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ABSTRACT. We extend the method of Cassels for computing the Cassels—Tate
pairing on the 2-Selmer group of an elliptic curve, to the case of 3-Selmer groups.
This requires significant modifications to both the local and global parts of the
calculation. Our method is practical in sufficiently small examples, and can be
used to improve the upper bound for the rank of an elliptic curve obtained by
3-descent.

INTRODUCTION

The determination of the Mordell-Weil group F(K) of an elliptic curve E over
a number field K is usually tackled by means of computing the n-Selmer group
SM(E/K) for some integer n > 2. Since E(K)/nE(K) injects into S™(E/K),
and the latter is finite and effectively computable, this approach gives an upper
bound for the rank of E(K). However, this upper bound will not be sharp if the
Tate-Shafarevich group III(E/K) contains elements of order n.

Let p be a prime. The Kummer exact sequences for multiplication-by-p and
multiplication-by-p? on E fit into a commutative diagram

2

E(K) —— B(K) —= s0)(E/K) —= W(E/K)[p"] — 0
E(lK) ——~ E(K) — 5(p)(£/K) — IH(EgK)[p] —0.
We therefore have inclusions
(1) E(K)/pE(K) C Im(a) C SP(E/K).
Cassels [7] constructed an alternating bilinear pairing
(2) SP(E/K) x SP(E/K) — Q/Z

whose kernel is the image of a. If we compute this pairing, and find it is non-
trivial, then by (1) we get a better upper bound for the rank of E(K) than was
obtained by computing S (E/K). In such cases, we also learn that the p-torsion
of II(F/K) is non-trivial.
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Cassels [8] showed how to compute the pairing (2) in the case p = 2. We
now generalise to the case p = 3. Therefore, as a starting point for our work,
we rely on the algorithms for computing S®(E/K), as described in [34], and for
representing its elements as plane cubics, as described in [11]. Cassels’ method (in
the case p = 2) involves both a local part (computing a certain local pairing), and
a global part (solving conics over the field of definition of a 2-torsion point of E).
Both parts require significant modification when p > 2.

In the case p = 2, the local pairing turns out to be the Hilbert norm residue
symbol. However, since the local pairing is symmetric and the Hilbert norm residue
symbol is skew-symmetric, this cannot be true for p > 2. A further difficulty is
that on passing to a finite extension of local fields, the values of the local pairing
are multiplied by the degree of the field extension. So if [K,(F[p]) : K,] is divisible
by p, then we cannot reduce to the case, treated in [30], where F has all p-torsion
points defined over K. In Section 2, we nonetheless show how to write the local
pairing (for p odd) in terms of Hilbert norm residue symbols, and make this
completely explicit in the case p = 3.

In Section 3, we generalise the global part of Cassels’ method to the case p = 3.
In fact, we solve a more general problem about 3 x 3 x 3 cubes (as studied in [3],
[14], [22], [29]), using the work of Haile [20] and Kuo [26] on the generalisation of
Clifford algebras to cubic forms. Our solution to this more general problem works
by reducing it to that of trivialising a 3 x 3 matrix algebra over a field L. In our
application to computing the Cassels—Tate pairing, L is the field of definition of a
3-torsion point of F.

The problem of trivialising an n x n matrix algebra (that is, given structure
constants for an L-algebra known to be isomorphic to Mat, (L), find such an
isomorphism explicitly) is equivalent in the case n = 2 to solving a conic. For
n > 2, this problem has been studied in [19, Section 5], [11, Paper III, Section 6],
[24], with the result that practical algorithms are available if both n and the
discriminant of the number field L are sufficiently small. However, since for us
L is the field of definition of a 3-torsion point (which typically has degree 8), we
have so far only been able to compute a few small examples.

In Section 4, we illustrate our work by computing the Cassels—Tate pairing
on the 3-Selmer group of a specific elliptic curve £/Q. To make the example
interesting £ was chosen from Cremona’s tables [10] so that it does not admit any
rational 3-isogenies and III(E/Q)[3] # 0. To make the computations practical we
also chose F so that the degree 8 number field L has reasonably small discriminant.
Strictly speaking, we only compute the pairing up to a global choice of sign, but
this does not matter for applications.

Computing the pairing (2) gives the same information (in terms of improving
our upper bound for the rank) as a p*descent. In [8], Cassels claims that his
method (for p = 2) is more efficient than performing a 4-descent, as described
in [27]. Subject to finding a better algorithm for trivialising matrix algebras
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over number fields, our method (for p = 3) should also be more efficient than
performing a 9-descent, as described in [13]. One advantage of computing the
pairing, compared to performing a p?-descent directly, is that fewer class group
calculations are required. Another advantage is that we only need to compute
the pairing on a basis for S®)(E/K), whereas p>-descent must be run on every
element of SP)(E/K).

The pairing (2) is, in fact, induced by a pairing

(,):II(F/K)x II(F/K) — Q/Z

and this is the form in which the Cassels—Tate pairing is usually written. Follow-
ing the terminology in [31], the original definition in [7, Section 3] is called the
“homogeneous space definition” (see also [28, I, Remark 6.11], [16, Section 2.2]),
whereas the variant used in [7, Section 6] is called the “Weil pairing definition”
(see also [28, I, Proposition 6.9], [16, Section 2.2]). Both the method in [8] and
our generalisation use the Weil pairing definition.

In Section 1, we use the description of H*(K, E[p]) in [34] to make the pairing
explicit for p > 2. The formula we give is for (z,y) where z,y € II(F/K) and
py = 0. Since we do not require px = 0, our work might be described (following
[36]) as doing a p™-descent for all n. We take p an odd prime, as the case p = 2 is
already described in [8], [18], [36].

The Weil pairing definition was used in [6], where Cassels computed the pairing
on the 3-isogeny Selmer groups of certain elliptic curves with j-invariant 0. This is
currently being generalised to other isogenies of prime degree by the first author’s
student M. van Beek. The homogeneous space definition has also been used for
explicit computation, most notably in the Magma [5] implementation of the pairing
on S®(E/Q) due to S. Donnelly. It might be interesting to investigate how this
approach generalises to the case p = 3, but we have not done so.

We write H'(K,—) for the Galois cohomology group H'(Gal(K/K),—), and

E|[p] for the kernel of multiplication-by-p on E(K). The completion of a number
field K at a place v is denoted K,. We write My for the set of all places of K.
Since we take p an odd prime, we can ignore the infinite places.

A Magma file containing some of the formulae in Sections 3 and 4 may be found

accompanying the arXiv version of this article.
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1. THE CASSELS—TATE PAIRING

Let K be a field of characteristic 0, and K its algebraic closure. Let E/K be an
elliptic curve and p an odd prime. The p-torsion subgroup E[p] may be regarded as
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a 2-dimensional affine space over F,. We write P(E[p]) for the set of lines passing
through 0, and A for the set of lines not passing through 0. The étale algebra of
X, a finite set with Galois action, is the K-algebra R = Map (X, K) of all Galois
equivariant maps from X to K. It is a product of field extensions of K, one for
each Galois orbit of elements in X. We also write R = R®x K = Map(X, K) for
the K-algebra of all maps from X to K, and let Gal(K/K) act on these maps in
the natural way, that is, by conjugation.
Let L™, L, L' and M be the étale algebras of P(E[p]), Elp] \ {0}, A and

{(T,\) € (E[p]\ {0}) x A: T € A}

These are K-algebras of dimensions p + 1, p? — 1, p* — 1 and p(p* — 1). There
are natural inclusions L™ C L € M and L' C M. We fix v € Z a primitive root
mod p and let o, be the generator of Aut(L/L") induced by multiplication-by-v
on Efp]. The inclusion L C M followed by the norm map Ny is given by

(T'= ar) = (A= [lzex a1)-

Let w : E[p] — p,(L) be the map induced by the Weil pairing. This induces a
group homomorphism

(3) w, : HY(K, E[p]) — L*/(L*)".
Explicitly, if ¢ € H'(K, E[p]) is represented by a cocycle (o +— &,) then by Hilbert’s

theorem 90, there exists v € L~ such that w(&,) = o(7)/y for all o € Gal(K/K).
Then o = AP belongs to L™ and we define w(§) = a« mod (L*)P.

