REPRESENTATION THEORY

SIMON WADSLEY

LECTURE 1
1. INTRODUCTION

Representation Theory is the study of how symmetries occur in nature; that is
the study of how groups act by linear transformations on vector spaces.

One major goal of this course will be to understand how to go about classifying
all representations of a given (finite) group. For this we will need to be precise about
what it means for two representations to be the same as well as how representations
may decompose into smaller pieces.

We'll also use Representation Theory to better understand groups themselves.
An example of the latter that we’ll see later in the course is the Burnside p®q¢®-
theorem which tells us that the order of a finite simple group cannot have precisely
two distinct prime factors.

1.1. Linear algebra revision. By vector space we will always mean a finite di-
mensional vector space over a field k unless we say otherwise. This field k& will
usually be algebraically closed and of characteristic zero, for example C, because
this is typically the easiest case. However there are rich theories for more general
fields and we will sometimes hint at them.

Given a vector space V', we define the general linear group of V

GL(V) =Aut(V) ={a: V — V | a linear and invertible}.

This is a group under composition of maps.

Because all our vector spaces are finite dimensional, there is an isomorphism
k¢ = V for some d > 0.! Here d is the isomorphism invariant of V called its
dimension. The choice of isomorphism determines a basis e, ..., eq for V.2 Then

GL(V) = {A € Maty(k) | det(A) # 0}.

This isomorphism is given by the map that sends the linear map « to the matrix
A such that a(e;) = Ajje;.

Exercise. Check that this does indeed define an isomorphism of groups. ie check
that « is an invertible if and only if det A # 0; and that the given map is a bijective
group homomorphism.

1n fact the set of such isomorphisms is in bjiection with GL(V') so typically there are very
many such.
2Here e; is the image of the ith standard basis vector for k% under the isomorphism.
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The choice of isomorphism k% =+ V also induces a decomposition of V as a
direct sum of one-dimensional subspaces

d
V= @ kei.
i=1

This decomposition is not unique is general® but the number of summands is always
dim V.

1.2. Group representations — definitions and examples. Recall that an ac-
tion of a group G on a set X is a function -: G x X — X;(g,z) — ¢ -z such
that

(i) e-xz =z for all z € X;

(ii) (gh)-x=g-(h-z) forall g,h € G and = € X.

Recall also that to define such an action is equivalent to defining a group homo-
morphism p: G — S(X) where S(X) denotes the symmetric group on the set X;
that is the set of bijections from X to itself equipped with the binary operation of
composition of functions.

Definition. A representation p of a group G on a vector space V is a group
homomorphism p: G — GL(V), the group of invertible linear transformations of
V.

By abuse of notation we will sometimes refer to the representation by p, some-
times by the pair (p, V') and sometimes just by V with the p implied. This can
sometimes be confusing but we have to live with it.

Defining a representation of G on V corresponds to assigning a linear map
p(g): V= V to each g € G such that

(i) ple) = idy;
(ii) p(gh) = p(g)p(h) for all g,h € G;
(iii) p(g~t) = p(g)~* for all g € G.

Ezercise. Show that, given condition (ii) holds, conditions (i) and (iii) are equivalent
to one another in the above. Show moreover that conditions (i) and (iii) can be
replaced by the condition that p(g) € GL(V) for all g € G.

Given a basis for V' a representation p is an assignment of a matrix p(g) to each
g € G such that (i),(ii) and (iii) hold.
Definition. The degree of p or dimension of p is dim V.
Definition. We say a representation p is faithful if ker p = {e}.
Ezxamples.

(1) Let G be any group and V = k. Then p: G — Aut(V);g +— id is called the
trivial representation.
(2) Let G = Cy = {£1}, V = R?, then

1 0 -1 0
is a group rep of G on V.

3that is it depends on the choice of basis up to rescaling the basis vectors so there is more than
one such decomposition if d > 1
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Let G = (Z,+), V a vector space, and p a representation of G on V. Then
necessarily p(O) = idy, and p(1) is some invertible linear map o on V. Now
p(2) = p(1+1) = p(1)? = % Inductively we see p(n) = a" for all n > 0.
Finally p(—n) = (a®)~! = (a‘l)". So p(n) = a™ for all n € Z.

Notice that conversely given any invertible linear map a: V — V we may
define a representation of G on V by p(n) = a™.

Thus we see that there is a 1-1 correspondence between representations of Z
and invertible linear transformations given by p — p(1).
Let G = (Z/N,+), and p: G — GL(V) arep. As before we see p(n) = p(1)" for
all n € Z but now we have the additional constraint that p(N) = p(0) = idy.

Thus representations of Z/N correspond to invertible linear maps « such
that o = idy. Of course any linear map such that o’V = idy is invertible so
we may drop the word invertible from this correspondence.
Let G = Ss3, the symmetric group of {1,2,3}, and V = R?. Take an equilateral
triangle in V' centred on 0; then G acts on the triangle by permuting the vertices.
Each such symmetry induces a linear transformation of V. For example g =
(12) induces the reflection through the vertex three and the midpoint of the
opposite side, and g = (123) corresponds to a rotation by 27 /3.

Ezercise. Choose a basis for R2. Write the coordinates of the vertices of the
triangle in this basis. For each g € S5 write down the matrix of the corre-
sponding linear map. Check that this does define a representation of S3 on V.
Would the calculations be easier in a different basis?

LECTURE 2

Given a finite set X we may form the vector space kX of functions X to k with
basis (0, | # € X) where 0,(y) = d,y.*

Then an action of G on X induces a representation p: G — Aut(kX) by
(p(9)f)(x) = f(g~! - z) called the permutation representation of G on X.

It is straightforward to verify that p(g) is linear and that p(e) = idgx. So to
check that p is a representation we must show that p(gh) = p(g)p(h) for each
g,h € G.

For this observe that for each z € X,

p(9)(p(h) f)(w) = (p(h) f) (g™ x) = f(h™ g™ 2) = p(gh) f(x).

Notice that p( )02 (y) = 0p.g-1.y = Og.z,y 50 p(g)ds = dg.z. So by linearity
P(9) (X pex Aada) = 22 Aabyg.
In particular 1f G is finite then the action of G on itself by left multiplication
induces the regular representation kG of G. The regular representation is always
faithful because p(g)d. = d. implies that ge = e and so g = e.
If p: G — GL(V) is a representation of G then we can use p to define a
representation of G on V*

p*(9)(0)(v) = 0(p(g~")v); VO EV vV

“Each f € kX can be written f = Deex f(@)ox

5p*(g) can be viewed as the adjoint of p(g)~!; recall that with respect to a pair of dual bases

V and V* the matrix of adjoint of a linear map is the transpose of the matrix of the linear

map itself. So this is saying A — (A~™1)7 is a homomorphism GLg4(k) — GLg(k).
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(9) More generally, if (p, V), (p’, W) are representations of G then (o, Homy (V, W))
defined by

a(g)(a)(v) = (p'(g9) caop(g)"")v; Vg€ G,a€Homy(V,W),veV

is a rep of G.
Note that if W = k is the trivial rep. this reduces to example 8.

Ezercise. Check the details.® Moreover show that if V = k™ and W = k™ with
the standard bases, so that Homy (V, W) = Mat,, ,(k), then

a(g)(A) = p'(g9)Ap(g)~" for all A € Mat,y, (k) and g € G.

p: G — is a representation of G and #: H — G is a group homomor-
10) If p: G - GL(V) i i fGand 0: H— G i h
phism then pf: H — GL(V) is a representation of H. If H is a subgroup of G
and 6 is inclusion we call this the restriction of p to H.

1.3. The category of representations. We want to classify all representations
of a group G but first we need a good notion of when two representations are the
same.

Definition. We say that p: G — GL(V) and p': G — GL(V') are isomorphic
representations if there is a linear isomorphism ¢: V' — V' such that

p’(g) = (,OOP(Q) o gp_l forall g € G
ie. if p'(g) oo = @ o p(g). We say that ¢ intertwines p and p'.

Notice that idy intertwines p and p; if ¢ intertwines p and p’ then ¢! intertwines

P and p; and if moreover ¢’ intertwines p’ and p” then ¢’ intertwines p and p”.
Thus isomorphism is an equivalence relation.

Notice that if p: G — GL(V) is a representation and ¢: V — V' is a vector
space isomorphism then we may define p': G — GL(V') by p'(g) = ¢ o p(g) o ¢~ L.
Then p’ is also a representation. In particular every representation is isomorphic
to a matrix representation G — GLg(k).

If p,p': G — GLy4(k) are matrix representations of the same degree then an
intertwining map k% — k¢ is an invertible matrix P and the matrices of the reps
it intertwines are related by p'(g) = Pp(g)P~!. Thus matrix representations are
isomorphic precisely if they represent the same family of linear maps with respect
to different bases.

Ezxamples.

(1) If G = {e} then arepresentation of G is just a vector space and two vector spaces
are isomorphic as representations precisely if they have the same dimension.

(2) If G = Z then p: G — GL(V) and p': G — GL(V') are isomorphic reps if
and only if there are bases of V and V’ such that p(1) and p'(1) are the same
matrix. In other words isomorphism classes of representations of Z correspond
to conjugacy classes of invertible matrices. Over C the latter is classified by
Jordan Normal Form (more generally by rational canonical form).

(3) If G = Cy = {1} then isomorphism classes of representations of G correspond
to conjugacy classes of matrices that square to the identity. Since the minimal
polynomial of such a matrix divides X? — 1 = (X — 1)(X + 1) provided the
field does not have characteristic 2 every such matrix is conjugate to a diagonal
matrix with diagonal entries all +1.

6This will also appear on Examples Sheet 1.
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Ezercise. Show that there are precisely n 4+ 1 isomorphism classes of represen-
tations of Cy of dimension n.

LECTURE 3

Definition. Suppose that p: G — GL(V) is a rep. We say that a k-linear subspace
W of V is G-invariant if p(g)(W) C W for all g € G (ie p(g)(w) € W for all g € G
and w € W).

In that case we may define a representation py : G — GL(W) by

pw (9)(w) = p(g)(w) for w e W.

We call (pw, W) a subrepresentation of (p, V).
We call a subrepresentation W of V' proper if W £V and W # 0. We say that
V' £ 0 is irreducible or simple if it has no proper subreps.

FExamples.

(1) Any one-dimensional representation of a group is irreducible.

2) Suppose that p: Z/2 — GL(k?) is given by —1 -1 char k # 2).
0 1

Then p has precisely two proper subrepresentations spanned by (é) and (?)

respectively.

Proof. Tt is easy to see that these two subspaces are G-invariant. Any proper
subrepresentation must be one dimensional and so by spanned by an eigenvector
of p(—1). But the eigenspaces of p(—1) are precisely those already described.

O

(3) If G is C5 then the only irreducible representations are one-dimensional.

Proof. Suppose p: G — GL(V) is an irreducible rep. The minimal polynomial
of p(—1) divides X? — 1 = (X —1)(X + 1). Thus p(—1) has an eigenvector v.
Now 0 # (v) is a subrepresentation of V. Thus V = (v). O

Notice we’ve shown along the way that there are precisely two simple repre-
sentations of G (up to isomorphism) if & doesn’t have characteristic 2 and only
one if it does.

(4) If G = Dg then every irreducible complex representation has dimension at most
2.

Proof. Suppose p: G — GL(V) is an irred. G-rep. Let r be a non-trivial
rotation and s a reflection in G. Then since p(r)® = idy, p(r) has a eigenvector
v, say with eigenvalue \ for some A € C such that \> = 1.7 Consider W :=
(v, p(s)v) C V. Since p(s)p(s)v = v and p(r)p(s)v = p()p(r) "o = A~1p(s)v,
W is G-invariant. Since V is irreducible, W = V. O

Ezercise. Show that there are precisely three irreducible complex representa-

tions of Dg up to isomorphism, one of dimension 2 and two of dimension 1.
(Hint: We can split into cases depending on A and whether p(s)(v) € (v) or

p(s)(v) & (v).

"This is the only point we use that k = C. In fact suffices that X3 — 1 completely factorises in
k.
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(5) If G = (Z,+) and (p, V) is a representation over C then when is V' irreducible?

We can choose a basis for V' so that p(1) is in Jordan Normal Form. It is

easy to see that the Jordan blocks determine invariant subspaces; so if V is

irreducible then there is only one Jordan block. Say p(1) = A then Ae; =
Ae; + e;_1 for some non-zero A and ¢ = 1,...d (where by convention ey = 0).

Ezercise. Show that the invariant subspaces are precisely the subspaces of the
form (eq,...,ex) for k < d.

It follows that the only irreducible representations of (Z, +) are one-dimensional.
p:Z—C* 1 A

Proposition. Suppose p: G — GL(V) is a rep and W < V. Then the following
are equivalent:

(i) W is a subrepresentation;

(ii) there is a basis v1,...,vq of V such that vi,...,v, is a basis of W and the
matrices p(g) are all block upper triangular;
(iii) for every basis v1,...,vq of V such that vy, ..., v, is a basis of W the matrices
p(g) are all block upper triangular.
Proof. Think about it! O

Definition. If W is a subrep of a rep (p,V) of G then we may define a quotient
representation py,w: G — GL(V/W) by pyw(g)(v+ W) = p(g)(v) + W. Since
p(g)W C W for all g € G this is well-defined.

We'll start dropping p now and write g for p(g) where it won’t cause confusion.
Definition. If (p, V) and (p’, W) are reps of G we say a linear map ¢: V — W is
a G-linear map if g = gy (ie p o p(g) = p'(g) o p) for all g € G. We write

Homeg(V,W) = {¢ € Homy(V,W) | ¢ is G linear},
a k-vector space.

Remarks.

(1) ¢ € Homg(V, W) is an intertwining map precisely if ¢ is a bijection and ¢ is in
Homeg(V, W).

(2) If W < V is a subrepresentation then the natural inclusion map ¢: W — V;
w +— w is in Homg(W,V) and the natural projection map 7: V. — V/W;
v~ v+ W is in Homg(V,V/W).

(3) Recall that Homy (V, W) is a G-rep via (gp)(v) = g(p(g~ v)) for ¢ € Homy (V, W),
g € Gand v € V. Then ¢ € Homg(V, W) precisely if go = ¢ for all g € G.

Lemma. If U,V and W are representations of a group G with v1 € Homy(V, W)
and po € Homy (U, V') then

g (propa) =(g9-¢1)0(g-p2)
In particular
@1 € Homg(V,W) = g (p10p2) = p10(g-p2),
2 € Homg (U, V) = g (p10p2) = (g0 p1) o2 and
@1 € Homg(V, W) and 3 € Homg(U,V) = ¢y 0 p3 € Homg (U, W).8

8This lemma appeared in a later lecture but it belongs better here.
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Proof. With the notation in the statement we can compute

(g-¢p1)o(g-w2)=(90p1097 ) (gopaog ) =g (p10p2)
All the other statements follow immediately. O

Lemma (First isomorphism theorem for representations). Suppose (p, V') and (p’', W)
are representations of G and ¢ € Homg(V, W) then
(i) ker ¢ is a subrepresentation of V;
(ii) Tm ¢ is a subrepresentation of W ;
(iii) The linear isomorphism @: V/ker ¢ — Im ¢ given by the first isomorphism of
vector spaces is an intertwining map. Thus V/ker ¢ = Im ¢ as representations
of G.
Proof.
(i) if v € ker ¢ and g € G then p(gv) = gp(v) =0
(ii) if w = ¢(v) € Imp and g € G then gw = p(gv) € Im .
(iii) We know that the linear map ¢ induces a linear isomorphism
@: V/ker o — Imy; v + ker p — (v)

then g (v + ker @) = g(¢(v)) = ¢(gv) = B(gv + ker ¢) 0
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LECTURE 4
2. COMPLETE REDUCIBILITY AND MASCHKE’S THEOREM

Question. Given a representation V and a G-invariant subspace W when can we
find a vector space complement of W that is also G-invariant?

FEzxzamples.
(1) Suppose G = Cy, V =R? and p(—1) = (01 (1)), W = <((1)>> has many

(1) , is a G-invariant.
(2) Suppose G = (Z,+) and p: G — GLy(k) is the representation determined

by
=y 1)

1 . . . . . .
then W = <( > is G-invariant but has no G-invariant complement — if

vector space complements but only one of them,

0
it did then p(1) would be diagonalisable.

Definition. We say a representation V' is a direct sum of (V;)¥_; if each V; is a

subrepresentation of V and V = @le V; as vector spaces.’

