ON GENUS ONE CURVES OF DEGREE 5 WITH
SQUARE-FREE DISCRIMINANT

TOM FISHER AND MOHAMMAD SADEK

ABSTRACT. We study genus one curves of degree 5 defined by Pfaffians. We
give new formulae for the invariants, and prove the equivalence of two different
definitions of minimality. As an application we show that transformations be-
tween models with square-free discriminant are necessarily integral. This result
is used by Bhargava and Shankar in their work on the average ranks of elliptic
curves.

1. INTRODUCTION

Let E be an elliptic curve over a number field K. An n-covering of E is a pair
(C,7) where C is a smooth curve of genus one and 7 : C' — E is a morphism
such that 7 = [n] o 1) for some isomorphism ¢ : C' — E defined over K. If C
is everywhere locally soluble then by [6, Theorem 1.3] there exists a K-rational
divisor D on C' such that D is linearly equivalent to ¢*(n.0g). The linear system
| D| defines a morphism C' — P*~!. If n > 3 then this morphism is an embedding,
and the image is called a genus one normal curve of degree n. The word “normal”
refers to the fact the curve is projectively normal, i.e. the homogeneous co-ordinate
ring is integrally closed. This should not be confused with the fact C' is normal,
which is automatic since C' is smooth.

When n = 2, 3,4 the curve C' is represented by a binary quartic, ternary cubic,
or pair of quadrics in 4 variables. In this paper we take n = 5, in which case C' is
represented by data of the following form.

A Pfaffian model ® over a ring R is a 5 X 5 alternating matrix of linear forms
in R[zy,...,z5]. We write X;5(R) for the space of all Pfaffian models over R. Two
models ® and @’ are R-equivalent if & = [A, B]® for some A, B € GL5(R). The
action of A is given by ® — A® AT and the action of B is given by

(Pij(21,...,x5)) = (2], ..., 2%))

where 7, = S, Bijr;. We define det[A, B] = (det A)?det B. The models ® and
O’ are properly R-equivalent if det[A, B] = 1. The invariants ¢4, ¢g, A € Z[X5] are
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certain integer coefficient polynomials in the 50 coefficients of a Pfaffian model.
We give formulae for these in Section 2.

We work over a discrete valuation field K with valuation ring Ok, normalised
valuation v : K* — Z, uniformiser 7, and residue field k = Ok /7Ok.

Our main result is the following. It answers a question of Bhargava, and is used
in the work of Bhargava and Shankar [3, Proposition 11} on the average size of
the 5-Selmer group of an elliptic curve.

Theorem 1.1. Let ¢, 9" € X;5(Ok) be Pfaffian models with v(A(®)) < 1 and
v(A(P)) < 1. Ifd' = [A, B]® for some A, B € GL5(K) then A, B € K* GL5(Ok).
In particular

(i) If ® and ®' are K-equivalent then they are Ok -equivalent.
(ii) The stabiliser of ® in GL5(K) x GL5(K) is contained in the subgroup
generated by GLs(Ok) x GL5(Ok) and [7 ' I, 7 15].

To indicate how Theorem 1.1 is useful, we give the following global application.
We take K = Q, but note that the result generalises immediately to any number
field with class number 1. We say that a Pfaffian model ¢ has the same invariants
as an elliptic curve E if the invariants c4(®), cs(®), A(P) are the same as the
invariants ¢y, cg, A of a minimal Weierstrass equation for F.

Theorem 1.2. Let E/Q be an elliptic curve with square-free minimal discrimi-
nant. Then the 5-Selmer group S®(E/Q) is in bijection with the set of Pfaffian
models over Z with the same tnvariants as E, up to proper Z-equivalence.

In Sections 3 and 4 we introduce two different definitions of minimality, and show
that if they agree then Theorem 1.1 is a natural consequence. The agreement of
the two definitions is proved in Sections 5, 6 and 7. This extends [17, Theorem 4.1]
from genus one curves of degrees 2, 3 and 4, to degree 5. In Section 8 we give a
short alternative proof of Theorem 1.1, that is motivated by the ideas in the rest
of this paper, but avoids nearly all the scheme-theoretic machinery.

2. PFAFFIANS AND INVARIANTS

In this section we briefly describe how the equations for a genus one normal
curve of degree 5 can be written in terms of Pfaffians. We then give some new
formulae for the invariants of a Pfaffian model, that are simpler than the evaluation
algorithms in [9, Section 8].

The Pfaffian of an alternating matrix is an integer coefficient polynomial in the
entries of the matrix, whose square is the determinant. We only need to consider
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Pfaffians of 4 x 4 matrices, in which case

0 a2 a3 aus

0 as an
pf = Q12034 — Q13024 + G14023.
0 as

0

If ® is an 5 x 5 alternating matrix then the row vector of submaximal Pfaffians
of ® is Pf(®) = (p1,...,ps) where p; = (—1)"pf (®{") and @ is the matrix
obtained by deleting the 7th row and column of ®. It can be shown, for example
by direct calculation, that Pf(®)® = 0, adj(®) = Pf(®)T Pf(®) and Pf(APAT) =
Pf(®)adj(A) for all 5 x 5 matrices A.

In this section we work over any field K. Let C' C P% be a genus one normal
curve, i.e. a smooth curve of genus one embedded by a complete linear system
of degree 5. Let R = K|[xq,...,25] = @g>0Ra be the polynomial ring with its
usual grading by degree. Let R(d) be the graded free R-module of rank 1 with
R(d). = Rg+e. By the Buchsbaum-Eisenbud structure theorem [4], [5], or the
treatment specific to this case in [10], the coordinate ring of C' has minimal free
resolution

(1) 0—R(—5) O R(=3)° % R(—2)

for some ® € X5(K). In particular the homogeneous ideal of C' is generated by
the 4 x 4 Pfaffians of ®. More generally, for any ® € X5(K), we let Cp C P} be
the subscheme defined by its 4 x 4 Pfaffians. We say that ® is non-singular if Ce
is a smooth curve of genus one. We write K[Xj5] for the polynomial ring in the
50 coefficients of a Pfaffian model. A polynomial F' € K[Xj] is an invariant of
weight k if Fog= (detg)*F for all g € GLs x GLs.
Theorem 2.1. There are invariants cq,ce, A € Z[X5] of degrees 20,30,60 and
weights 4,6,12, satisfying ¢ — c& = 1728, with the following properties.

