LOCAL SOLUBILITY AND HEIGHT BOUNDS FOR
COVERINGS OF ELLIPTIC CURVES

T.A. FISHER AND G.F. SILLS

ABSTRACT. We study genus one curves that arise as 2-, 3- and 4-coverings
of elliptic curves. We describe efficient algorithms for testing local solubility
and modify the classical formulae for the covering maps so that they work in
all characteristics. These ingredients are then combined to give explicit bounds
relating the height of a rational point on one of the covering curves to the height
of its image on the elliptic curve. We use our results to improve the existing
methods for searching for rational points on elliptic curves.

1. INTRODUCTION

Let E be an elliptic curve over a number field K. An n-covering of E is smooth
curve of genus one C together with a morphism 7 : C — FE, with C and 7m both
defined over K, such that the diagram

| N

E W E
commutes for some isomorphism v : C= E defined over K. An n-descent cal-
culation computes equations for the everywhere locally soluble n-coverings of F.
Finding rational points on these n-coverings can assist in computing generators
for the Mordell-Weil group E(K). Indeed if C(K) is non-empty then 7(C(K)) is
a coset of nE(K) in E(K).

Suppose that C is everywhere locally soluble, i.e. C(K,) # 0 for all places v
of K. By [Ca, Proof of Theorem 1.3] there exists a K-rational divisor D on C
with D ~ ¢*(n.OQ), where O is the identity on E. The complete linear system |D)|
defines a morphism C — P! If n = 2 then C — P! is a double cover ramified
at 4 points. If n > 3 then C C P"! is a genus one normal curve of degree n. The
map 7 : C — F may be recovered as P +— [nP — D] € Pic’(C) = E where D is now
the hyperplane section on C. In the cases n = 2, 3,4 equations for C take the form
of a binary quartic, ternary cubic or quadric intersection. The Jacobian elliptic
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curve E and covering map 7 are then given by formulae from classical invariant
theory as surveyed in [AKM?P].

It is expected that points on C(K) will be smaller (and hence easier to find)
than their images in E(K). This statement is made precise using the theory of
heights. Let h be the logarithmic height on C relative to the hyperplane section
D, and hp the x-coordinate logarithmic height on E. Then as pointed out in [Sto]
there exist constants B; and Bs such that

(1.1) B < h(P) — %hE(wP) < B,

for all P € C(K). To prove this one first notes that since n2.0 ~ [n]*O we have
2nD ~ 7(2.0). The existence of bounds B; and Bs then follows by standard
results about heights; see for example [HS, Theorem B.3.2].

We restrict to n = 2,3 or 4. In these cases n-descent has been implemented in
the computer algebra system Magma [BCP] at least over K = Q. The algorithms
for 3-descent are described in [SS], [CFOSS] and those for 4-descent in [MSS], [W].
In Sections 2, 3 and 4 we

e describe algorithms for testing whether C(K,) # 0,

e modify the formulae for the covering map 7 : C — E so that they work in
all characteristics, and

e compute explicit bounds By and By in (1.1).

Recent work on higher descents and on computing the Cassels-Tate pairing (see
[Cre], [Don], [F4], [Sta]) relies on being able to efficiently compute local points.
This prompted us to improve the local solubility tests currently implemented in
Magma. The material in Section 2 should however contain few surprises for ex-
perts. The main reason for including it here is as a preliminary to our work on
height bounds. The latter is also the motivation for the formulae in Section 3,
although these too may be of independent interest.

It is possible to compute bounds B; and Bs in (1.1) using elimination theory.
However this method gives rather poor results. Instead we compute our bounds as
sums of local contributions. This generalises work of Siksek [Si2] who considered
the case where 7 is multiplication-by-2 on E. As he observes it is worth putting
some effort into obtaining good bounds, as this can significantly reduce the size
of the region we end up searching. We give some examples in Section 5.

The bounds B; and By depend on our choice of equations for C and E. Let us
take K = Q. For E we take the global minimal Weierstrass equation

(1.2) 2+ azy + asy = 23 + asr? + aux + ag

with a1, a3 € {0,1} and ay € {0, £1}. For C we take an equation that is minimised
and reduced as described in [CFS]. Roughly speaking one expects that minimising
improves the bounds at the finite places, and reducing improves the bounds at the
infinite places. However there can be more than one choice of minimisation. We
find that the bounds can vary significantly between these choices. In Section 5 we
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include an example where these ideas allow us to improve the search for rational
points on C (and hence on E).

1.1. Genus one models. The following notation is recalled from [CFS], [F1].
We call the equations defining an n-covering (where n = 2,3 or 4) a genus one
model. More precisely we make the following definition.

Definition 1.1. Let R be any ring.

(i) A genus one model of degree 2 over R is a generalised binary quartic

y? 4 P21, 22)y = Q(z1, 22),

sometimes abbreviated (P, @), where P and () are homogeneous forms of
degree 2 and 4 with coefficients in R. A transformation of genus one models
is given by y < p~ly + roz? + rizixe + roxi for some p € R* and r =
(ro,7m1,79) € R3, followed by z; « > n;;z; for some N = (n;;) € GLy(R).
We write Go(R) for the group of all such transformations g = [u, r, N| and
define det g = ppdet N.

(ii) A genus one model of degree 3 over R is a ternary cubic U € R[xy, xa, x3).
A transformation of genus one models is given by multiplying the cubic
through by p € R*, followed by z; «— > n;x; for some N = (n;;) €
GL3(R). We write G3(R) for the group of all such transformations g =
(11, N] and define det g = pdet V.

(iii) A genus one model of degree 4 over R is a quadric intersection, i.e. a
pair of homogeneous polynomials Q1,Q2 € R[z1,...,x4) of degree 2. A
transformation of quadric intersections is given by @; < > m;;Q; for some
M = (m;;) € GLy(R) and z; < ) n;;x; for some N = (n;;) € GL4(R).
We write G4(R) for the group of all such transformations g = [M, N] and
define det g = det M det N.

We say that genus one models are R-equivalent if they are in the same orbit for
the action of G, (R). Notice that by our conventions the action of G, (R) on the
space of genus one models is a left action.

An invariant of weight k is a polynomial F in the coefficients of a genus one
model such that Fog = (det g)*F for all g € G,,. Let ¢4, cs and A = (¢} —c2)/1728
be the classical invariants of weights 4, 6 and 12. We fix the scaling of these
invariants as described in [CFS], [F1], i.e so that the models y? + zyzoy = 0,
1122203 = 0 and x129 = x3x4 = 0 have invariants ¢, = 1 and ¢ = —1. For example
the binary quartic y? = ax? + bz®z + cx?2? + dz2® + ez? has invariants

cy = 2*(12ae — 3bd + %)
ce = 2°(T2ace — 27ad* — 27b%¢ + 9bed — 2¢°).
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A genus one model ® over a field K is non-singular if the variety Ce it defines is
a smooth curve of genus one, and K -soluble if Co(K) # 0. It is shown in [F1] that
® is non-singular if and only if A(®) # 0. Moreover if char(K) # 2,3 then (by
an observation originally due to Weil in the cases n = 2,3) the Jacobian elliptic
curve E = Jac(Cs) has Weierstrass equation

(1.3) y? = 2 — 27cy(®)x — 5dcg(D).

Functions for computing with genus one models, their transformations and invari-
ants have been contributed to Magma [BCP] by the first author.

2. TESTING FOR LOCAL SOLUBILITY

Let K be a finite extension of Q, with ring of integers Ok, maximal ideal 7Ok,
residue field & and normalised discrete valuation v : K* — Z. Reduction mod 7
will be denoted x — z. If f is a polynomial with coefficients in K then we write
v(f) for the minimum valuation of a coefficient.

Let ® be a non-singular genus one model over K of degree n € {2,3,4}. In this
section we give algorithms for deciding whether ® is K-soluble. Our algorithm in
the case n = 2 is essentially the same as that in [BSD], [Bru], [Cr], [MSS] and is
included only for completeness. The cases n = 3,4 can also be handled by the
general method for complete intersections described in [Bru]. However this general
method involves looping over all k-points on the reduction, and is therefore ineffi-
cient when k is large. We overcome this problem by making use of the geometry
of singular genus one models. We have contributed our algorithms (over K = Q,)
to Magma [BCP], and from the next release (Version 2.17) they will be called by
default when equations of the relevant form are passed to IsLocallySoluble.

The basic algorithms are listed in Section 2.1. They depend on methods for
deciding whether there are any smooth k-points on the reduction (see Section 2.2)
and for finding all non-regular k-points (see Section 2.3). It is clear by Hensel’s
lemma that when an answer is returned then that answer is correct. If the al-
gorithms failed to terminate then from the resulting infinite sequence of trans-
formation we could construct a singular point on the original curve. Thus our
assumption that ® is non-singular ensures that the algorithms terminate. We
omit the details since we give an alternative proof in Section 4.4.

In practice we first replace ® by a minimal model, i.e. a K-equivalent model
over Ok with v(A(®)) minimal. Algorithms for doing this are described in [CFS].
Let E = Jac(Cp) be the Jacobian elliptic curve and Ag its minimal discriminant.
Then v(A(®)) = v(Ag) + 12¢ where ¢ is a non-negative integer called the level of
®. Notice that applying a transformation g € G, (K) changes the level by v(det g).
In [CFS] it is shown that the minimal level is 0 if and only if Co(K™) # () where
K™ is the maximal unramified extension of K. Therefore our local solubility tests
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are only needed for models of level 0. This extra hypothesis will be useful in
Section 2.3.

We mention as an aside that if the Tamagawa number ¢(FE) is coprime to n
then a further simplification is possible. Indeed by the following lemma we have
Co(K) # 0 if and only if Co(K™) # 0, and so the algorithms in [CFS] already give
a test for local solubility.

Lemma 2.1. The restriction map H (K, E) — HY (K™, E) has kernel of order
c(B).

ProoOF: By [M, Proposition 3.8] and the inflation-restriction exact sequence the
kernel is isomorphic to H'(k, ®g) where @ is the component group of the Néron
model of E. Since @ is finite and ¢(E) = #Pg(k) the result follows by the exact
sequence

0—HO(k, &) —Pp =" & p— I (k, D) —0.

O

2.1. Algorithms. Let ® be a non-singular genus one model over K of degree
n € {2,3,4}. Our algorithms for deciding whether Ce(K) # () start by making
two simplifications. First by clearing denominators we may assume that & is
defined over O. Then by calling the algorithm n times (with the co-ordinates
permuted) it suffices to look for points on a standard affine piece with co-ordinates
in Ok. We remark that if char(k) # 2 then the first algorithm simplifies in the
obvious way by completing the square.

