THE YOGA OF THE CASSELS-TATE PAIRING
TOM FISHER, EDWARD F. SCHAEFER, AND MICHAEL STOLL

ABSTRACT. Cassels has described a pairing on the 2-Selmer group of an elliptic curve which
shares some properties with the Cassels-Tate pairing. In this article, we prove that the two
pairings are the same.

1. INTRODUCTION

In [3], Cassels defined a pairing on the 2-Selmer group of an elliptic curve over a number
field. It shares some properties with the extension of the Cassels-Tate pairing to the 2-Selmer
group of an elliptic curve over a number field. He wrote “It seems highly probable that the
two definitions are always equivalent, but the present writer is no longer an adept of the
relevant yoga.” (see [3, p. 115]). In this article, we prove that the two pairings are the same.

The Cassels-Tate pairing is an alternating and bilinear pairing on the Shafarevich-Tate
group of an elliptic curve over a number field. The fact that it is alternating gives information
on the structure of the Shafarevich-Tate group. For n > 2, its extension from the n-torsion
of a Shafarevich-Tate group to an n-Selmer group can be used to determine the image of
the n2?-Selmer group in the n-Selmer group. This sometimes enables the determination
of which elements of the n-Selmer group come from elements of the Mordell-Weil group
and which come from elements of the Shafarevich-Tate group. The Cassels-Tate pairing is,
unfortunately, quite difficult to evaluate in practice. The pairing defined by Cassels on the
2-Selmer group of an elliptic curve, however, is quite straightforward to evaluate. So it is
useful to prove that the two pairings are equal on the 2-Selmer group of an elliptic curve.

In Section 2, we give the Weil-pairing definition and a new definition of the Cassels-Tate
pairing extended to the n-Selmer group of an elliptic curve, under a hypothesis that is always
satisfied for n a prime. In Section 3 we present the definition of the pairing defined by Cassels
on 2-Selmer groups of elliptic curves. In Section 4 we present a large diagram and prove
it is commutative. We also discuss why our methods do not easily generalise to n-Selmer
groups for n > 2. We use this diagram to prove our main theorem in Section 5 that the
pairing defined by Cassels is the same as the Cassels-Tate pairing on the 2-Selmer group of
an elliptic curve over a number field.

Date: October 8, 2007.
2000 Mathematics Subject Classification. Primary 11G05; Secondary 11GO7.
Key words and phrases. Cassels-Tate pairing, elliptic curve, 2-Selmer group.
The first and second author would like to thank the hospitality of Jacobs University Bremen. The second
author was supported by a National Security Agency, Standard Grant and a Fulbright Award.
1



2 TOM FISHER, EDWARD F. SCHAEFER, AND MICHAEL STOLL

Recently, Swinnerton-Dyer [13] has generalised Cassels’ pairing on the 2-Selmer group, to
a pairing between the m-Selmer group and the 2-Selmer group. In parallel with the results
described above, we show that this pairing is again the Cassels-Tate pairing.

2. TWO DEFINITIONS OF THE CASSELS-TATE PAIRING

Let E be an elliptic curve defined over K, a number field. The Cassels-Tate pairing is a
pairing on III(K, F) taking values in Q/Z. We refer to [2] for the original definition. In the
terminology of [6] this is the homogeneous space definition.

Let m,n > 2 be integers. We are interested in the restriction of this pairing to the n-
torsion (K, E)[n], or more generally to III(K, E)[m| x HI(K, E)[n|. Let S"(K, E) denote
the n-Selmer group of E over K. The group II(K, E)[n| is isomorphic to the quotient of
S™(K, E) by the image of F(K)/nE(K) under the coboundary map. We write ( , )cr for
the extension of the Cassels-Tate pairing to S™(K, E) x S™(K, E). By definition this pairing
is trivial on the images of E(K)/mE(K) and E(K)/nE(K).

If M is a Gal(K/K)-module, then we denote Z¢(Gal(K/K), M) and H(Gal(K/K), M)
by Z{(K, M) and H'(K, M), respectively.

We recall an alternative definition of the Cassels-Tate pairing, called in [6] the Weil-pairing
definition. For simplicity we assume that the natural map

(2.1) H*(K, Eln]) — [ [ H*(K,, E[n)),

where v runs over all places of K, is injective. This is known for n a prime [2, Lemma 5.1].
(The injectivity does not hold for E[n] replaced by an arbitrary finite Galois module. See
[10, II1.4.7] for a counter-example.) From Section 3 onwards we restrict to the case n = 2,
so our hypothesis will be automatically satisfied.