(i) If char(K) # 2,3 then the ring of invariants in K|Xs] is generated by (the

images of ) c4 and cg.
(ii) A model ® € X5(K) is non-singular if and only if A(®) # 0.
(iii) There ezist ay,as,as, ay, ag, ba, by, bg € Z|X5] satisfying

5 PH®)

R

by = a%+4a2, by = araz + 2ay, be = a§+4a6,
cy = by — 24by,  cg = —bi + 36byby — 216D,
such that if ® € X5(K) is non-singular then Co has Jacobian
(2) Y 4 ay(®)zy + as(P)y = 2° + ax(®)2? + ay(P)x + ag(P).
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PrOOF: This is [9, Theorem 4.4] together with [11, Theorem 1.1]. O

It is shown in [9, Section 5.4] that if char K" # 2 and ® € X;(K) is non-singular
then there is an invariant differential wg on Cg given by

zid(z;/x;) 9P 0% 9P
Qer, a5 " @ = 9 B O

P = P{(®), and (7,4, k,l,m) is any even permutation of (1,2,3,4,5). In the
definition of @, it is understood that by the partial derivative of a matrix we
mean the matrix of partial derivatives. As we show in Remark 7.6, the restriction
char K # 2 is not needed.

In [12, Section 7] an alternative description of the invariant differential is given in

(3) we =

terms of a certain covariant. We now give an explicit construction of this covariant,
based in part on ideas in [2, Section 4]. For (i, 7, k,[,m) an even permutation of
(1,2,3,4,5) we define

8P8_®8PT N OP 00 8PT+8_P8_<I>8PT
Oxy, 0x; 0x,y,  Oxyy, Oxp Oxp  Oxy Oy, OT)

Now Q = (€;;) is an alternating matrix of quadratic forms. We define an action
of GL5 x GLj5 on the space of such matrices via

[A,B]: Q= B (Qy(, ... a%)) B!

Qz‘j =

where z; = Z?:1 Bijx;. In particular the first copy of GLs acts trivially. Recall
that for g = [A, B] we defined det g = (det A)? det B.

Lemma 2.2. The map ® — Q is a covariant of weight 1, in the sense that
g® — (det g)gf2
for all g € GL5 x GL5.

PRrooOF: If we replace ® by A®AT then P is replaced by P adj A and €2 is multiplied
by (det A)%.  So it suffices to consider g = [I5, B] for B running over a set of
generators for GLj5. Since the cases where B is a diagonal matrix or a permutation
matrix are easy, this reduces us to considering B = I5 + AE15, where A € K and
FE,5 is the elementary matrix with a 1 in position (1,2) and all other entries 0.
This corresponds to the substitution zy <= 22 + Azy. In the definition of €2;; we
replace g—fl by g—fl + )\g—gi and g—i by g—ﬁ + )\g—i. This has the effect of replacing
Q.0 by Q.0 — X2, and Qq,. by Qs — AQy,. for r = 3,4,5. A calculation, using the
fact ® is alternating, shows that the other entries of €2 do not change. Thus (2
changes to ¢€) as required. O



GENUS ONE CURVES OF DEGREE 5 5

We put
5 5
0, 0L OM;;
Mij = E 8(13 axj and Nzyk’ = 8{1;‘ Qrk-

r,s=1 r=1
Theorem 2.3. The invariants c4, cg € Z|X5] are given by

5

(D) = 1 O*M;; 0? M,
4 13440 It 0x,0xs 0x;0x;
and
5
—1 0PN, 0N,
o(®) = > .
1036800 I 0,020z, Ox;0x;0%}),

PRrROOF: It may be checked using Lemma 2.2 that these polynomials are invariants
of degrees 20 and 30. By Theorem 2.1 it only remains to show they are scaled as
specified in [9]. We can do this by computing a single numerical example. O

We may compute the discriminant A either as (¢ — ¢2)/1728, or directly using

the method at the end of [9, Section §].

3. MINIMAL PFAFFIAN MODELS

In this section we make some remarks about minimal Pfaffian models, and more
specifically those with square-free discriminant. We also explain how Theorem 1.2
follows from Theorem 1.1.

From now on K will be a discrete valuation field, with ring of integers O, and
normalised valuation v : K* — Z. We fix a uniformiser 7 and write k£ for the
residue field. Let S = Spec Ok. For the proof of Theorem 1.1 we are free to replace
K by any unramified extension. We may therefore assume when convenient that
K is complete, and k is algebraically closed.

A Pfaffian model ® € X5(K) is integral if & € X5(Ok), i.e. it has coefficients
in Og. It follows from Theorem 2.1 that if ® is non-singular and integral then
V(A(P)) = v(Ag)+12¢(P) where Ag is the minimal discriminant of the Jacobian
E, and ¢(®) > 0 is an integer called the level. We say that ® is minimal if v(A(P))
is minimal among all integral models K-equivalent to ®. If &' = ¢g® for g = [A, B|
with A, B € GL5(K) than (") = (D) + v(det g).

Theorem 3.1. (Minimisation theorem) Let ® € X5(K) be non-singular. If
Cs(K) # 0 then ® is K-equivalent to an integral model of level 0.

ProOF: This is [11, Theorem 2.1(i)]. O
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The proof of Theorem 3.1 is rather short. In [11] the first author also investi-
gated to what extent the hypothesis Cy(K) # () can be weakened, and gave an
algorithm for minimising.

Lemma 3.2. Let ® € X;5(Ok) with v(A(P)) < 1.

(i) The Jacobian E of Ce has Kodaira symbol Iy or I.
(ii) If K is a p-adic field then Co(K) # 0.

PROOF: (i) By Theorem 2.1 we have v(Ag) < 1. Tt follows by Tate’s algorithm
that the Kodaira symbol is either I or [;.

(ii) Since v(A(P)) < 12 we have ¢(®) = 0. Then by [11, Theorem 7.1] we have
Co(K™) # () where K™ is the maximal unramified extension. By (i) we know
that /K has Tamagawa number 1. Therefore, as explained in [13, Lemma 2.1],
solubility over K™ is equivalent to solubility over K. O

Remark 3.3. To prove Theorem 1.1 it suffices to show that B € K* GL;5(Ok).
The reason for this is as follows. By Lemma 5.2 we know that if ® is minimal
then its 4 x 4 Pfaffians are linearly independent mod 7. So if ® and ®’ are both
minimal and ® = [A, \[5]®, then from Pf(®') = \? Pf(®) adj(A) we deduce that
A € K* GL5(Ok). The final statements (i) and (ii) of Theorem 1.1 are immediate,
since v(det[A, B]) = 0 and the transformations [Al5, \™2[;] for A € K* act trivially
on the space of Pfaffian models.

We now explain how Theorem 1.2 follows from Theorem 1.1.

Theorem 3.4. Let E/Q be an elliptic curve. The 5-Selmer group S®(E/Q) is
in bijection with the proper Q-equivalence classes of Pfaffian models ® € X5(Q)
with the same invariants as E and Ce(Qy) # 0 for all primes p.