Given a family of representations (p;, V;)%_, of G we may define a representation
of G on the vector space
k
V= @ Vi := {(v;)¥_, | v; € V;} with pointwise operations'®

i=1

by
p(9)((vi)) = (pi(g)vi).
. k

We write (p,V) = @,;_,(pi, Vi) =D pi = P Vi.
FExamples.

(1) Suppose G acts on a finite set X and X may be written as the disjoint
union of two G-invariant subsets X7 and X5 (i.e. g-z € X; for all z € X;
and g € G). Then kX = kX; @ kX, under f — (f|x,, flx,)-

Internally kX = {f | f(z) =0Vz e Xo} & {f | f(z) =0Vzr € X1}
More generally if the G-action on X decomposes into orbits as a disjoint
union X = (Ji_, O; then

kX = EB lo,(kX) = P kO;.
i=1

flz) z€0;

0 T € OIL‘.

(2) If G acts transitively on a finite set X then U := {f € kX | > .y f(z) = 0}
and W :={f € kX | f is constant} are subreps of kX.

where 1o, : kX — kX is given by 10, (f)(z) =

e V:ZleVi and for each j =1,...k, V; N3, Vi =0.
10¢the external direct sum of the Vi
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Proof. If f € U then for g € G,

g Ha)=> flg7lx)=0

zeX reX
since x — g~ 'z is a bijection X — X. Similarly if f € W; f(x) = A for all
x € X then for g € G, (9.f)(x) = f(g7'z) = N for all x € X. O

If k is characteristic 0 then kX = U ® W. What happens if k& has

characteristic p > 07

(3) We saw before that every representation of Z/2 over C is a direct sum of
1-dimensional subreps as we may diagonalise p(—1). Let’s think about how
this might generalise:

Suppose that G is a finite abelian group, and (p,V) is a complex rep-
resentation of G. Each element g € G has finite order so has a minimal
polynomial dividing X™ —1 for n = o(g). In particular it has distinct roots.
Thus there is a basis for V' such that p(g) is diagonal. But because G
is abelian p(g) and p(h) commute for each pair g,h € G and so the p(g)
may be simultaneously diagonalised (Sketch proof: if each p(g) is a scalar
matrix the result is clear. Otherwise pick ¢ € G such that p(g) is not a
scalar matrix. Each eigenspace E(\) of p(g) will be G-invariant since G is
abelian. By induction on dim V' we may solve the problem for each subrep
E()\) and then take the union of these bases). Thus V decomposes as a
direct sum of 1-dimensional subreps

Proposition. Suppose p: G — GL(V) is a rep. and V =U @ W as vector spaces.
Then the following are equivalent:

(1)) V=U®@&W as reps;

(ii) there is a basis vy, ..., vq of V such thatvy,..., v, is a basis of U and vy41, ... vq
is a basis for W and the matrices p(g) are all block diagonal;
(iii) for every basis v, ...,vq of V such thatvi,...,v, is a basis of U and vyy1,. .., 04
is a basis for W the matrices p(g) are all block diagonal.
Proof. Think about it! (]

But the following example provides a warning.
Ezample. p: Z/2 — GLa(R); 1 — <_01 _12

The representation R? breaks up as (e;) @ (e; — e2) as subreps even though the
matrix is upper triangular but not diagonal.

) defines a representation (check).

We’ve seen by considering G = Z that it is not true that for every reperesentation
of a group G, every subrepresentation has a G-invariant complement. However, the
following remarkable theorem is true.

Theorem (Maschke’s Theorem). Let G be a finite group and (p,V) a representa-
tion of G over a field k of characteristic zero. Suppose W < V' is a G-invariant

subspace. Then there is a G-invariant complement to W ie a G-invariant subspace
U of V such that V. =U & W.

Corollary (Complete reducibility). If G is a finite group, (p,V) a representation
over a field of characteristic zero. Then V. =2 Wi & ---W, is a direct sum of
representations with each W; irreducible.



10 SIMON WADSLEY

Proof. By induction on dim V. If dimV = 0 or V is irreducible then the result is
clear. Otherwise V has a non-trivial G-invariant subspace W.

By the theorem there is a G-invariant complement U and V = U @ W as G-reps.
But dimU,dim W < dimV, so by induction they can each be decomposed as a
direct sum of irreducibles reps. Thus V can too. O

Ezample. Let G act on a finite set X, and consider the real permutation represen-
tation RX = {f: X — R} with (p(g)f)(x) = f(g~'x).

Idea: with respect to the given basis J, all the matrices p(g) are orthogonal; that
is they preserve distance with respect to the standard inner product (—,—). This
is because (f1, f2) = >, cx J1(%)f2(x) and so for each g € G

(9 fi.9-f2) =D filg 'a) falg™2) = (f1. fo)

zeX

since g1 permutes the elements of X.
In particular if W is a subrep of RX and

Wt = {veRX | (v,w) =0 for all w € W}

then if g € G and v € W+ and w € W we have (gv,w) = (v,g"'w) = 0 since

g 'w € W. Thus W+ is a G-invariant complement to W.

LECTURE 5

Recall, if V' is a complex vector space then a Hermitian inner product is a positive
definite Hermitian sesquilinear form; i.e. (—,—): V x V — C satisfying
(i) (a) (az + by, z) =a(x,z) +b(y,z) and
(b) (z,ay + bz) = a(z,y) + b(z, ) for a,b € C, z,y,z € V (sesquilinear);
(ii) (z,y) = (y,2) (Hermitian);!
(iii) (x,2) > 0 for all x € V\{0} (positive definite).!?

The standard inner product on C™ is given by

n
1=1

Recall also that the unitary group U(n) is the subgroup of GL, (C)

Umn) = {A€GL,(C): ATA=1T}
{A € GL,(C: (Az, Ay) = (z,y) for all z,y € C"}.

Definition. We say that a representation (p, V') of a group G is unitary if there is
a basis for V so the corresponding map G — GL,(C) has image inside U(n).

Lemma. If p: G — GL,(C) is a unitary representation and W < C" is a G-
invariant subspace then

W= {veV:(wv)=0 for allw € W}

is a G-invariant complement to W in C™.

LLif (i) holds then (i)(a) is equivalent to (i)(b).
12(ii) gives that (z,z) € R.
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Proof. Tt suffices to prove that W+ is G-invariant since W+ is a complement to W
by standard linear algebra.

Suppose g € G, € W+ and w € W. Then (gz,w) = {(x,g"'w) = 0 since
g 'w € W. Thus gr € W as required. [

It follows that when & = C the conclusion of Maschke’s Theorem holds whenever
(p, V) is unitary.

Definition. A Hermitian inner product on a G-rep V is G-invariant if (g, gy) =
(z,y) for all g € G and z,y € V; equivalently if (gz, gz) = (z,z) for all g € G and
zeV.

Proposition. A representation (p, V) of G is unitary if and only if V has a G-
invariant inner product.

Proof. If (p, V') is unitary then let ey, ..., e, be a basis for V' such that p(g) € U(n)
for all g € G. Now

Z A€, Z Hi€5 | = Zrzﬂz
i=1 j=1 i=1

defines a G-invariant inner product on V.

Conversely, if V has a G-invariant inner product (—, —) we can find an orthonor-
mal basis vy, ..., v, for V.13 Then (—, —) corresponds to the standard inner product
with respect to this basis and so each p(g) is unitary. O

Proposition (Weyl’s unitary trick). If V' is a complex representation of a finite
group G, then there is a G-invariant Hermitian inner product on V. In particular
V' is unitary and every G-invariant subspace has a G-invariant complement.

Proof. Pick any Hermitian inner product (—, —) on V' (e.g. choose a basis e1,.. ., e,
and take the standard inner product (> Aie;, Y pie;) = > Aipt;). Then define a
new inner product (—, —) on V by averaging:

(z,) |G|Zgﬂcgy-

g€eG

It is easy to see that (—, —) is a Hermitian innder product because (—, —) is so. For
example if a,b € C and z,y,z € V, then

(z,ay +b2) = \GI Z g, g(ay + bz))
geG
= \GI > gz, ag(y) + bg(2))
geG
= ‘G| > (algx, gy) + blgw, g2))
geG

= a(z,y) +b(2y)

as required.

13Choose any basis and then apply Gram-Schmidt.
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ButnowifhEGanda:yEVthen

hxz, hy) = (ghx, ghy) = gz, g )
( PN @ 2

geG g'eG

and so (—, —) is G-invariant. O

It follows that studying complex representations of a finite group is equivalent
to studying unitary, i.e. distance preserving, representations.

Corollary. Every finite subgroup G of GL,(C) is conjugate to a subgroup of U(n).

Proof. If G < GL,(C) the inclusion map p: G — GL,(C) is a representation. By
the unitary trick, p is a unitary representation i.e. there is P € GL,(C) such that
PgP~! € U(n) for all g € G. O

We now generalise our idea to general k of characteristic zero — one way to frame
the above is that when the representation is unitary the orthogonal projection map
V — W is G-linear with kernel W+ a G-invariant complement.

Theorem (Maschke’s Theorem). Let G be a finite group and V a representation of
G over a field k of characteristic zero. Then every subrep W of V has a G-invariant
complement.

Proof. Idea: if 7: V — V is a projection i.e. 72 = 7w then V = Im7 @ ker7 as

vector spaces. If 7 is G-linear then ker 7 and Im 7 are both G-invariant. So we pick
a projection V' — V with image W and average it.

Let m: V. — V be any k-linear projection with 7(w) = w for all w € W and
Imm=W.

Recall that Homg(V, V) is a rep of G via (g¢)(v) = gpg~tv. Let #': V — V be

defined by
|G\ Z 97)
geG

Then Im 7% < W and 7% (w) = |—Cl;‘ deGg(w(g’lw)) = w since g(r(g 7 w)) = w
forall g € G and w € W.

Moreover for h € G, (hn®) = |T1;\ > gechg)m = & dgecdm= 7<.

Thus 7¢ € Homg(V, W) and 7¢ is a G-invariant projection V — V with image
W. So ker 7€ is the required G-invariant complement to W. O

Remarks (on the Proof of Maschke’s Theorem).
(1) We can explicitly compute 7’ and ker 7’ given (p, V') and W via the formula

' ng .
geG

(2) Notice that we only used that char k¥ = 0 when we inverted |G|. So in fact we
only need that the characteristic of k& does not divide |G].
(3) For any G-rep V (with char k not dividing |G]), the map

T vH@Zg v

geG
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is a projection in Homg(V, V) with image VE := {v € V | g-v = v}. Asa
foreshadowing of what is coming soon, notice that

1
dim V% =trr = @l g tr(g)
geG

since tr is linear and for 7: V — V any projection onto W, trm = dim W.
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LECTURE 6
3. SCHUR'S LEMMA

Recall that if V' is a vector space of dimension d then Aut(V) = GL4(k). This
group parameterises the set of bases of V.
The Orbit-Stabiliser Theorem can be used to see that the set ways to decompose
d
V =P V; with each dimV; =1
i=1
are parameterised by GL4(k)/T where T is the subgroup of GL4(k) consisting of
diagonal matrices if we remember the order of the V;; and by GL4(k)/N(T) where
N(T) is the subgroup of GLg4(k) consisting of matrices with precisely one non-zero
entry in each row and in each column if we only consider the decompositon up to
permuting the factors.

Theorem (Schur’s Lemma). Suppose that V' and W are irreducible representations
of G over k. Then

(i) every element of Homg(V, W) is either O or an isomorphism;
(i) if k is algebraically closed then dimy Homeg(V, W) is either 0 or 1.

In other words, when k£ is algebraically closed, irreducible representations are
rigid in the same sense that one-dimensional vector spaces are rigid since they have
the same symmetry group.

Proof. (i) Let ¢ be a non-zero G-linear map from V to W. Then keryp < V is a
G-invariant subspace of V. So as V' is simple, ker ¢ = 0. Similarly 0 # Imp < W
so Imyp = W since W is simple. Thus ¢ is both injective and surjective, so an
isomorphism.

(ii) Suppose 1,92 € Homg(V,W) are non-zero. Then by (i) they are both
isomorphisms. Consider ¢ = @] s € Homg(V, V). Since k is algebraically closed
we may find A an eigenvalue of ¢ then ¢ — Aidy has non-zero (and G-invariant)
kernel and so the map is zero. Thus gol_lcpg = Aidy and @9 = Ap; as required. [

Proposition. If V, Vi and Vy are k-representations of G then
Homg(V, Vi @ Va) 2 Homeg(V, V1) @ Homg(V, V2)

and
HOHlG(‘/l, 69‘/27 V) = HomG(Vvla V) D HOInG(%) V)

Proof. There are natural inclusion maps
i Vi=>VieVsfori=1,2
induce (by post-composition)
Homy (V,V;) — Homy (V, V1 & V).
These together induce a linear isomorphism
Homy (V, V1) & Homy(V, V2) — Homy (V, V1 & V2)
given by (f1, f2) = t1f1+t2f2. Since t1, 1y are G-linear this is an intertwining map:

g-(fi+afe) =g fr)+12(g- f2)-

14This is also the normaliser of T’ in GLg(k).
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Since in general an intertwining map ¢: U — W between representations of G
induces an isomorphism of G-fixed points — g p(u) = ¢(u) if and only if g-u = u
for all g € G — and Homg (U, W) consists of the G-fixed points of Homy (U, W), it
follows that there is an induced isomorphism

Homg(V, Vl) &) HOHI(;(V, VQ) — HOmg(‘/, Vi@ ‘/2)

as claimed.
Similarly the natural projection maps

mi: Vi@d Vo=V, fori=1,2
induce a G-linear isomorphism
Homy (V1,V) @ Homy (Va, V) — Homy (Vi @ Vo, V)

by precomposition — (f1, fo) — fim1 + fame and again it follows that there is an
induced isomorphism

Homg(V4,V) @ Homg (Va, V) — Homg(Vh @ Vs, V)

as claimed. 0O

Corollary. If V=@, V; and W = @;_, W; then
T s

Homg(V, W) = @ @Homc(w, Wj).

i=1 j=1
Proof. This follows from the Proposition by a straightforward induction argument.
O

Corollary. Suppose k is algebraically closed and

Vzévi
i=1

is a decomposition of a representation of G over k into irreducible components.
Then for each irreducible representation W of G,

{i |V 2 W}| = dimHomg (W, V) = dim Homg (V, W).

Proof. By the last result

Home (W, V) = @D Home (W, V)
i=1
and so
dim Home(W, V) = >~ dim Home (W, V).
i=1
and similarly
Homg (V, W) = €D Homg (V;, W)
=1
and so .
dim Homg(V, W) = Z dim Homg (V;, W).

=1
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Thus it suffices to show that

1 iftw=Vy
dim Homg (W, V;) = dim Homg (V;, W) = '
0 ifW2V
and this is precisely the statement of Schur’s Lemma when k is algebraically
closed.!® (]

Important question: How can we compute these numbers dim Homg (V, W)?16

Corollary. (of Schur’s Lemma) If a finite group G has a faithful irreducible rep-
resentation over an algebraically closed field k then the centre of G, Z(QG) is cyclic.

Proof. Let V' be a faithful complex irreducible rep of G, and let z € Z(G). Then
let ,: V. — V be defined by ¢,(v) = zv. Since gz = zg for all g € G, ¢, €
Homg(V,V) = kidy by Schur, ¢, = A, idy, say.

Now Z(G) — k*; z — ), is a representation of Z(G) that must be faithful since
V is faithful. In particular Z(G) is isomorphic to a finite subgroup of k*. But
every such subgroup is cyclic. O

Corollary. (of Schur’s Lemma) Every irreducible compler representation of an
abelian group G is one-dimensional.

Proof. Let (p,V) be a complex irreducible rep of G. For each g € G, p(g) €
Homg(V,V). So by Schur, p(g) = Agidy for some A\, € C. Thus for v € V
non-zero, {v) is a subrep of V. O

Examples. We can list all the irreducible complex representations of Cy and Ca x Cs

G:C4:<l‘>. G:CQX02:<$,y>.

‘ 1 r 2?23 ‘ 1 z y Ty

p1 |1 1 1 1 p |1 1 1 1

p2 |1 i —1 —i p2 |1 —1 1 -1

pP3 1 -1 1 1 P3 1 1 -1 -1

pe |1 —1 —1 1 pe |1 -1 -1 1
LECTURE 7

Proposition. Every finite abelian group G has precisely |G| complex irreducible
representations.

Proof. Let p be an irreducible complex rep of G. By the last corollary, dimp = 1.
So p: G — C* is a group homomorphism.