Let a € S™(K,FE) and o € S™(K,FE). We apply Galois cohomology over K and its
completions K, to

0 E[n] E[mn] E[m] 0
o
0 E[n] E E 0

to obtain a commutative diagram

HY(K, E[mn]) —— H'(K, E[m]) H*(K, E[n))

| |

Hv Hl(KmE) - Hv HQ(KU7E[TZD

By the above hypothesis, there exists ¢ € H'(K, E[mn]) with nc = a. We represent ¢ by a
cocycle v € Z'(K, Elmn]); then a = ny € Z'(K, E[m]) represents a. For each place v of
K, the cocycle res,(a) = a,, in Z' (K, E(K,)) is a coboundary. So there exists 3, € E(K,)
such that o, = dj3, (recall df, is the cocycle o +— 9B, — 3,). Take Q, € E(K,) such that
nQ, = B,. Consider dQ, — v, € Z'(K,, E[n]), where 7, is the restriction of 7. Let U, be

the cup product pairing induced by the Weil pairing from H'(K,, E[n]) x H'(K,, E[n]) to
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H?*(K,, ui,). For s,s' € H'(K,, E[n]) define (s, s')invou,» t0 be the composition of U, with
the invariant map. We define (a,a’)1 = > ([dQ» — Vo), @ )invou v-

Proposition 2.2. Let a € S™(K, E) and o’ € S*"(K, E). We have (a,a’), = (a,d’)cr.
Proof. See [2, Proof of Lemma 4.1] or [4, §2.2]. O

Remark 2.3. The general form of the Weil-pairing definition, avoiding the hypothesis
that (2.1) is injective, is given in [5, p. 97]. This variant is used in [6] to generalise Proposi-
tion 2.2 to abelian varieties.

Let C and D be torsors (i.e., principal homogeneous spaces) under E. A morphism
m: D — C is called an n-covering if 7(P + Q) = nP + n(Q) for all P € E and Q € D.
If C = F is the trivial torsor, this coincides with the usual notion of n-covering of E.
For Q1,Q2 € D we write ()1 — ()2 for the point on E determined by the fact D is a torsor
under E. Following [12, Chapter 6] we define the coboundary map 6§, : C(K) — H' (K, E[n])
by sending P € C(K) to the class of dQ = (¢ —°Q — Q) where Q € D(K) with 7Q = P.

In the case C' = FE, there is a standard bijection between the n-coverings of E up to
K-isomorphism, and the Galois cohomology group H'(K, E[n]). Tt is defined as follows.
Let ¢ : D — E be an isomorphsim of curves over K with [n] o9 = 7. Then % o ¢! is
translation by some &, € E[n| and we identify the K-isomorphism class of D with the class
of 0 — & in HY(K, E[n]). If Q € D(K) with 7(Q) = 0 then we can take ¢ : P+ P — Q,
in which case D is represented by —d(@). Note also that if C' — E is an m-covering of E and
D — C'is an n-covering of (', then D — FE is an mn-covering of F. If D — E corresponds
to b € H'(K, E[mn]), then C' — E corresponds to nb € H'(K, E[m]).

We give a new definition of the Cassels-Tate pairing, again under the hypothesis that (2.1)
is injective. Let C' be an m-covering of E over K representing a. By the hypothesis, a is
divisible by n in the Weil-Chatelet group. So there is an n-covering m : D — C' defined
over K. Let v be a place of K. Since a is trivial in H'(K,, E(K,)), there is a point
P, € C(K,). We define (a,a’)s = >, (0x(Py), @' Vinvou, v-

Proposition 2.4. Let a € S™(K,FE) and o' € S"(K,E). We have (a,a’)y = (a,ad’);. In
particular (a,a’)s does not depend on the choice of the P,.