PRrOOF: This is a special case of [12, Theorem 6.1]. O

PROOF OF THEOREM 1.2: By Theorem 3.1 and strong approximation, each of
the classes in Theorem 3.4 contains a model with coefficients in Z. Since Ag is
square-free, Theorem 1.1 shows that the map from proper Z-equivalence classes
to proper Q-equivalence classes is injective. Moreover the condition C(Q,) # 0
is automatically satisfied by Lemma 3.2. O

Let ® € X;5(Ok) have reduction ¢ € X5(k). We write Cg C P for the S-scheme
defined by the 4 x 4 Pfaffians. It has generic fibre Cy and special fibre Cl.

Suppose the entries of ¢ span (zi,...,25). If P is k-point on C, then by an
Ogk-equivalence we may assume P = (1 : 0 : ... : 0). We may further assume
¢12 = x1 and all other ¢;; (for ¢ < j) are linear forms in z5,...,z5. The tangent

space to Cy at P is {¢34 = ¢35 = ¢us = 0} C Py
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Lemma 3.5. Let P € Cy as above. The following are equivalent.

(i) The tangent space to Co at P has dimension at most 2.
(ii) Ewvery linear combination r®s4 + sPs5 + tPy5 (where 1, s5,t € Ok, not all
in 1O ) that vanishes mod m has coefficient of xy not divisible by 2.

PROOF: By (i) we mean dim(mp/m%) < 2 where mp is the maximal ideal of the
local ring at P. The lemma is proved by a straightforward calculation. O

The following lemma will be used both to show that Cg is regular, and in the
elementary proof of Theorem 1.1 in Section 8.

Lemma 3.6. If & € X;(Ok) with v(A(®)) < 1 then every k-point P on Cl
satisfies the conditions in Lemma 3.5.

PROOF: If the entries of ¢ fail to span (xq,...,z5) then ® is clearly not minimal
and v(A(P)) > 12. Therefore an Og-equivalence brings us to the situation con-
sidered in Lemma 3.5. Let d be the dimension of the tangent space to Cy at P. If
d =1 we are done. If d > 3 we may assume ¢34 € (x5) and ¢35 = @45 = 0. Then

[Diag(wm, 71'1/27 1,1, 1), 12 Diag(ﬁ_1/2, 11,1, 7r1/2)]<I>

has coefficients in Ox[r'/?]. So in this case v(A(®)) > 6.

Now suppose d = 2. We may assume ¢34 = T4, ¢35 = x5 and ¢45 = 0. To
complete the proof we show that if ®,5 has coefficient of z; divisible by 72 then
v(A(P)) > 2. Checking this directly, using the formulae for the invariants in
Section 2, is unfortunately not practical. Instead we argue as follows. By making
substitutions of the form x4 < x4+ Ax; and x5 < x5+ px; for suitable A, u € 71Ok
we may arrange that ®s34 and ®35 also have their coefficients of x; divisible by 7.
Then substituting for x; we have

0 1 a1 s a3

0 B B2 Bs
¢ = 0 U3 —4
— 0 4

0

where /1 = 0 (mod 7), the coefficient of x; in each of the «; and §; vanishes mod
7, and the coefficient of z; in each of the ¢; vanishes mod 72. By subtracting
suitable multiples of the first two rows/columns from the last three rows/columns
we may further assume that the coefficient of x; in each of the «; and (; vanishes
mod 72. Since it only matters what the coefficients are mod 7%, we may now
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assume that none of the «;, §; and ¢; involve z;. By [11, Lemma 2.4], ® has the
same discriminant as the quadric intersection

610&1 + 62042 + 63063 =0
0131 + £afa + €333 = 0.

Since ¢; = 0 (mod 7), the reduction of this quadric intersection mod 7 contains
a line. It can then be checked (for example by a brute force calculation) that the
discriminant vanishes mod 72. This completes the proof. O

4. GEOMETRIC MINIMALITY AND AN APPLICATION

In this section we define the notion of geometric minimality and explain the
role it has to play in the proof of Theorem 1.1. We assume from now on that the
residue field k is algebraically closed. Following [15, Definition 8.3.1] we have

Definition 4.1. A fibred surface C /S is an integral projective flat S-scheme of
dimension 2.

Lemma 4.2. Let C C P! be a smooth projective curve and C its closure in P2 .
Then C is a fibred surface. Moreover C is normal if and only if

(i) C is Cohen-Macaulay, and
(ii) there are only finitely many non-reqular points on the special fibre.

PRrROOF: The coordinate ring of C is a subring of that of C. Since C' is integral it
follows that C is integral. Then C — S is flat and dimC = 2 by [15, Corollaries
4.3.10 and 4.3.14]. By definition C is projective. Since dimC = 2 and the generic
fibre is smooth, (i) and (ii) are equivalent to the conditions (Ss) and (R;) in Serre’s
criterion [15, Theorem 8.2.23]. O

Let C /S be a fibred surface. Lipman [1] showed that if K is complete then C
admits a desingularisation (i.e. resolution of singularities). If C has smooth generic
fibre then the hypothesis that K is complete may be removed, as described in [15,
Corollary 8.3.51]. If in addition C is normal then by [15, Proposition 9.3.32] it
admits a minimal desingularisation.

Definition 4.3. Let C' C P! be a genus one normal curve of degree n, with
Jacobian E. Let C be the closure of C in Pg_l. We say that C' is geometrically
minimal if C is normal, and the minimal desingularisation of C is isomorphic (as
an S-scheme) to the minimal proper regular model of E.
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This definition is not invariant under changes of co-ordinates defined over K.
We remark that if C' is geometrically minimal then C'(K) # (), and C is obtained
from the minimal proper regular model of E' by contracting some of the irreducible
components of the special fibre.

Before explaining how geometric minimality is used in the proof of Theorem 1.1,
we quote the following lemma.

Lemma 4.4. Let C be a projective S-scheme, and L an invertible sheaf on C.

(i) The natural map H°(C, L) ®o, K — H°(Cx, Lx) is an isomorphism.
(i) We have the inequality dimy H°(Cy, L) > dimxg H°(Ck, Lx).
(i) If equality holds in (i) then H°(C, L) is a free O -module and the natural
map H°(C, L) ®o, k — H'(Cy, L) is an isomorphism.

PRrOOF: Part (i) is [15, Corollary 5.2.27] with A = Ok and B = K. The rest is
[15, Lemma 5.2.31 and Theorem 5.3.20]. O

Theorem 4.5. Let C; C P! and Cy C P! be genus one mormal curves of
degree n. Suppose that Cy and Cy are isomorphic via a change of coordinates given
by B € GL,(K). If C; and Cy are geometrically minimal, and their Jacobian E
has Kodaira symbol Iy or Iy, then B € K* GL,(Ok).