Algorithm 2.2. IsLocallySoluble(h,g)
INPUT: Polynomials h(x), g(z) € Ok[z] with deg(h) < 2 and deg(g) < 4.
OUTPUT: TRUE/FALSE (solubility of y* + h(x)y = g(z) for z,y € O)
(i) Make a substitution y « y + rox? + riz + 7o (with r; € Ok) so that if
possible v(h) > 1 and v(g) > 1. If now v(h) > 1 and v(g) > 2 then replace
h and g by 7~'h and 7~2g and repeat Step (i).
(ii) Consider the affine curve
[ ={y*+hx)y =g(x)} C AL
If there are smooth k-points on I' then return TRUE.

(iii) Find all non-regular k-points on I". These are the singular points (u,v)
on I' with the property that for some (and hence all) lifts u,v € Ok of
u,v € k we have v? + h(u)v = g(u) (mod 7?).

(iv) For each non-regular k-point (w,v) on I' lift u € k to u € O and put
hi(z) = h(u+7z), g1(x) = g(u+ 7). If IsLocallySoluble(hl,gl) then
return TRUE.

(v) Return FALSE.
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Algorithm 2.3. IsLocallySoluble(g)
INPUT: A polynomial g(z,y) € Ok[z,y| of total degree < 3.
OUTPUT: TRUE/FALSE (solubility of g(x,y) =0 for z,y € O)
(i) Divide g by 7 so that now v(g) = 0.
(ii) Consider the affine curve

I = {g(z,y) = 0} C A}

If there are smooth k-points on I' then return TRUE.

(iii) Find all non-regular k-points on I". These are the singular points (@, v)
on I' with the property that for some (and hence all) lifts u,v € O of
u,v € k we have g(u,v) =0 (mod 7?).

(iv) For each non-regular k-point (u,v) on I' lift %, v € k to u,v € O and put
g1(x,y) = g(u+ mx,v+ my). If IsLocallySoluble(gl) then return TRUE.

(v) Return FALSE.

Algorithm 2.4. IsLocallySoluble(gl,g2)
INPUT: Polynomials g1, g2 € Oklz,y, 2] of total degree < 2.
OUTPUT: TRUE/FALSE (solubility of g1(z,y,2) = ¢2(x,y, 2) = 0 for z,y,z € Ok)

(i) Replace g; and go by linear combinations so that g; and go are linearly
independent over k. If g; and g, have a common linear factor then make a
change of coordinates so that this factor is . Then replace g;(z,vy, z) by
nlgi(mx,y, 2) for i = 1,2 and repeat Step (i).

(ii) Consider the affine curve

I'={q(z,y,2) = go(w,y,2) = 0} C A}.
If there are smooth k-points on I' then return TRUE.

(iii) Find all non-regular k-points on I'. These are the points (u,v,w) on I'
that are singular on {g = 0} for some g = Ag; + g (where A\, u € Ok not
both divisible by 7) with the property that for some (and hence all) lifts
u,v,w € O of w,v,w € k we have g(u,v,w) =0 (mod 72).

(iv) For each non-regular k-point (u,v,w) on I' lift @, v, w € k to u,v,w € Ok
and put

hi(z,y, z) = gi(u+ 7z, v+ 7Y, w + 72)
for 1 = 1,2. If IsLocallySoluble(hl,h2) then return TRUE.
(v) Return FALSE.

Remark 2.5. The algorithms may be adapted to return a certificate in the case ®
is locally soluble. This certificate takes the form of a transformation of genus one
models g such that g® has smooth k-points on its reduction. A smooth k-point on
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the reduction is easily found (e.g. by intersecting with random hyperplanes). We
may then use Hensel’s lemma to compute a local point to any desired precision.
This is the second returned argument of Magma’s IsLocallySoluble.

2.2. Testing for smooth points. We show how to decide whether a genus one
model defined over a finite field k£ has any smooth k-points. For small k there is no
difficulty in looping over all k-points and testing to see which if any are smooth.
For larger k this can be rather inefficient.

First we recall the classification of singular genus one models over an alge-
braically closed field K. Notice that we are only interested in models that define
a curve.

Lemma 2.6. The GLy(K)-orbits of singular binary quartics have the following
representatives.

binary quartz’c geometric description

Ay y? = 23z + 2 a rational nodal curve
Ay y? = 2222 two rational curves

B y? =232 a rational cuspidal curve
B, y? =2t two rational curves

D y? =0 a double line

PROOF: These cases correspond to the number and multiplicity of the repeated
roots of the binary quartic. O

Lemma 2.7. Assume char(K) # 3. Then the GL3(K)-orbits of non-zero singular
ternary cubics have the following representatives.

ternary cubic  geometric description

Ay xyz — > — 23 a rational nodal cubic
Ag ryz —y° a conic and a line

Az xyz three lines

B, Y2z — a3 a rational cuspidal cubic
By 2y — y’z a conic and a line

Bs 22y — xy? three lines

C 2%y a line and a double line
D x3 a triple line

PROOF: This is standard. See for example [Dol, Section 10.3]. O
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Lemma 2.8. Assume char(K) # 2. Then the GLy(K) x GL4(K)-orbits of quadric
intersections (Q1, Q2), with Q1 and Qo coprime, have the following representatives.
(The final column relates to Lemma 2.13 below.)

quadric intersection geometric description Segre symbol m
Ay T1T3 — 13 — 23, wowy — 22 a rational nodal quartic [112] 0
A, T1T3 — T3, ToTy — T a twisted cubic and a line  [22] 0
Az T1Ty — T3 — X3, Tom3 two conics 111y 1
Ay T1T3 — T2, Toly a conic and two lines [2(11)] 1
As T1T3, Toly four lines [(11)(11)] 2
B, T1Ty — T3, Towy — T3 a rational cuspidal quartic  [13] 0
By T1Ty — Tol3, ToTy — T3 a twisted cubic and a line  [4] 0
Bs T1T3 + T1Ty — T3, T3Ty two conics [1(21)] 1
B, T1T3 — T3+ ToTy, T3Ty a conic and two lines [(31)] 1
Bs XTol3 — X3y, Toly — X3Ty  four lines [111] 3
C, Toly — T3Ty, ToXy — X3Ty  a conic and a double line [1{3}] 1
Cy T1T3 + ToXy, T1T4 two lines and a double line [(22)] 1
Cs Toly — Toly, T3xy two lines and a double line  [12] 2
C,y ToT3 — T3, T3T4 a line and a triple line 3] 1
D, 22 — w913, 22 a double conic [1(111)] -
D, T1Ty4 + Tox3, T2 two double lines [(211)] —
Dy  zox3, 23 two double lines [1(11)] —
D,  woxy — 2k, 22 a quadruple line [(21)] —
Ds 3, 13 a quadruple line [11] —

PRrROOF: The classification (at least over K = C) is due to Segre. See for example
[Bro], [DLLP], [HP]. O

Remark 2.9. The restrictions on the characteristic of K in Lemmas 2.7 and 2.8
are necessary. For example if char(K) = 3 then the cuspidal cubics y?z = 2%+ 22y
are inequivalent for A = 0 and A # 0. Likewise if char(K) = 2 then the cuspidal
quadric intersections x1x4 + ATox3 — T3 = xyx4 — 23 = 0 are inequivalent for A = 0
and X\ # 0.
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Figures 1, 2 and 3 illustrate the classifications in Lemmas 2.6, 2.7 and 2.8.
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Let ® be a genus one model over a finite field k. To decide whether there are
any smooth k-points on Cy we employ the following lemmas.

Remark 2.10. The algorithms in Section 2.1 in fact ask whether there are any
smooth k-points on some affine piece I' of Cy. It can happen that all the smooth
k-points lie on the hyperplane at infinity, either because k is small or because all
relevant components are contained in that hyperplane. In terms of our original
task of deciding K-solubility this simply means that we find a point sooner than
expected.

In the case n = 2 we assume char(k) # 2. In particular we may complete the
square so that our models are given by binary quartics.

Lemma 2.11. Assume char(k) # 2 and let F' € k[x, z| be a binary quartic.
(i) If F is identically zero then Cg has no smooth k-points.
(ii) If F' is non-zero, but factors as F(z, z) = aG(z, 2)?, then Cr has a smooth
k-point if and only if a € (k*)2.
(iii) In all other cases Cp has a smooth k-point.

Proo¥F: This is clear by Lemma 2.6. O

We write k for the algebraic closure of k.

Lemma 2.12. Let U € k[z,y, 2] be a non-zero ternary cubic.

(i) If U factors over k as a product of linear forms then Cy has a smooth k-
point if and only if one of these linear forms is defined over k and is not a
repeated factor.

(ii) In all other cases Cy has a smooth k-point.

Proo¥F: This is clear by Lemma 2.7. O

Now let ® = (@1, Q2) be a model of degree 4. It is clear that if there is a rank 1
quadric in the pencil

(2.1) {AQ1 +1Qz | (A : ) € PH(R)}
then Cg has no smooth k-points.

Lemma 2.13. Assume char(k) # 2 and let ® = (Q1, Q2) be a quadric intersection
over k with Q, and Qy coprime. Suppose the pencil (2.1) over k contains no rank 1
quadrics and exactly m rank 2 quadrics.

(i) If m = 0 then Ce has a smooth k-point.
(ii) If m = 1 then Ce has a smooth k-point if and only if the rank 2 quadric in
the pencil factors over k.
(iii) If m > 2 then Cg is (set-theoretically) a union of lines.
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ProOOF: This follows from the classification in Lemma 2.8. (The integer m is
recorded in the statement of the lemma. It is replaced by a dash in cases where
there is a rank 1 quadric.) O

It remains to test for smooth k-points in the case Cg is a union of lines. Let A
and B be the 4 by 4 symmetric matrices corresponding to ), and Q). Let M be
the generic 4 by 4 skew-symmetric matrix. The Fano scheme is the subscheme of
P5 defined by the vanishing of the Pfaffian of M and all entries of the matrices
MAM and M BM. The points of the Fano scheme correspond to the lines on the
quadric intersection. In particular the Fano scheme is zero-dimensional.

Lemma 2.14. Assume char(k) # 2 and let ® be a quadric intersection such that
Co is (set-theoretically) a union of lines. Then Ce has a smooth k-point if and
only if the Fano scheme has a smooth k-point.

Proor: It suffices to show that a line has multiplicity one if and only if it cor-
responds to a smooth point on the Fano scheme. We checked this using the
classification in Lemma 2.8. O

Remark 2.15. Assume char(k) # 2,3. Then one way to test whether a binary
quartic F is the square of a polynomial over k is to test whether F and its Hessian
(which is again a binary quartic) are linearly dependent. Likewise if ® is a genus
one model of degree 3 or 4 and Cs is a curve then Cg is a union of lines if and only
if ® and its Hessian are linearly dependent. For the definition of the Hessian in
the case n = 4 see [F3].