Lemma 1.1. The map w; is injective and has image

a € LX/(LX)p (71/(04) = ?V mod (LX)p

NM/L/(OJ) mod (L/X)p

Proof. Injectivity is proved in [15, Section 3] and [34, Corollary 5.1]. The image
is described in [34, Corollary 5.9 and Proposition 5.10]. O

We now suppose K is a number field. Let C'/K be a principal homogeneous
space under . Then C is a smooth curve of genus one with Jacobian E. We
further suppose that C' is everywhere locally soluble, that is, C'(K,) # 0 for all
places v of K. We write “sum” for the natural isomorphism Pic’(C') = E. We
make frequent use of the fact that a divisor on C'is principal if and only if it has
degree 0 and sum 0.

For each 0 # T € E|p], there is a degree 0 divisor ar on C' with sum(ar) = 7.
Since C' is everywhere locally soluble we can choose the divisors a; so that the
map T — ar is Galois equivariant. The proof of this, as given in [7, Lemma 7.1]
or [36, Lemma 1], uses the local-to-global principle for the Brauer group of K (7).
Since sum(par) = pT = 0, there are rational functions fr € K(C) with div(fr) =
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par. By Hilbert’s theorem 90, we may scale the fr so that f = (T — fr) is
Galois equivariant. Then f is an element of L(C) = L ®x K(C) = Mapy (F[p] \

{0}, K(C)).
The following lemma specifies a scaling of f that is unique up to multiplication
by elements in the image of w;. We abbreviate Ny ),y as N/

Lemma 1.2. Let f € L(C) as above. After multiplying f by a suitable element
of L™, there exist r € L(C) and s € L'(C) such that

(4) Uy(f)/fy :Tp and NM/L’(f) = Sp.
Proof. We choose r € L(C) and s € L'(C) satistying
div(rr) = a,r — var and div(sy) = X g 07

Then (4) holds up to scalars. The construction of s uses the fact that the points
on a line A sum to zero, which in turn depends on the fact p is odd.

To remove the scalars, we use the result of Tate [7, Lemmas 5.1 and 6.1] that,
since C' is everywhere locally soluble, its class in H'(K, E) is divisible by p. If C
and C) correspond to classes z and x; in H'(K, E) with pr; = x then there is a
commutative diagram

Ci——C
E E

where 7 is a morphism defined over K, and the vertical maps are isomorphisms
defined over K. We say that 7 : C; — C'is a p-covering. For b a divisor on £ we
have sum([p]*b) = psum(b). So there exists g € L(C}) with div(gr) = 7*ar. We
now scale f so that m*f = ¢”, and scale r and s so that

[p]

r=o0,(9)/9" and s = Ny (9).

It is then easy to check that (4) holds exactly. d

Let v be a place of K. By the Weil pairing, cup product and the local invariant
map there is a pairing

(5) (s )o: H'(Ky, Elp]) x H'(K,, E[p]) — Q/Z.

It is known (see [28, I, Theorem 3.2],[37]) that ( , ), is symmetric and non-
degenerate, and that the image of F(K,)/pE(K,) is a maximal isotropic subspace.
The last of these facts is referred to as Tate local duality. The local analogue of (3)
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is a map wy, that fits in a commutative diagram

H'(K, E[p]) — L* /(L")

HY(K,, Elp]) —> L /(L)

where L, = L @k K,. We write [ , |, for the pairing induced by ( , ), on the
image of wy,. Since the local invariants of an element in Br(K') sum to zero, we
have the “product formula” !

(6> Z [Oé,ﬂ]v =0

for all o, 5 € Im(wy).

Theorem 1.3. Let x,y € III(F/K) with py = 0. Let C/K be a principal homo-
geneous space under E representing x, and let n € SP)(E/K) be an element that
maps to y. Let f € L(C) be scaled as in Lemma 1.2, and for each place v of K
choose a point P, € C(K,), avoiding the zeros and poles of the rational functions
fr. Then the Cassels—Tate pairing is given by

(7> <Ivy> = Z [f(Pv>7w1<n>]v

veEMK

Proof. We start by checking that (7) is well-defined as a function of = and 7.
Lemmas 1.1 and 1.2 show that f(P,) is in the image of w;,, and so is a valid
argument for [, ],. It is shown in [33, Theorem 2.3] that evaluating f on degree 0
divisors gives an explicit realisation of the connecting map 0, : E(K,)/pE(K,) —
H'(K,, E[p]). So by Tate local duality each of the summands in (7) is independent
of the choice of P, € C'(K,). The pairing (7) is also independent of the choice of
scaling of f as in Lemma 1.2, by the product formula (6).

Next, we check that (7) agrees with one of the standard definitions of the
Cassels—Tate pairing. By the proof of Lemma 1.2, there is a p-covering 7 : ¢} — C
defined over K, and we may scale f so that 7* f = ¢” for some g € L(C}). Since C'is
everywhere locally soluble, for each place v of K there is a p-covering 7, : Cy, — C
defined over K, with C} ,(K,) # 0. Now 7, : C}, — C is the twist of 7 : C; — C
by some &, € H'(K,, E[p]). The “Weil pairing definition” of the Cassels-Tate
pairing (see [7, Section 6], [16, Section 2.2] or [28, I, Proposition 6.9]) says that

(8> <$,y> = Z (évvresvn)v'

vEMK

IThis is analogous to the product formula for the Hilbert norm residue symbol.
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Let P, € m,(Cy4(K,)). Since C4,(K,) is infinite we may assume that P, is not
a zero or pole of f. By Lemma 1.4 applied over K, we have
wia(6) = f(P) mod (L),
It follows that the pairings (7) and (8) are the same. O

Lemma 1.4. Let C/K and f € L(C)* be as before. Let m : C; — C be a p-
covering, and my : Cy — C its twist by € € HY (K, E[p]). Suppose that for i = 1,2
we have 7ff = a;g? for some a; € L™ and g; € L(C;). Then wi(§) = as/aq
mod (L*)P.

Proof. The proof is closely related to that of [33, Theorem 2.3]. There is an
isomorphism v defined over K making the following diagram commute.

02&)0
3
01L>C

Then ¢ € H'(K, E[p]) is represented by a cocycle (o +— &,) where a(¢0)y" is
translation by & € E[p]. We have 1*g; = ~go for some v € L. By definition of
the Weil pairing

w(&)gr = (o)1) g1 = ((7)/7)g1-
It follows that w(&,) = o(v)/~ and so wy(§) = = ay/a; mod (L*)P. O

The formula (7) is in fact a finite sum. This may be seen by Tate local duality,
and the following lemma. We write O, C L, for the product of valuation rings of
the constituent fields, and [, for the product of residue fields.

Lemma 1.5. Let C/K and f € L(C)* be as in Theorem 1.3.
(i) If v1poo is a prime of good reduction for E then
Im(wy, 0 0,) = Im(wy,) N O /(OF)P.

