the a-invariants to a standard one) we must replace
Gn by rFn +Gn. This makes no change at the finite places since r ∈ Z.

By Theorem 4.13 we need only sum over primes p with p2 |∆E .

5.2. A first example. Let E be the elliptic curve y2+y = x3−41079x−2440008
labelled 120267g1 in [Cr]. The primes of bad reduction are p = 3, 7, 23, 83 with
Kodaira symbols I∗4, I4, I1, I3 and Tamagawa numbers 4, 4, 1, 3. The group E(Q) is
free of rank 2 generated by (−106, 850) and (−157, 373).

Among the coverings of E computed using n-descent for n = 2, 3, 4 we choose
the following for illustration.

C2 : y2 + z2y = −5x4 − 171x3z + 78x2z2 + 216xz3 − 106z4

C3 : 12x2y − 9x2z + 9xy2 − 12xyz + 7y3 + 10y2z − 17yz2 − 6z3 = 0

C4 :

{
x1x2 + x1x3 + 3x1x4 + x2x3 − 4x2x4 + x2

3 + 6x3x4 + 2x2
4 = 0

3x1x3 + 3x1x4 − x2
2 + x2x3 − 9x2

3 + 4x3x4 + x2
4 = 0

The sets of Tamagawa distances Ap are as follows. We compute these as multisets
so that, as a check on our calculations, the size of Ap is equal to the Tamagawa
number. (See the comments at the end of Section 4.4.)

n = 2 n = 3 n = 4

A3 = {0, 0, 1, 1} A3 = {2, 3, 3, 4} A3 = {2, 4, 6, 8}

A7 = {0, 0, 1, 1} A7 = {1, 1, 1, 2} A7 = {1, 2, 3, 4}

A23 = {0} A23 = {0} A23 = {0}

A83 = {0, 0, 1} A83 = {0, 1, 2} A83 = {1, 2, 2}
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Combining these with the contributions at the infinite place we obtain the fol-
lowing bounds on the height of Pn ∈ Cn(Q) mapping down to P ∈ E(Q).

−3.06805 ≤h(P2)−
1
4
hE(P ) ≤ 1.21943

−2.80610 ≤h(P3)−
1
6
hE(P ) ≤ 2.44241

−3.08885 ≤h(P4)−
1
8
hE(P ) ≤ 2.48228

The curves Cn have many small rational points. We list a few of these together
with their contributions to the Tamagawa distances (at p = 3, 7, 83) and the height
difference h(P )− 1

2n
hE(πP ).

P p = 3 p = 7 p = 83 h(P )− 1
2n
hE(πP )

(1 : 1 : 3) 0 1 0 −1.68305

(2 : 3 : 37) 0 0 1 −0.30284

n = 2 (6 : −1 : 178) 1 1 0 −1.08967

(27 : −1 : 871) 1 1 1 1.14846

(769 : 787 : 2143781) 0 0 0 −2.63972

(1 : 0 : 0) 4 1 0 −1.15212

(1 : −1 : −1) 3 1 0 −2.16072

n = 3 (2 : −3 : 1) 2 2 0 −1.74660

(2 : 18 : 15) 4 2 2 1.96488

(1 : −6 : 20) 2 1 0 −2.38783

(1 : 0 : 0 : 0) 4 2 1 −0.70073

(−2 : 5 : 2 : 7) 2 4 1 −1.54491

n = 4 (−3 : 3 : 1 : 8) 6 3 1 −0.80265

(557 : 544 : −134 : 470) 2 2 1 −2.31493

(157397 : 2728 : 1502 : −1438) 8 3 2 1.99552

5.3. Searching for generators of large height. We give two examples. The
first is an example where the generator was found by Michael Stoll using 4-descent
(see [CFS, Section 7C]). The elliptic curve E in the second example is taken from
a list of curves sent to us by Robert Miller. Although in both these examples the
elliptic curve has rank 1, the conductor is large enough to make a Heegner point
calculation difficult.