2.3. Finding the non-regular points. We keep the notation for local fields
introduced at the start of Section 2. In particular K is a finite extension of Q,
with ring of integers Ok and residue field k.

We show how to find the k-rational non-regular points on the reduction of a
genus one model over K. (See the algorithms of Section 2.1 for the definition of a
non-regular point.) If k is small or the singular locus is zero-dimensional then there
is no difficulty in looping over all singular points on the reduction and testing to
see which if any are non-regular. For larger k this can be rather inefficient. Instead
we employ the following lemmas.

Recall that by the results in [CFS] we may assume that our models have level 0
and so in particular are minimal. Notice also that, taking into account the trans-
formations in Step (i) that immediately follow each recursion, the algorithms in
Section 2.1 never increase the level.

Lemma 2.16. Assume char(k) # 2 and let y*> = F(x,z) be a minimal binary
quartic over K. Then the non-reqular points are some (but not necessarily all) of
the roots of Fi(z,2) =0 (mod 7) where F} = 7 F.
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PROOF: Since F is minimal we have v(F) = 0 or 1. The rest is clear. O

Lemma 2.17. Let F(x,y,z) be a minimal ternary cubic over K. If the singular
locus of the reduction has positive dimension then by a change of co-ordinates we
may assume that

F(QE‘, Y, Z) = f0$3 + fl(y7 Z)xz + 7Tf2(y7 Z)SL’ + 7Tf3(y7 Z)
where the f; are binary forms of degree i. There are then at most 3 non-reqular
points and these are the roots of x = f3(y,z) =0 (mod 7).

PROOF: Since F' is minimal we have v(F') = 0 and v(f3) = 0. The rest is clear. O

Assume char(k) # 2 and consider the quadric intersection x? Ax = x” Bx = (
where A = (a;;) and B = (b;;) are 4 by 4 symmetric matrices over Og. Then
(1:0:0:0) is a non-regular point on the reduction if and only if, after using a
matrix in GLy(Ok) to replace A and B by suitable linear combinations, we have
71'2 | aiq, T | a2, 13,14 and | b11~

Lemma 2.18. Assume char(k) # 2 and let Q1 = Q2 = 0 be a minimal quadric
intersection over K. We write A and B for the 4 by 4 symmetric matrices cor-
responding to Q1 and Qo and put F(x,z) = det(Ax + Bz). (If Q1 = Q2 = 0 has
level 0 then the so-called doubling y* = F(x, z) is again minimal.)
(i) Suppose (z : z) = (1 : 0) is a non-reqular point on y* = F(x,2) and let
s=4—rank A. By a change of co-ordinates we may assume
(22> A= 7TA1 7TA2 B— Bl Bg
WA%—‘ Ag Bg B3
where Ay and By are s by s matrices. Let q; and gy be the quadratic forms
corresponding to Ay and By. Then there are at most 4 solutions to

@z, .. 1) =q(ry,...,0) =01 =...=24=0 (mod 7)

and each of these is a non-reqular point on Q1 = Q2 = 0.

(ii) If we loop over all non-regular points on y*> = F(x,z), moving each to
(x :2) = (1:0) in turn, then all non-regular points on Q1 = Q2 = 0 arise
as described in (1).

PROOF: (i) Since (1 = )2 = 0 is minimal we have s < 3. If s = 2 then the binary
quadratic forms ¢; and ¢» cannot both vanish mod 7 as this would contradict
minimality. Likewise if s = 3 then ¢; and ¢y are ternary quadratic forms with no
common factor. So by Bezout’s theorem there are at most 4 solutions.

(ii) Suppose (1 : 0 : 0 : 0) is a non-regular point. If we replace @); and Q) by
suitable linear combinations then A and B are given by (2.2) with s = 1 and
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A; = B; =0 (mod 7). Tt follows that det(Ax + Bz) = az* +bz®z + ... with 72 | a
and 7 |b. Then (1 :0) is a non-regular point on y? = F(z, z). O

Remark 2.19. These lemmas show that for a model of level 0 the number of non-
regular points is bounded independent of the size of the residue field. This has the
interpretation that the Og-scheme defined by the model is normal. Alternative
proofs (taking a more geometric approach in the case n = 4) are given in [Sa].

2.4. Real solubility. A section on testing local solubility would be incomplete
without some discussion of the real place. However we have nothing new to add.
For models of degree 3 and for models of degree 2 and 4 with negative discriminant
real solubility is automatic. A binary quartic with positive discriminant has either
0 or 4 real roots, and in the former case is soluble over the reals if and only if the
leading coefficient is positive. For real solubility of quadric intersections we refer
to [Sil, Chapter 6.

3. COVERING MAPS

Let @ be a non-singular genus one model over a field K with char(K') # 2,3. The
starting point for this section is the survey article [AKM?®P] that gives formulae
for the covering map m : C¢ — FE where E is the Jacobian elliptic curve with
Weierstrass equation (1.3). The formulae are given by covariants coming from
classical invariant theory.

Our height bounds in Section 4 will be computed as sums of local contributions.
To compute the correct contributions at primes dividing 2 and 3 we modify the
formulae in [AKM®P]. The first step is to give a Weierstrass equation for the
Jacobian

(3.1) y* 4 ay( @)y + as(P)y = 2 + ax(®)x? + ay(®)x + ag(P)

that works in all characteristics. This is accomplished in [ARVT], [CFS], where the
a-invariants ai, as, as, a4, ag are obtained from ¢4 and ¢g by working back through
the formulae

by = a% + 4as, by = 2a4 + aqa3, be = a§ + 4ag,

(3.2) e o
Cy = b2 — 2464, Ceg — —b2 + 36()2()4 - 216b6

We recall formulae for the a-invariants below. It is important to note however
that they are not invariants in the sense of Section 1.1. Likewise our modified
formulae for the covering maps will not be covariants. Nonetheless we still need
to understand how they change under transformations of genus one models.
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3.1. Generalised binary quartics. We recall that a genus one model of degree 2
is a generalised binary quartic y* + P(x1, 9)y = Q(x1, 15) where

P(z1,29) = 2% + ma129 + na)

Q(71,2) = ax] + brizy + cxias + dzyxh + exs.
Let g = iPQ + @ be the binary quartic obtained by completing the square. It has

covariants h = %(g%2 —g11922) and k = %(gghl — g1hs) where the subscripts denote
partial derivatives. In [CFS] the a-invariants of (P, Q) are defined as

ay=m
as = —In+c

az = ld+nb

as = —1%e — Inc — na — 4ae + bd

ag = —1%ce + lmbe — Inbd — m*ae + mnad — nac — 4ace + ad® + be.

The b-invariants be, by, bg and c-invariants ¢y, ¢g are then given by (3.2). We put
F =4g = P? 4+ 4Q and

Z=2+P
X:%(h—bzg)
Y:k—%CLlXZ—%agFZ.

Lemma 3.1. (i) Z, X,Y have coefficients in Z[l,m,n,a,b, c,d,e].
(i1) Let (P, Q) be a non-singular generalised binary quartic defined over K. Then
E = JacC(p) has Weierstrass equation

Y? + a1y + azy = 2° + apx® + ayr + ag
and the 2-covering map Cipqy — E is given by (x1 : x9 : y) — (X/Z2,Y/Z?).

PROOF: (i) A direct calculation.
(ii) The formula for E' is recalled from [CFS]. The classical syzygy

27k* = h® — 3cug®h — 2¢44°
becomes

Y24+ XYZ+a3YZF = X3 + 4o X?F + ay X F? + agF?
— (X 4+ a3F)*(y* + Py — Q).

Since F' = Z? mod (y? + Py — Q) this gives the required map. O
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For use in later sections we put Fy = F' = P? +4(Q and G5 = X. Explicitly

Fy

(I + 4a)z] + (2Im + 4b)xizy + (2in + m? + 4c)xizs + (2mn + 4d)z 75
+ (n? + de)ay,

Gy = (—IPc+Imb — m*a — 4ac + b*)z} + (—212d + 2Inb — 4mna — Sad) x>z,
+ (—4l%e¢ — Imd + 2Inc — mnb — 4n’a — 16ae — 2bd)rix]

+ (—4lme + 2ind — 2n*b — 8be)x 175 + (—m*e + mnd — n’c — 4ce + d*) 3.

In [S] these polynomials were denoted 4G and G. We describe how they change
under transformations of genus one models.

Lemma 3.2. (i) If (P, Q') = [u, (10,71, 72), [2](P, Q) then

F2/(x7 Z) = ,uze(x, Z)

Gh(x, 2) = p*(Golx, 2) + (Irg + 2rore + nrg) Fa(z, 2)).
(ii) If (P, Q") = [1,0, (3 (P, Q) then

Fy(z,2) = Fy(ax + vz, Bz + 02)
Gh(x, 2) = (ad — B7)*Golaz + vz, Bx + 62) — AFy(ax + vz, Br + 62)

where A = 2a%y2%a + ay(ad + By)b + 2apvdc + 3(ad + By)d + 23%6%e.

PRrooOF: A direct calculation. O

3.2. Ternary cubics. A genus one model of degree 3 is a ternary cubic

U(zy,x9,x3) = a:vi’ + ba:%’ + c:)sg + fx%xg + gx?,,xl + hxfxg

+ ixgxg + jl’g!)ﬁ'% + k:a:lxg + ma 12923,
It has Hessian H = —(1/2) det(U;;) and covariants

Ull U12 U13 Hl

Uy Uy Uy H Ur Uy Uy
O=(1/3)| * "B B 2 J—/18)| H, Hy Hs |,

Usi Usy Uss H
31 Usz Usz i3 0, 0, O,
H, Hy, Hs 0
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where the subscripts denote partial derivatives. In [ARVT], [CFS] the a-invariants
of U are defined as

ap =m

as = —(fj + gk + hi)

az = 9abc — afi — bgj — chk — fgh —ijk

ay = —3(abgi + acfk + bchj) + afg + ai*k + bg*h + bij*

+cfh? + cjk* + fgjk + fhij + ghik
ag = —27a*b*c + 9abc(afi + bgj + chk) + ...+ abem?®.

The b-invariants be, by, bg and c-invariants ¢y, ¢g are then given by (3.2). We put
bs = (babg — b3)/4 and

Z=YH+bU)

X = (0 -160,2% — 12032U + b3U?)

YV =1(LT— (i XZ+a3Z2% + a3 XU + a1b6ZU° + a1bsU?)).

