
THE YOGA OF THE CASSELS-TATE PAIRING
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Abstract. Cassels has described a pairing on the 2-Selmer group of an elliptic curve which
shares some properties with the Cassels-Tate pairing. In this article, we prove that the two
pairings are the same.

1. Introduction

In [3], Cassels defined a pairing on the 2-Selmer group of an elliptic curve over a number

field. It shares some properties with the extension of the Cassels-Tate pairing to the 2-Selmer

group of an elliptic curve over a number field. He wrote “It seems highly probable that the

two definitions are always equivalent, but the present writer is no longer an adept of the

relevant yoga.” (see [3, p. 115]). In this article, we prove that the two pairings are the same.

The Cassels-Tate pairing is an alternating and bilinear pairing on the Shafarevich-Tate

group of an elliptic curve over a number field. The fact that it is alternating gives information

on the structure of the Shafarevich-Tate group. For n ≥ 2, its extension from the n-torsion

of a Shafarevich-Tate group to an n-Selmer group can be used to determine the image of

the n2-Selmer group in the n-Selmer group. This sometimes enables the determination

of which elements of the n-Selmer group come from elements of the Mordell-Weil group

and which come from elements of the Shafarevich-Tate group. The Cassels-Tate pairing is,

unfortunately, quite difficult to evaluate in practice. The pairing defined by Cassels on the

2-Selmer group of an elliptic curve, however, is quite straightforward to evaluate. So it is

useful to prove that the two pairings are equal on the 2-Selmer group of an elliptic curve.

In Section 2, we give the Weil-pairing definition and a new definition of the Cassels-Tate

pairing extended to the n-Selmer group of an elliptic curve, under a hypothesis that is always

satisfied for n a prime. In Section 3 we present the definition of the pairing defined by Cassels

on 2-Selmer groups of elliptic curves. In Section 4 we present a large diagram and prove

it is commutative. We also discuss why our methods do not easily generalise to n-Selmer

groups for n > 2. We use this diagram to prove our main theorem in Section 5 that the

pairing defined by Cassels is the same as the Cassels-Tate pairing on the 2-Selmer group of

an elliptic curve over a number field.
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Recently, Swinnerton-Dyer [13] has generalised Cassels’ pairing on the 2-Selmer group, to

a pairing between the m-Selmer group and the 2-Selmer group. In parallel with the results

described above, we show that this pairing is again the Cassels-Tate pairing.

2. Two definitions of the Cassels-Tate pairing

Let E be an elliptic curve defined over K, a number field. The Cassels-Tate pairing is a

pairing on X(K,E) taking values in Q/Z. We refer to [2] for the original definition. In the

terminology of [6] this is the homogeneous space definition.

Let m,n ≥ 2 be integers. We are interested in the restriction of this pairing to the n-

torsion X(K,E)[n], or more generally to X(K,E)[m]×X(K,E)[n]. Let Sn(K,E) denote

the n-Selmer group of E over K. The group X(K,E)[n] is isomorphic to the quotient of

Sn(K,E) by the image of E(K)/nE(K) under the coboundary map. We write 〈 , 〉CT for

the extension of the Cassels-Tate pairing to Sm(K,E)×Sn(K,E). By definition this pairing

is trivial on the images of E(K)/mE(K) and E(K)/nE(K).

If M is a Gal(K/K)-module, then we denote Zi(Gal(K/K),M) and H i(Gal(K/K),M)

by Zi(K,M) and H i(K,M), respectively.

We recall an alternative definition of the Cassels-Tate pairing, called in [6] the Weil-pairing

definition. For simplicity we assume that the natural map

(2.1) H2(K,E[n]) →
∏

v

H2(Kv, E[n]),

where v runs over all places of K, is injective. This is known for n a prime [2, Lemma 5.1].

(The injectivity does not hold for E[n] replaced by an arbitrary finite Galois module. See

[10, III.4.7] for a counter-example.) From Section 3 onwards we restrict to the case n = 2,

so our hypothesis will be automatically satisfied.