If G = H x K decomposes as a direct product of its subgroups H and K then
there is a 1-1 correspondence

Hom(G, C*) +~ Hom(H,C*) x Hom(K,C*)

given by restriction ¢ — (¢|g, ¢|x).1”

15 question to ponder for those who like to think about such things: what can be said if k is
not algebraically closed?

6We saw in our remarks on the proof of Maschke’s Theorem that if k denotes the trivial
representation then dim Homg(k,V) = dim V& = ‘%‘ deg trp(g) when k has characteristic
Zero.

7T his crucially uses that C* is abelian.
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Since G is a finite abelian group G = C,,, X --- x (), some nq,...,n,. Thus by
an induction argument on r we may reduce to the case G = C,, = (z) is cyclic.

Now p is determined by p(z) and p(z)™ = 1 so p(x) must be an nth root of unity.
Moreover for each 0 < j < n we can deﬁne the representation

p;(a™ )—e " for each m € Z

giving the required set of n representations. ([

Lemma. If (p1,V1) and (p2, Vo) are non-isomorphic one-dimensional representa-
tions of a finite group G then ) g p1(g7Hpa(g) =0

Proof. We've seen that Homy(V7, V3) is a representation of G under

g+ =p2A9)ep1(97 )
Moreover > g - ¢ € Homg(Vi,V2) = 0 by Schur. Pick an isomorphism ¢ €
Homy (V4, Va). Then

0= Z p2(9)pp1(g Z p1(g ,02 ®-

geG geG

Since ¢ is injective this suffices. O

If V is a representation of a group G that is completely reducible and W is
any irreducible representation of G then the W-isotypic component of V is the
smallest subrepresentation of V' containing all simple subrepresentations isomorphic
to W. This exists since if (V;);er are subrepresentations of V' containing all simple
subrepresentations isomorphic to W then so is (,c; V. 18

We say that V has a unique isotypical decomposition if V is the direct sum of
its WW-isotypic components as W varies over all simple representations of V' (up to
isomorphism).

Corollary. Suppose G is a finite abelian group then every complex representation
V' of G has a unique isotypical decomposition.

Proof. For each homomorphism 6;: G — C* (i = 1,...,|G|) we can define W; to
be the subspace of V' defined by
W; ={v eV |plg)v=>0;(g)v for all g € G},

the 6;-isotypic component of V.

Since V' is completely reducible and every irreducible rep of G is one dimensional
V =3 W,. We need to show that Y w; = 0 with each w; € W; implies w; = 0 for
all 7.

But Y w; = 0 with w; in W; certainly implies 0 = p(g) > w; = > 0;(9)w;. By
the last Lemma it follows that for each j,

0= | D 6ilg ile) | wi=D_6i(g7") = |Glw;.

i geG geG
Thus w; = 0.19 (I
You will extend this result to all finite groups on Example Sheet 2.

181t can also be realised as the vector space sum of all subrepresentations isomorphic to W.
19r¢ you inspect the proof you’ll see we only really use k is algebraically closed and |G| # 0 € k.
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4. CHARACTERS

Summary so far. We want to classify all representations of groups G. We’ve seen
that if G is finite and k has characteristic zero then every representation V' decom-
poses as V = @ n;V; with V; irreducible and pairwise non-isomorphic and n; > 0.
Moreover if k is also algebraically closed, we've seen that n; = dim Homg (V;, V).

Our next goals are to classify all irreducible representations of a finite group and
understand how to compute the n; given V. We’re going to do this using character
theory.

4.1. Definitions.

Definition. Given a representation p: G — GL(V), the character of p is the
function x = x, = xv: G — k given by g — trp(g).

Since for matrices tr(AB) = tr(BA), the character does not depend on the choice
of basis for V [tr(X1AX) = tr(AX X ~!) = tr(A)]. By the same argument we also
see that equivalent reps have the same character.

Ezample. Let G = Dg = (s,t | s> = 1,3 = 1,sts~! = t71), the dihedral group of
order 6. This acts on R? by symmetries of the triangle; with ¢ acting by rotation
by 27/3 and s acting by a reflection. To compute the character of this rep we
just need to know the eigenvalues of the action of each element. Each reflection
(element of the form st?) will act by a matrix with eigenvalues 4-1. Thus y(st') =0
for all 4. The eigenvalues of each non-trivial rotation must be non-real cube roots
of unity and sum to a real number. Thus p(t) = p(t2) = ¢35 + e~ 5 = —1 and
py=1+1=2.
Proposition. Let (p,V) be a rep of G with character x

(i) x(e) = dimV;

(ii) x(g) = x(hgh™") for all g,h € G;

(ii1) If X' is the character of (p', V') then x + X’ is the character of V& V'.

(iv) If k = C and o(g) < oo, x(g7 1) = x(9);

Proof.

(i) x(e) =tridy =dim V.

(i) p(hgh™1) = p(h)p(g)p(h)~t. Thus p(hgh~!) and p(g) are conjugate and so
have the same trace.

(iii) is clear.

(iv) if p(g) has eigenvalues A1, ..., A, (with multiplicity) then x(g) = >_ A;. But
as o(g) is finite each \; must have length 1. Thus x(g) = Y.\ = Y. \; " but, of
course, the \;” ! are the eigenvalues of g—1.2 (|

The proposition tells us that the character of p contains very little data; an
element of k£ for each conjugacy class in G. The extraordinary thing that we will
see is that, at least when G is finite and k = C, it contains all we need to know to
reconstruct p up to isomorphism.

20ye only used that the eigenvalues are unit length. For this it suffices that the representation
be unitary even if o(g) = oco.
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LECTURE 8

Definition. We say a function f: G — k is a class function if f(hgh™') = f(g)
for all g,h € G. We’ll write Cg for the k-vector space of class functions on G.

Notice that if Oy, ..., O, is a list of the conjugacy classes of G then the indicator
functions 1, : G — C given by

1 ()7 1 ifgeO;
o= N0 itg g0,

form a basis for Cq. In particular dim C¢ is the number of conjugacy classes in G.

4.2. Orthogonality of characters. We'll now assume that G is a finite group
and k = C unless we say otherwise. 2!

We can make Cg, the space of class functions, into a Hermitian inner product
space by defining

(fi fo)e |G| > filo)

geG

It is easy to check that this does define an Hermitian inner product?? and that the
functions dp, are pairwise orthogonal. Notice that (do,,do,)c = ||OG1"‘ = m for
any x; € O;.

Thus if z1,...,z, are conjugacy class representatives, then we can write

(f1, fo)e Z |CG ;) f2(i).

Ezample. G = Dg = (s,t | s2 = t3 = e,sts = t~!) has conjugacy classes
{eh At} {5, 51,512} and

(1 f2)a = g f(e) + 5 G fals) + 5 HDfal0).

Theorem (Orthogonality of characters). If V and V' are complex irreducible rep-
resentations of a finite group G then

1 vV
0 otherwise.

(xv,xv)a —{

This should remind you of Schur’s Lemma and in fact the similarity is no coin-
cidence. It is a corollary of Schur. Before we prove it we need a couple of lemmas.

Lemma. IfV and W are unitary representations of a group G then

XHomk(V,W)(g) = XV(Q)XW(Q)
for each g € G.

211f k = % has characteristic zero the main results are all essentially true but the story needs
to be told slightly differently.

221 fact it even defines an inner product on CG with pairwise orthogonal basis (64 | g € G)
and Cg is a subspace. For more general k we define (f1, f2)g = ﬁ ZQGG fi(g™Y) f2(g) to get a

non-degenerate bilinear form with (dg,05) =6,-1 5,
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Proof. Given g € G we may choose bases v1,...,v, for V and wy,...,w,, for W
such that gv; = A\;jv; and gw; = pjw;. Then the functions a;;(vy) = §;pw; extend
to linear maps that form a basis for Homy,(V, W)?3 and

(9 i) (k) =g~ (uis(g™" - vr)) = Ay " piws
thus g - ay; = /\j_lu,»aij and

XHom (V.W) Z At = xv (g™ xw (9) = xv (9)xw (9)

as claimed. 0
Lemma. If U is a representation of a finite group G then

dimU® = dim{u € U | gu = u Vg € G} = (1, xv)

|G| ZXU

geG

Proof. Define 7: U — U by w(u) = ﬁ > geg 9u- Then m(u) € UC for all u € U.
Moreover m;¢ = idye by direct calculation. Thus

|G\ ZXU

geG

dimU% = tridye = trm =

as required. O

We can use these two lemmas to prove the following.
Proposition. If V and W are representations of G then
dim Home(V, W) = (xv, xw)-

Proof. By the lemmas dim Homg(V, W) = (1, xvxw). But it is easy to compute
that (1, xvvxw) = (xv,Xxw) as required. O

Corollary (Orthogonality of characters). If V and W are irreducible representa-
tions of G then

1 fvVvew
0 otherwise.

<XV& XW> = {

In particular if xy = xw then V= W.

Proof. Apply the Proposition and Schur’s Lemma. If yy = xw, with V and W
irreducible, then dim Homg(V, W) = (xv,xv)c >0 and so V= W. O

Corollary. If p is a reps of G then
Ve @ <XW7 Xp>GW

wirred
rep of G/~

In particular if p’ is another representation with x, = X, then p = p'.

23a¢j is represented by the matrix with a 1 in entry ij and Os elsewhere with respect to the
given bases
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Proof. By Machke’s Theorem there are non-negative integers ny, such that
v 4 nyw W.
w irred rep ofa

Moreover we've seen that ny = dim Homg (W, V') and dim Homg (W, V) = (xw, X,) ¢
by the Proposition so the first part follows.

Since
@ <XW7 Xp)GW
w irred
rep of G/~
only depend on Y, the second part follows. (I

Notice that complete irreducibility was a key part of the proof of this corollary,
as well as orthogonality of characters. For example the two reps of Z given by

1~ idcz and 1 — are not isomorphic but have the same trace. Indeed

1 1
0 1
they both have trivial subrepresentations with trivial quotient. The slogan might
be ‘Characters can’t see gluing data.’

Corollary. If p is a complex representation of G with character x then p is irre-
ducible if and only if (x,x)c = 1.

Proof. One direction follows immediately from the theorem on orthogonality of
characters. For the other direction, assume that (x, x)c = 1. Then we may write
X = Y nwxw for some non-negative integers ny,. By orthogonality of characters
1={(x,x) =Y. n¥,. Thus x = xyw for some W and p is irreducible. O

This is a good way of calcuating whether a representation is irreducible.

FEzxzample.
Consider the action of Dg on C? by extending the symmetries of a triangle.

x(1) =2, x(s) = x(st) = x(st?) = 0, and x(t) = x(t*) = ~1. Now
1
6

so this rep is irreducible. Of course we had already established this by hand in (an
exercise in) Lecture 3.

ox) = =22 +3-0°+2-(-1)%) =1

LECTURE 9

Theorem (The character table is square). The irreducible characters of a finite
group G form a orthonormal basis for the space of class functions Cg with respect

to (f1, f2)a = ﬁzgec f1(g)f2(9)-

Proof. We already know that the irreducible characters form an orthonormal set.
So it remains to show that they span Cg.

Let I = (x1,...,Xxr) be the C-linear span of the irreducible characters. We need
to show that

It ={feCs:{fixi)a=0fori=1,...r} =0.
Suppose f € Cg. For each representation (p, V) of G we may define a linear map
¢ =psv € Homy(V,V) by ¢ = &7 3 e F(9)n(9)-
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Now,

p(h) " op(h) = ﬁ > flg)p(h~ gh) = ﬁ > gl =

geG 9'eG

since f is a class function and G — G; g — hgh~! is a bijection, and we see that in
fact ¢y € Homg(V, V).

Moreover, if V' is an irreducible representation then ¢y = Aidy for some A € C
by Schur’s Lemma. If additionally f € I+ then

AdimV =tropy = (f,xv) =0

so pryv = 0.

But every representation breaks up as a direct sum of irreducible representations
V =@V, and ¢y, breaks up as @ ¢yv;. So ¢y = 0 whenever f € It and V is
a representation of G.

But now if we take V' to be the regular representation CG then

0=prcade =|GI7" Y flg)d, = |G|7'T.

geG
Thus f = 0. (]

Corollary. The number of irreducible representations is the number of conjugacy
classes in the group.

Corollary. For each g € G, x(g) is real for every character x if and only if g is

conjugate to g~ '.

Proof. Since x(97") = x(9), x(9) € R if and only if x(g) = x(97").
Since the irreducible characters span the space of class functions, x(g) = x(g~})

for every character y if and only if f(g) = f(g~!) for every f € Cq.
Since 1o, is a class function for each ¢ = 1,...,r, this last is equivalent to g and
¢! living in the same conjugacy class. [

4.3. Character tables. We now want to classify all the irreducible representations
of a given finite group and we know that it suffices to write down the characters of
each one.

The character table of a group is defined as follows: we list the conjugacy classes
of G, Oq,...,0, (by convention always O; = {e}) and choose g; € O; we then list

the irreducible characters x1,...,x, (by convention x; = x¢ the character of the
trivial rep. Then we write the matrix
€ g2 g G
1| 1 1 ... 1 1
XJ P PR PRI Xj (gl)
Xr

We sometimes write the size of the conjugacy class O; above g; and sometimes the
equivalent data |Ca(g:)].

Ezxamples.
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27

C3 = (z) and let w = €73 so w? = w.

[ V)

e T x
x1]1 1 1
X2 1 w w
X3 1 @ w

Notice that the rows are indeed pairwise orthogonal with respect to (—, —)¢.

The columns are too with respect to the standard inner product in this case.
S3

There are three conjugacy classes: O; = {e}; Oz = {(12),(23),(13)}; and
O3 = {(123), (132)}. Thus there are also three irreducible representations. We
know that the trivial representation 1 has character 1(g) = 1 for all g € G. We
also know another 1-dimensional representation e: S3 — {£1} given by g — 1
if g is even and g — —1 if g is odd.

To compute the character y of the last representation we may use orthogo-
nality of characters. Let x(e) = a, x((12)) = b and x((123)) = ¢ (a, b and c are
each real since each g is conjugate to its inverse). We know that

1

0=(1L,x) = 6(a+3b+20),
1

0= (e x) E(Q —3b+ 2¢) and
1

1={,x) = 6(a2+362+202).

Thus we see quickly that b = 0, a + 2¢ = 0 and a® + 2¢? = 6. We also know

that a is a positive integer. Thus a =2 and ¢ = —1.
|O;] 11 3 2
e (12) (123)
1 (1 1 1
e |1 -1 1
X |2 O -1

In fact we already knew about this 2-dimensional representation; it is the one
coming from the symmetries of a triangle inside R2.

Once again the rows are orthogonal under (f1, fo) = Zi’ mfl (g9i) f2(9:)
and the columns are also orthogonal with respect to the standard inner product.

If we compute their length we get:
12412422 =6 = | S
P4 (-1)2 4+ 0% =2 =|Cs,((12))]
124124 (=1)? =3 =|Cs,((123))].

This is an instance of a more general phenomenon.

Proposition (Column Orthogonality). If G is a finite group and x1,...,Xr 1S a
complete list of the irreducible characters of G then for each g,h € G,

L 0 if g and h are not conjugate in G
Z xi(9)xi(h) = . . )
= |Ca(g)| if g and h are conjugate in G.
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In particular
T T

Z(dimVi)Q = Zx,»(e)2 =|G|.

i=1 i=1

Proof. Let X be character table thought of as a matrix; X;; = x;(g;) and let D be
the diagonal matrix whose diagonal entries are |Cq/(g;)]
Orthogonality of characters tell us that

D 1Ca(gr) | Xk X = 8y
k

ie XD !XT =1. . .
Since X is square we may write this as D™'X = X~!. Thus X X = D. That
is
> xi(g:)xk(g;) = 6ij1Ca(g:)|
k

as required. O

Our main goal for the next couple of weeks will be finding techniques for con-
structing character tables of a group.

4.4. Permuation representations. Recall that if X is a finite set with G-action
then CX = {f: X — C} is a representation of G via gf(z) = f(g~'z) for all
feCX,geGandx e X or equivalently g - 6, = dg4. for all g € G and z € X.

LECTURE 10
Lemma. If y is the character of CX then x(g) = |{z € X | gz = z}|

Proof. It X = {x1,...,zq4} and gz; = x; then gd,, = 0, so the ith column of g has
a 1 in the jth entry and zeros elsewhere. So it contributes 1 to the trace precisely

Corollary. If Vi,...,V, is a complete list of irreducible reps of a finite group G
then the regular representation decomposes as

-
CG = P(dim V;)V;.
i=1
In particular every irreducible representation is isomorphic to a subrepresenta-
tion of the reqular representation and

G| = (dimV;)*.
Proof. We need to prove dim Homg(V;, CG) = dimV; for i = 1,...,r. But

dim Homg(V;,CG) = (xv;,Xxcc)e

- ‘—él Z Xv; (9)xca(g)

geG
= dimV;

G| g=e

and Yy, = dim V. [l
0 g#e XV;

since xca(9) = {
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Proposition (Burnside’s Lemma). Let G be a finite group and X a finite set with
a G-action. Then (1, xcx ) is the number of orbits of G on X.