(ii) If v 1 poo is a prime of good reduction for C, and f reduces mod v to
fel,(C)* then

f(B) € Tm(w ) N OF/(OF)
for all P, € C(K,) avoiding the zeros and poles of the fr.

Proof. (i) It is well known that Im(d,) is the unramified subgroup of H!(K,, E[p]).
See for example [34, Proposition 3.2], where this is proved under slightly weaker
assumptions on v. We then use that O /(O))P is the kernel of the natural map

(L @k K,)*/{pth powers} — (L @ K.*)*/{pth powers}.



8 TOM FISHER AND RACHEL NEWTON

(ii) By (i) and the proof of Theorem 1.3 it suffices to prove this for just one choice
of P,. If the residue field k, of K, is sufficiently large then there exists P,cC (ky)
avoiding the zeros and poles of the fT We then use Hensel’s lemma to lift ﬁv to
P, € C(K,), and see that f(FP,) is a unit. If k, is too small then we rectify this
by making an unramified extension. O

We would like to use Theorem 1.3 to compute the Cassels—Tate pairing. There
are essentially two problems.

e Computing the local pairing [, |,. This is the subject of Section 2.
e Computing the rational functions fr. In Section 3 we describe a method
for doing this in the case where p = 3 and C' is a plane cubic.

In the case p = 2, the pairing [ , |, can be written as a product of Hilbert
norm residue symbols. This is used implicitly in Cassels’ paper [8], and a detailed
proof is given in [18]. Our generalisation to the case p = 3 is necessarily more
complicated since [, |, is symmetric, whereas the Hilbert norm residue symbol is
skew-symmetric.

Cassels” method for computing the fr requires us to solve conics over the field of
definition of a 2-torsion point on E. The conics arise by a geometric construction
that seems very special to the case p = 2. Nonetheless, we have found a practical
method for reducing the problem in the case p = 3 to that of “trivialising a matrix
algebra” over the field of definition of a 3-torsion point on E.

2. COMPUTING THE LOCAL PAIRING

We keep the notation of Section 1, up to and including Lemma 1.1, but now

take K a p-adic field. In this section, we compute the local pairing [, |k on the
image of wy. Since [, |k is symmetric, and p is odd, it is equivalent to compute
the quadratic form ¢y : Im(wi) — $Z/7Z satisfying

(9) [, Bk = ¢r(aB) — ox(a) — ox(B)

for all o, 8 € Im(wy).

We fix ¢, € K a primitive pth root of unity.

Let Ty,...,T,, € E[p] \ {0} be representatives for the Gal(K/K)-orbits. Then
L=1Ly%...x Ly where L; = K(T;) C K. We write { , }; for the Hilbert norm
residue symbol on L;((,)*/(L;(¢,)*)P. This takes values in ji,.

Let ¢ : L' @Kk K((p) =2 L @k K((,) be the isomorphism induced by the bijection
Elp]\ {0} = A
T— {Se€Ep:e,(ST)=_}

This depends on the choice of (.
Let Indg, : pp = %Z/Z be the isomorphism that maps ¢, — %.

(10)



COMPUTING THE CASSELS-TATE PAIRING 9

Theorem 2.1. Assume p is an odd prime. Let o € L represent an element in the
image of wy : HY (K, E[p]) — L*/(L*)P. Then we may associate to o an element
o/ € L' such that for each 1 < j <m,

Inde, {a(T5), () (T3)};  if o()(T5) # O,

L; K =
1L (G) : Klpr(e) 0 otherwise.

If p = 3 then we may take
o = Tryyp(a) — 3Nagp()'?
where the cube root is chosen as specified in Proposition 2.16(1).

Remark 2.2. Theorem 2.1 can be used to compute px(«) in all cases, since the
degree [L;((,) : K] is coprime to p for at least one j.

The proof of Theorem 2.1 uses several constructions from [11], the most impor-
tant of which is described in Proposition 2.7 below.

Following [11], let R = Mapy(E[p|, K) be the étale algebra of E[p|, and let

R = Map(E[]p],K) = R®x K. ~Writing Efp] = {0} U (E[p] \ {0}) there are
decompositions R = K x L and R = K x L. The Weil pairing induces a map

w : Ep] — pp(R) given by S +— (T +— ¢,(S,T)). There is then an exact sequence
0—E[p] - R -% R —0
where the map
8: R — (Rowx R)* = Map(E[p] x E[p], K )
is defined by 98(S,T) = B(S)B(T)/B(S + T) for all S,T € E[p]. Taking Galois
cohomology gives an injective group homomorphism

wy : HY(K, Elp]) — (R @x R)*/OR".

Let v € L™ be as described in the definition of w; (see Section 1). We extend

v to an element of R by setting v(0) = 1. Then p = 8y € (R ®x R)* and
wy(€) = p mod OR*. It is convenient to summarise this situation as follows.

Definition 2.3. Let £ € H'(K, E[p]). We call « € L*, p € (R®x R)* compatible
representatives for wy (€) and wy(€) if there exist a cocycle (o — &,) € Z1 (K, E[p])
representing £ and v € R” such that all of the following conditions are satisfied.
(i) For all 0 € Gk and all T' € E|p|, we have e,(¢,,T) = (ov/7)(T);
(ii) v(0) =1 and for all T' € E[p] \ {0}, v(T)? = «(T);
(iii) p = 0.
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Definition 2.4. Let p represent an element in the image of wy. Following [11], we
define a new multiplication *, on the K-vector space R as follows. For all f,g € R
and for all T' € Elp],

(f *p 9)(T) = Z 6;10/2(T1>T2)P(T1,T2)f(T1)9(T2)

T +To=T

where e;,/ Ty, Ty) € fp is the square root of the Weil pairing. For each T € E[p],
let 67 € R be the indicator function

1 if S=T,

or(S) = .
0 if S#T.

The indicator function dy is the identity for the multiplication *,. For all S,T" &
El[p], we have
65 *p (ST = 6119/2(5’ T)p(S7 T)(SSJrT
and therefore
(11) 55 *p 5T = €p(S, T)(ST *p 55

since p is symmetric and e, is skew-symmetric.

Lemma 2.5. Let £ € H'Y(K, Ep]) and let a € L*, p € (R ®x R)* be compatible
representatives for wy(€) and wy(&) respectively. Then for all T € E[p] \ {0}, we
have

oy = §T s, O %, - -+ %, 07 = a(T")dp.

J/

TV
p times

Therefore, o7 is invertible with respect to the multiplication *,.

Proof. Let ~v € R” be as in Definition 2.3. Then

pnl pnl V(T (T)
L T:;’J MaD i:1,o( ) oG+ nn)™
p times
~(T)P a(T)
Y(pT) " 4(0) e
Since o € L*, we have o(T) € K and therefore d7 is invertible. g

Definition 2.6. Denote by A, the algebra which is the K-vector space R =

Mapg (E|p], K) equipped with the new multiplication x,.

Proposition 2.7. Let ¢ € H' (K, E[p]) and choose p € (R ® R)* such that
wy (&) = p mod OR*. Then A, is a central simple algebra of dimension p* over

K and pg(wi(§)) = invg(A,).
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Proof. Let Obg : H'(K, E[p]) — Br(K) be the period-index obstruction map, as
defined in [11], [30]. In [38], it is shown that the pairing

H'(K, E[p]) x H'(K, E[p]) — Br(K)
defined by cup-product and the Weil pairing, is also given by

(§,m) — Obg(€ +n) — Obg(§) — Obk(n).