Proof. Let Rc € C(K) and Rp € D(K) such that Ro covers 0 on E and Rp covers Re.
Since n(dRp) = dR¢ represents —a, we can choose v € Z'(K, E[mn]), as defined above,
to be —dRp. For each place v of K we are given P, € C(K,). Let 8, = P, — R¢, then
dfB, = —dR¢; this represents a € H' (K, E[m]). Take Q, € E(K,) with nQ, = 3,. Then
dQ, — v, = d(Q, + Rp) and 7(Q, + Rp) = B, + Rc = P,. Hence 6,(P,) is represented by
the cocycle dQ, — 7, appearing in the definition of { , ). O

3. THE CASSELS PAIRING

In [3], Cassels defined a bilinear pairing ( , )cas on S?(K, E) taking values in py with the
following properties. The element a € S*(K, E) is in the image of S*(K, E)) precisely when
(a,a')cas = +1 for all @’ € S*(K, E). For all a € S*(K, F) we have {a,a) = +1. These are
properties of the Cassels-Tate pairing on a 2-Selmer group as well.
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A mild generalisation of Cassels’ construction, due to Swinnerton-Dyer [13], gives a pairing
S™(K,E) x S*(K,E) — ps. We work with this generalised form of the pairing, which we
continue to denote (, )cas. It reduces to Cassels’ definition in the case m = 2.

We prepare to recall the definition of the pairing. The group S?(K, E) is a subgroup
of HY(K, E[2]). Let A be the finite étale algebra that is the Galois module of maps from
E[2]\ 0 to K. Then juy(A) is the Galois module of maps from E[2] \ 0 to pa. Let A
denote the Gal(K /K)-invariants of A. Let E be given by 3> = F(x) where F(x) = 2° +
asz? + agr + ag with a; € K. Then A = KI[T|/(F(T)). Let 61,05,05 be the three roots
of F(z) in K. We have A = [J® K(6;) where J[* denotes taking the product over one
element from each Gal(K /K )-orbit of the set of §,’s. Let Tj = (0;,0) € E[2] \ 0 and define
w: E[2] — pa(A) by w(P) = (Tj — ey(P,T;)). Then w induces an injective homomorphism
from H'(K, E[2]) to H'(K, us(A)), which we also denote w. Let r; be the restriction map
from H'(K, js(A)) to H'(K(6;), p12). Shapiro’s Lemma shows that the map r = [[¢r; is
an isomorphism of H'(K, us(A)) with [[® H (K (), uz), which we denote H'(A, ;). For
each j, we have a Kummer isomorphism from H'(K(6;),us) to K(6;)*/(K(6;)*)?. This
induces an isomorphism, which we denote k, from H'(A, us) to A*/(A*)% Note that the
image of H'(K, E[2]) in AX/(A*)?, under k o r o w, is equal to the kernel of the norm from
AXJ(AX)? to K*/(K*)2.

We recall the definition of { , )cas. Let a € S™(K,FE) and ¢’ € S*(K,FE). Let M =
korow(a) be the element of A*/(A*)? representing a’. The element a € S™(K, E) is
represented by an m-covering C' (which Cassels denotes D)) of E. Swinnerton-Dyer [13]
shows that there are rational functions f; on C, defined over K (¢;), with the following three
properties

(i) div(f;) = 2D; where [D;] — Tj = (6;,0) under the isomorphism of Pic’(C') and E,
(ii) each K-isomorphism of K (6;) to K(6;) sending 6; to 6, sends f; to f;,

(iii) the product fifofs is a square in K(C).

He then shows that a 2-covering of C' may be defined by setting each f; equal to the square
of an indeterminate. In the case m = 2, Cassels gives an explicit construction of the f;
(which he denotes é—é) and this makes it practical to compute the pairing. We write f for
the element of A @k K(C') given by T — f;.

Let v be a prime of K. Since C represents an element in S™(K, E), there is a point
P, € C(K,) (which Cassels calls €,). For v;, 6; € K,(0;)"/(K,(0;)*)* we let (v;,0;)k,,)
denote the quadratic Hilbert norm residue symbol. Let A, = A®x K, and A, be its
Gal(K,/K,)-invariants. Then A, = [[% K,(6;), where this [[* is taken over Gal(K,/K,)-
orbits. Let (v,9)4, = Ho(yj, 0;) K (6,), Where 7,6 € AY/(A¥)? and ~;,0; are their images in
K, (0;)%/(K,(0;)*)% Cassels defines (a,a’)cas = [[,(f(Py), M) a,.