Proof.
IG[(1,xcx)e = ZX(CX(Q)

geG
= > HreX|gz=a}
geG
= |{(g,2) € G x X | gz = z}|
= > HgeGlgr=ua}

zeX

= Y [Stabg(x)]

zeX

So
(1,xca)e = Z _ (by the Orbit-Stabiliser Theorem)
| > Orbala)]

1
- (%)
or(‘tg)its z€0;

i

= number of orbits

as required. 0

Note that if X = Ule O; is the orbit decomposition of X then we saw before
that CX = @2:1 CO; so Burnside’s Lemma says that each CO; contains precisely
one copy of the trivial representation C when it is decomposed as a direct sum of
irreducible representations — the span of the constant function.

If X and Y are two sets with a G-action we may view X X Y as a set with a
G-action via (g, (z,y)) — (gx,gy) for all g € G, x € X and y € Y. Moreover if X
and Y are both finite then xcxxy = Xcx - Xcy since

{(zy) e XxY:g-(wy)=(ry)t={reX:gv=a)x{yeY g-y=y}

Corollary. If G is a finite group and X is a finite set with a G-action and x is
the character of the permutation representation CX then (x,x)c is the number of
G-orbits on X x X.

Proof. {xx,Xx)a = ﬁdeG xx(9)xx(9) = (1,xxxx)c and the result follows
from Burnside’s Lemma. U

Remark. If X is any set with a G-action with |X| > 1 then {(z,z)|z € X} C X x X
is G-stable and so is the complement {(z,y) € X x X | x # y}.

Definition. We say that G acts 2-transitively on X if for all z1,z9,y1,y2 € X
with 21 # y1 and x4 # yo there is ¢ € G such that g-z1 = x5 and g - y1 = yo-
Equivalently G has only two orbits on X x X.

By the Corollary if G acts 2-transitively on X then (xcx,xcx) = 2. Thus if
CX =5 n;V; with V; irreducible and pairwise non-isomorphic then an = 2 and
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so CX has two non-isomorphic irreducible summands — explicitly these are the set
of constant functions and the set V.= {f € CX: Y _\ f(z) =0}. Then xv is an
irreducible character with

xv (g) = (number of fixed points of g on X) — 1.
Note S,, always acts 2-transitively on {1,...,n} via the natural action so
x(g) = number of fixed points of g — 1

is always an irreducible character of S,,. In fact for n > 1 the sign homomorphism
e can be viewed as defining a 2-transitive action on a set {—1,1} of size 2 and
Xc{-1,1} = 1 + € so the sign representation also arises in this way.

Ezercise. It G = GLy(F),) then decompose the permutation rep of G coming from
the action of G on F), U {oco} by Mébius transformations.

FExamples.
(1) G = S4: the character table is as follows
|Ca(x;)| | 24 8 3 4 4
|O;] 1 3 8 6 6
2 e (12)(34) (123) (12) (1234)
1 1 1 1 1
€ 1 1 1 -1 -1
Y3 3 -1 0 1 1
Y4 3 -1 0 -1 1
s 2 2 10 0

Proof. The trivial 1 and sign e characters may be constructed in the same way
as for Ss.
By our discussion above

Xc{1,2,34) =1+ xv

for some irreducible representation V' of dimension 3 and we may define x3
to be xv. Its values x3(g) are (number of fixed points of g) — 1 and can be
computed directly to be the claimed values.

We saw on Example Sheet 1 (Q2) that given a 1-dimensional represntation 6
and an irreducible representation p we may form another irreducible representa-
tion @ p by 0@ p(g) = 0(g)p(g). It is not hard to see that xgg,(g) = 0(9)x,(9)-
Thus we get another irreducible character exs that we compute by multiplying
characters and may set this to be x4.

We can then complete the character table using column orthogonality: We
note that 24 = 12 + 12 4 32 + 32 + y5(e)? thus ys(e) = 2. Then using
Z? Xi(1)xi(g) = 0 we can construct the remaining values in the table. O

(2) G = A4. Each irreducible representation of Sy may be restricted to A4 and its
character values on elements of A, will be unchanged. In this way we get three
characters of Ay: 1, ¥9 = x3|a, and ¥3 = x5|a,. Of course 1 is irreducible
since it has dimension 1. Computing

(2, ¥2)a, = %(32 +3(-1)2+8(0*) =1
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we see 1y also remains irreducible.?* However

1
(P3,13) = 5(22 +3(2%) +8(-1)%) =2
S0 13 breaks up into two non-isomorphic irreducible reps of Aj.

FEzercise. Use this information to construct the whole character table of Ay.

24Note that the conjugacy class of (123) in S4 breaks into two classes of size 4 in A4 but that
doesn’t matter for this calculation since 12 takes the same value on these two classes.



28 SIMON WADSLEY

LECTURE 11
5. THE CHARACTER RING

We've seen already that algebraic structure on Cg for a finite group G is a
shadow of representation theoretic information: if V4 and V5 are representations
that xviev, = Xvi + Xvas Xo = 0, dimHomg(V1, V2) = (x1,Xx2). An alternative
way of viewing this is that the category of representations is a model for algebraic
structure on Cg.

5.1. Tensor products. We've seen that xcxxy = Xcx - xcy- We've also seen that
when 6 and p are representations with dim# = 1 there is a representation 6 ® p
such that xes, = X6-X,- We want to generalise these i.e. given any representations
p1, p2 build a representation p; ® pa such that x, @p. = Xp1 * Xps-

Suppose that V and W are vector spaces over a field k, with bases vy,..., v,
and wy, ..., w, respectively. We may view V @ W either as the vector space with
basis v1, ..., Um, W1, ..., Wy (S0 dimV & W = dimV + dim W) or more abstractly
as the vector space of pairs (v, w) with v € V and w € W and pointwise operations.

Definition. The tensor product V@ W of V and W is the k-vector space with
basis given by symbols v; ® w; for 1 <¢ < m and 1 < j < n and so
dmV W =dimV - dim W.

Ezample. If X and Y are sets then kX ® kY has basis 0, ®d, forz € X andy € Y.
Notice that kX ® kY is isomorphic to kX x Y under 6, ® 0y — 0z 4.

Notation. Ifv =) A\v; €V andw =) pjw; € W,
VRwW: :Z)\i,uj(viééwj) eVeWw

0,J
Note that, in general, not every element of V ® W may be written in the form

vRw (eg v1 ® w1 + vo @ wa). The smallest number of summands that are required
is known as the rank of the tensor.

Lemma. The map VxW — V @ W given by (v,w) — v ® w is bilinear.
Proof. First, we should prove that if z,z1,2z0 € V and y,y1,y2 € W and v1,10 € k
then
T ® (Y1 + 1ey2) = ri(z @ 1) + v2(z @ y2)
and
(a1 +1022) @y =11(21 @ Y) + v2(22 @ Y).

We'll just do the first; the second follows by symmetry.
Write x = >, \ivi, Y = Zj yfwj for kK =1,2. Then

x® (1y1 + vays) = Z )\i(ul,u} + Vgu?)vi ® w;
4,
and
v @) +re(z@y) = v | Y Nipj (v @wy) | +rva | D i (v @ wy)
4,5 ]

These are equal. ([
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FEzercise. Show that given vector spaces U,V and W there is a 1 —1 correspondence
{linear maps V@ W — U} — {bilinear maps V x W — U}

given by precomposition with the bilinear map (v, w) — v ® w above.

Lemma. If x1,...,2, is any basis of V and y1,...,y, is any basis of W then

z;Qyj for L<i<m and 1 < j < nisa basis for V@ W. Thus the definition of
V @ W does not depend on the choice of bases.

Proof. 1t suffices to prove that the set {z; ® y,;} spans V @ W since it has size mn.
But if v; =) Ay, and w; = Y, Bsjys then v; ® w; = ZT)S AyiBsjr, @ys. O

Remark (for enthusiastists). In fact we could have defined V' ® W in a basis inde-
pendent way in the first place: let F be the (infinite dimensional) vector space with
basis (V@ w | v € V,w € W); and R be the subspace generated by

T @ (11 + v2y2) — vi(x @ Y1) + 12(T @ yo)
and

(171 + 1272) @Y — 11 (21 @ Y) + va(72 @ Y)
for all z, 21,22 € V| y,y1,y2 € W and vq,v5 € k; then V @ W = F/R naturally.

FEzercise. Show that for vector spaces U,V and W there is a natural (basis inde-
pendent) isomorphism

UaV)oW = UaW)e (VeWw).

Definition. Suppose that V and W are vector spaces with bases vy, ...,v,, and
Wi, ..., w, and ¢: V. — V and ¥: W — W are linear maps. We can define
YRV VW — VW as follows:

(P @) (vi @ wy) = (i) @ Ph(w).
Ezample. If ¢ is represented by the matrix A;; and 1 is represented by the matrix

B;; and we order the basis v; ® w; lexicographically (ie v1 ® wi,v1 @ wa,...,v1 @
Wy, Uy @ W, . .., Um & wy,) then ¢ ® 1 is represented by the block matrix
AnB ApB

An B  AxnB

Lemma. The linear map ¢ @ ¥ does not depend on the choice of bases.
Proof. Tt suffices to show that for any v € V and w € W,
(P @Y)(v@w) = p(v) @ p(w).
Writing v = >~ A\jv; and w = ) pjw; we see
(PR (v w) =Y Nipp(v:) ® P(w;) = p(v) ® P(w)
4,J
as required. O

Remark. The proof really just says VxW — VW defined by (v, w) — ¢(v)@1(w)
is bilinear and ¢ ® 9 is its correspondent in the bijection

{linear maps V@ W — V @ W} — {bilinear maps V x W — V @ W}



30 SIMON WADSLEY

from earlier.?®

Lemma. Suppose that ¢, @1, 02 € Homy(V,V) and 1, 11,12 € Homy (W, W)

(i) (pr192) ® (Y11h2) = (1 @ 1) (w2 ® Pa) € Homy(V @ W,V @ W);
(’LZ) idy ®idy = id\/®w,’ and
(i) tr(e ® ) =tro-trap.

Proof. Given v € V, w € W we can use the previous lemma to compute
(p12) @ (Y11h2) (v @ W) = P12 (V) ® P1¥h2(w) = (1 ® 1) (P2 ® P2)(v @ W).

Since elements of the form v ® w span V ® W and all maps are linear it follows that

(p12) @ (Y11h2) = (1 @ ¥1) (P2 ® o)

as required.
(ii) is clear.
(iii) For the formula relating traces it suffices to stare at the example above:
AnB ApB
tr | AnB AnB | = ZB“AM =trAtrB.
: : : i
(]

Definition. Given two representation (p, V') and (p’, W) of a group G we can define
the representation (p®@ p', V.@ W) by (p® p')(g) = p(g) ® p'(9).

Note that (p ® p/,V ® W) is a representation of G by parts (i) and (ii) of the
last lemma. Moreover x,g, = X, - X, by part (iii).

LECTURE 12

Definition. The character ring R(G) of a group G is defined by
R(G) :={x1 — x2 | x1, x2 are characters of reps of G} C Cg.

Since xvieve, = Xvi + Xva, R(G) is an additive subgroup of Cg. Since 1 is a
character R(G) has a multiplicative unit. Since xv,gv, = Xv; - Xv,, R(G) is closed
under multiplication and forms a (commutative) subring of Cg.

Remarks.

(1) Tensor product of representations defined above is consistent with our ear-
lier notion when one of the representations is one-dimensional.

(2) If (p, V) is a representation of G and (p’, W) is a representation of another
group H then we may make V' ® W into a representation of G x H via

pvew(g,h) = p(g) @ p'(h).
That this does define a representation of G x H follows from parts (i) and
(ii) of the last lemma. Part (iii) of the lemma gives that
(v @xw)(g,h): = xvew(g,h) = xv(g)xw (h).
Thus R(G) x R(H) — R(G x H);(xv,xw) — Xxvew defines a ring

homomorphism.

251 didn’t have time to say this in the lecture but I’ve left it here as an illuminating comment
nevertheless.
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In the last proposition we take the case G = H and then restrict this
representation to the diagonal subgroup G = {(g9,9) | g € G} C G x G.
(3) If X,Y are finite sets with G-action it is easy to verify that the isomorphism
of vector spaces kX ® kY 2 kX xY; 6, ® 0y — 0,y is an isomorphism of
representations of G (or even of G x G).

Proposition. Suppose G and H are finite groups, (p1,V1),...,(pr, Vi) are all the
simple complex representations of G and (p},W1),...,(p, Ws) are all the simple
complex representations of H.

Foreachl <i<randl<j<s, (pi® p;.,Vi ® W;) is an irreducible complex
representation of G x H. Moreover, all the irreducible representations of G x H
arise in this way.

We have seen this before when G and H are abelian since then all these repre-
sentations are 1-dimensional.

Proof. Let x1,..., X be the characters of V1,...,V,. and 1, ..., %, the characters
of Wi,..., W,
The character of V; ® W; is x; ® ¥;: (g, h) = xi(9)1;(h). Then
(Xi ® ¥y, XK @ Y)exm = (Xis Xk)a (¥, i) r = ikdjr.

So the x; ® 9; are irreducible and pairwise distinct.
Now

J

> (dimV; @ W;)* = (Z(dim%)2> > (dimW;)? | = |G|[|H| = |G x H]

.7 i

so we must have them all.?8 O

Question. If V and W are irreducible then must V ® W be irreducible?

We’ve seen the answer is yes is one of V and W is one-dimensional but it is not
usually true.

Example. G = Ss

1 3 2

e (12) (123)
11 1 1
el -1 1
Vi2 0 -1

Clearly, 1@ W = W always. e®e=1,e¢®V =V and V ® V has character x?
given by x%(1) = 4, x%(12) = 0 and x?(123) = 1. Thus x? decomposes as 1+ ¢+ x.
Of course in general x;x; = >, af’ij with ai—fj € Ny for all ¢,j,k and these
numbers aif ; completely determine the structure of R(G) as a ring.
In fact V@ V.,V ® V ® V,... are never irreducible if dimV > 1. However
considering them can help us build new irreducible representations.

26We could complete the proof by instead considering conjugacy classes in G X H to show that
dimCgxg = dimCq - dimCpy.
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5.2. Symmetic and Exterior Powers. For any vector space V, define
c=0y: VRV -2VeVbyovew)—weuvforal v,weV.

Ezercise. Check this does uniquely define a linear map.
Hint: Show that (v, w) — v ® w is a bilinear map.

Notice that 02 = id and so, if chark # 2, o decomposes V ® V into two
eigenspaces:
S?V:={a€V®aV|oa=a}
AV :={acV®V|oa=—a}.
In fact this is the isotypical decomposition of V ® V' as a rep of Cs.

Lemma. Suppose vi,...,v,, is a basis for V.

(i) 52V has a basis viv; == 1(v; ®v; +v; @ ;) for 1 <i<j<d ¥
(ii) A2V has a basis v; Avj := 3(v; @ v; —v; @ ;) for 1 <i<j<d.®

Thus dim S?V = Im(m + 1) and dim A?V = Im(m —1).

Proof. 1t is easy to check that the union of the two claimed bases span V ® V' and

have m?2 elements so form a basis. Moreover v;v; do all live in 52V and the v; A oy
do all live in A?V. Everything follows.?" O

Proposition. Let (p, V) be a unitary representation of G over C.3°
(i) V@V = S?V @ A%V as representations of G.
(ii) for g € G,
1

xs2v(9) = 5(x(9)* + x(g%))
xaev () = 5(x(0)? ~ x(6)-

Proof. For (i) we need to show that if a € V @ V and oy (a) = Aa for A = £1 then
ovpvev(g)(a) = Apvev(g)(a) for each g € G. For this it suffices to prove that
cg=go (ie 0 € Homg(VRV,V@V)). But cog(v@w) =gw®gv = goo(v@w).

To compute (ii) it suffices to prove one or the other since the sum of the right-
hand-sides is x(9)? = xvev. Let v1,..., v, be a basis of eigenvectors for p(g) with
eigenvalues A1, ..., A\p,. Then g(viv;) = (AiAj)vv;.