PROOF: Since the Jacobian E has Kodaira symbol I, or I; the special fibre of £
(the minimal proper regular model of FE) is either a smooth curve of genus one,
or a rational curve with a node. Let C; be the closure of C; in Pg_l. Then C; is
obtained from £ by contracting some of the irreducible components of the special
fibre. Since & is irreducible and C;, is a curve it follows that C; = £. We now
write f; : £ — P47 for the embedding with image C; and let £; = fO(1).

Since C; = C;  is a genus one curve of degree n we have dimgx H°(E, L; i) = n.
Since C; is either a genus one curve or a rational curve with a node, and it
has degree n by [14, Chapter III, Corollary 9.10], we have dimy H°(E, L;x) = n.
Then Lemma 4.4 shows that H(E,L;) = O%. Our choice of co-ordinates on
P& ! corresponds to a choice of bases for H(E, L) and H(E, L3). By hypothesis
L1k = Lok, and the isomorphism HY(F, Ly i) = H°(E, Ly ) is given, relative
to our chosen bases, by some scalar multiple of B.

Let £ = £; ® £;'. By Lemma 4.4(ii) both £, and its dual £, have non-
zero global sections. Since & is irreducible it follows that £y is trivial. Then by
Lemma 4.4(iii) both £ and £~ have global sections that are nowhere vanishing
on the special fibre. Therefore L is trivial and so £, = L. Taking global sections
gives an isomorphism of Ox-modules H°(E, L1) = H(E, Ly). This isomorphism
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is again given, relative to our chosen bases, by a scalar multiple of B. It follows
that B € K* GL,(Ok). O

PRrROOF OF THEOREM 1.1: We saw in Lemma 3.2(i) that for & € X5(Ok) with
v(A(P)) < 1, the Jacobian of Cg has Kodaira symbol Iy or I;. We are free to
replace K by an unramified extension. So by [11, Theorem 7.1] we may assume
that Co(K) # 0 and likewise for ®’. In Sections 5, 6 and 7 we show that, since
® and @’ are minimal, Cp and Cg are geometrically minimal. Theorem 4.5 then
shows that B € K* GL5(Ok) and we are done by Remark 3.3. O

5. MINIMAL PFAFFIAN MODELS ARE FLAT

Let ® € X;5(Ok) with reduction ¢ € X5(k). In this section we show that if ® is
minimal then Cg is a fibred surface.

Lemma 5.1. If ® € X5(Ok) is non-singular then the following are equivalent.
(i) Cq is the closure of Cg in P%.
(ii) Co is a fibred surface.

(iii) Cy is a curve.

PROOF: (i) = (ii) = (iii). See Lemma 4.2 and [15, Corollary 4.3.14].
(iii) = (i). Let R = k[z1, ..., z5]. With notation as in Section 2, there is a complex
of graded free R-modules

T
Pi(o) 5 P19

(4) 0—R(—5) R(—3)° -2 R(-2) R.

Since Cy, is a curve, this complex is exact by the Buchsbaum-Eisenbud acyclicity
criterion [8, Theorem 20.9].

Let Pf(®) = (p1,...,ps5). Let Z be the ideal in R = O]z, ..., z5] generated
by p1,...,ps. We must show that if f € R and nf € Z then f € Z. We write
wf = Zle fipi for some f1,..., fs € R. Then Zle firi =0 (mod ). Since (4)
is exact it follows that f; = mg; + 25:1 ®;;h; for some ¢1,...,05,h1,...hs € R.
Then 7 f = Z?:l fipi=m Zle g;p; and so f € T as required. O

Lemma 5.2. If ® € X;(Ok) is minimal then

i e 4 x affians of ¢ are linearly independent.
i) Thed x4 P li ly ind d
ii e subscheme Cy C oes not contain a plane.
ii) The subscheme Cy C P! d n a pl
(iii) The entries of ¢ span (x1,...,xs).

Proor: This is [11, Lemma 7.8]. O
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Lemma 5.3. If ¢ € X;5(k) satisfies conditions (i) and (ii) in Lemma 5.2 then C
1S a curve.

PrOOF: By [9, Lemma 5.8] every irreducible component of Cy has dimension at
least 1. We must show there are no components of dimension 2 or more. Let
Sing Cy be the set of points of Cy with tangent space of dimension at least 2. This
contains all components of Cy of dimension 2 or more. If Sing Cy is contained
in a line then we are done. So suppose Py, P», P; € Sing Cy span a plane II. If
Cy contains each of the lines P;P; then it must contain II, since Cy is defined by
quadrics. But this is impossible by (ii). We may therefore suppose Py Py ¢ Cl.

A change of co-ordinates gives P, = (1:0:...:0)and P, =(0:1:...:0).
If we write ¢ = > x;M; then M; and M, have rank 2, but their sum has rank 4.
Therefore ¢ is equivalent to a model with ¢i9 = 21, ¢34 = 22 and all other ¢;;
(for i < j) linear forms in x3,x4,x5. Since Py, P, € Sing C, it follows that ¢ss
and ¢y45 are linearly dependent, and ¢15 and ¢95 are linearly dependent. Therefore
the space of linear forms spanned by the entries of the last row/column of ¢ has
dimension at most 2. Replacing ¢ by a k-equivalent model brings us to the case

0 & a1 as ag
0 B B2 B
¢ = 0 7 0
— 0 0
0
where &, 1, aq, ag, as, f1, B2, B3 are linear forms in xy,...,z5. By (i) the linear

forms a3 and B3 are linearly independent, and 7 # 0. Therefore Cy is the union of

[y ={az = B3 =En—a1fa +azf =0}
and

ar oy o«
Is=<{rank | =~ °]<1 N{n = 0}.

B B2 Bs)
We may think of I'y as a degenerate conic, and I'; as a degenerate twisted cubic.
It remains to show that these degenerations are still curves. In the case of I'y this
is clear by (ii). In the case of I's we use the following lemma. The conditions of
the lemma are satisfied by (i) and (ii). O

Lemma 5.4. Let ¢ be a 2 x 3 matriz of linear forms in xy,...,x4. Let I's C P?
be defined by rank ) < 1. Suppose that
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(i) The 2 x 2 minors of ¥ span a vector space of dimension at least 2.
(ii) The subscheme T's C P3 does not contain a plane.

Then I's is a curve.

PROOF: Since I'; is defined by quadrics, any irreducible component of dimension
2 would have degree 1 or 2. These possibilities are ruled out by (ii) and (i). O

Theorem 5.5. If & € X5(Ok) is minimal then Cq is a fibred surface.