Comparing with (9), we have px (w(€)) = invg (Obg(&)).

In [11, Section 4.3], it is shown that Obg () is represented by a certain central
simple algebra of dimension p* over K. Then Lemmas 4.5, 3.10 and 3.11 of [11]
show that this algebra is A,. O

We will make use of the following lemma in our study of the central simple
algebra A,.

Lemma 2.8. Suppose that A, B € GL,,(K) satisfy A” = B" = I,, and AB = (, BA
for some primitive nth root of unity ¢, € K.

(i) If C € Mat,(K) satisfies CB = (,BC, then C™ is a scalar matriz.
(ii) The matrices A"B® for 0 < r,s < n —1 form a basis for Mat,(K) as a
K -vector space.

Proof. (i) Since B" = I,,, all eigenvalues of B are nth roots of unity. If v is an
eigenvector with eigenvalue A, then A™"v is an eigenvector with eigenvalue (" \.
So B has n distinct eigenvalues, namely the nth roots of unity. Changing basis,
we may assume that B = (b;;) is a diagonal matrix with b; = /. If C' € Mat,,(K)
satisfies CB = (,BC, then C' is of the form (c;;) where ¢;; = 0 unless j =i+ 1
(mod n). Therefore, C" = c12¢23 . . . Cn—1)nCn1ly.

(ii) Both A and B act by conjugation on Mat, (K ). The matrix A"B*® is an
eigenvector with eigenvalue (* for conjugation by A, and also an eigenvector with
eigenvalue (7" for conjugation by B. Eigenvectors with distinct eigenvalues are
linearly independent. Thus, the matrices A"B*® for 0 < r,s <n — 1 are a K-basis
for Mat,,(K). O

Proposition 2.9. Let p € (R ®@k R)* represent an element in the image of ws.
For each N € A, let 6y = Y4\ 05 be the indicator function of X. Then
8 =y %, %, 05 € Kdo.
p times
Proof. We have 6, € A,® K, which is the K-vector space Map(E[p], K) equipped

with the multiplication *,. Proposition 2.7 tells us that A, is a central simple
algebra of dimension p? over K, so A, ® K= Mat,, (K). Under this isomorphism,
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the element ¢y is identified with the identity matrix [,. By (10), there exists
T € Elp] \ {0} such that A = {S € Elp| : ,(5,T) = (,}. Let S € A\. Then

equation (11) gives
(55 *p 5T = €p(S, T)éT >l<p (SS = Cp(ST *p (55’,

and therefore 0y x, 07 = (,07 *, 05. By Lemma 2.5, 05 and dr are invertible. Now
apply the first part of Lemma 2.8, with A and B scalar multiples of g and dr,
and C = 4y to see that &} € Kdy. O

By Proposition 2.9, there exists o’ € L' defined by
5§ = (5>\ *p o Xy 5>\ = O/(/\)(So.

We prove Theorem 2.1 for this choice of o’. The key step is the calculation of the
local invariant of the central simple algebra A,. This is achieved by writing A, as
a cyclic algebra (after a field extension). To this end, we recall the definition of a
cyclic algebra and its relation to the Hilbert norm residue symbol, as defined in
[35].

Definition 2.10. Let ¢/k be a cyclic field extension of degree n. Let o be a
generator of Gal(¢/k) and let b € k*. Let x : Gy — Gal({/k) — LZ/Z be
the continuous character of the absolute Galois group of k£ which factors through
Gal(¢/k) and sends o to = (mod Z). Then the cyclic algebra (x,b) is defined as

n—1
(x,b) = {Z av' | a; € €}
i=0

with multiplication v = b and vav~! = o(a) for all a € ¢. The algebra (y,b) is a

central simple algebra over k of dimension n?.

The following definition of the Hilbert norm residue symbol is given in [35,
Ch. X1V, §2].

Definition 2.11. Suppose that K contains a primitive nth root of unity (,. Let
a,b € K* and let a € K satisfy o® = a. Define a continuous character x, : Gx —
LZJZ by X4 : (0 — () — i/n (mod Z). Then the Hilbert norm residue symbol
{a,b} is defined as {a, b}y = ¢p ™),

Thus, if we can express the central simple algebra A, as a cyclic algebra then, by
Proposition 2.7, we will have reduced the problem of computing ¢ to a Hilbert
symbol computation. There are well-known explicit formulae for the Hilbert norm
residue symbol for extensions of prime degree. See, for example, [35].

Lemma 2.12. Let F/K be a finite extension of fields. Let o € L* represent an
element in the image of wy. Then op(a) = [F : Klpk(a).



COMPUTING THE CASSELS-TATE PAIRING 13

Proof. Write Ly = L@y F = Mapp(E[p]\{0}, K). The natural inclusion L — L
gives rise to a natural map L*/(L*)? — L%/(Ly)? which makes the following
diagram commute.

Obgk invg

L* (¥ <= H'(K, E[p]) —> Br(K) == Q/Z
(12) i resl resi lX[F:K]
(

L3 /(L5 < H'(F, E[p]) —% Br(F) —% Q/Z

So if ¢ € HY(K, E[p]), and o € L* represents w;(£), then the same « also repre-
sents wy (res ). Thus,

vr(a) =inve(Obp(resf)) = [F : K]invg(Obg(&)) = [F: Kok ().
]

Lemma 2.12 shows that, in proving the first part of Theorem 2.1, we are free to
replace K by L;((,). So it suffices to prove the following special case.

Theorem 2.13. Suppose that T' € E[p|\ {0} is defined over K and that ¢, € K.
Let ¢ € HY(K, E[p]) and let « € L™, p € (RQx R)* be compatible representatives
forwy (&) and wy (&) respectively. Write { , }x for the Hilbert norm residue symbol
on K> /(K*)P taking values in p,. Define o/ € L' by 05 = 6y %, --- %, 0, = a'(\)dg
for all x € A. Then —

p times

Inde, {a(T), (' NT)}k  if (') (T) # 0,

px(a) =
0 otherwise.

Proof. Proposition 2.7 states that A, is a central simple algebra of dimension
p? over K, and that pr(a) = invg(A,). The Artin-Wedderburn Theorem tells
us that either A, is a division ring or A, = Mat,(K) has local invariant zero.
The multiplication on A, is understood to be that given by *, and henceforth
we omit *, from the notation. Let ¢ = {S € E[p| : €,(5,T) = ¢,} € A and
recall that 6, = ) ., ds is the indicator function of ¢. By definition of ¢, we have
() (T) = o/(f). The element o’ € L' is defined by 05 = o/(A)dy for all A € A.
So dy is invertible if and only if «(/)(T) = o/(¢) # 0. If §, is not invertible,
then A, is not a division ring and therefore pg (o) = invg(A,) = 0. From now
on, we will assume that &, is invertible. Applying (11) to each S € ¢, we see
that 0,0r = (,0rd,. Lemma 2.5 shows that §7. = «(7T)dy and consequently or
is invertible. The second part of Lemma 2.8 implies that the elements 6,07 for
0 <r,s < p-—1 are linearly independent over K and therefore form a K-basis

for A,.
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First, suppose that «(T") ¢ (K*)P. In this case, dr generates a degree P Cyclic
extension isomorphic to K({/a(T))/K inside A,. Define x = xar) : Gx — Z/Z

as in Definition 2.11 and observe that A, = (X, "0) = (x, L« )(T)) is a cychc
algebra with local invariant equal to Ind¢, {a(T"), (a/)(T) } k-

Now suppose, on the contrary, that «(7) € (K*)P. In this case, the Hilbert
symbol {a(T),(o/)(T)}k is trivial and also é7 — ¢/« (T")dy is a zero divisor in A,
whereby px (o) =invg(A4,) = 0. O

In order to complete the proof of Theorem 2.1, it remains to characterise o’ in
the special case p = 3.