Lemma 3.3. (i) Z, X,Y have coefficients in Zla,b,c, f, g, h,i, 7, k,m].
(i1) Let U be a non-singular ternary cubic defined over K. Then E = JacCy has
Weierstrass equation

Y? 4 ayxy + asy = 20 + asx® + ayx + ag
and the 3-covering map Cyy — E is given by (z1 : xo : 23) — (X/Z%Y/)Z3).
PRrOOF: (i) A direct calculation.
(ii) The formula for E is recalled from [ARVT], [CFS]. The classical syzygy
12J% = ©% — 3¢,0H* — 2¢4 H® — 9¢,0°HU + 12¢40H>U + 213 HU
+ 6c60%U% + 92O H2U? — T2c4c6 H'U? — 24¢4c© HU?
+ (2763 + 64c2)HPU? 4 9c30U* — 48c3cs H*U* + 9c; HU®
becomes
Yi4 o XYZ +a3YZ? = XP + apX?Z? + ay X Z* + a6 Z°
— a3 XYU + (daraz + 9a4) X?ZU + 1 X Z°U + % Z°U — (Ta3 + 27ag) X *U?
— (@103 + 4a1a6)Y ZU? + 3 X Z°U? + 74 Z' U + vsYU? + % X ZU?
+ 2 23U 4+ s XU + 7 Z2U* + 410 ZU° + 41, U®

where the 7; are certain polynomials in Z[ay, as, as, a4, ag]. This gives the required
formula for the 3-covering map. O

For use in later sections we put F3 = Z2 and G5 = X. We describe how these
polynomials change under transformations of genus one models.
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Lemma 3.4. (i) If U' = [u, I3)U then F; = u®F3 and G = 1u8Gs.
(it) If U' = [1, NJU and xj = Y n;jz; where N = (n;;) then

Fy(2), 2, %) = ((det N)'F3 + aZU + BU?)(z1, 29, 73)

3.3

(33) Gy, 25, %) = ((det N)°Gs 4+ AFs + 7 ZU + 6U?) (21, 2, x3)
for some X\, cv, 3,7,6 € Znyi, a2, ..., N3z, a,b, ¢, ...,m]. Moreover if N is diagonal
then A = 0.

PROOF: (i) This is clear.
(ii) Since H and © are covariants we have

H' (2, 2y, %) = (det N)?H (z1, 2, 73)
O’ (zy, 7, 7%) = (det N)°O (a1, x5, x3).
Let £ = (b — (det N')2by). Then (3.3) holds with A = —(det N)*¢ and

o = 6(det N2, 5 =9¢,

7 = —(det N)2E(25, — 9€), 5 = —3€2(t}, — 3¢).
A generic calculation shows that b, = (det N)?*by (mod 12). Moreover if N is
diagonal then by = (det N)?*by and so in that case A = 0. O

3.3. Quadric intersections. A genus one model of degree 4 is a pair of quadratic
forms (Q1,Q2) in variables xy, ..., z4. We write

4
Ql(llfl, P ,1'4) = ZCI,Z’]’ZIZ’Z’[L’]’ = % Z Aijl’illfj

i<j ij=1
4
E 1 E
QQ(ZL’l, P ,1'4) = bijl'il'j =3 Bijl'il'j
1<J 4,7=1

where A = (A;;) and B = (B;;) are the matrices of second partial derivatives of
Q1 and @Qy. Let QF = > . afx;z; and Q5 = .. bfx;x; be the quadrics whose

1<j i 1<j 71
matrices of second partial derivatives are adj A and adj B. There are covariants

4
Ti= 0 ) br(AyAn — AiAy)ai;

i,j=1 r<s

4
Ty =YY ai (BB — BisBj v,

i,j=1 r<s

0(Q1,Q2, 11, T3)

8('th T2,T3, x4) .

J = (1/4)



18 T.A. FISHER AND G.F. SILLS

It is noted in [CFS] that if I' = 3, ¢;jz;7; is a quadric in 4 variables then

o’T )
det (&ciaxj) = pf(I')* +4rd(T)

where pf(F) = (19C34 + C13C94 + C14Ca3 and rd(F) € Z[Clla C12, ... ,044]. WI'ltlIlg
pf(zQ1 + 2Q2) = l2* + mxz + nz? we put
Y =L (J =T} + mIyTy — nT5 + mn(ITy + mTo)Qq + Im(mTy + nTs)Qs
+Pn°Q7 + lmn(ln + m*)Q1Q2 + IPn*Q3) .
Lemma 3.5. (i) T1,T5,Y have coefficients in Z[ai1, a2, . . . , bas).
(i1) Let (Q1,Q2) be a non-singular quadric intersection defined over K. Then

(P,Q) = (pf(zQ1 + 2Q2),rd(zQ1 + 2Q2)) is a non-singular generalised binary
quartic and the 4-covering map Cq, q,) — £ = JacC(q, @.) is the composite of

C0.00) = Cpgy; (x1:...ixq) = (Th:=T5:Y)
and the 2-covering map Cpg) — E.

PROOF: (i) A direct calculation.
(ii) The formula for (P,Q) is recalled from [CFS]. There is a classical syzygy
satisfied by @1, Q2,T1,Ts, J and the coefficients of

(3.4) F(z,z) = det(Ax + Bz).

Setting Q1 = Qo = 0 it reduces to J> = F(T},—T5) mod (Q1,Q-). We have
F=P?+4Q and 2Y = J — P(T1, —T) mod (Q1,Q-). Therefore
A2+ P(Ty, —To)Y — Q(Th, —T3)) = $1Q1 + 52Q»

for some Sy, Sy in Zlay1, ara, . . ., basl[x1, . .., 24]. Since the generic quadrics @; and
()2 are coprime mod 2 a similar identity holds without the factor of 4. Hence

Y2 + P(Tl, —TQ)Y = Q(Tl, —TQ) 1'I10d (Qh Qg)
as required. O

The a-invariants of (Qq,Q)2) are defined to be the a-invariants of (P, Q). The
transformations of genus one models defined in Section 1.1 have the following effect
on (P,Q) and on T; and T5.

Lemma 3.6. If (Q}, Q) = [M, N|(Q1,Qs) then (P', @) = [det N, r, M](P,Q) for
some r = (ro,71,72) where the r; are integer coefficient polynomials in the entries
of M and N and the coefficients of Q)1 and Q2. Moreover if N is diagonal then
r=0.
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PrOOF: If N = I, then the result is clear. So suppose (Q, @%5) = [I2, N](Q1, Q2).
We must show that

P'(z,2) = (det N)P(x, z) + 2r(z, 2)

Q' (z,2) = (det N)*Q(z, 2) — (det N)P(x, 2)r(x, z) — r(z, 2)?
for some r(z, z) = rox?4+r122+7192% where the r; are integer coefficient polynomials
in the entries of N and the coefficients of (); and (). But in characteristic 2 we
recognise P(x,z) = pf(zQ1 + 2Q)2) as the Pfaffian of a skew-symmetric matrix.
This gives the formula for P’. The formula for @’ follows since P? + 4Q' =

(det N)2(P? 4 4Q). Moreover if N is diagonal then P'(x,2) = (det N)P(x, z) and
so in that case r = 0. O

Lemma 3.7. (i) If (Q1,@Q5) = [(] ), L)(Q1,Qy) then
T = (ad — By)*(6T1 +~T2) + 11 Q1 + 16Qs
Ty = (ad — 67)X(6T1 + aTy) + v3Q1 + 14 Qs

where the v; are integer coefficient polynomaials in o, 3,7, and the coefficients of

Q1 and Q.
(ir) If (Q1, Q%) = [L2, N)(Q1, Q2) and x; = Y n;jx; where N = (n;;) then

(), ..., 2) = (det N)*Ti(wy, ..., 24)

(3.5)

fori=1,2.
PROOF: (i) Let a,b,c,d, e be the coefficients of (3.4) and o/, ¥, c,d’, €’ their ana-
logues for (Q}, @Q5,). Direct calculation shows that (3.5) holds with

v = (vd + 3ad — (ad — B7)* (e + 30d))

vy = L(6¢ + 38d — (ad — B7)*(6c + 3b))

vs = 1(ad + 39 — (ad — By)*(ac + 343d))

vy = +(Bc + 366 — (ad — B7)*(Be + 3ab)).

Writing o', V', ¢, d’, €’ as polynomials in o, 3,7, 0, a, b, ¢, d, e we find that vy, v9, 13, 14
belong to Z[«, 3,7, 9,a,b,c,d, e]. These formulae are related to the covariance of
the Hessian as defined in [F3].
(ii) Let M; and M, be the matrices of second partial derivatives of 77 and T5.
Direct calculation shows that

adj(adj(A)z + adj(B)z) = a*Az® + aM 2”2 + eMyxz® + 2 B2°.
The covariance of T} and T5 then follows from properties of the adjugate. O

For use in later sections we put Fy = Fy(T1, —T5) and G4 = Go(Ty, —T5) where
F; and G5 are the polynomials associated to the model (P, Q) in Lemma 3.5(ii).
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3.4. A geometric observation. Let & be a genus one model of degree n &
{2,3,4} over a field K. Let E be the (possibly singular) curve defined by the
Weierstrass equation with coefficients the a-invariants of ®. The formulae in the
last three sections define a map 7 : Co — E. If ® is non-singular then Cg is a
smooth curve of genus one, F is the Jacobian elliptic curve and 7 is the n-covering
map. However to understand what happens at primes of bad reduction we are also
interested in singular models.

The composite Cp — E = P! is given by (F), : G,,) where F, and G, are the
homogeneous polynomials of degree 2n associated to .

Theorem 3.8. Let ® be a genus one model of degree n € {2,3,4} over a field
K. Lt P€Cq say P = (x1 : g :y) or (1 : ... x,). Then F(xq,...,2,) =
Gn(z1,...,2,) = 0 if and only if P is singular or lies on a component of Ce of
degree at most n — 2.

ProOF: We split into the cases n = 2, 3, 4.
Case n = 2. The generalised binary quartic

y? + (Iz® + maz +n2?)y = ar® + b2’z + ca?2? + do2® + e’
has associated polynomials
Fy(x,2) = (I* + 4a)x* + (2lm + 4b)x*z + (2In +m?* + de)x*2* + . ..
Go(r,2) = (=Pc+Imb — m?a — dac + b*)z* + . ..

By Lemma 3.2 we may assume that P is the point (x : z:y) = (1 :0:0) and so
a =0. Then F5(1,0) = G5(1,0) = 0 if and only if / = b = 0. This is the condition
for P to be a singular point.

Case n = 3. A genus one model of degree 3 is a ternary cubic

3 3 3 2 2 2
U(xy, x9, x3) = axy + bxy + cas + fases + grixr; + haixe
. 2 . 2 2
+ 123 + JT3x7] + k::cle + mxi1Tox3.