PROOF: This is immediate from Lemmas 5.1, 5.2 and 5.3. O

6. MINIMAL PFAFFIAN MODELS ARE NORMAL

We have seen that if ® € X;5(Ok) is minimal then Cq is a fibred surface. In
this section we show that Ce is normal. If v(A(®)) < 1 then Lemma 3.6 already
shows that Cg is regular, and hence normal. To treat the general case we check
the conditions in Lemma 4.2.

Lemma 6.1. If ® € X;(Ok) is minimal then

(i) Co is a local complete intersection,
(ii) Co is Cohen-Macaulay.

PROOF: (i) Since Cy C P% has codimension 3 we must show it is locally defined
by 3 equations. Let Pf(®) = (py,...,ps). Since ® is alternating, the relations
Z?:lpiq)ij = 0 for j = 4,5, show that the intersection Ce N{®45 # 0} is defined
by p1 = p2 = p3 = 0. By Lemma 5.2(iii) the affine pieces {®;; # 0} cover P{.

(ii) This follows from (i) and [15, Corollary 8.2.18]. O

We prepare to check the second condition in Lemma 4.2. Recall that we assume
k is algebraically closed.

Lemma 6.2. Let ¢ € X;5(k) satisfy the conditions of Lemma 5.2. Suppose Cy has
a multiple component I'. Then after replacing ¢ by a k-equivalent model, we are
in one of the following cases

0 @ o * % 0 z1 29 73 O

0 = x 0 0 z3 x4 O

(1) 0 « 0 ) 0 0 x4
— 0 zx — 0 x5

0 0
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0 1 x9 * x 0 0 21 x3 x4

0 * * % 0 x9 x3 x5

(131) 0 x x (iv) 0 z5 O
— 0 0 — 0 0

0 0

where the entries x are linear forms in x3, x4, x5. Moreover I’ = {x3 = x4 = x5 =
0} in cases (i),(ii), (1), and T = {x 123 — 23 = 4 = x5 = 0} in case ().

PROOF: Lemma 5.3 shows that C, is a curve and so the complex (4) is exact.
From this minimal free resolution we compute that C;, has Hilbert polynomial

h(t) <t1—4) _5(t22) +5(t21> B (tzl) s

In particular Cy C P* has degree 5. The multiple component I must therefore be
a line or a conic.

Case I' is a line. We may assume I' = {z3 = 4 = x5 = 0}. Then ¢ = > z;M;
where all linear combinations of M; and M, have rank at most 2. By hypothesis,

My, ..., Ms are linearly independent. So we are either in case (iii), or ¢ takes the
form
0 1 29 * %
0 * a f(
0 v o
— 0 x5
0

where the entries «, 3,7, and % are linear forms in x3, x4, 5. By row and column
operations (and substitutions for z; and z,) we may suppose «,3,7,0 do not
involve x5. We write o« = asrs + ayxy and likewise for 3,7,0. As shown in [11,
Section 4], T' is a multiple component if and only if the determinant of

Y3s — gt yas — aql
035 — Bst 045 — But

vanishes as a polynomial in s and ¢. If the rows of this matrix are linearly de-
pendent (over k) then we may reduce to case (i). Otherwise the columns are
linearly dependent, and we may reduce to the case az3 = 3 = y3 = d3 = 0 yet
404 — Baya # 0. Since C, does not contain the plane {z, = x5 = 0} it follows
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that ¢o3, and at least one of ¢4 and ¢15, involves x3. By a substitution for x3 we
may assume ¢o3 = xr3. By row and columns operations (and substitutions for z;
and x5) we may assume ¢4 and ¢15 are multiples of x3. Replacing the 4th and
5th rows/columns by suitable linear combinations, and likewise for the 2nd and
3rd rows/columns, brings us to case (ii).

Case I is a conic. We may assume I' = {z123 — 23 = 74 = x5 = 0}. Let Pf(¢) =
(p1,--.,ps5). Replacing ¢ by an equivalent model we have p;(x1, 25, x3,0,0) = 0 for
i =1,2,3,4 and ps(x1, x2, x3,0,0) = x1203—23. Since Pf(¢)¢ = 0 and C} is a curve,
we may suppose the last row/column of ¢ has entries x4, z5,0,0,0. As shown in
[11, Section 4], I" is a multiple component if and only if ¢34(21, 2, 23,0,0) = 0. In
this case ¢ is equivalent to a model of the form

0 & x4 (x4, 75) X2+ (T4, 75) x4
0 @9+ (x4, 25) x3+ (T4,25) 5

0 (x4, T5) 0

— 0 0

0

where each (z4,x5) denotes some linear combination of x; and x5. Subtracting
multiples of the last three rows/columns from the first two row/columns we may
suppose & = 0. Since the 4 x 4 Pfaffians of ¢ are linearly independent we cannot
have ¢34, = 0. So making substitutions for x, and x5 brings us to the case

0 0 x4+ (xg,75) @9+ (x4,25) (T4,75)

0 o+ (rg,z5) 3+ (Ta,25) (T4, T5)

0 Ty 0
- 0 0
0
If P € GLy(k) then
T1 To T al
P pr=("" "7
Ty T3 N

where 2/, 2, %, are linear combinations of x;, x5, x3. Acting on ¢ by a matrix of
the form Diag(P, P,1) we may therefore reduce to the case ¢15 = x4 and ¢o5 = 5.
Subtracting multiples of the 5th row/column from the 3rd and 4th rows/columns
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we may assume ¢4 = ¢o3. Then making substitutions for xi, xo, x3 brings us to
case (iv). O

The following lemma and its proof could also be used to extend the algorithms
for testing local solubility in [13] to genus one curves of degree 5.

Lemma 6.3. If & € X;5(Ok) is minimal then each multiple component I' of the
special fibre Cy has at most three non-regular points.

PrRoOOF: We split into the four cases in Lemma 6.2.
(i) We put
o5 = (o) + oy +...) (mod 7?)
P35 = 7(Bra1 + oz +...)  (mod 7?)
where a1, ag, 51, B2 € k. We find that (s:¢:0:0:0) € I is a non-regular point
if and only if the linear form s¢34 — t¢o4 vanishes, or
5182 + (Oél - Bg)St - Ckth = 0.

If p24 = ¢34 = 0 then C is not a curve. If the quadratic form in s and ¢ vanishes
identically then, after subtracting a multiple of the 1st row/column from the 5th
row/column, we may assume a; = as = f; = [ = 0. Since ¢y5 = x5 we may
assume by a substitution for x5 that 45 = x5. Then the transformation

[Diag(m,1,1,1,7 1), 7 ! Diag(1, 1,7, w, 7]
shows that ¢ is not minimal.
(ii) We put
oy = x4 + (121 + @99 +...) (mod 7?)
o5 = m(Biry + Pora +...) (mod 7?)
3y = 7(y1w1 + Yor2 +...)  (mod 7?)
a5 = x4 + (6121 + 0oxy +...) (mod 7?)
We find that (s:¢:0:0:0) € I' is a non-regular point if and only if
7118° 4+ (g — 72 — 01)8%t — (g + By — 8z)st* + Bot® = 0.