Let a ∈ Sm(K,E) and a′ ∈ Sn(K,E). We apply Galois cohomology over K and its

completions Kv to

0 // E[n] // E[mn]
·n //

��

E[m] //

��

0

0 // E[n] // E
·n // E //// 0

to obtain a commutative diagram

H1(K,E[mn])
·n // H1(K,E[m]) //

��

H2(K,E[n])

��∏
v H

1(Kv, E) //
∏

v H
2(Kv, E[n])

By the above hypothesis, there exists c ∈ H1(K,E[mn]) with nc = a. We represent c by a

cocycle γ ∈ Z1(K,E[mn]); then α = nγ ∈ Z1(K,E[m]) represents a. For each place v of

K, the cocycle resv(α) = αv in Z1(Kv, E(Kv)) is a coboundary. So there exists βv ∈ E(Kv)

such that αv = dβv (recall dβv is the cocycle σ 7→ σβv − βv). Take Qv ∈ E(Kv) such that

nQv = βv. Consider dQv − γv ∈ Z1(Kv, E[n]), where γv is the restriction of γ. Let ∪e be

the cup product pairing induced by the Weil pairing from H1(Kv, E[n]) ×H1(Kv, E[n]) to
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H2(Kv, µn). For s, s′ ∈ H1(Kv, E[n]) define 〈s, s′〉inv◦∪e,v to be the composition of ∪e with

the invariant map. We define 〈a, a′〉1 =
∑

v〈[dQv − γv], a
′〉inv◦∪e,v.

Proposition 2.2. Let a ∈ Sm(K,E) and a′ ∈ Sn(K,E). We have 〈a, a′〉1 = 〈a, a′〉CT.

Proof. See [2, Proof of Lemma 4.1] or [4, §2.2]. �

Remark 2.3. The general form of the Weil-pairing definition, avoiding the hypothesis

that (2.1) is injective, is given in [5, p. 97]. This variant is used in [6] to generalise Proposi-

tion 2.2 to abelian varieties.

Let C and D be torsors (i.e., principal homogeneous spaces) under E. A morphism

π : D → C is called an n-covering if π(P + Q) = nP + π(Q) for all P ∈ E and Q ∈ D.

If C = E is the trivial torsor, this coincides with the usual notion of n-covering of E.

For Q1, Q2 ∈ D we write Q1 − Q2 for the point on E determined by the fact D is a torsor

under E. Following [12, Chapter 6] we define the coboundary map δπ : C(K) → H1(K,E[n])

by sending P ∈ C(K) to the class of dQ = (σ 7→ σQ−Q) where Q ∈ D(K) with πQ = P .

In the case C = E, there is a standard bijection between the n-coverings of E up to

K-isomorphism, and the Galois cohomology group H1(K,E[n]). It is defined as follows.

Let ψ : D → E be an isomorphsim of curves over K with [n] ◦ ψ = π. Then σψ ◦ ψ−1 is

translation by some ξσ ∈ E[n] and we identify the K-isomorphism class of D with the class

of σ 7→ ξσ in H1(K,E[n]). If Q ∈ D(K) with π(Q) = 0 then we can take ψ : P 7→ P − Q,

in which case D is represented by −dQ. Note also that if C → E is an m-covering of E and

D → C is an n-covering of C, then D → E is an mn-covering of E. If D → E corresponds

to b ∈ H1(K,E[mn]), then C → E corresponds to nb ∈ H1(K,E[m]).

We give a new definition of the Cassels-Tate pairing, again under the hypothesis that (2.1)

is injective. Let C be an m-covering of E over K representing a. By the hypothesis, a is

divisible by n in the Weil-Châtelet group. So there is an n-covering π : D → C defined

over K. Let v be a place of K. Since a is trivial in H1(Kv, E(Kv)), there is a point

Pv ∈ C(Kv). We define 〈a, a′〉2 =
∑

v〈δπ(Pv), a
′〉inv◦∪e,v.