Example 5.1. Let E/Q be the elliptic curve y2 = x3 + 7823. An L-value compu-

tation shows that rankE(Q) = 1 and the generator is predicted to have canonical

height h1 = 77.61777 . . . (if we assume X(E/Q) is trivial).
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Using the implementations of 2-, 3- and 4-descent in Magma, together with

minimisation and reduction, we obtain the following n-coverings of E.

C2 : y2 + (x2 + z2)y = −3x4 + 28x3z − 2x2z2 − 4xz3 + 10z4

C3 : x3 + x2y − 4x2z − 8xyz + 8xz2 + y3 − 5y2z − 7yz2 + z3 = 0

C4 :





2x1x2 + x1x3 + x1x4 + x2x4 + x2
3 − 2x2

4 = 0

x2
1 + x1x3 − x1x4 + 2x2

2 − x2x3 + 2x2x4 − x2
3 − x3x4 + x2

4 = 0

At each of the bad primes p = 2, 3, 7823 the elliptic curve E has additive reduction

with Kodaira symbol II. The finite primes make no contribution to our height

bounds. If Pn ∈ Cn(Q) maps down to P ∈ E(Q) then our bounds work out as

−1.94921 ≤h(P2)−
1
4
hE(P ) ≤ −0.92414

−2.91485 ≤h(P3)−
1
6
hE(P ) ≤ −1.41177

−3.66288 ≤h(P4)−
1
8
hE(P ) ≤ −2.43592

The bounds established in [CPS] show that for P ∈ E(Q) we have

−3.68143 ≤ hE(P )− ĥE(P ) ≤ 0.74248

where ĥE is the canonical height. We write Pn = (x1 : x2 : y), respectively

(x1 : . . . : xn), where x1, . . . , xn are coprime integers. Taking ĥE(P ) = h1 we

therefore expect to find Pn ∈ Cn(Q) with Hn = max(|x1|, . . . , |xn|) in the following

ranges. For comparison we list the actual points Pn.

15170781 ≤ H2 ≤ 127792792 P2 = (10677130 : −42786483 : 5018494588774686)

12185 ≤ H3 ≤ 114492 P3 = (10445 : −32922 : 16423)

265 ≤ H4 ≤ 1570 P4 = (116 : 207 : 474 : −332)

Example 5.1 makes precise the statement that searching on an n-covering to
find a generator for E(Q) becomes easier as n increases. For the actual searching
we use the p-adic method due to Elkies [E] and Heath-Brown, as implemented in
Magma by Watkins. This takes time O(H), respectively O(H2/3), to search for
points of height up to H on a 3-covering, respectively 4-covering.

Example 5.2. Let E0 be the elliptic curve y2 +xy+y = x3−x2−2305x+43447,

labelled 3850m1 in [Cr], and E the quadratic twist of E0 by d = −2351. We fix

a Weierstrass equation for E of the form (1.2). The primes of bad reduction are

p = 2, 5, 7, 11, 2351 with Kodaira symbols I1, II
∗, I2, I1, I

∗
0 and Tamagawa numbers

1, 1, 2, 1, 2. An L-value computation shows that rankE(Q) = 1 and the generator

is predicted to have canonical height h1 = 182.01408 . . . (if we assume X(E/Q)

is trivial). The torsion subgroup of E(Q) is trivial.
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Using 4-descent in Magma we obtain a 4-covering C4 of E with equations

3x2
1 + 17x1x2 + x1x3 + 7x1x4 − 5x2

2 + 11x2x3 + 6x2x4 + 5x2
3 + 9x2

4 = 0

10x2
1 + 7x1x2 − x1x3 − x1x4 + 4x2

2 − x2x3 − 13x2x4 + 14x2
3 − 30x3x4 + 18x2

4 = 0

The Tamagawa distances for this quadric intersection are A2 = A11 = {0}, A5 =

{6}, A7 = {1, 1} and A2351 = {4, 4}. For P4 ∈ C4(Q) we obtain the bounds

0.65550 ≤ h(P4)−
1
8
hE(πP4) ≤ 0.94857.

The bounds in [CPS] are now −15.51194 ≤ hE(P ) − ĥE(P ) ≤ 8.73556. We are

therefore looking for P4 ∈ C4(Q) with

21.46827 ≤ h(P4) ≤ 24.79228.