Proposition 2.14. Let £ € H'(K,E[3]) and let o € L*, p € (R ®x R)* be
compatible representatives for wi(£) and wy () respectively. If A = {S1, S, S3} € A
then 03 = o/ (\)dy where

a'(A) = a(S1) + a(S2) + a(S3) — 3p(St, S2)p(Ss, —S3).
Proof. Since 63 € Kdy, only the terms 05,05,05, where S; + S5 + S, = 0 make a
contribution. Since the points on a line sum to zero, we have S; + Sy + S35 = 0
and therefore,

B o= (D 6" =0+ > 505,05,

Se Se {i,4,k}={1,2,3}

= ) 05+ (05,05, + 05,05,)0-5,-s,

Sex 1<j

= Yo+ D (5085 + e/*(55,80)) p(Si 5))s.45,0 5,

Sel 1<j

Since A does not pass through zero, eé/ 2(52-, S;) is a primitive cube root of unity
and, consequently, eé 2(SZ,S )+ eém(Sj, S;) = —1. Lemma 2.5 shows that §2 =
a(S)dp for all S € \. Therefore, 03 = o/(\)dy where

o/(\) =D a(S) =Y p(Si, S)p(Si + S5, —Si = S)).
Sex i<j
Let v € R” be as in Definition 2.3. For i < 7, we expand
p(Sis Sj)p(Si + 85, =Si = 85) = A(Sv(S)V(Si + 85) 7 (Si + S)v(=Si = S;)v(0) !
= 7(8i)v(S;)v(Sk)
where {1, 5, k} = {1,2,3}. Therefore,

() = Da(s)-3][(8)

SeEA SeEN
= Oé(Sl) + C((SQ) + 06(53) — 3p(51, SQ)ﬂ(Sg, —Sg)
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Corollary 2.15. In the case p = 3, Theorem 2.1 holds with o/ = Tryp(a) —
3Nz ()2 for some choice of cube root.

Proof. With notation as in the previous proof we have

> a(S) =Ty (@)(N) and 79 =[] a(S) = Nayyr(@)(N).

Sex Se Sel
U

If the only element z € L' satisfying 2® = 1 is the element 1 itself, then Corol-
lary 2.15 defines o' uniquely in the case p = 3. However, if L’ contains a non-trivial
cube root of unity, then we must do more to pin down the correct choice of cube
root of Nyzp ().

Proposition 2.16. Let £ € H'(K, E[3]), and « € L* a representative for wy(§).

(i) There exist r € Lt and s € L' such that Npjp+(o) = 1%, Nyyp(a) = 5%,
aNptg(r) = rNuyyr(s) and Npjx (o) = Npk(s).

(ii) If r and s are as in (i) then there exists p € (R @k R)*, a representative

for wy(&) compatible with «, such that for all A = {S1, S, 53} € A we have

s(A) = p(S1, 52)p(Ss, —55).

Proof. (i) Let p € (R ®k R)* be a representative for ws(£) compatible with «,
and let v € R” be as in Definition 2.3.

We put 7(£T) = y(T)y(=T) and s(\) = [[ ¢, 7(T). It is easy to check that r
and s are Galois equivariant, and so belong to Lt and L’. We compute
Nijp+(a)(£7) = a(T)a(=T) = y(T)*1(-T)* = r(£T)’,

Nagjp (@) (A) = [Trer (T) = [Trex v(T)° = s(A)?,
a(T)Np+ /i (r) = W) o ppepm V(P) = r(£T) Tzer s(N) = 7(£T) Nagyn (s)(T),

Ni/x(a) = HO;éPeE[?)] V(P)? = [Lea s(A) = Ny (s).

(ii) If r and s are chosen as in the proof of (i), then
(13) S(N) = (S 52)p(Ss. —55).
for all A = {S1,52,53} € A. We must show that this still holds, for some p

compatible with a, whenever r and s satisfy the conditions in (i).

Let A = P(E[3]) U A be the set of all lines in E[3]. We write Map(E[3], 115/ 113
for the quotient of Map(E|[3], u3) by the constant maps. We claim there is an
exact sequence

Map(E|[3], u3) . Map(K 1ig) — Map(E([3], p13) %

14
( ) M3 M3

M3
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where the first map is 6 +— (A — [];, (7)) and second map is
¢ — (T = HTGAGT\ ¢(A)a HAeA ¢(>‘))

The exactness is checked by linear algebra over Fs.

If we change our choices of r and s in (i), then they change by an element
¢ € Map(A, u3). If both choices of r and s satisfy aNp+i(r) = rNayr(s), then
¢ has the property that [],.,.z #(A) is independent of 7" € E[3]. If both choices
of s satisfy Ny k(o) = Npyk(s), then ¢ has the property that [[,., ¢#(A) = 1.
So, by the exact sequence (14), there exists § € Map(E|[3], u3) with 6(0) = 1 and

H(A) = [[1, 0(T) for all X € A. It is easy to write the map
00 : E[3] x E[3] = us; (S,T)—0(5)0(T)/0(S+T)

in terms of ¢. Hence, if ¢ is Galois equivariant then so is 06.

Since R and L are the étale algebras of F[3] and E[3]\ {0}, we have R = K X L,
and there is a natural inclusion L* C R*. We may then view wy, as defined in (3),
as a map w; : H'(K, E[3]) — R*/(R*)3. Tt fits in the exact sequence

0—B(K)[3] — pa(R) ~ (0pss(R) —H' (K, E[3]) = R*/(R")’
Lemma 1.1 states that w; is injective. This means that (Jus(R))“* = d(us(R)).

Therefore, multiplying 6 € us(R) by w(T) for some T € E[3], we may assume that
0 € ps(R). In other words, @ itself and not just 96 is Galois equivariant. Then,
replacing v and p by 70 and pdf, we see that the conditions of Definition 2.3 are

still satisfied, but now (13) holds for the new s. O

Corollary 2.17. In the case p = 3, let r and s be as described in Proposition 2.16.
Then Theorem 2.1 holds with o/ = Tryz (o) — 3s.

Proof. Let p € (R ®k R)* be as described in part (ii) of Proposition 2.16.
Then for all A = {51,52,53} € A, we have s(\) = p(S1, 52)p(S3,—S3). Using
this p in Proposition 2.14 we get o/(\) = 327, a(S;) — 3p(S1, S2)p(Ss, —S3) =
Trap () (X) = 3s(N). O

Remark 2.18. In the case where [K(E[3]) : K] is coprime to 3, Lemma 2.12 allows
us to reduce to the case where all the 3-torsion is defined over K. If S, T" € E|[3] are
a basis such that e3(S,T") = (3, then we can choose 7 in Definition 2.3 such that for
0<a,b<2 v(aS+bT) = v(S)*y(T). Consequently, we obtain +(a/)(T) = a(S)+
o(S+T)+a(S—T)—37(S)y(S+T)3(S—T) = a(S) Ny ryyac(1-+7(T) +(T)2).
Thus, the relevant Hilbert norm residue symbol is {a (7)), a(S)} and, for n = 3,
we recover the formula given in [30] for the period-index obstruction with full level
n-structure.
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3. GLOBAL COMPUTATIONS

In this section, C' C P? will be a smooth plane cubic defined over a number
field K. We suppose that C' is everywhere locally soluble. We write “sum” for
the isomorphism Pic’(C') = E, where E is the Jacobian of C. The hyperplane
section of C' (i.e. intersection of C' with a line) is a degree 3 effective K-rational
divisor H on C, defined up to linear equivalence. If H' is another degree 3 effective
K-rational divisor on C, then the linear system |H’| can be used to define a new
embedding C' C P? with hyperplane section H'.