Thus
X(9)2+X(9%) = QA7+ D AT =23 AiAj

i<j
whereas xg2v(g9) = Zigj AiMg. O

Ezercise. Prove directly the formula for y a2y .

27112"[/']' = vj;v; if we allow i > j

28% Awvj = —v; Awv; if we allow 4 > j. In particular v; Av; =0

29For an alternative argument use Ex Sheet 2 Q11.

30We don’t strictly need this assumption here. For example o(g) < oo and characteristic not
2 suffices.



REPRESENTATION THEORY 33

LECTURE 13

Example. Sy
1 3 8 6 6
e (12)(34) (123) (12) (1234)

1 1 1 1 1 1

€ 1 1 1 -1 -1
X3 3 -1 0 1 -1
€X3 3 -1 0 -1 1
X5 2 2 -1 0 0
X3 |9 1 0 1 1
xa@) [3 3 0o 3 -1
S%xs | 6 2 0 2 0
A?ys5 |3 -1 0 -1 1

Thus S%x3 = x5 + x3 + 1 and A%y3 = eyxs. Notice that given 1 and € and x3
we could’ve constructed the remaining two irreducible characters using S?ys and
A2X3.

More generally, for any vector space V we may consider V" =V ® --- @ V.
Then for any w € S, we can define a linear map o(w): VO* — V@7 by
(W) V1 @ -+ Uy = Vyy1(1) @+ Vy—1(p)
for vy,...,v, € V.

Ezercise. Show that this defines a representation of S,, on V®" and that if V is a
representation of G then the G-action and the S,,-action on V®" commute.

Thus we can decompose V®™ as a rep of S,, and each isotypical component
will be a G-invariant subspace of V®". In particular we can make the following
definition.

Definition. Suppose that V is a vector space we define

(i) the n'™ symmetric power of V to be
SV :={a e V®" |o(w)(a) =aforallw e S,}

and
(ii) the nt" esterior (or alternating) power of V to be

A"V :={a € V®" | o(w)(a) = e(w)a for all w € S,,}.

Note that S"V @& A"V = {a € V®" | g(w)(a) =a for all w € A,,} C V@,
We also define the following notation for vq,...,v, € V,

1
'U1""Un ::E Z UW(1)®®vw(n)€SnV

wESy,
and
1
VLA ANy i= ] Z e(w)vw(l) @ QUy(n) € A"V
weSy,
FEzxercise. Show that if vy,...,vq is a basis for V' then

{vi, --vi, |1 <0 < < < d}
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is a basis for S™V and
{fvig Ao A, |1 <dy < < < d}

is a basis for A"V. Hence given g € G acting diagonalisably on V', compute the
character values xsny(g) and xany in terms of the eigenvalues of g on V.

For any vector space V, A VYV =k and A"V =0 if n > dim V.

Ezercise. Show that if (p, V) is a representation of G then the representation of G
on AMMVY = [k is given by g + det p(g); ie the dim V" exterior power of V is
isomorphic to det p.

In characteristic zero, we may stick these vector spaces together to form algebras.

Definition. Given a vector space V' we may define the tensor algebra of V,
TV = 69@01/@"

(where V®° = k). Then TV is a (non-commutative) graded ring with the product
of v ®--®@uv, € VO and wy ® - @ ws € VO given by

VO RV QW @ Qw, € VI,
with graded quotient rings the symmetric algebra of V,
SV =TV/(z@y—-—yQuz|z,yeV),
and the exterior algebra of V,
AV =TV/(z@y+y@z|z,ycV).
One can show that SV = EBn;o S™V under z; ® --- @ &, — T1---x, and
AV = @n>OA”V under £1 ® - Q Xy = L1 A -+ A Xy,

Now SV is a commutative ring and AV is graded-commutative; that isif x € A"V
and y € AV then z Ay = (—1)"y A z.

5.3. Duality. Recall that Cg has the *-operation given by f*(g) = f(¢~'). This
also restricts to R(G).

Definition. If G is group and (p, V) is a representation of G then the dual repre-
sentation (p*,V*) of G is given by (p*(9)0)(v) = 0(p(g~1)v) for 6 € V*, g € G and
veV.

Lemma. xy- = (xv)*.

Proof. If p(g) is represented by a matrix A with respect to a basis v1,...,v4 for V
and €1, .., €q is the dual basis for V*. Then p(g) v, = > (A1) 0;.

Thus (p* (g)ex) () = ex (X, (A71)ji05) = (A1) and s0
pr(@er =D (AN he
i
i.e. p*(g) is represented by (A~1)T with respect to the dual basis. Taking traces
gives the result. O

Definition. We say that V is self-dual if V=2 V* as representations of G.

When G is finite and k = C, V is self-dual if and only if xy (g) € R for all g € G;
since this is equivalent to yy+ = xv.
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Examples.

(1) G=C3 = (z)and V = C. If pis given by p(z) = w = 5" then p*(z) =w? =@
and V is not self-dual.

(2) G =S, since g is always conjugate to its inverse in S,,, x* = x always and so
every representation is self-dual.

(3) Permutation representations CX are always self-dual.

FEzercise. Show both directly and using characters that if U, V, W are complex
representations of G then

V* @ W = Homy(V, W) and Homy(V @ W,U) = Homg (V, Homg (W, U))
as representations of G. Deduce that if V is self-dual then either (1, xg2y) # 0 or
(1, xa2v) # 0. Hint:
0: V'@ W — Homy(V,W);0(e @ w)(v) = e(v)w
and

U: Homy(V @ W,U) — Homy (V, Homg (W, U)); ¥(a)(v)(w) = a(v @ w)

characterise the required isomorphisms.3!

We’ve now got a number of ways to build representations of a group G:
e permutation representations coming from group actions;
via representations of a group H and a group homomorphism G — H (e.g.
restriction);
tensor products;
symmetric and exterior powers;
decomposition of these into irreducible components;
character theoretically using orthogonality of characters.

We're now going to discuss one more way related to restriction.

311 didn’t have time to give this exercise in the lecture but decided to leave it in these notes
for the keen. I might yet put it on the third examples sheet.
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LECTURE 14
6. INDUCTION

6.1. Construction. Suppose that H is a subgroup of G. Restriction makes rep-
resentations of G into representations of H. We would like a way of building
representations of G from representations of H.

Notation Given a group G we’ll write [g]g for the conjugacy class of g € G. So

1y G — k given by

1 () 1 if x is conjugate to g in G
€Tr) =
L9} 0 otherwise

is in Cq.

We note that for g € G,

[9}51 = [gfl}c, since (xgafl)*l = g1z,

and so
(pgla)” = Lig-1e-
If H < G then [g]¢ N H is a union of H-conjugacy classes
YenH=|J [
s e
SO
r:Cq = Cus f = flu
is a well-defined linear map with
r(Lge) = > Ipgy-
(hluClgle
Since for every finite group G, (f1, fo)a = ﬁ dec f1(g)f2(g) defines a non-
degenerate bilinear form on C¢g, the map r has an adjoint r* characterised by

(r(f1), foym = (f1,7"(f2))c for f1 € Cq, f2 € Cu.

In particular for f € Cy,

Ayrior (N = Uil Pl = Y e f(B).

[huClgle

On the other hand,

g1 7" (e = 1

G|
Thus, by comparing these we see that

(1) re) =Y el

[hluClgle

S (@) = 19 " (£)(9)

z€lgle

Since 2 'gx = y~ gy if and only if xy_l € C¢(g) we can rewrite this as

U= 3 e min 0=
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where

Fg) = {f(g) forge H

~]o otherwise.
Question. Is r*(R(H)) C R(G)?
Suppose that x is a C-character of H and v is an irreducible C-character of G.
Then
<7/’a7’*(X)>G = <7"(1/’)7X>H € NO

by orthogonality of characters, since r(¢) is a character of H.
So writing Irr(G) to denote the set of irreducible C-characters of G

(2) 0 = Y, @laxns
x€E€Irr(G)

is even a character in R(G). The formula (2) is only useful for actually computing
r*(x) if we already understand Irr(G). Since our purpose will often be to use Irr(H)
to understand Irr(G), the formula (1) will typically prove more useful.

Ezample. G = S5 and H = A3 = {1, (123), (132)}.
If f € Cy then
6

r(f)(e) = 5 f(e) =2/(e),

*(£)((12)) = 0, and

P (7)((123)) = S F((128)) + 5 7((132) = F(128)) + £(132)).

Thus

Az |1 (123) (132) Ss |1 (12) (123)
x1 |1 1 1 r*(x1) | 2 0 2
x2 |1 w w? r*(xz2) | 2 0 -1
xs |1 w? w r*(xs) | 2 0 -1

So r*(x1) = 1+e€ and r*(x2) = r*(x3) is the 2-dimensional irreducible character
of S consistent with the formula (2).

Note that if y is an irreducible character of H then r*(x) may be an irreducible
character of G but need not be so. Also note that r*(x)(e) = ||§“ x(e) always.

We’d like to build a representation of G with character r*(x) given a representa-
tion W of H with character x. Suppose that G is a finite group and W is a k-vector
space we may define

Hom(G, W) ={f: G - W}

to be the vector space of all functions from G to W under pointwise addition and
scalar multiplication. This may be made into a representation of G by defining

(¢ N@):= flg")
for each g,z € G.
It W= @™ W k then
dim W
Hom(G, W) EB Hom(G, k) = (dim W)kG.
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Definition. If H is a subgroup of G and W is a representation of H then we can
define

Homp (G, W) := {f € Hom(G, W) | f(zh) = h™' f(2) Vz € G,h € H},
a k-linear subspace of Hom(G, W).
Ezample. If W = 1 is the trivial representation of H and f € Hom(G, 1), then
f € Hompg(G,1) if and only if f(xh) = f(z) for h € H and = € G. That is
Homp (G, 1) consists of the functions that are constant on each left coset in G/H.

Thus Hompg (G, 1) can be identified with kG/H. One can check that this identifi-
cation is G-linear.

Lemma. Hompy (G, W) is a G-invariant subspace of Hom(G,W) of dimension
Gl .
15 dim .
Proof. Let f € Homg (G, W), g,z € G and h € H we must show that
(¢- f)(@h) =h" (g~ ().

But (g- f)(zh) = f(g~ ah) = h~' f(g~ ) = h=' (g f)(x) as required.

Moreover if x1,...,2|q/q| are left coset representatives in G//H then an element
[ € Hompg (G, W) is determined by its values f(z1),..., f(z|g/g|) and these may
be chosen freely in W. Thus this determines an isomorphism of vector spaces
Hompy (G, W) = Hom(G/H,W) = {f: G/H — W} and the latter has dimension
|G/H|dim W. O

Definition. Suppose that H is a subgroup of a finite group G and W is a represen-
tation of H. We define the induced representation to be Ind$ W := Hompy (G, W)
as a representation of G.

If V is a representation of G, we’ll write Resg V for the representation of H
obtained by restriction.

Theorem (Frobenius reciprocity). Let V' be a representation of G, and W a rep-
resentation of H, then

Homg (V, Ind$; W) 2 Hompy (Res$; V, W).
Corollary.
<XV7XIndg wic = (xvlm. xw)u.
In particular Xnqg w = r*(Xw ).

LECTURE 15

Proof of Frobenius Reciprocity. We start with the case H = 1. In this case we must
show that for V' a representation of G and W a k-vector space

Homy (V, W) = Homg(V, Hom(G, W)).
We’ve seen that Hom(G, W) = (dim W)kG as representations of G and that
dim Homg(V, kG) = dim V

and so both sides have dimension dim V' - dim W. However we will need an explicit
isomorphism to enable us to prove the general case.
Given ¢ € Homy(V, W) we can define ¢ € Homy(V, Hom(G,W)) by

wa()(x) = p(z™ ) for v € Vand = € G.
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Then for all x,g € G and v € V

pa(gu)(@) = (g™ av) = pa(v)(g™ ) = (- e (v))(@)

ie. pg € Homg(V,Hom(G,W)). So ¢ — ¢ defines a linear map
®: Homy(V, W) — Homg (V, Hom(G, W)).
If o = 0 then 0 = pg(v)(e) = ¢(v) for all v € V. Thus ® is injective and so, by
considering dimensions, an isomorphism.*
Now we suppose that W is a representation of a general subgroup H of G. For
¢ € Homy (V, W),
v € Hompg(V,W) <= o(hv) =hp(v) forallve V,he H
<~  ag(v)(zh) =h ag)(z)) forallz € G,h € Hiv eV
<~ ag(v) € Homgy (G, W)
Thus ® restricts to an isomorphism Homg (V, W) — Homg(V, Ind (V, W)) as re-
quired.?? [l

6.2. Mackey Theory. This is the study of representations like Res?( Indg W for
H, K subgroups of G and W a representation of H. We can (and will) use it to
characterise when Indg W is irreducible using that
(Ind% xw, Ind$; xw)e = (Resf Ind W, W) p.
If H, K are subgroups of G we can restrict the action of G on G/H to K
K xG/H — G/H;(k,gH) — kgH.

The the union of an orbit of this action is called a double coset. The union of the
K-orbit of gH is written KgH := {kgh |k € K,h € H}.
Definition. K\G/H = {KgH | g € G} is the set of double cosets.

The double cosets partition G.

Given any representation (p, W) of H and g € G, we can define (9p,9 W) to be
the representation of 9H := gHg~' < G on W given by (9p)(ghg—t) = p(h) for
heH.

Theorem (Mackey’s Restriction Formula). If G is a finite group with subgroups
H and K, and W is a representation of H then

Res Indf W= @  Indfn,y Res g W
geK\G/H
Note that for each double coset KgH we can define
Vicgrr = {f € IndG W | f(x) =0 for all = ¢ KgH?}.

Then Vicgp is a K-invariant subspace of Ind$ W since we always have (kf)(z) =
f(k=1z). Thus there is a decomposition

Res% Ind§ W = @ Vigr
geK\G/H

321¢ you want to avoid the dimension calculation it is not particularly hard to prove that ® is
surjective.

33In fact we can view both Homy(V, W) and Homg(V,Hom(G,W)) as representations of
H with ® an intertwining map and then Hompg (V, W) and Homg(V, Indg(V, W)) are just the
respective subspaces of H-fixed points.
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and it suffices to show that for each g,
Vicgr = Ind% . Resy 2 9W
as representations of K. We defer the proof of this to the next lecture.

Corollary (Character version of Mackey’s Restriction Formula). If x is a character
of a representation of H then

Res$ Ind$ x = Z Ind%; Ak X
KgHEK\G/H

where 9 is the class function on 9H N K given by Ix(x) = x(g~txg).
FEzercise. Prove this corollary directly with characters

Corollary (Mackey’s irreducibility criterion). If H is a subgroup of G and W is a
representation of H, then Indg W s irreducible if and only if

(i) W is irreducible and
(ii) for each g € G\H, the two representations Resyit, ; IW and Resty g W of
H N9 H have no irreducible factors in common.

Proof.

Frob. recip.

< Indg XW, Indfl Xw>(; <XWa Resg Indg XW>H

Mackey g
= Z (xw, IndgmﬂH Res o I xXw)m
gE€H\G/H
Frob. recip. g
= Z <Res§mH XW, ReSHIjr{mH IXw)Hn9H
geH\G/H

So Indg W is irreducible precisely if

Z (Rest o xw ReSL%gH Ixw)anem = 1.
geH\G/H

The term corresponding to the coset HeH = H is (xw, xw)m which is at least 1
and equal to 1 precisely if W is irreducible. The other terms are all > 0 and are
zero precisely if condition (ii) of the statement holds. O

Corollary. If H is a normal subgroup of G ,and W is an irreducible rep of H then
Indg W is irreducible if and only if Ixw # xw for all g € G\H.

Proof. Since H is normal, gHg~! = H for all g € G. Moreover W is irreducible
since W is irreducible.
So by Mackey’s irreducibility criterion, Indf[ W irreducible precisely if W 22 9W
for all g € G\ H. This last is equivalent to xw # 9xw as required.
O

Ezxzamples.
(1) H = (r) = CY, the rotations in G = Dag,. The irreducible characters x of H

2m

are all of the form x(r7) = e 7 We see that Ind$, x is irreducible if and only
if x(r7) # x(r~7) for some j. This is equivalent to y not being real valued.
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(2) G=S, and H=A,. If g € S, is a cycle type that splits into two conjugacy
classes in A,, and x is an irreducible character of A,, that takes different values
of the two classes then Indg X is irreducible.