Making a substitution for x4 we may assume as = §; = 0. Subtracting a multiple
of the 1st row/column from the 5th row/column we may assume a; = do = 0.
If the cubic form in s and ¢ vanishes identically then 8; = [y = 71 = 7 = 0.
Since ¢45 = x5 we may assume by a substitution for x5 that ®45 = x5. Then the
transformation

[Diag(m, 1, 1,7~ ", 77 "), 7! Diag(1, 1,7, 7%, 7°)]
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shows that ® is not minimal.
(iii) We put
Pys = m(anw + ory +...)  (mod 7).
We find that (s:¢:0:0:0) € I' is a non-regular point if and only if s¢34 — thog
and s¢35 — toos are linearly dependent, or ays + ast = 0. If the first of these
possibilities is true for all s and ¢, then Cy is not a curve. If a; = ay = 0 then the
transformation
Diag(L, 1,1,7', 7), Diag(L, 1, m, 7, )]
shows that ® is not minimal.
(iv) We put
35 = m(a1m1 + apry + s +...)  (mod 77)
(1345 = W(ﬁll'l + 62%2 -+ 531’3 + .. ) (mod 72)
We find that (s%: st :t*:0:0) € ' is a non-regular point if and only if
ﬂ183 + (ﬂg — 011)82t + (53 — O[Q)StQ — Ofgts =0.

Subtracting a multiple of the first two rows/columns from the last row/column we
may assume a3 = g = 0. If the cubic form in s and ¢ vanishes identically then
a; = f; =0 for ¢ = 1,2,3. Then the transformation

[Diag(m, 7, 1,1, 7~ "), 7~ Diag(1,1, 1,7, )]

shows that ® is not minimal. O

Theorem 6.4. If ® € X5(Ok) is minimal then Co is a normal fibred surface.

PRrROOF: In Section 5 we showed that Cey C IP’% is the closure of Cs and hence
a fibred surface. The conditions for normality in Lemma 4.2 were checked in

Lemmas 6.1 and 6.3. O

7. MINIMAL PFAFFIAN MODELS ARE GEOMETRICALLY MINIMAL

In this section we show that if ® € X5(Ok) is minimal and Cs(K) # 0 then
Cp C P} is geometrically minimal. This extends [17, Theorem 4.1] from genus
one curves of degrees 2, 3 and 4, to degree 5, and could also be used to prove
results analogous to those in [16].

Definition 7.1. Let E/K be an elliptic curve with minimal Weierstrass equation
y* + a1y + azy = 7° + asx® + aux + ag. Then
dx

Wwp = ——
2y+a1x+a3

S HO(KJ QlE‘/K)
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is called a Néron differential on E. It is uniquely determined up to multiplication
by elements of OF.

Let C be a fibred surface over S = Spec Ok. If C /S is a local complete inter-
section then we can define the canonical sheaf we /g as in [15, Definition 6.4.7].
This is an invertible sheaf on C. If C has generic fibre E then H°(C,we /s) is a
sub-Ox-module of the 1-dimensional K-vector space H(E, Q).

The following theorem and its proof is closely related to [15, Theorem 9.4.35].
See also [7].

Theorem 7.2. Let E/K be an elliptic curve, with minimal proper regular model
E/S. Let C/S be a normal fibred surface with generic fibre isomorphic to E,
and mimimal desingularisation C. Suppose C is a local complete intersection and
we s = wOe¢ for some w € HO(E, Q}E/K) The following are equivalent.

(i) We have we /s = wgOc¢ where wg is a Néron differential on E.

(ii) The morphism C — € (which exists by definition of €) is an isomorphism.
ProoF: (i) = (ii). Let f : C — & be the morphism in (ii) and g : C — C
the minimal desingularisation. We are assuming that we /s = wgOc, whereas [15,
Theorem 9.4.35] gives that we;s = wpOg. Therefore

(5) [fweys 2 wpOs = g wes.

Let I be an exceptional divisor (or (—1)-curve) on C. Since the desingularisation
g : C — C is minimal, it does not contract I'. Therefore

wa/s\r = g*we/sIr
By [15, Corollary 9.3.27] we know that we/g is globally free. Therefore each of
the sheaves in (5) is globally free. Writing K/ for a canonical divisor on C/S we
have
Kgg-T' = deg(wﬁ/s’F) = deg(g"we/slr) = 0.

On the other hand [15, Proposition 9.3.10] shows that Kz -I' < 0. This is a
contradiction. We deduce that C has no exceptional divisors. It follows by the
factorisation theorem [15, Theorem 9.2.2] that f : C — & is an isomorphism.

(ii) = (i). Let F be the exceptional locus of the minimal desingularisation g :
C — C. Then

6)  H(C. Weg) C HO(C\ F, wgs) = H(C\g(F),we ss) = H(C,we s)

where the last equality uses that C is normal: see [15, Lemma 9.2.17]. We are
assuming that C = &€ and we/s = wOc. Therefore HO(C,wg/S) = wpOg and
H°(C,we s) = wOk. The inclusion (6) shows that wg = hw for some h € Ok.
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Since the sheaves wg/ g and g*wc s are identical on C\ F, the divisor div(h) on

C = £ is a sum of irreducible components of F. On the other hand, div(h) is a
multiple of the special fibre. Since not all of the irreducible components of the
special fibre are contracted, it follows that h € Oj; as required. O

Remark 7.3. Following the proof of [15, Theorem 9.4.35(a)], we have the following
alternative proof of “(ii) = (i)”. Let I'y,...,T', be the irreducible components of
the special fibre that are contracted by ¢ : C — C. By [15, Theorem 9.1.27]
the intersection matrix (I'; - I';) is negative definite. Since C =~ € is minimal,

an argument using Castelnuovo’s criterion and the adjunction formula (see [15,
Example 9.4.19] or [18, Chapter IV, Theorem 8.1(b)]) shows that Kg/5 - I'i = 0

for all ¢. Therefore the contraction morphism g : C — C satisfies the hypotheses
of [15, Corollary 9.4.18]. As a consequence gug s = We /s and g*we /g = We/s-
Therefore HO(C,WC/S) = Ho(év, wCT/S) = H0<g,w5/s) = (,UEOK.