4. THE MAIN DIAGRAM

Now let us introduce Figure 4.1 which will enable us to prove that for a € S™(K, E),
a' € S?(K, E) we have (a,a')c.s = {a,a’);. We can define the maps w, r and k locally, in an
analogous way, and it will not change the image of M, locally. So we will not change our
notation for these maps.



THE CASSELS-TATE PAIRING 5

(4.1) HY(K,,E[2]) x HNK,, E[2]) —> H%(K,, us)

v v (1) \

U

P J— + —_ Ny
H' Ky, pa(Ay)) X H'(Ky, po(Ay)) — H*(Ky, po(Ay)) — H*(Ky, p2)
r| = r| (2) ri%’
HY(Ay ) X HY(Ay, p) ———= H* (A, pa)  (3)
k| k| (4) l]‘[oinv]-
M
ASJ(AY)? x AY/(A))?

! )KU(Gj)

H<> Ha2 : H2

We identify gy ® pip = pig via (—=1)? ® (—=1)? = (=1)P%. Since py(A,) is the Galois module
of maps from E[2] \ 0 to ps, this identification induces a map t : us(A,) @ ux(A,) —
pa(A,). Let U, be the cup product map via t. Define N : py(A,) — pg by (T +— ~(T))
[1;~(T), and let N, be the map it induces on H?’s. Let r; be the restriction map from
H*(K,, 12(A,)) to H*(K,(0;), 112). In the same was as for the H'’s, Shapiro’s Lemma shows
that the map r = [[® r; is an isomorphism of H2(K,, us(A,)) with [T® H2(K,(6;), ji2), which
we denote H?(A,, 12). Let U; be the cup product map from H'(K,(6;), p2) x H*(K,(6;), p2)
to H2(K,(6;), uz) and U = [[°U;. Let inv : H2(K,, us) — p2 be the composition of the
invariant map with the isomorphism of $Z/Z and pi, and likewise for inv; : H?(K,(0;), p2) —
to. Finally let v : H<> lo — 2 be the usual product in ps.

Theorem 4.2. The diagram in Figure 4.1 is commutative.
We prove this theorem using the following lemmas.

Lemma 4.3. Identify pio ® po = ps as above. Then for all P,Q € E[2] we have
e(P.Q)= [ eAP.T)®ex(Q.T).

TEE2\0
Proof. A trivial verification. O
Lemma 4.4. Diagram (1) in Figure 4.1 is commutative.

Proof. Let £,9 € H'(K,, E[2]) be represented by cocycles which, for ease of notation, we
also write as £ and ¢. We have £ U, ¢ : (0,7) — ex(&5,70,) € H*(K,, j12).
Now w(&) : 0+ (T + es(&,,T)) for T € E[2]\ 0 and similarly for w(¢). Thus

N (w(€) Urw(®)) : (0,7) = Nu(t((S = e2(&, 5)) 7T = ex(¢r,T))))
NL(H((S = esl&r. 8)) © (T = ea(th,,7'T))))
N(t((S = e2(60,5)) ® (T = es(,, T))))
= N.(T = es(&,, T) @ €54, T))
= H e2(§, T) @ ea(r, T') € pa @ pia.

TeE[2]\0
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By Lemma 4.3 this is the same as & U, . U
Lemma 4.5. Diagram (2) in Figure 4.1 is commutative

Proof. Let &, € HY(K,, 2(A,)). As in the proof of the previous lemma, we use the same
symbols for cocycles representing these classes. Let T; = (0;,0) € E[2] \ 0. We must show
that 7;(€ Uy ¥) and r;(£) U; ;(¢) are equal in H*(K,(6;), u2 ® u2). We find that they are
represented by cocycles (o,7) — & (1) @%(¢,)(T;) and (o,7) — & (T;) @°(¢-(Ty)). Since
o(T;) =T for all 0 € Gal(K,/K,(6;)), these cocycles are equal. O

Lemma 4.6. Diagram (3) in Figure 4.1 is commutative.