We are interested in the following problem.

Problem 3.1. Given a smooth plane cubic C' C P? with hyperplane section H,
and a point P € F(K), find equations for an embedding C' — P? whose image is
a smooth plane cubic with hyperplane section H' satisfying sum(H' — H) = P.

As described in the proof of [36, Lemma 1], the K-rational effective divisors H’
in the required linear equivalence class correspond to the K-rational points on a
certain Brauer-Severi surface V. Since C' is everywhere locally soluble, so is V.
By the Hasse principle for Brauer-Severi varieties we know that V(K) # (), and
so H' exists. Writing down equations for V' and then searching for a K-rational
point is unlikely to be practical. We therefore take a different approach.

First, we explain how a solution to Problem 3.1 helps us compute the Cassels—
Tate pairing. In Section 1, we take 0 # T € E[3]| and, after extending our field
K so that T € E(K), aim to compute fr € K(F) with div(fr) = 3ar and
sum(ar) = T. Solving Problem 3.1 with P = T gives us ar in the form H' — H,
and from this we can compute fr. To say a little about what fr looks like, we
write K[z, y, z]4 for the space of homogeneous polynomials of degree d, and L(D)
for the Riemann-Roch space of a divisor D. We also suppose, for definiteness,
that H = C' N {z = 0}. It is known (see for example [4, Theorem 7.3.1]) that for
any d > 1 the map

K[]I,y72]d—>£(dH); fo/xd

is surjective. Taking d = 3 shows we can write fr in the form fi/23 where f; is
a ternary cubic meeting C in divisor 3H’. By changing our choice of hyperplane
section H, we could replace the denominator by the cube of any linear form.

We assume P # 0 (otherwise Problem 3.1 is trivial). The curve C' may be
embedded in P? using either the linear system |H| or the linear system |H’|.
The first of these gives the embedding we started with. Taking both embeddings
together gives a map C' — P? x P2, The image is defined by three bi-homogeneous
forms of degree (1, 1). The coefficients may conveniently be arranged as a 3 x 3 x 3
cube. These cubes have many fascinating properties. We first learnt of these from
work of Bhargava and O’Neil (unpublished) and Bhargava and Ho [3]. See also
[14], [22], [29].
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If we arrange the coefficients of a 3 x 3 x 3 cube into three 3 x 3 matrices, say
Ml, MQ, M3, then

(15) F(z,y,z) = det(xM; + yMy + zMs)

is a ternary cubic. Since we can slice the cube in three different directions, this

gives us three different ternary cubics. As shown in [29, Theorem 1], two of these

define the image of C' under the embeddings corresponding to H and H'. Moreover

an isomorphism between these two plane cubics is given by the the 2 x 2 minors

of the matrix of linear forms in (15). We can then adopt the point of view in

Problem 3.1, namely that we have one curve with two different embeddings in P?2.
We are therefore interested in the following problem.

Problem 3.2. Given a non-singular ternary cubic F' € K|x,y, z|, find matrices
Ml, Mg, Mg € Matg(K) satisfying
F(a, B,v) = det(aM; + SMy + v Ms).
This problem is also considered in [14], where an application to coding theory

is suggested.
We label the coefficients of F' by putting

F(z,y,2) = ax® + by® + c2* + apr’y + asa*z
+ bizy? + bsy’z + c122® + ey + mayz.

By a change of co-ordinates, we may assume ¢ = F(0,0,1) # 0. Let Ar be the
free associative K-algebra on two indeterminates x and y subject to the relations
deriving from the formal identity in o and 3,

F(a,B,azx + By) = 0.

Explicitly, Ar = K{z,y}/I where I is the ideal generated by the elements

cx® + cla:2 + asx + a,

c(x?y + zyx + y2?) + 1 (zy + yx) + e’ + ma + azy + ag,

c(zy® + yry + yv?w) + co(zy + yx) + cry® + my + bsx + by,

ey’ + oy + byy +b.

In solving Problem 3.2, we are free to multiply F' through by a scalar. If we

scale so that F'(0,0,1) = —1, then without loss of generality Mz = —1I;.
Lemma 3.3. Let F' € K|[z,y, 2] be an irreducible ternary cubic with F(0,0,1) # 0,
and let My, My € Matg(K). The following are equivalent.

(i) F(o,B,7v) = Adet(aM; + My — ~v13) for some A € K*.
(ii) There is a K-algebra homomorphism Ap — Mats(K) with x — M; and
Yy — Ms.
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Proof. 1f (i) holds then v — F(a, 3,7) is a scalar multiple of the characteristic
polynomial of aM; + BM,. So, by the Cayley-Hamilton theorem,

(16) F(Oé,ﬁ, OéMl —+ /6M2> =0.

Therefore, M; and M, satisfy the relations used to define Ap. This proves (ii). If
the minimal polynomial of o« M;+ 3M, has degree 3 for infinitely many (« : 3) € P!
then the converse is clear. Otherwise, after replacing M; and M, by suitable linear
combinations, neither has minimal polynomial of degree 3. So M; and M, each
have an eigenspace of dimension at least 2. Since these eigenspaces have non-
trivial intersection, it follows by (16) that {F = 0} C P? contains a line. This
contradicts that F' is irreducible. U

We have now reduced Problem 3.2 to finding a K-algebra homomorphism Ap —
Mats(K). Although the connection with Problem 3.2 is new, the algebra Ar was
previously studied by Kuo [26]. She showed that Ap is an Azumaya algebra of
rank 9 over its centre Z(Ap), and that Z(Ap) is isomorphic to the co-ordinate
ring of the affine curve E \ {0}, where E is the Jacobian of C'= {F = 0} C P2
In particular we can specialise Ar at any non-zero point of £ to obtain a central
simple algebra of dimension 9 over the field of definition of that point. In fact,
Kuo only considered the special case ¢ = 1 and a3 = b3 = ¢; = ¢o = 0, but the
general case follows by making suitable changes of co-ordinates.

We put r = y(cz? + iz +as), s = —(cy? + c2y +b3) and t = cx. Then, using the
support for finitely presented algebras in Magma [5], we were able to check that
the centre Z(Ap) is generated by?

€ = cA(xy)? — (cy® + coy + b3)(ca® + ez + as) + (ecm — c1c2)xy + asbs
and

n =rst+ str +trs+ ag(st +ts) + bg(tr +rt) + ci(rs + sr)
+ (bgCl — blc)r + (Cl(lg — CQCL)S + (a2b3 — agb)t — 6abc + a2b3€1.

Moreover, the elements £ and 7 satisfy

(17) n* + Ay + Agn = € 4+ A + Ay + A,

%In fact, the elements §; and dy in the proof of [26, Lemma 2.1] are equal, and & + m?/3
specialises to d; = dy = 0/2



20 TOM FISHER AND RACHEL NEWTON

where
Al =m,
AQ = —((IQCQ + CL3b3 + blcl),
Ag = 9abc — (CngCz + bagcl + Cagbl) — (CLngCl + a3b102),
Ay = —3(abciey + acbibs + beagas)
+ a(bics + bier) + b(agct + ajea) + c(azbs + azb?)
+ azcaasbs + biciascy + agbsbic,
Ag = —27a*b*c? + 9abc(abscy + casby + bascey) + . .. + abem?.
The polynomials A; € Z[a, b, c, ..., m| are the coefficients of the Weierstrass equa-

tion for the Jacobian specified in [2]. These were obtained by modifying the
classical formulae in [1].