(3) Suppose G = GLy(F,), B is the subgroup of upper triangular matrices and

w = (? é) and T = YB N B is the subgroup of diagonal matrices. Then

G = B]] BwB so by Mackey’s irreducibility criterion, if x is an irreducible
character of B then Indg x is irreducible if and only if Res;B wx # Resg X-

(s )

for A\, (p — 1)st roots of 1 in C. Show that x is a character of B and describe
when Indg X is irreducible.

FEzxercise. Suppose that

LECTURE 16

Recall that if W is a representation of H and H, K are subgroups of G and g € G
then

Vikgae = {f€Homy(G,W): f(zr)=0forallx ¢ KgH}
{f: KgH — W : f(zh) = h~ ' f(z) for all z € KgH}
with K-action given by kf(z) = f(k~'z) for all k € K and x € KgH.

We reduced the proof of Mackey’s Decomposition Theorem to the following
Lemma.

1%

Lemma. There is an isomorphism of representations of K
Vicgrr — Hompre g (K, W) = Indjg e iy Resfng r IW.

Proof. First note that if OrbxgH = {91 H,g2H,...g-H} then f € Vkgp is deter-
mined by f(g1),...,f(g-) € W and these values may be chosen freely i.e.
Vg ={f:91,.-.,90r > W}

as vector spaces. Thus dim Vi gg = dim W |Orbg (gH)|.

Moreover dim Homgne g (K, 9W) = % dim W. But if k € K then

kgH = gH if and only if g kg € H
i.e. Stabg(gH) =9H N K. Thus
|K|ﬂH| = StalLing) = [Orbi(gH)|

and the two spaces have the same dimension.
Let ©: Vkguz — Hom(K, W) be defined by

O(f)(k) = f(kg).

If ¥’ € K then
(K'O(f) (k) = (k' kg) = (K f)(kg) = OK'f) (k)

and so © is K-linear.
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If ghg~! € K for some h € H,

O(f)(kghg™") = f(kgh)
= p(h™") f(kg)
= (%0)(ghg™")""O(f)(K)

Thus Im © < Ind% ., ;; Resi ., 7 9W.
Also, © is injective since, if f € Vigy with f(kg) =0 for all k € K, then

f(kgh) = h=' f(kg) = h'(0) = 0

for all k € K and h € H so f = 0. By considering dimensions we see that © is the
desired isomorphism. O

6.3. Frobenius groups.

Theorem. (Frobenius 1901) Let G be a finite group acting transitively on a set X.
If each g € G\{e} fizes at most one element of X then

K={1}U{geG|gx#x foralzecX}
is a normal subgroup of G of order |X|.

Definition. A Frobenius group is a finite group G that has a transitive action on
a set X with 1 < |X| < |G| such that each g € G\{e} fixes at most one = € X.

Ezxamples.

(a) G = Dy, with n odd acting naturally on the vertices of an n-gon. The reflection
fix precisely one vertex and the non-trivial rotations fix no vertices.

(b) G = {(g l{) |a,b€IFp,a7éO} acting on X = {<§) :L'EIF'p} by matrix

multiplication.

It follows that no Frobenius group can be simple. The normal subgroup K is
called the Frobenius kernel and the group H is called the Frobenius complement.
No proof of the theorem is known that does not use representation theory.

Proof. For x € X, let H = Stabg(z) so |G| = |X||H| by the orbit-stabiliser theo-
rem.
By hypothesis if g € G\H then

Stabg (gz) N Stabg(z) = gHg ™' N H = {e}.
Thus

() [Ugeq 9H9™' = U,ex Staba(z)| = (H| = DIX| + 1;
(ii) If hq, ho € H then [h1]yg = [he]m if and only if [h1]e = [h2]q; and
(iii) |Ca(h)| = |Cu(h)| fore#h e H
By (i) [K| = [{e} U (IG\U,ex Staba(x)) | = [H||X| — (|H| = 1)|X] = |X] as
required.
We must show that K < G. Our strategy will be to prove that it is the kernel of
some representation of G.
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If x is a character of H we can compute Indg X:

Calyg
mafae) = e )
hluClga T
[ XIx(e) ifg=e
= {x(h)  iflgle = [hlo # {e} by (ii) and (i)
0 if g € K\{e}.
Suppose now that x1,..., X, is a list of the irreducible complex characters of H
and let 0; = Ind$, x; + xi(e)le — xi(e)Ind$ 1y € R(G) for i =1,...,7 so
xi(e) ifg=e
0i(9) = xi(h) itg=heH
xi(e) ifge K
If 6; were a character then the corresponding representation would have ker-
nel containing K. Since #; € R(G) we can write it as a Z-linear combination of

irreducible characters 6; = > n;1);, say.
Now we can compute

1
(0:,0:)c = @ Z |9i(9)|2

geG

1

e ST IXIah P+ xile)?
heH\{e} kEK

X| (Z )
= = Ixi (h)]

G\
= (Xi, Xy =1

But on the other hand it must be " n?. Thus 6; is +¢ for some character 1 of G.
Since 6;(e) > 0 it must actually be an irreducible character.

To finish we write 6 = > x;(e)6; and so 0(h) = > xi(e)xi(h) =0 for h € H\{e}
by column orthogonality, and 6(k) = " yi(e)? = |H| for k € K. Thus K = ker 0 is
a normal subgroup of G. O

Remarks.

(1) It is straightforward to verify that a group is Frobenius if and only if there
is a non-trivial proper subgroup H of G such that gHg~' N H = {e} for all
g€ G\H.

(2) In his thesis John Thompson proved, amongst other things, that the Frobe-
nius kernel must be the direct product of its Sylow subgroups.
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LECTURE 17
7. ARITHMETIC PROPERTIES OF CHARACTERS

In this section we’ll investigate how arithmetic properties of characters produce
a suprising interplay between the structure of the group and properties of the
character table. The highlight of this will be the proof of Burnside’s famous p®q®-
theorem that says that the order of a simple group cannot have precisely two distinct
prime factors.

We'll continue with our assumption that £k = C and also assume that our groups
are finite.

7.1. Arithmetic results. We’ll need to quote some results about arithmetic with-
out proof; proofs should be provided in the Number Fields course (or in one later
case Galois Theory).

Definition. z € C is an algebraic integer if it is a root of a monic polynomial with
integer coefficients.

Facts.

Fact 1 The algebraic integers form a subring O of C. (cf Groups, Rings and Mod-
ules 2021 Examples Sheet 4 Q13)

Fact 2 Any subring of C that is finitely generated as an abelian group is contained
in O. (cf Groups, Rings and Modules 2021 Examples Sheet 4 Q13)

Fact 3 If x € QN O then x € Z. (c¢f Numbers and Sets 2010 Example Sheet 3 Q12)

Lemma. If x is the character of a representation of a finite group G, then x takes
values in O.

Proof. We know that x(g) is a sum of n*" roots of unity for n = |G|. Each n'" root
of unity is by defintion a root of X™ — 1 and so an algebraic integer. The lemma
follows from Fact 1. O

7.2. The group algebra. Before we go further we need to explain how to make
the vector space kG into a ring. There are in fact two sensible ways to do this. The
first of these is by pointwise multiplication. This makes kG into a commutative ring.
But more usefully for our immediate purposes we have the convolution product

fifa(9) =) filge) fala™) = Y (@) fa(y)

zeG z,yeG
Y=g

that makes kG into a (typically) non-commutative ring. With this product
691 692 = 69192 for all 91,92 € G

and so we may rephrase the multiplication as

> Agdy <Z uh5h> = | D Agpn | Ok

geG heG keG \gh=k

From now on this will be the product we have in mind when we think of kG as a
ring.
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Notice that a (finitely generated) kG-module is the ‘same’ as a representation of
G: given a representation (p, V') of G we can make it into a kG-module via

fo=">"f9)p(g) ().
geG

for f € kG and v € V. Conversely, given a finitely generated kG-module M we
can view M as a representation of G via p(g)(m) = dgm. Moreover G-linear maps
correspond to kG-module homomorphisms under this correspondence.

Ezercise. Suppose that kX is a permutation representation of G. Calculate the
action of f € kG on kX under this correspondence.

It will prove useful understand the centre Z(kG) of kG; that is the subring of
f € kG such that fh = hf for all h € kG. This is because for every f € Z(kG)
then Y f(g)p(g) € Homg(V, V) for every representation (p, V) of G.

Lemma. Suppose that f € kG. Then f is in Z(kG) if and only if f € Cq, the
set of class functions on G. In particular dimy Z(kG) is the number of conjugacy
classes in G.

Proof. Suppose f € kG. Notice that fh = hf for all h € kG if and only if
fog = d4f for all g € G: the forward direction is clear and for the backward
direction if fd, = d4f for all g € G then

Fh=">" fh(g)dy =Y h(g)dyf = hf.

9eG geG
But 0, f = fd, if and only if d,fd,-1+ = f and
(69f3g-1)(x) = (34f)(xg) = f(g™ " zg).
So if f € Z(kQG) if and ouly if f € Cg as required. O

Remark. The multiplication on Z(kG) is not the same as the multiplication on Cg
that we have seen before even though both have the same additive groups and both
are commutative rings.

Definition. Given g € G define the class sum

C[g]c(x) — {1 U [g]G

0 z¢[ge.
Then if [g1]¢ = {e},...,[9r]c¢ are all the conjugacy classes of G, write
C; = C[gi]c fori=1,...r

We called C; = 1[4,), before but have changed notation to remind ourselves that
the multiplication is not pointwise. C1, ..., C, form a basis for Z(kG).

Proposition. There are non-negative integers aﬁj such that C;C; =Y, aéjC’l for
i, 5,0 €{1,...,r}. Indeed

al; = {(z,y) € lgile % [gla | 2y = ai}.-

The al,

; are called the structure constants for Z(kG).
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Proof. Since Z(kG) is a ring, we can certainly write C;C; = ZaﬁjC’l for some
aéj € k.
However, we can explicitly compute
ay; = =Y Ci(x = {(z,y) € lgilc % [gjle | 2y = g}
z,yeG
Y=g
as claimed. (]

Suppose now that (p, V') is an irreducible representation of G. Then if z € Z(kG)
we've seen that z: V' — V given by zv =3 5 2(g9)p(g)v € Homg(V, V).

By Schur’s Lemma it follows that z acts by a scalar A, € k on V. In this way
we get a k-algebra homomorphism w,: Z(kG) — k;z — X,.

Taking traces we see that

dimV -\, = > z(g)xv(9)-

g€eG
So
N X i) )
3) wp(Cr) = 275 Hlgilal

We now see that w, only depends on
and we write w, = w,.

» (and so on the isomorphism class of p)

=

Lemma. The values w,(C;) are in O

Note this isn’t a priori obvious since ﬁ will not be an algebraic integer for

x(e) # 1.

Proof. Since w, is an algebra homomorphism Z(kG) — k,
(4) Wy (Ci)wy (Cy) = Zaiij(cﬂ
!

So the subring of C generated by w, (C;) for i = 1,...,r is a finitely generated
abelian group spanned by C, ..., C,. The result follows from Fact 2 above. O

Lemma.

z G E:xgz % )

a,. =
7 1Ca(90)l1Ca(g;)l

In particular the al. are determined by the chamcter table.

J
Proof. By (3) and (4), for each irreducible character x,
x(9i) ;1 1 x(g;) : x(g0)
|lgilal leare

o) 9l (o lWnlel = 2 )

—1
Multiplying both sides by %, using |O;| = W for | = 4,7,k and sum-

ming over x € Irr(G) we obtain

G i J B
|Cc(gz| ||CG (95)] Z X(gxa) Z | a0 Z X(gk)X(gl ) = aiji

x€lrr(G)

by column orthogonahty. [
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LECTURE 18
7.3. Degrees of irreducibles.

Theorem. IfV is an irreducible representation of a group G then dimV divides

|G-

Proof. Let x be the character of V. We’ll show that % € ONQ = Z by Fact 3
from §7.1.

- i) > oG
—Z llgilal x(g:)x(g; ")

= wa(Ci)x(gfl)

But O forms a ring (by Fact 1 in §7.1) and each w, (C;) and each x(g; ') is in O

SO >|<( I) is in O NZ as required. O

Ezxzamples.

(1) If G is a p-group and y is an irreducible character then x(e) is always a
power of p. In particular if |G| = p? then, since Zx x(e)? = p?, every
irreducible rep is 1-dimensional and so G is abelian.

(2) If G = A, or S,, and p > n is a prime, then p cannot divide the dimension
of an irreducible rep.

In fact a stronger result is true:

Theorem (Burnside (1904)). If (p,V) is an irreducible representation then dim V'
divides |G/ Z(G)|.

You could compare this with ||g]¢| = o (lg)l divides |G/Z(G)]|.

Proof. If z € Z = Z(G) then by Schur’s Lemma p|z: Z — GL(V) is of the form
p(z) = Aidy with A, € k.

For each m > 2, consider the irreducible representation of G™ given by

P G™ — GL(V®™).

If 2= (21,...,2m) € Z™ then z acts on V™ via [, \.,idy = AT zidy. Thus
if TT{" z: = 1 then 2z € ker p®™.

Let Z' = {(21,..,2m € Z™ | [I\2, 2: = 1} so |Z'| = | Z|™~!. We may view p®™
as a degree (dim V)™ irreducible representation of G™/Z’.

Since |G™/Z'| = |G|™/|Z|™~! we can use the previous theorem to deduce that
(dim V)™ divides |G|™/|Z|™ L.

Suppose that p is a prime such that p* divides dimV. Then p®™ divides
|G/Z|™|Z|. By taking m to be large, in particular so that p™ does not divide
|Z|, we see that p* divides |G/Z|. Thus dimV divides |G/Z| as claimed. O

Proposition. If G is a simple group then G has no irreducible representations of
degree 2.
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Proof. If G is cyclic then G has no irreducible representations of degree bigger than
1, so we may assume G is non-abelian.

If |G| is odd then we may apply the theorem above.

If |G| is even then G has an element z of order 2. By example sheet 2 Q2,
for every irreducible x, x(x) = x(e) mod 4. So if x(e) = 2 then x(z) = +2, and
p(x) = £1I. Thus p(z) € Z(p(G)), a contradiction since G is non-abelian simple. [J

Remark. In 1963 Feit and Thompson published a 255 page paper proving that there
is no non-abelian simple group of odd order.

7.4. Burnside’s p®¢® Theorem.

Lemma. Suppose a € O\0 is of the form a = =57 X; with A\ = 1 for all i.
Then |a| =1.34

Sketch proof (non-ezaminable). By assumption a € Q(¢) where € = e2™/™,

Let G = Gal(Q(€)/Q). It is known that {8 € Q(¢) | o(8) = p for all 0 € G} = Q.

Consider N(a) := [[,eg0(). Since N(a) is fixed by every element of G,
N(a) € Q. Moreover N(«) € O since the Galois conjugates of a root of an in-
teger polynomial is a root of the same polynomial. Thus N(«) € Z.

But for each o € G, ()| = |2 > o(\;)| < 1. Thus N(a) = +1, and |a| =1 as
required. 0

Lemma. Suppose x is an irreducible character of G, and g € G such that x(e) and
llglc| are coprime. Then |x(g)| = x(e) or 0.

Note if x = xv this is saying that under the given hypothesis either g acts as a
scalar on V3% or x(g) = 0.

Proof. By Bezout, we can find a,b € Z such that ax(e) + b|[g]¢| = 1. Define

x(9) x(9)
= =ax(g) +b=—<1l9le
xlo) ~ NI
Then, since x(g) is a sum of |G|th roots of unity, « satisfies the conditions of the
previous lemma (or is zero) and so this lemma follows. (]

Proposition. If G is a non-abelian finite group with an element g # e such that
llg]c| has prime power order then G is not simple.

Proof. Suppose for contradiction that G is simple and has an element g € G\{e}
such that |[g]g| = p” for some prime p.

If x is a non-trivial irreducible character of G then |x(g)| < x(1) since otherwise
p(g) is a scalar matrix and so lies in Z(p(G)) = Z(G).

Thus by the last lemma, for every non-trivial irreducible character, either p

divides x(e) or |x(g)] = 0 . By column orthogonality,

0="> x(e)x(9)-

Thus _71 = Zx#l %X(g) € ONQ. Thus % in Z giving the desired contradiction.
O

34ie. all the A; are equal.

and so p(g) € Z(p(G))
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Theorem (Burnside (1904)). Let p,q be primes and G a group of order p®q® with
a, b non-negative integers such that a +b > 2, then G is not simple.

Proof. Without loss of generality b > 0. Let @ be a Sylow-g-subgroup of G. Since
Z(Q) # 1 we can find e # g € Z(Q). Then ¢" divides |Cg(g)|, so the conjugacy
class containing g has order p” for some 0 < r < a. The theorem now follows
immediately from the Proposition. O

Remarks.