Theorem 7.4. Let ® € X5(Ok) be non-singular with reduction ¢ € X5(k). Sup-
pose C = Cq is a fibred surface, and the entries of ¢ span (x1,...,x5). Then C is
a local complete intersection with we /s = weOc where we is defined by (3).

PROOF: Exactly as in the proof of Lemma 6.1, the affine piece CN{Py5 # 0}
is defined by p; = ps = p3 = 0. The restriction of the canonical sheaf to this
affine piece is as claimed by [15, Corollary 6.4.14] and the next lemma. Since the
definition (3) of we is invariant under all even permutations of the subscripts, and
the affine pieces {®;; # 0} cover P4, the theorem follows. O

Lemma 7.5. Let R be any ring. Let ¢ € X5(R) with Pf(¢) = (p1,...,ps). Let I
be the ideal in R[xq,...,xs5] generated by py,...,ps. Then

5
- Oropaps) _ N~ 0P 09 Opi (g gy

3(x1, T, .%'3) - =1 8%1 3x2 8x3
Proor: We have Z?Z1Pi¢ij =0 for all 1 < 7 < 5. Differentiating with respect to
xk, and working mod [, this gives

> Op;
i=1 Oy,

(8) ¢i; = 0.
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Using first that ¢ is alternating, and then (8), we compute
apz 8¢U ap] 8]31 a¢z4 a¢z5 apj
P15 Z ]z:: 0x; 0xy 013 lz: Z 0z \ Oxa P55 0xs & 03

_ Z apz a¢z4¢ a¢25¢ ap]
i (91‘1 a$2 s 8I .

Subtracting the same identity with ‘9 and 57~ sw1tched gives

(9) %ZZEM’” p“pf Z o (0w + o) 5 P O 1)

1 O O(z1, 3)

where we write 3, for the sum over all 1 <i < j <3. Again using (8),

Op; , Op; Ip; 819] B 8p1 Opj
Z (933'1 ¢Z] (933'3 ZZ (933'1 ¢” yra gb” 8333.

i,j=4

Therefore
(10) At O(pa,ps) _ S 6, O(pi,ps)

O(x1,x3) i<j ' O(x1,x3)
We break up the sum on the right of (7) as

3

a¢zy pZ7p] aﬁbz] pwp] a¢45 8(]747]75)
Z (g T2 Z + -

(9:182 im1 j—t 3@ $1,I3) 8@ (9(x1,:v3)

Then by (9) and (10), the right hand side of (7) is

A(pi, p;)
(1’1,1’3)

Za (6156045 — Guabjs + Gisbya) 57 =5

1<J

Since for 4, j, k an even permutation of 1,2, 3 we have —p = ¢;;045 — @isdj5+PisPja
the result follows. O

Remark 7.6. We keep the notation of the lemma. Differentiating the relation
25:1 ¢i;p; = 0 with respect to x4 and x5 we have

5 5
ooty apy Oij apj _
; Oxy Oxs Z Oxs Oxy ; i Gt ax 8x5
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We multiply by g—fﬁl and sum over i. By (8) and the fact ¢ is alternating, the

second two terms vanish mod I. Therefore
5
Op; (99%' 5]93'

— = I).
8Q34 8%4 83?5 <m0d )

ij=1
This shows that the restriction char K # 2 in [9, Section 5.4] is not needed.

Lemma 7.7. Let ® € X5(K) be non-singular with Ce(K) # (0. Then ® has level 0
if and only if we is a Néron differential on Cp = E.

PRrROOF: Let E/K have minimal Weierstrass equation
y2 + ar1xy + asy = x4 a2;1:2 + asx + ag.
The complete linear system |4.0g| defines a morphism o : E — P3. It is given by
(z,y) — (1:z:y:2%). The image is Cy = {Q; = Q2 = 0} C P? where
Q1= T174 — $§7
Q2 = x§ + a1X9xT3 + A3T1L3 — Loy — agxg — Q41T — aﬁxf,

and an invariant differential w, on Cj is given by

2
_xid(my/71)
47 901 9Q: _ 9Q1 Qs
Oxyg Oxs Oxs Oxy

We claim that (i) A(Q1,Q2) = Ag and (ii) wy is a Néron differential on Cy = FE.
Indeed the invariants were scaled in [9] so that (i) is true, whereas for (ii) it is
easy to see that a*w, = dz/(2y + a1 + a3).

Since Cp(K) # () we may identify Cy = E. The hyperplane section is linearly
equivalent to 4.0 + P for some P € E(K). Let ¥ € X5(K) be the Pfaffian model
constructed from the quadric intersection (@1, Q2) by “unprojection centred at P”
as described in [11, Lemma 2.3]. By [11, Lemma 2.4] and its proof, we have (i)
A(¥) = Ag and (ii) wy is a Néron differential on Cy = E.

The curves Cg and Cy differ by a change of co-ordinates defined over K. So by
[10, Theorem 4.1(ii)], the Pfaffian models ® and ¥ are K-equivalent, say ® = g¥
for some g € GL5(K) x GL5(K). Since A is an invariant of weight 12 we have
A(P) = (det g)'2A(W). Let v : Cp — Cy be the isomorphism described by g. By
[9, Proposition 5.19] we have v*wy = (det g)ws. Therefore both the conditions in
the statement of the lemma are equivalent to v(det g) = 0. O

Remark 7.8. If char K # 2,3 then [9, Proposition 5.23] shows that (Cg,ws) and
(E,w) are isomorphic over K, where E is the elliptic curve (2) and w = dx/(2y +
a1 (®)z + az(P)). This gives an alternative proof of Lemma 7.7. The isomorphism
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Cs = F might not be defined over K, but differs from an isomorphism that is
defined over K by an automorphism of the curve E. The latter might rescale w
by a root of unity, but won’t change whether it is a Néron differential.

Theorem 7.9. Let ® € X5(Ok) be non-singular with Ce(K) # 0. Suppose Cg is
a fibred surface, and the entries of ¢ span (x1,...,x5). Then ® is minimal if and
only if Cy is geometrically minimal.

PrROOF: Lemma 5.1 shows that C = Cs is the closure of Cs in P‘é. By either
Definition 4.3 or Theorem 6.4 we may suppose C is normal. Let £ be the Jacobian
of Cp. Since Cy(K) # () we have Cy = E. Theorem 3.1 and Lemma 7.7 show that
® is minimal if and only if we is a Néron differential on Cy = E. The theorem
now follows from Theorems 7.2 and 7.4. O

By Lemma 5.2, Theorem 5.5 and Theorem 7.9 we have

Corollary 7.10. If ® € X;5(Ok) is minimal and Co(K) # 0 then Cy is geomet-
rically minimal.

8. AN ALTERNATIVE PROOF OF THEOREM 1.1

We give a short alternative proof of Theorem 1.1, that avoids using schemes,
except for the definition of a regular point. It would however be rather hard to
motivate this proof without the work in earlier sections.