By Lemma 3.4 we may assume that P is the point (zq : 22 : z3) = (1:0:0) and
a = h = 0. We compute

F3(1a 07 0) = j4k2
G3(1,0,0) = b%5% — bj°km + f5°k%

Thus F3(1,0,0) = G3(1,0,0) = 0 if and only if j = 0 or b = k = 0. These are the
conditions that P is either a singular point or lies on a line.
Case n = 4. By Lemmas 3.2, 3.6 and 3.7 we may assume that P is the point
(1:0:0:0) and & = (Q1,Q2) takes the form

Q1(w1, ..., 24) = A1123 + Q1 (22, T3, 74)

Qa(z1, ..., 1) = px124 + q2(22, T3, T4).
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We compute T1(1,0,0,0) = A\pu?byy and T5(1,0,0,0) = Npage. If Au = 0 or
azs = byy = 0 then Fy(P) = G4(P) =0 and P is a either a singular point or lies
on a line. Otherwise we may assume that A = g = byy = 1 and age = 0. Then P
maps to the point (z:z:y) = (1:0:0) on the generalised binary quartic

y2 + (a24x2 —+ (CL23 + b24)$(72 -+ b2322)y = —(CL236L24 + CL44)SL’3Z—|—
— (ag3bag + agaboz — azs + 544)I2Z2 — (ag3 + basbay — [?34)$Z3 — b332™.

Our proof in the case n = 2 shows that Fy(P) = G4(P) = 0 if and only if
agq = aygq = 0. This is the condition for some quadric in the pencil spanned by ),
and @ (in fact it can only be Q1) to factor as a product of two linear forms. It is
therefore also the condition for P to lie on a conic. O

Remark 3.9. We suspect that some analogue of Theorem 3.8 holds for n-coverings
more generally. However our method of proof, using invariant theory and explicit
formulae, is unlikely to generalise to larger n.

4. HEIGHT BOUNDS

Let E be an elliptic curve over a number field K. An n-descent calculation on
E computes equations for the everywhere locally soluble n-coverings 7 : C — E.
It is expected that a point P € C(K) will have smaller height than its image in
E(K), and that therefore searching on the covering curves makes it easier to find
generators for F(K). Of course such an expectation can only be realised if our
equations for C are given relative to some reasonably good choice of co-ordinates.
In [CFS] it is explained (at least over K = Q) how to make such choices of co-
ordinates when n = 2,3 or 4. We determine explicit height bounds in these cases.

4.1. Local height bounds. Let ® be a non-singular genus one model of degree
n € {2, 3,4} over a number field K. Let My, respectively MY, be the set of places,
respectively finite places, of K. We write K, for the completion of K at v € Mk
and normalise the absolute values | - |, on K, so that the product formula holds.

The height of a point P = (z1:...:x,) € P"" 1K) is
h(P) = log H max(|z1|y, .-y [Tnly)-
vEMK

Let F,, and G,, be the polynomials associated to ® as defined in Section 3. For
v € Mg we define

B ((I)) —  sup max (| F,(x)]v, |Gn(X)]v)
v PeCq(Ky) max(\xl\v, ey |$n|v)2"

max(|F}, (X) v, |Gn(x)]y)

PeCo(Ky) max(|zy]y, ..., |Tn]s)2"
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where P = (21 : @9 :y) or (1 :...: x,). These definitions are independent of the
scaling of the x; since F,, and (,, are homogeneous of degree 2n.

Theorem 4.1. Let ® be a non-singular genus one model over K.

(i) For any v € Mg we have 0 < £,(P) < §,(P) < oo.

(i) If v € MY and ® is v-integral then 0 < g,(®) < §,(P) < 1.

(iii) If v € MY and ® has good reduction mod v then €,(®) = §,(®) = 1.

(iv) Let h and hg be the heights on Ce and E = Jac(Ce) relative to Cg — P!
and the Weierstrass equation (3.1). Let m: Co — E be the covering map.
Then for P € Co(K) we have

(4.1) — 1og8,(®) < 2nh(P) — hp(rP) < =) loge,(®).

PROOF: (i) We are assuming that ® is non-singular. So by Theorem 3.8 there
does not exist P € Cs(K,) with F,(P) = G,(P) = 0. Since Cs(K,) is compact it
follows that 0 < €,(®) < 6,(P) < 0.

(ii) Let O, be the valuation ring of K,. If ® has coefficients in O, then so do F,
and G,. We scale the z; so that max(|z1|y, ..., |zs|s) = 1. Then |F,(x)|, < 1 and
|G (x)], < 1. Hence 6,(P) < 1.

(iii) Again we scale the z; so that max(|xy|y, ..., |Zn|s) = 1. Then by Theorem 3.8
applied to the reduction of ® mod v we have max(|F,(x)|,, |Gn(x)|,) = 1. Hence
£o(P) = 6,(P) = 1.

(iv) If P € Co(K),say P = (1 : 22 :y)or (zy:...:x,), then
h(P) =log [ max(|zil. ..., |zl
vEMK
and

he(rP) =log [] max(|F,(x)]w, |Gn(x)],).

vEME

Taking logs in the definitions of 6,(®) and £,(P) and summing over v € My gives
the result. Notice that by (i) we are taking logs of positive numbers, and by (iii)
the sums are finite. O

If v € MY with uniformiser 7, then
(4.2) 5,(®) = ‘ﬂ_v‘gminAu(‘I’) and  e,(®) = ‘ﬂ_v‘?}maxAv(CI))

where A,(®) is the set of Tamagawa distances defined and computed in the next
two sections. An alternative description of the Tamagawa distances in Section 4.4
explains the choice of name. The computation of 6,(®) and &,(®) for v a real
place is the subject of Section 4.5.
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4.2. Computing the Tamagawa distances. Let K be a finite extension of Q,
with ring of integers O, maximal ideal 7O, residue field £ and normalised
discrete valuation v : K* — Z. The corresponding absolute value is |z| = ¢¥(®)
for some constant ¢ > 1. Reduction mod 7 will be denoted z +— .

Let ® a non-singular genus one model over K of degree n € {2,3,4}. Let F,
and G,, be the polynomials depending on ® as defined in Section 3.

Definition 4.2. The set of Tamagawa distances A = A(®) is defined by
Fn Y Gn
{max(| (9l; G ) :PGC¢(K)} = {|n]**: a € A(®)}.

max(|zy, ..., |z.])?"

where P = (x1 : 29 : y) or (z1 : ... : x,). In particular Ce(K) # 0 if and only if
A(D) # 0.

Definition 4.3. A transformation of genus one models g € G,(K) is integral,
respectively diagonal, if it satisfies the following conditions.

n g integral diagonal

2 [u,r,N| peOire0}, NeGLy(Ok) r=0and N diagonal
3 [w N] pe Ok, N e GL3(Ok) N diagonal

4 [M,N] M eGLyOk),N € GLy(Ok) M and N diagonal.

The first part of the following theorem shows that if ® and ®’ are Ok-equivalent
then they have the same set of Tamagawa distances. The second part describes
the effect of a diagonal transformation that preserves the level.

Theorem 4.4. Let ® and O’ be genus one models over O with ® = g® for some
g € Gu(K), say g = [, 7, N|, [, N] or [M, N]. Let P € Co(K), say P = (x1 : x5 :
y) or (xy : ... xy,), and P € Co/(K), say P = (2} : xfy 1 y') or (a} : ... 2}),
with x; =Y n;x, where N = (n;;). If either (i) g is integral or (ii) detg € O
and g s diagonal then

max(|F, (x')], |G}, (x')]) = | det N|™* max(|F,,(x)], |Gu(x)])-

PROOF: Let (rq, s9) = (2,4), (13, 83) = (6,8), (r4,s4) = (12,14). By Lemmas 3.2,
3.4, 3.6 and 3.7 we have

Fl(x),...;2)) _ (det N)? (detg)™ 0 Fo(z1,...,2p)
Gl (x),...,xl) A (det g)*~ Gn(x1, ..., xp)
for some A € K. These lemmas also show that (i) if ¢ is integral then A\ € Ok and

(ii) if ¢ is diagonal then A = 0. Taking absolute values gives the result. O

We use Theorems 3.8 and 4.4 to modify our local solubility algorithms in Sec-
tion 2 to give algorithms for computing the set of Tamagawa distances. Our
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presentation differs from these earlier algorithms in that we do not restrict atten-
tion to (points whose reduction lies on) an affine piece until after the first iteration.
For models of degrees 3 and 4 we use the subalgorithms in Section 4.3 to compute
the contributions from lines and conics. The proof that our algorithms terminate
(for ® non-singular) is given in Section 4.4.

Algorithm 4.5. TamagawaDistances(P,Q,Affine)
INPUT: A generalised binary quartic ® = (P, Q) over O and a boolean Affine.
OUTPUT: A finite set of non-negative integers A such that

{max(|F2(X)|> |G2(x)]) (xy i a i y) € C¢(K)T} ={|7]**:a € A}

max(|z1], |z2])*

where Co(K)' = {P € Co(K) : P € T'} and I is the curve over k defined by
{y? + P(x1,25)y = Q(x1, 1)} C P(1,1,2) if Affine = FALSE
{y>+ P(z,1)y = Q(z,1)} C A? if Affine = TRUE.

(i) Set A = 0.
(ii) If there are smooth k-points on I' then set A = {0}.
(iii) Find all non-regular k-points on I". Use an Og-transformation to move
each such point to (z1 : z2:y) = (0:1:0). Then compute

A; = TamagawaDistances(P1,Q1, TRUE)

where Pl(thb’z) = 7T_1P(7T$1,$2)7 Q1(1’1,56’2) = 7T_2Q(7T$1,$2)7 and set
A=AU{a+1:a€ A}
(iv) Return A.

Algorithm 4.6. TamagawaDistances(U,Affine)
INPUT: A ternary cubic U € Oklz,y, 2] and a boolean Affine.
OUTPUT: A finite set of non-negative integers A such that

{max(\Fs(X)L |G3(x)]) (129 : a3) € CU(K)T} ={|7]*:ac A}

max(|z1, |22, [25])°
where Cy(K)' = {P € Cy(K) : P € I'} and I is the curve over k defined by
{U(z,y, z) = 0} C P? if Affine = FALSE
{U(z,y,1) = 0} C A if Affine = TRUE.

(i) Set A = 0.
(ii) If I' contains an absolutely irreducible component of degree 2 or 3 then set
A = {0}.
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(iii) Find all k-rational lines that are components of I" of multiplicity one. Com-
pute the contribution « of each such line using Proposition 4.8 and put
A=AU{a}.

(iv) Find all non-regular k-points on I'. Use a transformation in GL3(Ok) to
move each such point to (0: 0 : 1). Then compute

A, = TamagawaDistances(U1, TRUE)

where Uy(z,y,2) = 72U (rz, 7y, 2) and set A= AU{a+2:a€ A}
(v) Return A.