Proof. We have A4, = [[% K,(0,) where K,(0;) := K,(0;) ®x, K,. Let N; denote the norm
induced by taking the product over each element in the Gal(K,/K,)-orbit of 6;. Recall that
v H s — pg is the usual product in s, and let v, be the map it induces on H?’s. Then
the map N, in Figure 4.1 factors as the composite of H<> N; and v,.
We have the following commutative diagram
N

H(K,, pip(A,)) = T1® HA(K,, 12(K.(6)))) [1¢ H?(K,, po) — H*(K,, o)
lr l“ (5) lmm (6)

[1¢ inv;

Hz(Am/vQ) = 1_[<> H2(KU(0j)7M2> 1_[<> H2 H2-
Diagram (5) commutes by the next lemma. That Diagram (6) commutes is obvious. This
proves the commutativity of Diagram (3). O

Lemma 4.7. Let X; be the Gal(K,/K,)-orbit of T;. There is a commutative diagram

Nj
H2(Kva Map(Xj> :u2°°)) - HQ(KW :U“QOO)

Tj l"‘ \Linv

H2(K,(0), po) ———— Q/Z.

Proof. Let v : H*(K,, =) — H?*(K,,Map(X}, a=)) be induced by the inclusion of the
constant maps. Then 7; o ¢ is the restriction map Br(K,)[2*°] — Br(X,(6;))[2*]. By [9, §1
Theorem 3] it is multiplication by d; on the invariants, where d; = [K,(§;) : K,| = #X;,
and therefore surjective. Since 7; is an isomorphism, it follows that ¢ is surjective. Then for
n € H*(K,, o= ) we compute

(inv o Nj)(e(n)) = djinv(n) = (inv; o r;)(e(n)).

(Alternatively, the definitions in [1, Chapter III1,§9] show that N; o Tj_l is corestriction, and
the lemma then reduces to a well known property of the invariant maps.) 0

Lemma 4.8. Diagram (4) in Figure 4.1 is commutative.

Proof. This is [8, XIV.2 Prop. 5| applied to each constituent field of A,. O
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Lemmas 4.4, 4.5, 4.6, 4.8 together prove Theorem 4.2. Composing the maps in the last
row of (4.1) gives the pairing (, )4, defined at the end of Section 3. Identifying $7/7Z with
l2 We obtain

Corollary 4.9. Let s,s' € H'(K,, E[2]). We have (s, )inou.» = (korow(s), korow(s’))a,.
Remark 4.10. It would be useful to have an analogue of Corollary 4.9 for elements of
H'(K,, E[n]) for general n (or at least for n prime). Lemma 4.4 depends on the equality in
Lemma 4.3, which in turn only works for n = 2. This prevents any obvious generalisation

to other values of n. Another difficulty is that we use ps C K, in our proofs.

5. THE MAIN THEOREM

Let C be a torsor under E, and f € A®k K(C) as described in Section 3. Let 7 : D — C'
be the 2-covering obtained by setting each f; equal to the square of an indeterminate. The
following lemma is a variant of [7, Theorem 2.3].

Lemma 5.1. We have (korow)(6,(P)) = f(P) mod (A*)? for all P € C(K), away from
the zeroes and poles of the f;.

Proof. Let () € D(K) with n(Q) = P. It suffices to show that f;(P) = k;r;w(dQ)
mod (K (6;)*)%.

We have rjw(dQ) = (0 — eCQ — Q,T;)) in H'(K(6;), 12). The construction of D gives
that f; o m = t3 for some rational function ¢; on D, defined over K(6;). We claim that
ea(S, Tj) = (S + X)/t;(X) for any X € D(K) for which the numerator and denominator
are well-defined and non-zero. Indeed, since the Weil pairing is a geometric construction we
may identify D and E over K. This is an identification as torsors under E, so the action of
E on D is identified with the group law on E. Then 7 is the multiplication-by-2 map on F,
and our claim reduces to the definition of the Weil pairing in [11, Chapter I1I, §8].

Putting § =7Q — Q and X = Q gives 20Q — Q.T;) = £,0Q)/4,(Q) =1,(@))/1;(Q) for
any o € Gal(K(¢;)/K). Then rjw(dQ) = (o — %#;(Q))/t;(Q)) and kjrjw(dQ) = t}(Q) =
fim(@Q) = f;(P). O

As usual we identify 17Z/7Z with po.

Theorem 5.2. Let K be a number field and E an elliptic curve over K. Let a € S™(K, E)
and a' € S*(K, E). We have {a,a')cas = {(a,a’)s = (a,a’); = {a,ad)cr.

Proof. The identification (a,a’)ca.s = (a,a’)s is immediate from Corollary 4.9 and the local
analogue of Lemma 5.1. The other identifications were established in Section 2. U
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