Proposition 2.4. Let a ∈ Sm(K,E) and a′ ∈ Sn(K,E). We have 〈a, a′〉2 = 〈a, a′〉1. In

particular 〈a, a′〉2 does not depend on the choice of the Pv.

Proof. Let RC ∈ C(K) and RD ∈ D(K) such that RC covers 0 on E and RD covers RC .

Since n(dRD) = dRC represents −a, we can choose γ ∈ Z1(K,E[mn]), as defined above,

to be −dRD. For each place v of K we are given Pv ∈ C(Kv). Let βv = Pv − RC , then

dβv = −dRC ; this represents a ∈ H1(Kv, E[m]). Take Qv ∈ E(Kv) with nQv = βv. Then

dQv − γv = d(Qv + RD) and π(Qv + RD) = βv + RC = Pv. Hence δπ(Pv) is represented by

the cocycle dQv − γv appearing in the definition of 〈 , 〉1. �

3. The Cassels pairing

In [3], Cassels defined a bilinear pairing 〈 , 〉Cas on S2(K,E) taking values in µ2 with the

following properties. The element a ∈ S2(K,E) is in the image of S4(K,E) precisely when

〈a, a′〉Cas = +1 for all a′ ∈ S2(K,E). For all a ∈ S2(K,E) we have 〈a, a〉 = +1. These are

properties of the Cassels-Tate pairing on a 2-Selmer group as well.
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A mild generalisation of Cassels’ construction, due to Swinnerton-Dyer [13], gives a pairing

Sm(K,E) × S2(K,E) → µ2. We work with this generalised form of the pairing, which we

continue to denote 〈 , 〉Cas. It reduces to Cassels’ definition in the case m = 2.

We prepare to recall the definition of the pairing. The group S2(K,E) is a subgroup

of H1(K,E[2]). Let A be the finite étale algebra that is the Galois module of maps from

E[2] \ 0 to K. Then µ2(A) is the Galois module of maps from E[2] \ 0 to µ2. Let A

denote the Gal(K/K)-invariants of A. Let E be given by y2 = F (x) where F (x) = x3 +

a2x
2 + a4x + a6 with ai ∈ K. Then A ∼= K[T ]/(F (T )). Let θ1, θ2, θ3 be the three roots

of F (x) in K. We have A ∼=
∏♦K(θj) where

∏♦ denotes taking the product over one

element from each Gal(K/K)-orbit of the set of θj’s. Let Tj = (θj, 0) ∈ E[2] \ 0 and define

w : E[2] → µ2(A) by w(P ) = (Tj 7→ e2(P, Tj)). Then w induces an injective homomorphism

from H1(K,E[2]) to H1(K,µ2(A)), which we also denote w. Let rj be the restriction map

from H1(K,µ2(A)) to H1(K(θj), µ2). Shapiro’s Lemma shows that the map r =
∏♦ rj is

an isomorphism of H1(K,µ2(A)) with
∏♦H1(K(θj), µ2), which we denote H1(A, µ2). For

each j, we have a Kummer isomorphism from H1(K(θj), µ2) to K(θj)
×/(K(θj)

×)2. This

induces an isomorphism, which we denote k, from H1(A, µ2) to A×/(A×)2. Note that the

image of H1(K,E[2]) in A×/(A×)2, under k ◦ r ◦ w, is equal to the kernel of the norm from

A×/(A×)2 to K×/(K×)2.

We recall the definition of 〈 , 〉Cas. Let a ∈ Sm(K,E) and a′ ∈ S2(K,E). Let M =

k ◦ r ◦ w(a′) be the element of A×/(A×)2 representing a′. The element a ∈ Sm(K,E) is

represented by an m-covering C (which Cassels denotes DΛ) of E. Swinnerton-Dyer [13]

shows that there are rational functions fj on C, defined over K(θj), with the following three

properties

(i) div(fj) = 2Dj where [Dj] 7→ Tj = (θj, 0) under the isomorphism of Pic0(C) and E,

(ii) each K-isomorphism of K(θi) to K(θj) sending θi to θj sends fi to fj,

(iii) the product f1f2f3 is a square in K(C).