By putting the matrices A, B € GL5(K) in Smith normal form (and making
use of Remark 3.3), Theorem 1.1 is equivalent to the following.

Theorem 8.1. Let ®, 9" € X5(Ok) with v(A(P)) <1 and v(A(P")) < 1. If
¢’ = [Diag(7~ "™, ..., 7 "), Diag(7®, ..., 7%)|®
for some ry,...,15,81,...,85 € Z then s1 = s9 = ... = s5.

For the proof we may assume the residue field & is algebraically closed. As before
we write ¢ € X5(k) for the reduction of ® mod 7. For the purposes of this section, a
k-point P on Cy is regular if it satisfies the conditions in Lemma 3.5, and otherwise
non-regular. Since dim Ce = 2 this agrees with the standard terminology, but we
don’t need to know this.

Lemma 8.2. If v(A(P)) <1 then Cy4 contains no lines or conics.
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PRrROOF: If Cy4 contains a line or conic then, arguing as in the proof of Lemma 6.2,
we may assume

0 1 xy * * 0 * * * %

0 * *x x 0 % %

¢ = 0 * = or 0 « 0
_ 0 x — 0 0

0 0

where the entries * on the left are linear forms in x3, x4, x5, and on the right are
linear forms in x1,...,x5. In the first case we apply the transformation

[Diag(m,1,1,1,1),7 ! Diag(1, 1,7, 7, 7)].

Then ¢4 = ¢15 = 0 and an Og-equivalence brings us to the second case. In the
second case we may assume ¢34 € (x1). Applying the transformation

[Diag(m, 7, 1,1,1), 7! Diag(w, 1,1,1,1)]

gives a model with a non-regular point at (1 : 0 :...:0). Since all transforma-
tions we have used preserve (the valuation of) the discriminant, we are done by
Lemma 3.6. O

Lemma 8.3. Let ©, 9" € X5(Ok) be Pfaffian models satisfying
¢’ = [Diag(r"™,..., 7 "), Diag(7*',...,7%)|®

for somer; < ... <r5ands; <...< s;.

(i) If Cy4 contains no lines then r1 + 1y < s9, ro + 135 < 59 and ro +ry < 3.
(ii) If Cy contains no lines or conics then ri+rs < s3, ro+r5 < Sq, r3+74 < Sy
and r3 + r5 < Ss.

PROOF: (i) If 1 +74 > s9 then all entries of ¢ outside the top left 3 x 3 submatrix
are linear forms in x3,x4,25. So Cy contains the line {z3 = x4 = x5 = 0}. If
T9 + 13 > S then all entries of ¢ outside the first row/column are linear forms in
T3, T4, 5. S0 Cy contains the line {x3 = x4 = x5 = 0}. If o +r4 > s3 then C,
contains the line {¢o3 = x4 = x5 = 0}.

(ii) If ry + 75 > s3, 7o + 15 > S4 or T3 + 15 > S5 then the entries of the last
row/column of ¢ are in (x4, x5), (P15, T5) or (P15, Pas). If r3 + ry > s4 then the
bottom right 3 x 3 submatrix of ¢ has entries in (z5). So in all these cases ¢ is
k-equivalent to a model with ¢35 = ¢45 = 0. Let ps be the Pfaffian of the top left
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4 x 4 submatrix. Then Cy contains {¢13 = ¢o5 = p5 = 0} which is either a conic

or contains a line. O

Lemma 8.4. Let ® and ' be as in Theorem 8.1, and suppose 0 =r; < ... <rj
and s; < ... < s5. Then the r; and s; are given by

rn Te T3 T4 7“5‘ S1 S92 83 54 S5

0 o 20 3a 404‘§204 3a 4o dba > ba

for some a > 0.

PrROOF: The inequalities in Lemma 8.3 together with the inequalities obtained
when we replace (ry,...,7r5;81,...,85) by (=rs,...,—r;; —Ss5,...,—81) give

Sg=T1+rg=ro9+73 = Ty —T1 =T4—T3
S3=T1+T5 =72+ Ty = T —T1=175—T4

Sy =To+T5="3+7T4 —> '3 —T9 =175 —T4

Therefore rq, ..., r5 are in arithmetic progression. The other statements follow. O

Lemma 8.5. Let &, 9’ € X5(Ok) be Pfaffian models satisfying
¢’ = [Diag(r"™,..., 7 "), Diag(7*',...,7%)|®

for somer; < ...<r5ands; <...<ss.

(i) If ri + 14 > s1 and r4 + 15 > 55 > s then Co has a non-regular point.
(i) If r1 +1r3 > s1 and r3 + 14 > 83 > $1 then Co has a non-reqular point.
(iii) If ro+r5 < s5 and 11 + 13 < 81 < 85 then Ce has a non-reqular point.
(iv) If rg+1r5 < s5 and ro + 13 < s3 < s5 then Co has a non-regular point.

PROOF: (i) Since r; +ry > s; the only entries of ¢ involving z; are in the top left
3 x 3 submatrix. So P = (1:0:...:0) is a point on Cy. Since ry + 15 > s5 we
have ¢45 = 0 and so P is a singular point. Since r4 + r5 > s; + 1 the coefficient of
21 in ®45 vanishes mod 72. Therefore P is a non-regular point.

(ii) Since 1 + r3 > s; the only entries of ¢ involving z; are in the top left 2 x 2
submatrix. So P = (1:0:...:0) is a point on Cy4. Since 73 + 4 > s3 we have
¢34, P35, a5 € (T4, x5) and so P is a singular point. Since r3 + 74 > s; + 1 the
coefficient of x; in each of ®34, P35 and P45 vanishes mod 72. Therefore P is a
non-regular point.

(iii), (iv) These follow from (i) and (ii) by switching the roles of ® and ®'. O
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PROOF OF THEOREM 8.1: We may assume r; < ... < r5 and 1 < ... < s;5.
Replacing r; by r; + A and s; by s; + 2\ still gives the same transformation. So we
may assume r; = 0. Then the r; and s; are as given in Lemma 8.4.

If « =0 then ry = ... = r5 and the conclusion s; = ... = s5 follows from the
fact ® and ®’ are minimal. We assume for a contradiction that o > 1. Since
r1 + 1y = 3a > s; it follows by Lemmas 3.6 and 8.5(i) that ry + r5 < s5. Since
ro + 13 = 3 < s3 it follows by Lemmas 3.6 and 8.5(iv) that r3 + 5 > s5. Putting
these together we have

7’4+7’5§S5§7’3+7’5.

Therefore r3 = r4 and this contradicts our assumption that a > 1. O
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