(1) Tt follows that every group of order p®q” is soluble. That is, there is a chain
of subgroups G = Go > G1 > -+ > G, = {e} with G;;1 normal in G; and
G;/Gi+1 abelian for all i.

(2) Note that |As| =22-3-5 so the order of a simple group can have precisely
3 prime factors.

(3) The first purely group theoretic proof of the p®q®-theorem appeared in 1972.
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LECTURE 19
8. TOPOLOGICAL GROUPS

In this section k will be C always.

8.1. Defintions and examples. Consider S' = U;(C) = {g € C* | |g| = 1} &
R/Z.
By considering R as a Q-vector space we see that as a group

S'=(Q/ze Pa+)
zeX
for an an uncountable set X and there are uncountably many group homomorphisms
St — (Q,+).38
Now p: Q — C*;q > €% defines a faithful representation of (Q,+) and induces
an injective function

{group homomorphisms S' — Q} — {degree 1 reps of S*}

by postcomposition. Thus we see that as an abstract group S' has uncountably
many irreducible representations and we don’t really have any control over the
situation.

However, S! is not just a group; it comes with a topology as a subset of C.
Moreover S' acts naturally on complex vector spaces in a continuous way.

Definition. A topological group G is a group G which is also a topological space
such that the multiplication map G x G — G;(g,h) — gh and the inverse map
G — G; g+ g~ ! are continuous maps.
FEzxzamples.
(1) GL,(C) with the subspace topology from C™" since

1

L= . . -1 — 1
(AB); zk:Aszkz and A detAad‘]A'
(2) G finite — with the discrete topology — all relevant functions are continuous.
(3) O(n) ={A € GL,(R) | ATA=1}; SO(n) = {A € O(n) | det A =1}.
(4) Un)={Ae€GL,(C) | ATA=1}; SU(n)={AecU(n)|det A=1}.
(

5) *G profinite such as Z,, the completion of Z with respect to the p-adic metric.

Definition. A representation of a topological group G on a vector space V is a
continuous group homomorphism G — GL(V).3"

Remarks.

(1) If X is a topological space then a: X — GL,(C) is continuous if and only if
the maps « — «a;;(z) = a(z);; are continuous for all 4, j.

(2) If G is a (finite) group with the discrete topology. Then continuous function
G — X just means function G — X.

36for example each function X — Q which is zero except for finitely many = € X extends to
one whose kernel contains Q/Z.

3TWhere the topology on GL(V) is given by an isomorphism GL(V) — GL,(C) obtained by
choosing a basis. Since conjugation in GL,(C defines a homeomorphism this does not depend on
choices.
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8.2. Compact Groups. Our most powerful idea for studying representations of

finite groups has been averaging over the group; that is the operation |—é” > 9eG-

When considering more general topological groups we should replace > by [.

Definition. For G a topological group and C(G,R) = {f G — R | f is continuous},
alinear map [, : C(G,R) = R (we write [, f = [,f(g) dg) is called a Haar integral
if
(i) Jo1=1(so [ is normalised so total volume is 1);
i) [, f(zg)dg = [, f(9)dg = [ f(gx)dg for all z € G (so [, is translation
invariant).3®

(iii) [, f = 0if f(g) >0 for all g € G (positivity).

Note that, for any R-vector space V/, fG induces a linear map also written
/ :C(G, V)=V
G

under the natural identification V' — V** for § € V*, f € C(G,V),

e(éf)zlyuwnw

In particular if vy, ..., v, is a basis for V then f € C(G,V) is uniquely of the form
f=> fivi with f1,..., fn € C(G,R) and [, f =3 ([ fi) vi- This map is also
translation invariant and sends a constant function to its unique value.

Moreover if c: V' — W is a linear map and f € C(G,V) then a ([, f) = [, (af).
In particular if V' is a C-vector space then fG is C-linear.

FEzxzamples.
(1) If G finite, then fG = |(1;| > gea Fl9)-
(2) If G = ST, fG = o f(w)de

Theorem. IfG is a compact Hausdorff group, then there is a unique Haar integral
on G.

Proof. Omitted 0

All the examples of topological groups from last time are compact Hausdorff
except GL,(C) which is not compact. We'll follow standard practice and write
‘compact group’ to mean ‘compact Hausdorff group’.

Corollary (Weyl’s Unitary Trick). If G is a compact group then every representa-
tion (p, V) is unitary.

Proof. Same as for finite groups: let (—, —) be any inner product on V', then
(v.0) = [ (ola)e. playu) dg

is the required G-invariant inner product since, for x € G and for v,w € V,
(o). payw) = [ (plgz)e.plgz)u) dg = (v.10).

Checking that (—, —) is an inner product is straightforward using that [, is R-linear
together with its positivity. (I

38For example f(zg) means the continuous function G — R given by g — f(zg) and
fG f(xzg) dg means the value of fG evaluated at this function.
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Corollary (Maschke’s Theorem). If G is a compact group and V is a representation
of G then every subrepresentation of V' has a G-invariant complement. Thus G is
completely reducible.

If p: G = GL(V) is arepresentation then x, := tr p is a continuous class function
since each p(g);; is continuous.

Lemma. If U is a representation of G then

dim U¢ :/ XU-
G

Proof. Let w: U — U be defined by m = fG pu € Homy(U,U). If z € G then

oty =oo(o) ([ pota)dg) = [ poteg)dg =

since [ is translation invariant. Thus Im7 < U G.

If w € U then
w<u>:/GpU<g><u>dg=/C;u=u.

Thus 7 is a projection onto U® and

dimUGtrwtr</ PU>/XU~ [l
G G

We can use the Haar integral to put an inner product on the space Cg of (con-
tinuous)*? class functions:

U f) = /G F@f(9) dg.

Corollary (Orthogonality of Characters). If G is a compact group and V and W
are irreducible reps of G then

1 fV=w
<XV7XW>:{

0 fVEW

Proof. Same as for finite groups:

xv,xw) = /GXV(Q)Xw(g) dg

:/GXHomk(V,W)
= dim Homg (V, W).

Then apply Schur’s Lemma.
Note along the way we require that yy(¢~!) = xv(g) which follows from the
fact that V is unitary. a

It is also possible to make sense of ‘the characters are a basis for the space of
(square integrable) class functions’ but this requires a little knowledge of Hilbert
spaces.

39%r better still square integrable
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8.3. A worked example: S'. We want to understand irreducible representations
of S1.

By Schur’s Lemma all such representations have degree 1 and by Weyl’s unitary
trick they all have image in S'; that is they are continuous group homomorphisms
St — St Since

R — S1; o+ 2™
is a topological quotient map as well as a group homomorphism with kernel Z
there is a 1-1 correspondence between representations of S' and continuous group
homomorphisms R — S* with kernel containing Z.

Lemma. If §: (R,+) — St is a continuous group homomorphism then there is a
continuous homomorphism 1: R — R such that 6(z) = 2™ (@) for all € R.

Proof. Step 1: if f: R — S is any continuous function with f(0) = 1 then there is
a unique continuous function a: R — R such that a(0) = 0 and f(z) = e?mie(®) 40
(Sketch proof of Step 1: locally al(z) = 5= log f(x) and we can choose the branches
of log to make the pieces glue together continuously).

Step 2 Use Step 1 with f = 0 if ¢ to find ¢: R — R continuous such that
O(z) = e*™¥@) and (0) = 0. Then let A be the continuous function R? — R
given by

A(a,b) :=9P(a+b) —P(a) — P(b).
Since e2™A(@b) = g(a + b)0(a)10(b)~" = 1, A only takes values in Z. Thus as R?
is connected, A is constant. Since A(0,0) = 0 we see that A = 0 and so ¥ is a
group homomorphism. O

Lemma. If ¢: (R,+) — (R, +) is a continuous group homomorphism then there
is some A € R such that ¢(x) = Az for all x € R.

Proof. Let A = 4(1). Since ¢ is a group homomorphism, ¥(n) = An for all n € Z.
Then my(n/m) = ¥(n) = An and so ¥(n/m) = An/m. That is ¢ (x) = Az for all
z € Q. But Q is dense in R and % is continuous so ¢ (z) = Az for all z € R. O

Theorem. Every irreducible representation of S* has degree 1 and is of the form
z+>» 2" for some n € Z.

Proof. We've seem that if p: S' — GL,(C) is an irreducible representation then
n =1and p(S*) < S'. Moreover p induces a continuous homomorphism §: R — S*
via 0(x) = p(e2™).

By the last two Lemmas, there is A € R such that

0(z) = > for all z € R.
Since §(1) = 1, A € Z and p(e?™®) = ¥ for all z € R. O

The theorem tell us that the ‘character table’ of S has rows ¥, indexed by Z
with x,(e?) = ¢™m? 41

401 the language of algebraic topology R — S1; z + 2™ is a covering map and so paths in
S1 1ift uniquely to paths in R after choosing the lift of the starting point. In fact R is the universal
cover of S via this map.

4175 an aside the unitary irreducible characters of Z are indexed by S! giving a duality between
7 and ST
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Notation. Let

Nolz, 271 == {Z anz" | an € Ny with Zan < oo}

nez nez

Now if V is any rep of S* then by Machke’s Theorem V breaks up as a direct sum
of one dimensional subreps and so its character xy = Y a, 2" lies in Ng[z, 2~!] with
> an, =dimV. As usual a, is the number of copies of p,: z — 2™ in the decom-
position of V' as a direct sum of simple subrepresentations. Thus, by orthogonality
of characters, we can compute

1 2 " -
an = (Xn, XV)s1 = 7/ xv(e)e " do
T Jo
and
, 1 [ . _ :
XV(elG) _ Z (/ Xv(el¢)€—zn¢ d¢) elnG.
27T 0
nez
So Fourier decomposition gives the decomposition of yy into irreducible charac-

ters and the Fourier mode is the multiplicity of an irreducible character.

Remark. In fact by the theory of Fourier series any continuous function on S! can
be uniformly approximated by a finite C-linear combination of the .
Moreover the y,, form a complete orthonormal set in the Hilbert space

2m
L3(SY) = {f: st C ‘ / |£(e")]* df exists and is ﬁnite}
0

of square-integrable complex-valued functions on S!. That is every function f €
L?(S') has a unique series expansion

2
f(ew) — Z (217T/0 f(ew’)efme' del) eine

neZ

converging with respect to the norm || f|| = 5- O%\f(ei@ﬂ2 dé.
We can phrase this as

LQ(SI) _ @ (CXn42
nez
which is an analogue of

kG = @ Vdim |4
Velrr(G)

for finite groups.*3

4269 is supposed to mean a completed direct sum or more precisely a direct sum in the category
of Hilbert spaces.
43¢f the Peter-Weyl theorem.
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8.4. Second worked example: SU(2).
Recall that SU(2) = {A € GL2(C) | ATA=1,det A =1}.

If A= (Ccl b) € SU(2) then since det A =1, A~ = ( d _b).

d —c a
Thus d = @ and ¢ = —b. Moreover a@ + bb = 1. In this way we see that

- {(5 )

which is homeomorphic to S% C C? = R*.
More precisely if

H:zR-SU(Q)z{( “ f)‘w,zec}cMg(C)

—w

a,b € C and |a|® + |b]* = 1}

then ||A||> = det A defines a norm on H = R* and SU(2) is the unit sphere in H. If
A€ SU(2) and X € H then ||AX|| = ||X]| since ||A|| = 1. So, after normalisation,
usual integration of functions on S* defines a Haar integral on SU(2). i.e.

Ju? =58 J ot

Here 272 is the volume of S® in R* with respect to the usual measure.
We now try to compute the conjugacy classes in SU(2).

Definition. Let T = {(a 0 )

0 a!
SU(2).44

a€C,la|l= 1} =~ St a mazimal torus in

Also define s = (_01 (1)> € SU(2)

Lemma.

(i) ift € T then sts™* =t71;
(ii) s* = —I € Z(SU(2))

(iti) Nsy(2)(T) =T UsT = { <8 a(—)1> ’ (—3—1 g)

Proof. All three parts follow from direct computation (exercise). O

a€C,lal —1}. 45

Proposition.
(i) Every conjugacy class O in SUs contains an element of T
(ii) More precisely. if O is a conjugacy class then ONT = {t,t~1} for somet € T
—t=t"1 if and only if t = +1 when O = {t}.
(iii) There is a bijection
{conjugacy classes in SU(2)} — [-1,1]
giwven by A — étrA.

44\ ore generally the group T of diagonal matrices in SU(n) is isomorphic to (S1)*~! a
topological torus when n = 3.

45More generally Nsym)(T)/T = Sy and two matrices in T' are conjugate if and only if they
have the same entries up to reordering.
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Proof. (i) Every unitary matrix has an orthonormal basis of eigenvectors. That is,
if A € SU(2), there is a unitary matrix P such that PAP~! is diagonal. Then if

Q=—tsP. PTIAP = Q' AQ € T ie [Alsta N T # 0.

(ii) If £1 € O the result is clear.

J

[tlsue) = {g9tg™" | g € SU(2)}.
We've seen before that sts™ =t~ so [t]sy@) NT D {t,t7'}.

Conversely, if t € ONT then t' and ¢ must have the same eigenvalues since they
are conjugate. This suffices to see that ¢ € {t*'}.

(iii) To see the given function is injective, suppose that i tr A = 1tr B. Then
since det A = det B = 1, A and B must have the same eigenvalues. By part (i)
they are both diagonalisable and by the proof of part (ii) this suffices to see that
they are conjugate. ,
X3

o Lo . 0 .
To see that it is surjective notice that % tr (6 e‘ie) = cosf. Since cos: R - R

0
has image [—1, 1] the given function is surjective.

Let’s write O, = {A € SU(2) | 1tr A =z} for 2 € [-1,1]. We’ve proven that
the O, are the conjugacy classes in SU(2). Clearly O; = {I} and O_; = {-T}.
For —1 < < 1 there is some 6 € (0, 7) such that cos@ = z then

o{(5 )

since Rea = x = cosf. That is O, is a 2-sphere of radius |sin§).

(mmf+wﬁzgﬁe}

Lemma. A (continuous) class function f: SU(2) — C is determined by its restric-

tion to T and f|r is even ie f ((S 291>> =f ((Z; (Z))) 46

O
Thus if f is a class-function on SU(2), since f is constant on each Ocosp,
1 ™ ) 1 27 )
/ flg)dg = 5= / f(e®)4msin?0dh = — f(e?)sin?6d6.
SU(2) 272 Jo 7 Jo

Note this is normalised correctly, since % f02 "sin?0df = 1.

8.5. Representations of SU(2).
Let V,, be the complex vector space of homogeneous polynomials in two variables
z,y. So dimV,, =n+ 1. Then GL2(C) acts on V,, via

pn: GL2(C) — GL(V,)
given by
Pn ((a Z)) fz,y) = flaz + cy, bz + dy).
i.e.

o ( . Z)) &'yl = (az + cy) (bx + dy).

z 291)) identifying T with S1.

[e=]

Bwe'll write f(z) for f ((
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FEzxzamples.

Vo = C has the trivial action.

V; = C? is the standard representation of GL(C?) on C? with basis x,y.
V, = C3 has basis 22, 2y, y? then

a b a® ab b?
02 ((c d)) = | 2ac ad+bc 2bd
c? cd d?

In general V,, 2 S™V) as representations of GLs(C).

Since SU(2) is a subgroup of GLs(C) we can view V,, as a representation of
SU(2) by restriction. In fact as we’ll see, the V,, are precisely the irreducible reps
of SU(2) (up to isomorphism).

Notation. Let Ng[z, 271 = {f € No[z,271] | f(2) = f(z71)}.

Lemma. If x is a character of a representation of SU(2) then x|r € No[z, 271]¢".

Proof. IfV is a representation of SU(2) then ResiU@) V is a representation of T" and

XResy v 1s the restriction of xy to T. Since every character of T' is in Nz, z_1]47
and x|t is even we're done. O

Let’s compute the character xv, |1 of (pn, Vi):

n ((0 0)) (wiy?) = ()i (e YY) = iy

z

n

So for each 0 < j < n, Cxfy™J a T-subrepresentation with character z2~" and

Z 0 n n—2 2—n -n " — Zﬁ(n+1) —11ev
Xvn<<0 Z_1>)2 +20 T4+ T2 S — € N[z, z7']*".
Theorem. V,, is irreducible as a reperesentation of SU(2).
Proof. Let 0 # W < V,, be a SU(2)-invariant subspace. We want to show that
W =1V,.
W is T-invariant so as ResiU@) Vi = @;‘1:0 Cziy"J is a direct sum of non-
isomorphic representations of T,
(5) W has as a basis a subset of {27y 7 |0 < j < n}.
Thus z7y" 7 € W for some 0 < j < n. Since
1 1 1\ ; 1 , ,
— 2y = —(rz—-y)l(zx+y)" ) eW
(4 1)er = St

so by (5) we can deduce that 2™ € W. Repeating the same calculation for i = n,
we see that (x +y)™ € W and so, by (5) again, z'y"~* € W for all i.
Thus W =V,,. O

Ezxercise. Alternative proof:

1 (27 [ en41)it _ p—(n+1)i0\ 2 _
XV, XV ) sU(2) = ;/o ( = > sin?6df = 1.