He then shows that a 2-covering of C may be defined by setting each fj equal to the square

of an indeterminate. In the case m = 2, Cassels gives an explicit construction of the fj

(which he denotes
Lj

L0
) and this makes it practical to compute the pairing. We write f for

the element of A⊗K K(C) given by Tj 7→ fj.

Let v be a prime of K. Since C represents an element in Sm(K,E), there is a point

Pv ∈ C(Kv) (which Cassels calls Cv). For γj, δj ∈ Kv(θj)
×/(Kv(θj)

×)2 we let (γj, δj)Kv(θj)

denote the quadratic Hilbert norm residue symbol. Let Av = A ⊗K Kv and Av be its

Gal(Kv/Kv)-invariants. Then Av
∼=

∏♦Kv(θj), where this
∏♦ is taken over Gal(Kv/Kv)-

orbits. Let (γ, δ)Av =
∏♦(γj, δj)K(θj)v where γ, δ ∈ A×

v/(A
×
v )2 and γj, δj are their images in

Kv(θj)
×/(Kv(θj)

×)2. Cassels defines 〈a, a′〉Cas =
∏

v(f(Pv),M)Av .

4. The main diagram

Now let us introduce Figure 4.1 which will enable us to prove that for a ∈ Sm(K,E),

a′ ∈ S2(K,E) we have 〈a, a′〉Cas = 〈a, a′〉2. We can define the maps w, r and k locally, in an

analogous way, and it will not change the image of M , locally. So we will not change our

notation for these maps.
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(4.1) H1(Kv, E[2])

w

��

× H1(Kv, E[2])

w

��

∪e // H2(Kv, µ2)

QQQQQQQQQQQQ

QQQQQQQQQQQQ

(1)

H1(Kv, µ2(Av))

r ∼=
��

× H1(Kv, µ2(Av))

r ∼=
��

∪t // H2(Kv, µ2(Av))

r ∼=
��

N∗ // H2(Kv, µ2)

inv

��

H1(Av, µ2)

k ∼=
��

× H1(Av, µ2)

k ∼=
��

∪ //

(2)

H2(Av, µ2)Q♦ invj

��

(3)

A×
v/(A

×
v )2 × A×

v/(A
×
v )2

Q♦( , )Kv(θj)
//

(4) ∏♦ µ2
ν // µ2

We identify µ2 ⊗ µ2 = µ2 via (−1)p ⊗ (−1)q = (−1)pq. Since µ2(Av) is the Galois module

of maps from E[2] \ 0 to µ2, this identification induces a map t : µ2(Av) ⊗ µ2(Av) →
µ2(Av). Let ∪t be the cup product map via t. Define N : µ2(Av) → µ2 by (T 7→ γ(T )) 7→∏

T γ(T ), and let N∗ be the map it induces on H2’s. Let rj be the restriction map from

H2(Kv, µ2(Av)) to H2(Kv(θj), µ2). In the same was as for the H1’s, Shapiro’s Lemma shows

that the map r =
∏♦ rj is an isomorphism of H2(Kv, µ2(Av)) with

∏♦H2(Kv(θj), µ2), which

we denote H2(Av, µ2). Let ∪j be the cup product map from H1(Kv(θj), µ2)×H1(Kv(θj), µ2)

to H2(Kv(θj), µ2) and ∪ =
∏♦ ∪j. Let inv : H2(Kv, µ2) → µ2 be the composition of the

invariant map with the isomorphism of 1
2
Z/Z and µ2, and likewise for invj : H2(Kv(θj), µ2) →

µ2. Finally let ν :
∏♦ µ2 → µ2 be the usual product in µ2.

Theorem 4.2. The diagram in Figure 4.1 is commutative.

We prove this theorem using the following lemmas.