A direct search is not practical. However our computation of the Tamagawa
distances at p = 5 and p = 2351 suggests replacing C4 by either C′4 with equations

3x2
1 + 3x1x2 + 4x1x3 + 6x1x4 + 3x2

2 − 3x2x3 + 2x2x4 + 6x2
3 − 28x3x4 + 11x2

4 = 0

4x2
1 + x1x2 − 7x1x3 + 9x1x4 − 4x2

2 − 8x2x3 + 38x2x4 + 31x2
3 + 14x3x4 + 16x2

4 = 0

or C′′4 with equations

2x2
1 + 4x1x2 + 10x1x3 + 3x1x4 − 3x2

2 − 2x2x3 − 6x2x4 − 5x2
3 − 10x3x4 − 21x2

4 = 0

14x2
1 + x1x2 + 11x1x3 − 11x1x4 + 2x2

2 + 25x2x3 + 15x2x4 − 2x2
3 − 24x3x4 + 12x2

4 = 0.

Again we have reduced these models as described in [CFS]. We do not record

the changes of co-ordinates used, since they may easily be recovered using the

algorithm in [F2], as implemented in the Magma function IsEquivalent.

On C′4 and C′′4 we have A2 = A5 = A11 = {0}, A7 = {1, 1} and A2351 = {0, 4}. So

the only finite primes to contribute to our height bounds are p = 7 and p = 2351.

Moreover if we are willing to search on both curves then the contributions at

p = 2351 may be ignored. Suppose P4 ∈ C4(Q), corresponds to P ′
4 ∈ C

′
4(Q) and

P ′′
4 ∈ C

′′
4 (Q), and maps down to P ∈ E(Q). Then depending on the reductions of

these points mod 2351, we have either

(5.1) −9.65955 ≤ h(P ′
4)−

1
8
hE(P ) ≤ −9.29236

or

(5.2) −9.72818 ≤ h(P ′′
4 )− 1

8
hE(P ) ≤ −9.35987.

Taking ĥE(P ) = h1 it follows that either

11.15322 ≤ h(P ′
4) ≤ 14.55134 or 11.08459 ≤ h(P ′′

4 ) ≤ 14.48383.

If we are willing to search on only one of these curves then the upper bounds

increase by log 2351 = 7.76259 . . ..
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Magma’s PointSearch takes just a few seconds to find a point P ′′
4 ∈ C

′′
4 (Q). We

find the corresponding points P4 ∈ C4(Q) and P ′
4 ∈ C

′
4(Q) by making the relevant

changes of co-ordinates, and thus obtain

P4 = (−32083748086 : 42638879317 : 38411124781 : 22127244455) h(P4) = 24.47603 . . .

P ′
4 = (472320823 : 4111701909 : −2388802174 : −2139378517) h(P ′

4) = 22.13710 . . .

P ′′
4 = (785047 : −840912 : 1542460 : −236990) h(P ′′

4 ) = 14.24888 . . .

These points map down to P = (u/w2, v/w3) ∈ E(Q) where

u = 1757287936905025328253331560718272340242739349926447025094428588\

4833392724486595115

v = 4125077432494049001174441775597880344806917503465242447257595890\

83530835657373093470958302511042544245136026529511888663249

w = 364436547292608819468573335937957548482.

If P0 ∈ E(Q) is a generator then (assuming we have carried out the 4-descent

rigorously) it lifts to a rational point on C4. Combining our height bounds (5.1)

and (5.2) with those in [CPS] it follows that

ĥE(P0) ≥ 8× 9.29236− 8.73556 = 65.60332.

Since ĥE(P ) = 182.01408 . . . we deduce (without the need for any further search-

ing) that P is a generator for E(Q).

Example 5.2 shows the advantages of searching on several different models of
the same curve. One strategy would be to search on

∏
p cp(E) models of each

curve, so that only the contributions to our height bounds at the infinite place are
relevant. (These contributions do not appear to vary greatly between the models,
so long as we always reduce them.) However when

∏
p cp(E) is large then some

compromise is needed and for this the graphs in [S] are useful. Alternatively it
may be possible to adapt the p-adic point searching method to search on several
models of the same curve simultaneously.
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