Theorem. FEvery irreducible representation of SU(2) is isomorphic to V,, for some
n > 0.

4TAs T 81,
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Proof. Let V be an irreducible representation of SU(2) so xv € Nz, z71]¢v.
Now xo = 1,x1 =2+ 271, xo =22+ 1+ 272 ... form a basis of C[z,271]*" as
(non-f.d.) C-vector spaces. Thus xy = Z?:o Aix; for some n € N and \; € C.
Now by orthogonality of characters
1 ifv=y
Ai = ) =
i xvlsue) {0 otherwise.

Since xy # 0 there is some ¢ such that \; =1 and V 2 V. O

We also want to understand ® for representations of SU(2). Recall that if G is
a group and V, W are representations of G then xyvew = XvXw-
Let’s compute some examples for SU(2):

Xvievi(2) = (2 + 2712 =22+ 14272 + 1= xy, +xv,
and
_ (a2 -2 —1y _ ,3 -1, -3 _
Xvaov, (2) = (2" +14+2")(z+2" ) =2"+22+22"" +27° =xv + X1;-
Proposition (Clebsch—Gordan rule). Forn,m € N,
V@V 2V @ Vogm—2® -+ @ ‘/\n—m\-i—Q S¥) Vv‘n_m|.

LECTURE 22

Proof. Without loss of generality, n > m. Then

Zn-i—l _ z—n—l

(Xn - xm)(2) = L (M 2R ™)

Zn+m+172j o Zf(n+m+172j)

ol

1

= z—z
m
= Xntm-2i(2)
Jj=0
as required. (Il

8.6. Representations of SO(3).
Proposition. There is an isomorphism of topological groups SU(2)/{£I} = SO(3).
Proof. See Example Sheet 4 Q4.48 O

Corollary. FEvery irreducible representation of SO(3) is of the form Va, for some
n = 0.

Proof. Tt follows from the Proposition that irreducible representations of SO(3)
correspond to irreducible representations of SU(2) such that —I acts trivially. But
it is easy to verify that —I acts on V,, as (—1)" O

481f you get stuck then consult my notes from 2012 for some hints.
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9. CHARACTER TABLE OF GLy(F,)

9.1. F,. Let p > 2 be a prime, ¢ = p® a power of p for some a > 0, and Fy be the
field with ¢ elements. We know that F; = C;_;.

Notice that Fy — F; 52— 22 is a group homomorphism with kernel £1. Thus
half the elements of F* are squares and half are not. Moreover z 2% isa group
homomorphism that sends squares to 1 and non-squares to —1.

-1
Let € € F be a fixed non-square, so €T = —1, and let
Fp2:={a+bVe|a,beF,},
the field extension of F, with ¢® elements under the obvious operations.

Every element of IF, has a square root in IF 2 since if A is non-square then A /e =
is a square, and (y/eu)? = X. It follows by completing the square that every
quadratic polynomial in F, factorizes in Fg>.

Notice that (a + b\/€)? = a? + bleT e = (a — by/€).* Thus the roots of an
irreducible quadratic over F, are of the form A, 4,50

2

9.2. GLy(F,) and its conjugacy classes. We want to compute the character
table of the group

G = GLy(F,) = {(‘CL Z)

The order of G is the number of bases for F over F,. This is (¢> —1)(¢* — ¢).

First, we compute the conjugacy classes in G. We know from linear algebra that
2 x 2-matrices are determined by their minimal polynomials up to conjugation. By
Cayley-Hamilton each element A of GL2(F,) has minimal polynomial m4(X) of
degree at most 2 and m4(0) # 0.

There are four cases.

Case 1: mg = X — X for some XA € F,*. Then A = A[. So Cg(A) = G, and
I[A]l¢ = 1. There are ¢ — 1 such classes corresponding the possible choices of A.

a,b,c,d € Fy and ad—bc;«éO}.

Case 2: ma = (X — \)? for some A € F,* so A is conjugate to <(>)\ i\) Now

(b )16

_(a=1D)*(g+1Dg _
I[Alle = W =(g—D(g+1).

a,bqu,a#O}

SO

There are ¢ — 1 such classes.
Case 3: myg = (X —\)(X —p) for some distinct A, p € F,*. Then A is conjugate

to A0 and to Y . Moreover
I 0 A

e -6

Cqlg—=1)(¢* - 1)

a,dEIFqX}—:T.
So

=q(g+1).

Since p | (3) fori=1,...,q—1.
50\ 1 A4 should be viewed as an analogue of complex conjugation.
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There are (") corresponding to each possible choice of the pair {\, u}.

Case 4: m4(X) is irreducible over F, of degree 2 so (X — a)(X — a?) € Fp2[X],
= A+ pye with \,up € Fy, p # 0. Then A is conjugate to (2 e)\u) and

o
(—>\M _;N> since all these matrices have trace 2\ = o + a? and determinant

A+ Ver) (A = Vep) = aa.

o D) 2w

If a® = €b? then € is a square or a = b = 0. So |K| = ¢*> — 1 and so

H(A 6),7)} _alg—1)(¢* - 1)
K G

LAY T (g —1).
21 qlqg—1)
There are ¢(q — 1)/2 such classes corresponding to the choices of the pair {«, a?}.
In summary

Now

Representative A Ca [[Ala| No of such classes
Y o | o
G (Y avarn| e
(5 o) T e+ (3
%) K | ala-1) ©

The groups T and K are both maximal tori. That is they are maximal subgroups
of G subject to the fact that they are conjugate to a subgroup of the group of
diagonal matrices over some field extension of F,. T' is called split and K is called
non-split.

Some other important subgroups of G are

Z:={\|XeF,*}

which is the subgroup of scalar matrices (the centre);

v (G ber)

a Sylow p-subgroup of G; and

B;:{(g Z) ’be]Fq,a,dEIFqX}

a Borel subgroup of G. Then N is normal in B and

B/N =T >2F,* xF,* = Cy_q x Cy_1.
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9.3. The character table of B. Let’s warm ourselves up by computing the char-

acter table of B.
a b %
B = 0 d |beFq,a,delF,

Recall
1 b
N::{(O 1>|b6Fq}<B<G:GL2(IFq).

The conjugacy classes in B are

and

Representative | C'p | No of elts | No of such classes
(())\ g) B 1 q—1
(3 /1\> ZN q—1 q—1
G || ¢ | @oe-2

Now B/N =T =T, xF,*. Soif ©, := {reps 6: F;* = C*}, then O, is a cyclic
group of order ¢ — 1 under pointwise operations. Moreover, for each pair 8, ¢ € O,
we have a 1-dimensional representation of B (factoring through B/N) given by

w (5 4)) =ttt

LECTURE 23

giving (¢ — 1)? linear reps.

Suppose v: (Fy, +) — C* is a degree 1 representation and 6 € ©,, we can define

b
a 1-dimensional representation of ZN = F,* x F; (g > — (a,a"1b) by
a

mo (5 1)) =tlantao.

Now ZN <1 B so by Mackey’s irreducibility criterion Ind% y py. - is irreducible if
A0
and only if 9pg ~, # pg  for all g € ZN. Since {t>\ = (0 1) ‘ A€ ]qu} is a family
of left coset reps of ZN in B and

("po,q) ((g Z)) = Po,y ((g /\:b» = 0(a)y(a™A71D),

Npg . = po~ if and only if y(a™'A7'b) = y(a"'b) for all b € F,. The latter is
equivalent to y(a='(A"! —1)b) = 1 for all b € F, i.e. either A =1ory=1. So
Ind3 po,y is irreducible if and only if v # 1.

Now since
|C(b)|

IndZ . v(b) = B
zn x(®) Con (o]

[9]znC[b]B

x(9)
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We see that

IndZ, g <<3 2)) — (g— 1OV,

ndZy po.- <<3 i)) = > 60

bEF, >

=00\ [ D) | o0

beF,
=0(N)(¢(1,7)r, — 1)

e ify#£1
- {(q -1\ ify=1

A0
o (1))

Let pg = IndgN po,y for v # 1 noting that this does not then depend on 7.
Then each pyg is irreducible by the discussion above and we have (¢ — 1) irreducible
representations of degree ¢ — 1. Thus the character table of B is

A0 Al A0
G 3) |6 )]G )

Xo.s | ONS) [ 00BN | 6(N) ()

po | (q—=10N) | —0(}) 0
We note in passing that the 0 in the bottom right corner appears in ¢ — 1 rows
and (¢ — 1)(¢ — 2) columns. But they are forced to be 0 by a Lemma in §7.4
since the order of these conjugacy classes are all ¢, the degree of the irreducible
representations are all (¢ — 1) which is coprime to ¢, and these elements don’t act
by scalars.

We also note that B = Z x { (g l{)
Frobenius group. So Example Sheet 3 Q10, together with our construction of irre-
ducible representations of a direct product as the tensor product of the irreducible
representations of the factors, tells us that we should expect to be able to construct
all the irreducible representation of B in the manner that we have done so.

acFysbe IE‘q} and the second factor is a

9.4. The character table of G. Asdet: G — F,” is a surjective group homomor-
phism, for each 6 € ©, we have a 1-dimensional representation of G via xg := fodet
giving ¢ — 1 representations of degree 1.

0 1
Next we’ll do some induction from B. Writing s = (1 O) we see that

6 a6 D)= 50)

and these elements are all distinct. Hence BsN contains ¢|B| elements so must be
G\B.»! Thus BsN = BsB and B\G/B has two elements G = B[] BsB (this is
called Bruhat decomposition).

SlAs |G = (g +1)|BI.
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By the proof of Mackey’s irreducibility criterion if x is a character of B then

(Ind$ x, d$ ) = (x5, x8)B + (ResBr. 5 X, Res g s *X) Bre
5 a b . d 0
0 d ~\b a
(Ind% x, Ind% X} = (x, X)B + (X|7, *X|7)7

() (6 )

Thus Wy ¢ = Indg X0,s is irreducible for § # ¢ € ©,. These are called principal
series representations.
We can also compute that Wy ¢ has two irreducible factors and

Now

so BN*B =T and

where

1
(Ind pg, Ind o) = 1+ T Yo la=1DoNP | =1+ (g—1) =
AEF, >

Now for any character x of B

dg x(9) = > ||CCYC;((‘(§))>|X(6)~
[blsClgla

A0

) 3)

)
)
Ind¢ ((2 H ) = 0.

Notice that Wy 4 = Wy ¢ so we get (qgl)principal series representations.
We also notice that Wy g = xg ® W71 and

So

>

>
e}

—

=

(o]

QW

=<
7N N N
7 N N N

o >

> =
N—— N

I

=<

N

N

oS >

> =

N———

N———

o
=

Wi1=Ind§1=CG/B

is a permutation representation. Thus W 1 decomposes as 1 @ V3 with V4 an
irreducible representation of degree q. This representation is known as the Steinberg
representation. Then Wy g = x9 @ Vp with Vy = xg9 ® V4 is also irreducible of degree
q a twisted Steinberg.

So far we have
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# classes qg—1 qg—1 ("51) ((21)
A0 Al A0 A€l .
(0 /\> (0 A) 0 u) (u A) 7 ofreps
Xo O(1)? (1) (N0 (1) 0N —eu®) | g1
Vy go(N)? 0 0(A)0 (1) —O0(N —ep®) | g1
Woo | (@+ 10NN | (NG | (N () + (N0 (1) 0 le=Da=2)

We have explicitly constructed all these representations i.e. not just their char-

acters. We have (g) characters to go. It will turn out that they are indexes by

irreducible representations ¢ of K such that ¢ # ¢? but we won’t we able to
explicitly construct the representation.

LECTURE 24

It follows from calculations from last time that Indg 1o has character given by

S 10 ((3 2)) —(g+1)(g— 160,

nd$ i ((3 i)) —— o0,
md$ e ((3 2)) =0 and
win (2 D)

and that (Ind$ pe, Ind$ pg)a = ¢.
Our next strategy is to induce characters from K. The map F,2 — My(F,) given
by

A e
A —
e (u A >
is an isomorphism of rings onto its image K U{0} and we will identify these. Notice

A0
0 /\) = A\. Moreover

A € I (A —en
(u A) B <u A >
since (A + Vep)? = (A = /ep).

We want to understand (IndIG( w,Ind?( ©)g for a character ¢ of K. First we
understand the double cosets K\G/K, i.e. the K-orbits of G/K and then we can
apply Mackey.

Note that for kK € K and g € G, kgK = gK if and only if g"'kg = K. By
consideration of [k]g we see that this is in turn equivalent to g~'kg € {k,k?}.

that IF, corresponds to Z < K with (

1
Writing ¢t = ( 0 O) we can compute that
—€

1 (A eu A —€l
t! t=
(u /\) <u A )
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so kgK = gK if and only if g=tkg = k or (tg) " ‘k(tg) = k.
ifu=0

Furthermore since
G
oo (( V) =1 |
[T K ifu#0,

we see that kgK = gK if and only if either gK € {K,tK} or k € Z. That is there
are two K-orbits of size 1 in G//K®°? and qzq_% = ¢—2 orbits of size ¢+1 = |K/Z]|.
Now KN'K = K and for g € G\KUtK, K N9K = Stabg(gK) = Z so by

Mackey
>

geK\G/K\{K tK}

(Ind$ ¢, Id§ ) = (v, ¥) i + (@, "0) K + (plz,%¢lz)z

Since 9|z = p|z for all g € G and ‘¢ = @9,

-1 if 4
(Ind§ o, nd§ ) = 4471 He7 e
q if p = .

Suppose now that ¢: K — C* is a 1-dimensional character of K. Then Indg %)
has character given by

Id% ¢(\) = q(q — Dp(N),
Ind% ola) = pla) + p(ad) for a € qug and

Indi ©(g) = 0 for g away from these conjugacy classes.
We can thus compute

(Ind$ g, Ind§ ¢) = é > (@* = 1)0(N)a(g — 1)p(N)
NEZ

= (¢ —1)(0,Res ¢)z
Thus Indg 1o and Ind?{ ¢ have many factors in common when ¢|z = 6.

Now, for each ¢ such that 971 # 1 (there are ¢ — ¢ such choices) then our
calculations tell us that if 8, = Ind% Py — md¥ ¢ € R(G) then

(Bp:Bp) =a—2(a—1)+(¢—1) =1
Since also f,(1) = ¢ —1 > 0 it follows that 5, is an irreducible character. Since

By = Bpa (and cpq2 = ) we get (%) characters in this way and the character table
of GLy(F,) is complete.

# classes q—1 q—1 ) 9
A0 Al A0
rep (0 )\) <0 )\) (0 N) o, o # of reps
X6 0(N)? o(N)? O(A\)6(p) (1) q—1
Vo go(N)? 0 O(A)0(p) —0(a®t) q—1
Woo | (@+1)0(N)(N) | 0(N)g(A) | 0(N)p(k) + (M)O(1) 0 (3
By (@=Dp(N) | —p(N) 0 —(p+¢N) | (9

52namely K and tK
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The representations corresponding to the 3, known as discrete series representa-
tions have not been computed explicitly. Drinfeld found these representations in
l-adic étale cohomology groups of an algebraic curve X over F,. These cohomology
groups should be viewed as generalisations of ‘functions on X’. This work was
generalised by Deligne and Lusztig for all finite groups of Lie type.

This construction also enables us to compute the character table of PGLo(F,) :=
GLy(F,)/Z(GLy(Fy)) as its irreducible representations are the irreducible represen-
tations of GLy(Fy) such that the scalar matrices act trivially. i.e. the xg and Vj
such that 62 = 1, the Wy p-1 such that 62 # 1 and the 3, such that ¢|z = 17 i.e.
@It =1 as well as 97 # 1.

We can also then compute the character table of PSLy(F,) = SLao(Fy)/Z(SLa(Fy))
which has index 2 in PGLy(F,) by restriction. These groups are all simple when
q > 5 and this can be seen from the character table.