Lemma 4.3. Identify µ2 ⊗ µ2 = µ2 as above. Then for all P,Q ∈ E[2] we have

e2(P,Q) =
∏

T∈E[2]\0

e2(P, T )⊗ e2(Q, T ).

Proof. A trivial verification. �

Lemma 4.4. Diagram (1) in Figure 4.1 is commutative.

Proof. Let ξ, ψ ∈ H1(Kv, E[2]) be represented by cocycles which, for ease of notation, we

also write as ξ and ψ. We have ξ ∪e ψ : (σ, τ) 7→ e2(ξσ,
σψτ ) ∈ H2(Kv, µ2).

Now w(ξ) : σ 7→ (T 7→ e2(ξσ, T )) for T ∈ E[2] \ 0 and similarly for w(ψ). Thus

N∗
(
w(ξ) ∪t w(ψ)

)
: (σ, τ) 7→ N∗

(
t
(
(S 7→ e2(ξσ, S))⊗σ(T 7→ e2(ψτ , T ))

))
= N∗

(
t
(
(S 7→ e2(ξσ, S))⊗ (T 7→ σe2(ψτ ,

σ−1

T ))
))

= N∗
(
t
(
(S 7→ e2(ξσ, S))⊗ (T 7→ e2(

σψτ , T ))
))

= N∗
(
T 7→ e2(ξσ, T )⊗ e2(

σψτ , T )
)

=
∏

T∈E[2]\0

e2(ξσ, T )⊗ e2(
σψτ , T ) ∈ µ2 ⊗ µ2.
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By Lemma 4.3 this is the same as ξ ∪e ψ. �

Lemma 4.5. Diagram (2) in Figure 4.1 is commutative

Proof. Let ξ, ψ ∈ H1(Kv, µ2(Av)). As in the proof of the previous lemma, we use the same

symbols for cocycles representing these classes. Let Tj = (θj, 0) ∈ E[2] \ 0. We must show

that rj(ξ ∪t ψ) and rj(ξ) ∪j rj(ψ) are equal in H2(Kv(θj), µ2 ⊗ µ2). We find that they are

represented by cocycles (σ, τ) 7→ ξσ(Tj) ⊗ σ(ψτ )(Tj) and (σ, τ) 7→ ξσ(Tj) ⊗ σ(ψτ (Tj)). Since

σ(Tj) = Tj for all σ ∈ Gal(Kv/Kv(θj)), these cocycles are equal. �

Lemma 4.6. Diagram (3) in Figure 4.1 is commutative.

Proof. We have Av =
∏♦Kv(θj) where Kv(θj) := Kv(θj)⊗Kv Kv. Let Nj denote the norm

induced by taking the product over each element in the Gal(Kv/Kv)-orbit of θj. Recall that

ν :
∏♦ µ2 → µ2 is the usual product in µ2, and let ν∗ be the map it induces on H2’s. Then

the map N∗ in Figure 4.1 factors as the composite of
∏♦Nj and ν∗.

We have the following commutative diagram

H2(Kv, µ2(Av))

r

��

=
∏♦H2(Kv, µ2(Kv(θj)))Q♦ rj

��

Q♦Nj // ∏♦H2(Kv, µ2)Q♦ inv
��

ν∗ // H2(Kv, µ2)

inv

��
H2(Av, µ2) =

∏♦H2(Kv(θj), µ2)

Q♦ invj //

(5) ∏♦ µ2

(6)

ν // µ2.

Diagram (5) commutes by the next lemma. That Diagram (6) commutes is obvious. This

proves the commutativity of Diagram (3). �

Lemma 4.7. Let Xj be the Gal(Kv/Kv)-orbit of Tj. There is a commutative diagram

H2(Kv,Map(Xj, µ2∞))
Nj //

rj ∼=
��

H2(Kv, µ2∞)

inv
��

H2(Kv(θj), µ2∞)
invj // Q/Z.