Algorithm 4.7. TamagawaDistances(Q1,Q2,Affine)
INPUT: A quadric intersection ® = (@1, Q)2) over Ok and a boolean Affine.
OUTPUT: A finite set of non-negative integers A such that

{max(\F4(x)|, GsD e C@(K)T} _{r[ae A)

max(|xq], ..., |z4])®

where Co(K)t = {P € Co(K) : P € '} and T is the curve over k defined by
{@1(1’1, e ,1’4) = @2(1’1, e ,1’4) = 0} - IP)3 if Affine = FALSE
{Q1(z,y,2,1) = Qa(z,y,2,1) =0} C A? if Affine = TRUE.
(i) Set A =0.
(i) If I" contains an absolutely irreducible component of degree 3 or 4 then set
A ={0}.
(iii) Find all k-rational lines and conics that are components of I' of multi-

plicity one. Compute the contribution « of each such component using
Propositions 4.9 and 4.10 and put A = AU {a}.

(iv) Find all non-regular k-points on I'. Use a transformation in GL4(Ok) to
move each such point to (0: 0:0: 1) and a transformation in GLy(Ok) to
arrange that %%;(O, 0,0,1) =0 (mod 7)) for1 < j <4and @1(0,0,0,1) =0

(mod 72). Then compute
A, = TamagawaDistances(Q1l’, Q2', TRUE)
where
Q\(x1,...,24) = 7 2Q1 (71, TX2, T3, T4)
Qh(w1, ..., x24) = 7 Qomxy, TH9, T3, T4)

and set A=AU{a+3:a¢e A}
(v) Return A.
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4.3. Contributions from lines and conics. Let ® be a non-singular genus one
model over Of. Suppose that the reduction of C4 mod 7 contains a k-rational
curve C' as a component of multiplicity one. (The multiplicity one condition is
equivalent to requiring that all but finitely many k-points on C are smooth points
on the reduction.) Theorem 3.8 shows that if C' has degree n — 1 or n then the
points P € Cs(K) whose reduction is a smooth point on C' contribute o = 0 to
the set of Tamagawa distances. In this section we determine the contributions in
the remaining cases, namely when n = 3 and C'is a line, and when n = 4 and C'
is a conic or line.

Proposition 4.8. Let U € Oklz,y,z] be a non-singular ternary cubic whose
reduction contains a k-rational line L as a component of multiplicity one. Then
there is an integer o such that

max (| F3(x)|, |G3(x)|)

2c
=|r
max(al, e

forall (z:y: z) € Cy(K) whose reduction is a smooth point on L. Moreover if L
is the line {x = 0} then o may be computed as follows.
(i) Set o = 0.
(ii) Replace U by 7= 1U(wz,y,2) and let « = a + 1.
(iii) Write U(z,y,2) = for® + fi(y, 2)x* + foly, 2)x + f3(y, z) where the f; are

binary forms of degree i. If fo| f5 say

f3(y, 2) = (ay + b2) fa(y, 2)  (mod m)

for some a,b € O then substitute v «— x — ay — bz and go to Step (ii).
(iv) Return o.

PROOF: Writing

U(LL’, Y, Z) = fOx3 + f1<y7 Z)LL’2 + f2(y7 Z)SL’ + f3(y7 Z)
we are given that v(f3) > 1 and v(fs) =0. If P = (u:v:w) € Cy(K) reduces to
a smooth point on L then u = 0 and fo(v,w) Z 0 (mod 7). In Step (ii) we replace
P by (77w : v : w). The increase of a by 1 is justified by Theorem 4.4(ii) with
[, N] = [771, Diag(m,1,1)]. After this transformation we still have fo(v,w) # 0
(mod 7) but now

Uz,y,2) = fo(y,2)x + f3(y,2) (mod 7).
Hence P reduces to a smooth point on the rational curve parametrised by

(s:1) — (—f5(s,1) : sfa(s, t) : tfal(s, 1))

If f5| f3 then this is a line and the substitution in Step (iii) moves the line to
{z = 0}. We then return to Step (ii). Otherwise we have a curve of degree 2 or 3
and by Theorem 3.8 there is no further contribution to the Tamagawa distance.
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We show in the next section that the algorithm terminates. O

Proposition 4.9. Let & = (Q1,Q2) be a non-singular quadric intersection over
Ok whose reduction contains a k-rational conic C as a component of multiplicity
one. Then there is an integer o such that

max (| Fy(x)|, |G4(x)])

2c
=|r
max(|z], ..., |z4])® i
for all (x1 :...: x4) € Co(K) whose reduction is a smooth point on C. Moreover
if C' is contained in the plane {x1 = 0} then o may be computed as follows.

(i) Set a=0.
(ii) Make a GLy(Ox)-transformation so that Q, vanishes on {z; = 0}. Replace
(Q1,Q2) by (771Q1 (721, o, w3, 74), Qo(T1, T, 3, 24)) and let & = a+ 1.
(iii) Write Qi(x1, ..., 14) = Na? + (v, x3, 04)71 + ¢i(T2, 3, 24) for i = 1,2.
If g1 belongs to the ideal generated by 0y and q2 say

q1 = (agmy + azzz + as4)ly +bga  (mod )

for some ag,as, as,b € Ok then substitute x1 «— x1 — (asws + azrs + ayxy)
and go to Step (ii).
(iv) Return o.

Proor: To simplify the notation in the proof we first make a substitution in
Ty, T3, T4 50 that the conic C' is parametrised by (s :t) — (0: s?: st : t?).

We write Q; = \a? + {i(vo, v3,24)T1 + qi(To, 3, 24) for i = 1,2. After the
GL3(Ok)-transformation in Step (ii) we have v(q;) > 1. We put

9(s,8) = Ty (%, st,12).

By the Jacobian criterion (0 : s : st : t?) is a smooth point on the reduction if
and only if g(s,t) # 0. Our hypothesis that C' has multiplicity one is therefore
equivalent to the statement that g is not identically zero.

Suppose P = (uy : ... : u4) reduces to a smooth point on C. Then (assuming
Uy, ..., us belong to Ok but not all to 71Ok) we have 1 (us, us, uy) Z 0 (mod 7).
In Step (ii) we replace P by (7 'u; : up : ug : uyg). The increase of o by 1 is
justified by Theorem 4.4(ii) with [M, N] = [Diag(n~', 1), Diag(m, 1,1,1)]. This
transformation changes neither ¢, nor ¢o but we now have

Qi(w1, ..., x4) = 2101 (T2, T3, T4) + q1 (T2, T3, 74)  (mod )
Q2(xq,...,24) = G2(T2, 3, 24) (mod 7).
Hence P reduces to a smooth point on the rational curve parametrised by

(5:t) = (—f(s,t) : g(s,t)s% : g(s,t)st : g(s,t)t?)
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where f(s,t) = qi(s% st,t?). Since g is not identically zero this is a curve of
degree 2, 3 or 4. If it has degree 2 then in Step (iii) we move it to lie in the plane
{z1 = 0} and return to Step (ii). Otherwise we have a curve of degree 3 or 4 and
by Theorem 3.8 there is no further contribution to the Tamagawa distance.

We show in the next section that the algorithm terminates. O

Proposition 4.10. Let ® = (Q1, Q2) be a non-singular quadric intersection over
Ok whose reduction contains a k-rational line L as a component of multiplicity
one. Then there is an integer o such that

max (| Fy(x)|, |G4(x)])

2c
=|r
max(|zy|, ..., |z4])8 i
for all (xy :...: xy) € Co(K) whose reduction is a smooth point on L. Moreover
if L is the line {xy = x9 = 0} then a may be computed as follows.

(i) Set a=0.
(ii) Replace Q; by 7 'Q;(wxy, Twe, T3, 14) fori=1,2 and let a = o + 2.
(111) Write Ql = Zigj Qi T; T 5 and Qg = Zigj bijxixj, and put

a13 a3 Q14 Q24

C == s D =
b13 bgg b14 b24

Then compute g(s,t) = det(sC + tD) and
Ql(O, 0, S, t)

fils:) = adj(sC +tD) | =
fg(s,t) QQ(0,0,S,t)

(iv) If g divides both fi and fy say
fi(s,t) = (s + ft)g(s, )
fols,t) = (has + fiat)g(s, )
for some A\, Ao, pi1, o € Ok then substitute x3 «— x3 + \x1 + Aoxo and
Ty — Ty + 121 + oo and go to Step (ii).

(v) If f1, f2 and g have a common linear factor then solve for a linear form
(e OK[fL’l, ... ,$4] with

g(_fl(sat)> _f2(5>t)ag(s>t)8ag(s>t)t) =0.

Make o GLy(Og)-transformation so that ¢ = x1. Then run the algorithm
of Proposition 4.9 on (Q1,Q2) and add the answer to «.
(vi) Return o.
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PROOF: By the Jacobian criterion (0: 0 : s : t) is a smooth point on the reduction
if and only if g(s,t) # 0, where g is as defined in Step (iii). Our hypothesis
that L has multiplicity one is therefore equivalent to the statement that g is not
identically zero.

Suppose P = (uy : ... : uy) € Co(K) reduces to a smooth point on L. Then
(assuming uy, ..., us belong to Ok but not all to 7Ok) we have g(us,us) # 0.
In Step (i) we replace P by (7 'u; : 7 'ug : uz : uy). The increase in « by
2 is justified by Theorem 4.4(ii) with [M, N| = [Diag(7~!, 7~ !), Diag(nw, 7, 1,1)].
Solving for the first two co-ordinates of P in terms of the last two we find it is a
smooth point on the rational curve parametrised by

(s:t)— (=fi(s,t) : —fa(s,t) 1 g(s,t)s : g(s,t)t).

Since g is not identically zero this is a curve of degree 1, 2 or 3. These cases are
treated in Steps (iv),(v) and (vi).
We show in the next section that the algorithm terminates. O

4.4. Bounds on the Tamagawa distances. We recall from Section 1.1 that the
discriminant is a certain polynomial in the coefficients of a genus one model. In
this section we bound the Tamagawa distances in terms of the valuation of the
discriminant. In particular this proves that our algorithms terminate. We then
give an alternative description of the Tamagawa distances.

Lemma 4.11. Let D = (d;;) be the 2 by 5 matriz over Z[l,m,n,a,b, c,d, e] whose
entries are the coefficients of Fy and Go as defined in Section 3.1. Then

A = —27mf5 + 4m14m25 — M13M35
where mg; = dlidgj — dljdgi.
PROOF: A direct calculation. O

Our algorithms for computing the Tamagawa distances (see Sections 4.2 and 4.3)
only make transformations that preserve the level.

Definition 4.12. Let g € G,(K) be a transformation of genus one models of
degree n € {2,3,4}, say g = [u,r, N], [, N] or [M, N]. Then g is a transformation
of type r with 0 < r < n if det(g) € O and the Smith normal form of N is
Diag(I,_,,71I,).