Let 0 # P = (xp,yp) € E(K). Then the specialisation App of Ap at P is the
quotient of Ar by the extra relations zp = £ and yp = 1. By the work of Kuo
cited above, Ap p is a central simple algebra over K of dimension 9. It therefore
represents an element in Br(K)[3]. Kuo also shows that if C'= {F = 0} C P? has
a K-rational point, then the Azumaya algebra Ag splits. By our assumption that
C' is everywhere locally soluble, and the local-to-global principle for the Brauer
group, it follows that App = Mats(K). If we can find such an isomorphism then
this immediately gives us a K-algebra homomorphism Ap — Mats(K') and hence,
by Lemma 3.3, a solution to Problem 3.2.

The following lemma shows that the point P in the statement of Problem 3.1,
and the point P in the above solution to Problem 3.2 are the same.

Lemma 3.4. Suppose we solve Problem 3.2 by finding an isomorphism App =
Mats(K) for some 0 # P € E(K). Then the 3 x 3 x 3 cube we obtain defines a

genus one curve C' C P? x P2 whose projections onto each factor are plane cubics
with hyperplane sections H and H' satisfying sum(H — H') = P.

Proof. For the proof, we may work over an algebraically closed field, and change

coordinates so that C' = FE is an elliptic curve in Weierstrass form. Moving the
point P to (z,y) = (0,0), we may assume that E has Weierstrass equation

(18) Y2+ asy = 2° + asx® + ayuz.
The image of (z,y) — (1 :y: x) is defined by the ternary cubic

F({L‘, Y, Z) = $fy2 + a3$2y — 23 — CLQCUZQ — CL4ZE2,Z.
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Using (17) to compute the Jacobian, we recover the Weierstrass equation (18).
Then App = Matz(K) via

0O 0 1 0 0 0
r— 1 —a3 0 0 ) y—|1-1 0 0
—ay 0 —Q2 0 -1 0

In particular, we check that £ — 0 and n — 0. The images of x,y and —1
in Mats(K) form a 3 x 3 x 3 cube. Let F; be the bi-homogeneous form whose
coefficients are given by the ith rows of these matrices, as follows,

Fi(z1, 91, 215 T2, Y2, 22) = —21%2 + T129,
Fy(x1, 91, 215 T2, Yo, 22) = —a3T1T2 — Y122 — 21Y2,
Fs(fl, Y1, 21,22, Y2, 22) = —Q4T1T2 — Y1Y2 — AaT129 — Z129.

Then Fy, Fy, F3 define the image of £ — P? x P? via
(z,y)— ((L:y:2),(1:—(y+as)/z:x)).

Projecting onto each factor gives two embeddings E C P? with hyperplane sections
H =3.0 and H' = 2.0 + P. In particular, sum(H' — H) = P. O

We have now reduced Problems 3.1 and 3.2 to the following problem.

Problem 3.5. Let K be a number field. Given structure constants for a K-algebra
A known to be isomorphic to Mats(K), find such an isomorphism explicitly.

We briefly discuss two algorithms for solving this problem.

Norm equations. By a theorem of Wedderburn (see [25, Theorem 2.9.17]), every
central simple algebra of dimension 9 is a cyclic algebra. By following the proof
(see [19] or [21] for details), Problem 3.5 reduces to that of solving a norm equation
for a cyclic cubic extension L/K. Algorithms for solving norm equations do exist
(see [9, Section 7.5]), but as they involve computing the class group and units for
L, they are rarely practical in the applications of interest to us.

Minimisation and reduction. This approach was first suggested by M. Stoll,
but with an ad hoc approach to the reduction. The “minimisation” stage is to
compute a maximal order O in A, using the algorithm in [23], [32]. For the
“reduction” stage we compute trivialisations A®x K, = Mats(K,) for each infinite
place v, and use this to embed O as a lattice in a Euclidean space of dimension
dimg(A) = 9[K : Q]. We then search for a zero-divisor in A by looking at
short vectors in this lattice. Once a zero-divisor is found, it is easy to find an
isomorphism A = Mats(K), as described for example in [19, Section 5]. In [11,
Paper III, Section 6] it is shown that if K = Q then the shortest vector in the
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lattice is a zero-divisor. In practice, a zero-divisor can then be found by the LLL
algorithm. In [24], a complexity-theoretic result is proved describing the behaviour
of the algorithm over a general number field. The algorithm is only practical if
the discriminant of K is sufficiently small.

4. EXAMPLE

In this section, we illustrate our work by computing the Cassels—Tate pairing on
the 3-Selmer group of the elliptic curve 17127b1 in [10]. This elliptic curve E/Q
has Weierstrass equation

(19) VE 4y +y =2 — 2% — 191635647 — 34134737802.

The Galois representation pg 3 : Gal(Q/Q) — GLy(Z/37Z) is surjective. Therefore,
the étale algebras L, L' and M, defined in Section 1, are fields. We find that
L =Q(u) and L' = Q(v), where u and v are roots of X8 —5X6+4+6X*—3 = 0 and
X8 —6X*+19X2 — 3 =0. Moreover, M = L(0) where 6* = 2u5 — 6u* — 3u® + 1.
The isomorphism ¢ : L'({3) = L({3) and embedding L' C M are given by
v 220+ 1)(u” — 4u® 4 u® + 3u),

= 220 — W) + S (' — 40”4+ U’ + 3u).

The bad primes of E are 3, 11 and 173. Let S the set of primes of L dividing
these primes, and

L(8,3) ={x € L*/(L™)? : ordy(z) =0 (mod 3) for all p ¢ S}.
By Lemma 1.5(i), we have
SE(E/Q) c L(S,3) N Im(w,).
We find that L(S,3) N Im(w) = (Z/3Z)? is generated by
a=1w +u® —4u’ = 3ut +2u° + 1),

B =1 —6u’+ 100’ + 3u® — 3u —5),

v = $(632u" — 142u° — 2275u° + 642u” + 629u” — 720u” + 1059u — 625),

and that S®(F/Q) = (Z/37)? is the subgroup generated by o and . Moreover,
for each of the primes p = 3,11,173, we find that H'(Q,, F[3]) = (Z/37Z)? is
generated by the images of 5 and ~.

Let o/ = Tra/p(a) — 3Ny ()3, Since pg ¢ L', there is no ambiguity in the
choice of cube root. Explicitly,

o = 120" = 20° +0° —v* — 100 + 190” + 48v — 21).
Factoring into prime ideals in Oy, we find
1101, = pipap3, Npy=Npy =11, Npy=11%
1730, = q1d293dads,  Nayw = Ngy = 173, Ngs = Nqs = Ngs = 173%.

