The geometry of the Humbert surface of discriminant N^2

Sam Frengley

University of Cambridge

October 11, 2023

At the start of the 19th century mathematicians were interested in *elliptic integrals* i.e., integrals

$$\int \frac{a\sqrt{f}+b}{c\sqrt{f}+d}dx$$

where $a, b, d, f \in \mathbb{C}[x]$ are polynomials and f has degree 3 or 4.

Liouville (1830s)

Elliptic integrals cannot be given in terms of elementary functions.

Abel (1829), Jacobi (1829), Legendre (1828) ask instead about the "abelian" integral

$$\int \frac{A\sqrt{g}+B}{C\sqrt{g}+D}d\xi.$$

where $A, B, C, D, g \in \mathbb{C}[\xi]$ and g has degree 5 or 6.

They ask: when can this be "reduced" to an elliptic integral (i.e., written as one after writing $x = R(\xi, \sqrt{g})$ and $\sqrt{f} = Q(\xi, \sqrt{g})$ for some rational functions R, Q (of "degree" N).

- N = 2 family found by Legendre and Jacobi (1820s & 30s),
- *N* = 3 Hermite, Goursat, Burkhardt, Brioschi and Bolza (1800s),
- *N* = 4 Bolza (1887).

Take the genus 2 curve C/\mathbb{C}

$$C:\nu^2=g(\xi)$$

where $g(\xi)$ has degree 5 or 6 as above.

Question

When does there exist an elliptic curve $E : y^2 = f(x)$ (where f(x) as above has degree 3, 4) such that C admits a morphism to E?

To help us try to answer this question, lets have a definition.

Definition

We say that a morphism $\phi : C \to E$ is *optimal* if it does not factor through an isogeny (NB. every covering factors through an optimal one).

Example

• If $C: \nu^2 = f(\xi) = g(\xi^2)$ for some g of degree 3, then take $E: y^2 = g(x)$ and the morphism $C \to E$ given by $(x, y) \mapsto (x^2, y)$ is an optimal covering of degree 2.

Write \mathcal{M}_2 for the moduli space of genus 2 curves (this is birational over \mathbb{Q} to \mathbb{A}^3).

Humbert (1899) considered what we now call the Humbert surface of discriminant N^2

$$\mathcal{H}_{N^2} \subset \mathcal{M}_2$$

which parametrises genus 2 curves with an optimal morphism of degree N to an elliptic curve.

Question

What is the geometry of these surfaces??

Birational models for the surface \mathcal{H}_{N^2} (even over \mathbb{Q}) have recently been computed in many cases, for example (non-exhaustively):

N	Reference	
$2 \le N \le 5$	Shaska + Magaard, Völklein, Wijesiri, Wolf,	
	Woodland ('01–'08)	
3	Bröker–Lauter–Howe–Stevenhagen('15), Djukanović ('17)	
4	Bruin–Doerksen ('11)	
$2 \le N \le 11$	Kumar ('14)	
12^\dagger , 14^\dagger , 15^\dagger	F. ('22 + forthcoming)	
$13^\dagger,~17^\dagger$	Fisher ('19–'23)	

[†]These calculations do not give the universal genus 2 curve

A theorem of Enriques–Kodaira breaks up (smooth projective) algebraic surfaces X/\mathbb{C} into certain classes based on the Kodaira dimension.

We only need the *irregularity* = 0 case (i.e., dim $H^1(X, \mathcal{O}_X) = 0$).

Kodaira dimension	Туре
$\kappa = -\infty$	Rational (i.e., birational to \mathbb{P}^2)
$\kappa = 0$	<pre>{K3 {Enriques Honestly elliptic General type</pre>
$\kappa = 1$	Honestly elliptic
$\kappa = 2$	General type

Kodaira dimension	Туре
$\kappa = -\infty$	Rational (i.e., birational to \mathbb{P}^2)
$\kappa = 0$	
$\kappa = 1$	Honestly elliptic
$\kappa = 2$	General type

Rational-pointy-ness

Roughly (with many caveats)

 $\begin{cases} \kappa = -\infty \longleftrightarrow \text{ like genus 0 curves,} \\ \kappa = 0, 1 \longleftrightarrow \text{ like elliptic curves,} \\ \kappa = 2 \longleftrightarrow \text{ like genus } \ge 2 \text{ curves.} \end{cases}$

E.g., in the $\kappa = 2$ case it is the *Bombieri–Lang conjecture* that if X/\mathbb{Q} the rational points lie on a proper Zariski closed subvariety.

We prove the following theorem which was shown by Hermann ('92) when N is a prime number.

Theorem (F.)

The Humbert surface \mathcal{H}_{N^2} (or more precisely its desingularisation) is:

- rational if $N \leq 16$ and N = 18, 20, 24,
- an elliptic K3 surface if N = 17,
- an elliptic surface of Kodaira dimension 1 if N = 19, and
- of general type if $N \ge 22$ and $N \ne 24$.

Clearly 21 is missing, it should be $\kappa = 1$, but TBC.

It follows from:

Theorem (F.)

The geometric genus, arithmetic genus (and Chern numbers)^{*a*} of (a smooth projective surface birational to) \mathcal{H}_{N^2} are given by explicit formulae involving (e.g.,):

- continued fraction expansions,
- class numbers of imaginary quadratic orders,
- data associated to the modular curves $X_{ns}^+(N)$ and $X_s^+(N)^b$.

^aAfter choosing an appropriate model in the birational equivalence class. ^bIn particular we get a very satisfying genus formula for these by computing certain intersection numbers on (a double cover of) \mathcal{H}_{N^2} – the Hilbert modular surface.

Important inputs

- Techniques of Hirzeburch ('70s), Haussmann ('79, '82), and Bassendowski ('85) for "symmetric Hilbert modular surfaces".
- Work of Kani–Schanz ('98) on "modular diagonal quotient surfaces".

More generally...

The Humbert surfaces \mathcal{H}_{N^2} are defined more generally for any discriminant D (in our case N^2). The *Hilbert modular surface* $Y_{-}(D)$ is a double cover of \mathcal{H}_D . As with Hilbert modular surfaces, there is more than one Humber

As with Hilbert modular surfaces, there is more than one Humbert surface with discriminant D (parametrised by the narrow class group of the quadratic order of discriminant D). We can prove the generalisation of the above theorem^a for this more general class of Humbert surfaces of discriminant N^2 .

^aExcept for in some stubborn elliptic K3 and elliptic surface cases