We establish the following bounds on the Tamagawa distances.
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Theorem 4.13. Let ® be a genus one model over O of degree n € {2,3,4}.
Then the set of Tamagawa distances A(P) is bounded by

Ww(A) ifn=2
max A(®) < ¢ v(A)  ifn=3
20(A) ifn=4
where A = A(P). Moreover if v(A) =1 then A(®) = {0}.

ProOF: We split into the cases n = 2, 3, 4.

Case n = 2. Let 4> + P(x,2)y = Q(x,2) be a generalised binary quartic with
coefficients [, m,n and a, b, c,d,e. By Lemma 4.11 the discriminant A belongs to
the ideal (n? nd,d? e) in Z[l,m,n,a,b,c,d,e]. But if @ is a Tamagawa distance
then (P, Q) is Og-equivalent to a model with 7| n,d and 72* |e. Hence 72%| A
and a < fu(A).

Case n = 3. We label the coefficients of our ternary cubic as

_ 3 3 3 2 2 2
U(xy,xe,x3) = axy + bxy + cxy + fryxs + gasry + haizy
. 2 . 2 2
+ 1xoxs + jrsx] + kx125 + ma1T0Ts.

Let I = (a,h,k,b) and Iy = (b, f,i,c) in Z[a,b,c,...,m|. We checked using
Magma that the discriminant A belongs to I113.

Let o be a Tamagawa distance. Then o = oy + 2ay where Algorithm 4.6 per-
forms o, transformations of type r. The ternary cubic passed to the subalgorithm
in Proposition 4.8 is Og-equivalent to one with 7! |a, h,k,b and 7 |b, f,1,c.
Since A € I,17 it follows that o = a; + 29 < v(A). By symmetry we also have
A € I, and so oy, cp < 20(A). In particular if v(A) = 0 then a = 0.

Case n = 4. In Section 3.3 we saw that the quadric intersection (@1, Q2) has the
same discriminant as the generalised binary quartic

(4.3) Y2 4 pf(2Qy + 2Q)y = 1d(2Q1 + 2Q3).

As usual we label the coefficients [, m,n and a,b,c,d,e. By Lemma 4.11 the
discriminant A belongs to J;Jo where J; = (n?,nd,d? e) and J, is the ideal
generated by the 2 x 2 minors of D.

Let a be a Tamagawa distance. Then o = a1 + 22 + 3ag where Algorithm 4.7
performs ag transformations of type 3, then ay transformations of type 2 and then
a1 transformations of type 1. Notice that a transformation of type r has inverse of
type 4 —r. The quadric intersection passed to the subalgorithm in Proposition 4.9
is both Og-equivalent to a model (@1, Q2) with

Q2(0, 9, 23,24) =0 (mod 7),
and Og-equivalent to a model (@, Q)) with
Q' (x1,12,0,0) = Q%(x1,22,0,0) =0 (mod 7?).
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We may therefore assume that 7% |n,d and 7%* |e, and (using Lemma 3.6 to
check the conclusion is unaffected by an Og-equivalence) that (4.3) is reducible
mod 72, i.e. there are binary quadratic forms ¢; and %, satisfying

pf(xQ1 + 2Q2) = ti(x, z) + ta(x,2)  (mod 7?)
rd(zQ1 + 2Q2) = —t1(x, 2)ta(x,2)  (mod 72).

This last condition implies that the 2 by 2 minors of the matrix D in Lemma 4.11
vanish mod 7%2. Since A € J;J5 it follows that 2a; + s < v(A). The same
argument gives 2as + as < v(A). Hence a = 1(20q + o) + 2(2a3 + o) < 20(A).
By Lemma 4.11 we also have A € JZ and so oy, a2, a3 < Jv(A). In particular if
v(A) =0 then a = 0.

We have shown in the cases n = 2,3,4 that if v(A) = 1 then A(®) C {0}.
To prove equality it remains to show that any such model is K-soluble. Since
v(A) =1 we have v(Ag) = 1 and so by Tate’s algorithm the Tamagawa number
¢(E) is also 1. By Lemma 2.1 it suffices to prove K™-solubility and this follows
by the results in [CFS]. O

Corollary 4.14. When the input is a non-singular genus one model the algorithms
in Sections 2.1, 4.2 and 4.3 terminate.

PRrROOF: For the algorithms in Sections 4.2 and 4.3 this is immediate from our
bounds on the Tamagawa distances. Taking into account the transformations
in Step (i) that immediately follow each recursion, the algorithms in Section 2.1
never increase the level. So after finitely many iterations the level is preserved.
Thereafter each iteration is a transformation of type n — 1. By the proof of
Theorem 4.13 the number of such iterations is bounded by fv(A). O

Remark 4.15. If we think of the algorithms as performing a tree search, then
Theorem 4.13 bounds the depth of the search, and Section 2.3 (on non-regular
points) bounds the breadth of the search. From both points of view it is clearly
desirable that we first minimise our model using the algorithms in [CFS].

For the rest of this section we assume that ® is K-soluble and of level 0. The
set of Tamagawa distances A(®) has the following alternative interpretation. Let
N be the set of all matrices N in GL,(K) such that for some transformation
g = [u,r, N], [0, N] or [M, N] in G,,(K) the model g® is minimal (equivalently is
integral of level 0). Let Ny C N be the subset where the reduction of g® defines a
curve with a k-rational component of multiplicity one and degree n — 1 or n. Let
G be the subgroup of GL,(K) generated by GL,(Ok) and the scalar matrices.
Then

A(P) = {v(det N;) : 1 <i <m}
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where Ny, ..., N, are a set of representatives for G \ Ny scaled so that each N;
has entries in Ok not all in 7O

Theorem 4.13 shows that the set G\ Nj is finite. Alternatively this follows by
work of Sadek [Sa] who computes #(G\N). If n > 2 then the same methods show
that #(G \ Np) is the Tamagawa number ¢(E) of E' = Jac(Cs). This is still true
when n = 2 if we adopt the convention that models of degree 2 whose reduction
mod 7 have two k-rational components are counted twice.

It is natural to consider the graph with vertex set G \ N and (directed) edges
corresponding to the transformations of types 1,2,...,n — 1. We recall that ¢(F)
is the number of k-rational components of the special fibre of the Néron model.
For each such component there is a preferred vertex where the component is seen
as a curve of degree n — 1 or n. These vertices make up the set G \ Ny. We
may interpret A(®) as the set of distances (weighted by type) from the vertex
corresponding to ® to each of these special vertices. This explains why we call
A(®P) the set of Tamagawa distances.

These graphs are investigated further in [S] with particular attention given to
the case n = 4 and F with multiplicative reduction. These investigations suggest
that the bounds in Theorem 4.13 are best possible.

4.5. Calculation at the infinite place. Since our examples in Section 5 are
over K = Q we will only consider real places. (If n = 2 then the complex places
are already treated in [CPS].)

Let ® be a non-singular genus one model over R of degree n € {2,3,4}. We
assume Cg(R) # (). Let F,, and G,, be the polynomials associated to ® as defined
in Section 3 and let r € R. In this section we compute

max (| Fy,(x)|, |rF,(x) + G, (x)])

(P, 7r) = sup

PeCo(R) max(|zil, ..., [za])*"
Fn ) Fn Gn
o= g MUEGOL ) + Gl
PECo(R) max(|zy],. .., |z,])?"
where P = (x1 : @9 : y) or (x1 : ... : x,). These definitions are slightly more

general than those in Section 4.1 as previously we took r = 0.

Proposition 4.16. We can compute §(®,r), respectively e(®,r), by taking the
mazximum, respectively minimum, over all points P € Ce(R) satisfying one of the
following conditions:

(i) P= (21 :...:x,) with x; = £x; for some i # j,
(ii) Fo(P) = £(rEF.(P) + G.(P)),
(iii) n =2 and F5(P) =0,
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(iv) according as n = 2,3, 4,

O oy _ OU. f) py _

where f = F,, orrF, + G, and i, j,k are distinct.

@1, @, f)

O(xi, xj, Tp)

(P) =0,

PROOF: Since Cg(R) is non-empty we may identify it as the real locus of an elliptic
curve. In particular it is isomorphic as a smooth real manifold to either one or
two copies of the circle R/Z. We are asked to find the maxima and minima of a
continuous real-valued function on this manifold. In (i) and (ii) we consider the
points where this function is not differentiable, and in (iii) and (iv) we consider
the points where its derivative vanishes. We recall by Theorem 3.8 that there are
no points P € Ce with F,(P) = G,,(P) = 0. Condition (iii) is needed since after
completing the square Cp has equation y? = Fy(x1, 23). O

We check that the set of points P in Proposition 4.16 is finite. In case (i) it
suffices to note (by Bezout’s theorem) that Ce has finite intersection with any
hyperplane. In cases (ii) and (iii) we recall that (F,, : G,,) defines a non-constant
morphism Cy — P! and therefore has finite fibres. If there were infinitely many
points P satisfying one of the conditions in case (iv) then (after permuting the
co-ordinates if necessary) we would have

AF, + uG, = 3" (mod I)

for some (X : ) € PY(R), where I =0, (U), (Q1,Q2) according as n = 2,3,4. In
particular the form

0(F, Gs) or oU, Fs, Gs) or 0(Q1,Q2, Fy, Gy)

8(1'1,1'2) 8(1'1,1'2,1'3) 0(1'1,1'2,1'3,1'4)

would be divisible by 22"~*. However the invariant theory in Section 3 shows that
these forms meet Cg in distinct points: namely 7~ 1(E[2] \ {0}) in the case n = 2
and 7~!(E[2]) in the cases n = 3,4. This is the required contradiction.

Proposition 4.16 allows us to compute §(®, ) and (P, r) numerically. The case
n = 2 is already covered in [Si2], [CPS]. See [S, Section 2.5] for a worked example.
In the cases n = 3,4 we use the Grobner basis machinery in Magma. In Section 5
we consider models over Q, so the Grobner bases can be computed exactly.

5. EXAMPLES

5.1. Explicit bounds. Let E/Q be an elliptic curve with global minimal Weier-
strass equation (1.2) and discriminant Ag. Let C = Ce be an n-covering of E,
where ® is a non-singular genus one model of degree n € {2,3,4}. We assume that
C(Q,) # 0 and ® is minimal at all primes p. Therefore by [CFS, Theorem 3.4] we
have A(®) = Ag. In particular C and E have the same primes of bad reduction.
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In Sections 4.2 and 4.3 we computed a finite set of integers A, = A,(P) at
each bad prime p. The Weierstrass equations (1.2) and (3.1) are related by a
substitution

r—zv+r y—yt+sr+t

for some r,s,t € Z. In Section 4.5 we computed the real contributions d.(®,r)
and £, (P, 7). The height bounds By and B; in (1.1) are now given by

By = —(1/2n)log 6:c(®,7) + (1/n) > min A,(®)logp

p|Ag

By = —(1/2n)logecc(®,7) + (1/n) > max A,(®)logp

p|AE

This follows from (4.1) and (4.2), except that in changing our choice of Weierstrass
equation (from that given by the a-invariants to a standard one) we must replace
G, by rF, + G,,. This makes no change at the finite places since r € Z.