(20)
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For p = 11, 173 we work with the embeddings L C Q, corresponding to p; and
q1- In other words, for both p = 11 and p = 173, we choose a torsion point
0 # T € E[3] defined over Q,. By (20), this also gives an embedding L' C Q,((3).
Let o, = ¢q, be as defined in Section 2. Then, up to a global choice of sign®,

(pp(a) = IndCS (Oé, O/>p7

where Ind, is the isomorphism pg = $Z/Z sending (3 — %, and (, ), is the
3-Hilbert norm residue symbol on Q,(¢3). By Lemma 1.5(i), Tate local duality
and the product formula (6), we have p3(a) + ¢11(a) + @173() = 0. We use this
relation to compute ¢3(«) from ;1 () and p73(cr). Repeating for «, 3,7, ... we

find that ¢, takes values:

p la B v af By ay aby
3/0 1. 0 0 -1 0 1
11/0 =10 0 0 0 1
1730 0 0 0 1 0 1

We have identified %Z /7 = 7./37 for readability. The final column is not needed in
what follows, but was computed as a check on our calculations. Recalling that ¢,
is a quadratic form, we can now read off using (9) that the associated symmetric
bilinear form [, ], takes values:

[, ]3] a B v [ ula 8 vy [, hs|a B~y
« 0 -1 0 « 0 1 0 « 0 0 0
6 |—-1 -1 1 I} 1 1 1 I} 0 0 1
ol 0 1 0 v 0 1 0 v 0 1 0

These calculations are in agreement with the fact that, since a, v € S®(E/Q),
we have [, o, = [a,7], = [7,7], = 0 for all primes p. Since the local pairing (5)
is non-degenerate, we could also have predicted in advance that [3,7], # 0 for
p=3,11,173.

The Selmer group elements «, 7, a7y, «/v correspond to plane cubics C,, for
m =1,...,4. We used the algorithms in [11], implemented in Magma, to compute
the following equations for C,,.

1223 4+ T2y — 2?2 4 202y? — 99zyz + 24x2% + 43y> + 13y%2 — 17y2° +802° = 0
923 — 262%y — Taz + 4Txy* — 25xyz + 10522% + 16y° + 47y%2 + 2Ty2% + 542° = 0
23+ 22%y — 15272 + 402y® — 1layz + 11122 + 8y + 91y?z + 131y2? + 3442° = 0

4a® — 22%y — 2%z — 9xy? — 4layz + 97wz + 29y° — 23y%2 + 257y + 2822° = 0

3This depends on the relationship between the embeddings (20) and the Weil pairing.
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These equations have been minimised and reduced (see [12]) and so, in particular,
the (), have the same primes of bad reduction as F.

In each case m = 1,...,4, we used the method in Section 3 to compute a
ternary cubic f,, with coefficients in L meeting C,, in 3 non-collinear points each
with multiplicity 3. In our example, L is a number field, but in general a similar
calculation is necessary over each constituent field of L. The rational function
fm/x? has divisor 3H' —3H, where H is the hyperplane section and H’ is another
effective divisor of degree 3. Then [H'— H] € Pic’(C,,) = F is a non-zero 3-torsion
point defined over L. In our example, there are only two such points, say +7. We
can switch the sign by replacing f,, by its Gal(L/L")-conjugate. Determining the
right choice of sign takes some care; see Remark 4.1 below.

We scaled each f,, so that (i) the rational function f,,/2% is as described in
Lemma 1.2, (ii) the coefficients of f,, are in Oy, and (iii) f,, and the ternary cubic
defining C),, are linearly independent mod p for all primes p ¢ S. In general,
it might be necessary to enlarge S to achieve the last of these conditions. By
Lemma 1.5, the only primes to contribute to the pairing will be p = 3,11, 173.

The interested reader can find the f,, in the accompanying Magma file. We
have also included the formula for f; in Appendix A.

Evaluating each f,, at a Q,-point* on C,,, we obtained the following elements
of L} /(Ly)?, where L, = L ®q Q,.

p i fo f3 Ja

31y By By B

112 1 5

73|68 Py 1 7
Using the entries in the column headed f;, we compute
(a,a) = [v,als + [V*, a1 + [B, afirs = 0,
(a,7) = [v:7ls + Y2 + 8,7 = 1.
Repeating for fs, f3, f4, the Cassels—Tate pairing is given by

(21)

()| a v ay a/y
o 0 1 1 —1

(22) vy -1 0 -1 -1
ay |—=1 1 0 1
a/y|'1 1 -1 0

This is in agreement with the fact that the pairing is bilinear and alternating. Had
we assumed these properties from the outset, it would only have been necessary

4We were careful to choose points that are not p-adically close to the zeros of f,,.
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to compute one non-zero value of the pairing. So the only reason for computing
more than one of the f,, was to help check our calculations.

In conclusion, the Cassels-Tate pairing on S®(E/Q) = (Z/37)?* is non-zero,
and hence non-degenerate. It follows that rank £(Q) = 0 and the 3-primary part
of II(E/Q) is (Z/3Z)*. The first of these facts could more easily be checked by
2-descent. The second could have been checked using 9-descent (as described in
[13]), but our method has the advantage of not requiring any class group and unit
calculations beyond those needed for the 3-descent.

Remark 4.1. Replacing f,, by its Gal(L/L")-conjugate has the effect of changing
the sign of every entry in the mth row of (22). We now explain how we made these
sign choices in a consistent way. We limit ourselves to a few brief details, since for
the applications in the last paragraph we only need that the pairing is non-zero.

We fix a 3-torsion point T € E(L), written in terms of the Weierstrass equa-
tion (19). Each plane cubic C,, corresponds to a pair of inverse elements in
SG)NE/Q). The choice of sign could be fixed by specifying an isomorphism
Pic’(C,,) = E or a covering map C,, — E. Instead, we scale the ternary cu-
bic defining C,, so that it has the same invariants ¢4 and cg as (19). This scaling
is unique up to sign, and by [17, Theorem 2.5] the choice of sign corresponds to
that in S®® (E/Q). By specialising the sign + to + in [17, Theorem 7.2], and using
the torsion point T' chosen above, we may scale the equations for the C), so that
they correspond to a7, avy,a/y € L*/(L*)?, rather than to the inverses of these
elements. Then, when computing the ternary cubic f,, in Section 3, we work with
the algebra Ap p, where F' is the equation for C,, we just fixed, and P is the image
of T under the isomorphism between the elliptic curves (19) and (17) which when
written in the form z = v?z’ +r, y = v®y’ + u?s2’ +t has u = +1.

Remark 4.2. We have only computed the Cassels-Tate pairing up to a global
choice of sign. To compute it exactly, we would have to fix a sign convention for
the Weil pairing and check that the embeddings (20) are compatible with it. We
would also have to expand on Remark 4.1.
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APPENDIX A. FORMULAE

The ternary cubic f; in the example of Section 4 is

fi = (10u" — 8u® — 56u” + 42u* + 60u® — 39u” + 36u — 29)"
+ 2(76u” — 30u’® — 321u° + 136u” + 173u® — 70u® + 213u — 103)2y
+ 3(—43u" — 24u° + 118u° + 8u* — 106u” + 67u* + 15u + 43)2”2
+ 2(135u” — 74u® — 499u” + 260u* + 145u° — 47u” + 210u — 118)zy”
+ 2(129u" + 48u® — 446u” — 75u* + 73u® — 15u* + 237u — 36)zyz
+ 2(83u" — — 2000’ + 192u* — 27u® + 78u” + 5du — 82)x2>
+ 3(15u” — 40u® — 320 + T9u* — 87w’ + 4Tu® — 2Tu + 32)y°
+ 2(=61u" + 46u° + 295u” — 260u” — 299u” + 149u* — 300u + 240)y°2
+ 3(—140u” + 84u° + 537u° — 314u* — 193’ + 32u” — 405u + 167)y2>
+ 1(—105u" — 86u’ + 276u’ + 158u* + 26u” — 11u* — 189u — 115)z°.
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