Proof. Let ι : H2(Kv, µ2∞) → H2(Kv,Map(Xj, µ2∞)) be induced by the inclusion of the

constant maps. Then rj ◦ ι is the restriction map Br(Kv)[2
∞] → Br(Kv(θj))[2

∞]. By [9, §1
Theorem 3] it is multiplication by dj on the invariants, where dj = [Kv(θj) : Kv] = #Xj,

and therefore surjective. Since rj is an isomorphism, it follows that ι is surjective. Then for

η ∈ H2(Kv, µ2∞) we compute

(inv ◦Nj)(ι(η)) = djinv(η) = (invj ◦ rj)(ι(η)).

(Alternatively, the definitions in [1, Chapter III,§9] show that Nj ◦ r−1
j is corestriction, and

the lemma then reduces to a well known property of the invariant maps.) �

Lemma 4.8. Diagram (4) in Figure 4.1 is commutative.

Proof. This is [8, XIV.2 Prop. 5] applied to each constituent field of Av. �
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Lemmas 4.4, 4.5, 4.6, 4.8 together prove Theorem 4.2. Composing the maps in the last

row of (4.1) gives the pairing ( , )Av defined at the end of Section 3. Identifying 1
2
Z/Z with

µ2 we obtain

Corollary 4.9. Let s, s′ ∈ H1(Kv, E[2]). We have 〈s, s′〉inv◦∪e,v = (k◦r◦w(s), k◦r◦w(s′))Av .

Remark 4.10. It would be useful to have an analogue of Corollary 4.9 for elements of

H1(Kv, E[n]) for general n (or at least for n prime). Lemma 4.4 depends on the equality in

Lemma 4.3, which in turn only works for n = 2. This prevents any obvious generalisation

to other values of n. Another difficulty is that we use µ2 ⊂ Kv in our proofs.

5. The main theorem

Let C be a torsor under E, and f ∈ A⊗K K(C) as described in Section 3. Let π : D → C

be the 2-covering obtained by setting each fj equal to the square of an indeterminate. The

following lemma is a variant of [7, Theorem 2.3].

Lemma 5.1. We have (k ◦ r ◦w)(δπ(P )) = f(P ) mod (A×)2 for all P ∈ C(K), away from

the zeroes and poles of the fj.

Proof. Let Q ∈ D(K) with π(Q) = P . It suffices to show that fj(P ) = kjrjw(dQ)

mod (K(θj)
×)2.

We have rjw(dQ) = (σ 7→ e2(
σQ−Q, Tj)) in H1(K(θj), µ2). The construction of D gives

that fj ◦ π = t2j for some rational function tj on D, defined over K(θj). We claim that

e2(S, Tj) = tj(S + X)/tj(X) for any X ∈ D(K) for which the numerator and denominator

are well-defined and non-zero. Indeed, since the Weil pairing is a geometric construction we

may identify D and E over K. This is an identification as torsors under E, so the action of

E on D is identified with the group law on E. Then π is the multiplication-by-2 map on E,

and our claim reduces to the definition of the Weil pairing in [11, Chapter III, §8].

Putting S = σQ−Q and X = Q gives e2(
σQ−Q, Tj) = tj(

σQ)/tj(Q) = σ(tj(Q))/tj(Q) for

any σ ∈ Gal(K(θj)/K). Then rjw(dQ) = (σ 7→ σ(tj(Q))/tj(Q)) and kjrjw(dQ) = t2j(Q) =

fjπ(Q) = fj(P ). �

As usual we identify 1
2
Z/Z with µ2.

Theorem 5.2. Let K be a number field and E an elliptic curve over K. Let a ∈ Sm(K,E)

and a′ ∈ S2(K,E). We have 〈a, a′〉Cas = 〈a, a′〉2 = 〈a, a′〉1 = 〈a, a′〉CT.

Proof. The identification 〈a, a′〉Cas = 〈a, a′〉2 is immediate from Corollary 4.9 and the local

analogue of Lemma 5.1. The other identifications were established in Section 2. �
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