By Theorem 4.13 we need only sum over primes p with p? | Ag.

5.2. A first example. Let E be the elliptic curve y?+y = 23 — 41079z — 2440008
labelled 120267g1 in [Cr]. The primes of bad reduction are p = 3,7,23, 83 with
Kodaira symbols I}, 14, I1, I3 and Tamagawa numbers 4,4, 1,3. The group E(Q) is
free of rank 2 generated by (—106,850) and (—157,373).

Among the coverings of E computed using n-descent for n = 2, 3,4 we choose
the following for illustration.

Co: 2+ 2%y = —bat — 1712%2 + 782222 + 21622° — 1062*

Cs: 122%y — 92%2 + 92y — 120y2 + Ty* + 10y*2 — 17y2* — 62° =0
c. . T1Ty + 2123 + 3T,y + Tox3 — 49Ty + X3 + 6374 + 227 = 0
t 3x1w3 + 3w174 — T3 + Towz — 923 + dxzTy + 22 = 0

The sets of Tamagawa distances A, are as follows. We compute these as multisets
so that, as a check on our calculations, the size of A, is equal to the Tamagawa
number. (See the comments at the end of Section 4.4.)

n =2 n=3 n=4
Az ={0,0,1,1} Az ={2,3,3,4} Az ={2,4,6,8}
A; =1{0,0,1,1} A, =1{1,1,1,2} A; =1{1,2,3,4}
Ay = {0} Ay = {0} Az = {0}

A83 = {0707 1} A83 = {07 17 2} A83 = {17 272}
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Combining these with the contributions at the infinite place we obtain the fol-
lowing bounds on the height of P, € C,(Q) mapping down to P € E(Q).
—3.06805 <h(P,) — 1hp(P) < 1.21943
—2.80610 <h(P3) — ¢hp(P) < 2.44241
—3.08885 <h(P,) — %hE(P) < 2.48228

The curves C,, have many small rational points. We list a few of these together
with their contributions to the Tamagawa distances (at p = 3,7, 83) and the height
difference h(P) — ohp(mP).

P p=3 p=T7 p=83 h(P)— 5hg(rP)
(1:1:3) 0 1 0 —1.68305
(2:3:37) 0 0 1 —0.30284
n=2 (6:—1:178) 1 1 0 —1.08967
(27 : —1:871) 1 1 1 1.14846
(769 : 787 : 2143781) 0 0 0 —2.63972
(1:0:0) 4 1 0 —1.15212
(1:-1:-1) 3 1 0 —2.16072
n=3 (2:-3:1) 2 2 0 —1.74660
(2:18:15) 4 2 2 1.96488
(1:-6:20) 2 1 0 —2.38783
(1:0:0:0) 4 2 1 —0.70073
(—2:5:2:7) 2 4 1 —1.54491
n=4 (=3:3:1:8) 6 3 1 —0.80265
(557 : 544 : —134 : 470) P P 1 ~9.31493
(157397 : 2728 : 1502 : —1438) 8 3 2 1.99552

5.3. Searching for generators of large height. We give two examples. The
first is an example where the generator was found by Michael Stoll using 4-descent
(see [CFS, Section 7C]). The elliptic curve F in the second example is taken from
a list of curves sent to us by Robert Miller. Although in both these examples the
elliptic curve has rank 1, the conductor is large enough to make a Heegner point
calculation difficult.

Example 5.1. Let £/Q be the elliptic curve y* = 23 4+ 7823. An L-value compu-
tation shows that rank F(Q) = 1 and the generator is predicted to have canonical
height hy = 77.61777 ... (if we assume III(E/Q) is trivial).
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Using the implementations of 2-, 3- and 4-descent in Magma, together with
minimisation and reduction, we obtain the following n-coverings of E.

Cy : y® + (2 + 2%y = =32 + 282°2 — 20727 — 4x2® +102°
Cs : 23+ 2%y — 4o’z — Sxyz 4+ 8x2? + 4P — 5ytr — Tyt + 20 =0
C 20179 + 123 + 11704 + T2 + x§ — Qxi = 0
4 -
22 4+ 1173 — 1104 + 205 — ToTz + 2Towy — 22 — T34 + 25 = 0

At each of the bad primes p = 2, 3, 7823 the elliptic curve E has additive reduction
with Kodaira symbol II. The finite primes make no contribution to our height
bounds. If P, € C,(Q) maps down to P € E(Q) then our bounds work out as

—1.94921 <h(P,) — thg(P) < —0.92414
—2.91485 <h(P3) — thp(P) < —1.41177
—3.66288 <h(Py) — thp(P) < —2.43592

The bounds established in [CPS| show that for P € E(Q) we have
—3.68143 < hp(P) — hp(P) < 0.74248

where ﬁE is the canonical height. We write P, = (z; : a2 : y), respectively
(1 : ... : x,), where xq,...,x, are coprime integers. Taking hr(P) = h; we
therefore expect to find P, € C,(Q) with H,, = max(|zy|,...,|z,]|) in the following

ranges. For comparison we list the actual points P,.

15170781 < H, < 127792792 P, = (10677130 : —42786483 : 5018494588774686)
12185 < Hs < 114492 Py = (10445 : —32922 : 16423)
265 < H, < 1570 Py = (116 : 207 : 474 : —332)

Example 5.1 makes precise the statement that searching on an n-covering to
find a generator for £(Q) becomes easier as n increases. For the actual searching
we use the p-adic method due to Elkies [E] and Heath-Brown, as implemented in
Magma by Watkins. This takes time O(H), respectively O(H?/3), to search for
points of height up to H on a 3-covering, respectively 4-covering.

Example 5.2. Let Ej be the elliptic curve 4+ zy +y = 23 — 22 — 23052 + 43447,
labelled 3850m1 in [Cr|, and E the quadratic twist of Ey by d = —2351. We fix
a Weierstrass equation for E of the form (1.2). The primes of bad reduction are
p=2,5,7,11,2351 with Kodaira symbols I, IT*, I, I}, I§ and Tamagawa numbers
1,1,2,1,2. An L-value computation shows that rank F(Q) = 1 and the generator
is predicted to have canonical height h; = 182.01408... (if we assume III(E/Q)
is trivial). The torsion subgroup of F(Q) is trivial.
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Using 4-descent in Magma we obtain a 4-covering C, of E with equations
323 + 172129 + T1203 + Tr124 — 523 + 112923 + 62924 + 523 + 925 = 0

1095% + Trix9 — 123 — T1T4 + 43:% — xoxg — 13x0x4 + 143:% — 30x3x4 + 183:?1 =0
The Tamagawa distances for this quadric intersection are Ay = Ay; = {0}, A5 =
{6}, A7 ={1,1} and As5 = {4,4}. For P, € C4,(Q) we obtain the bounds

0.65550 < h(Py) — thp(mPy) < 0.94857.
The bounds in [CPS] are now —15.51194 < hg(P) — hi(P) < 8.73556. We are
therefore looking for Py € C4(Q) with
21.46827 < h(Py) < 24.79228.

A direct search is not practical. However our computation of the Tamagawa
distances at p = 5 and p = 2351 suggests replacing C4 by either C} with equations
395% + 3x129 + 42123 + 62124 + 395% —3x9x3 + 22024 + 6x§ — 28x314 + 1195?1 =0
4x% + x129 — Tx123 + 92124 — 43:% — 8x9x3 + 38x274 + 31:512;, + 1dx3x4 + 16:@21 =0

or Cj with equations
2x% +4xix9 + 10z123 + 3124 — 33:% — 22913 — 6Tox4 — 5x§ — 102324 — 21:5421 =0
14:5% 4+ x129 + 1lz123 — 1121224 + 2x% + 25xox3 + 152024 — 2x§ — 24x314 + 12:@21 = 0.

Again we have reduced these models as described in [CFS]. We do not record
the changes of co-ordinates used, since they may easily be recovered using the
algorithm in [F2], as implemented in the Magma function IsEquivalent.

On C) and C] we have Ay = A5 = Ay = {0}, Ay = {1,1} and Ayzs1 = {0,4}. So
the only finite primes to contribute to our height bounds are p = 7 and p = 2351.
Moreover if we are willing to search on both curves then the contributions at
p = 2351 may be ignored. Suppose P; € C4(Q), corresponds to P; € Cj(Q) and
P! € C/(Q), and maps down to P € E(Q). Then depending on the reductions of
these points mod 2351, we have either

(5.1) —9.65955 < h(P;) — thp(P) < —9.29236
or
(5.2) —9.72818 < h(Py) — ghe(P) < —9.35987.

Taking hp(P) = hy it follows that either
11.15322 < h(P)) < 1455134 or  11.08459 < h(P]) < 14.48383.

If we are willing to search on only one of these curves then the upper bounds
increase by log 2351 = 7.76259. . ..
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Magma’s PointSearch takes just a few seconds to find a point P, € C/(Q). We
find the corresponding points Py € C4(Q) and P; € C;(Q) by making the relevant
changes of co-ordinates, and thus obtain

Py = (32083748086 : 42638879317 : 38411124781 : 22127244455) h(Py) = 24.47603. ..
P; = (472320823 : 4111701909 : —2388802174 : —2139378517) h(P;) = 22.13710. ..
Py = (785047 : —840912 : 1542460 : —236990) h(P)) =14.24888. ..

These points map down to P = (u/w? v/w?) € E(Q) where

u = 1757287936905025328253331560718272340242739349926447025094428588\
4833392724486595115

v = 4125077432494049001174441775597880344806917503465242447257595890\
83530835657373093470958302511042544245136026529511888663249

w = 364436547292608819468573335937957548482.

If Py € E(Q) is a generator then (assuming we have carried out the 4-descent
rigorously) it lifts to a rational point on C;. Combining our height bounds (5.1)
and (5.2) with those in [CPS] it follows that

o~

he(FPy) > 8 % 9.29236 — 8.73556 = 65.60332.

Since hy(P) = 182.01408 . .. we deduce (without the need for any further search-
ing) that P is a generator for F(Q).

Example 5.2 shows the advantages of searching on several different models of
the same curve. One strategy would be to search on [],c,(£) models of each
curve, so that only the contributions to our height bounds at the infinite place are
relevant. (These contributions do not appear to vary greatly between the models,
so long as we always reduce them.) However when [[, c,(E) is large then some
compromise is needed and for this the graphs in [S] are useful. Alternatively it
may be possible to adapt the p-adic point searching method to search on several
models of the same curve simultaneously.
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