
REPRESENTATION THEORY

SIMON WADSLEY

Lecture 1

1. Introduction

Representation Theory is the study of how symmetries occur in nature; that is
the study of how groups act by linear transformations on vector spaces.

1.1. Linear algebra revision. By vector space we will always mean a finite di-
mensional vector space over a field k. For this course k will usually be algebraically
closed and of characteristic zero, for example C. However there are rich theories
for more general fields.

Given a vector space V , we define

GL(V ) = Aut(V ) = {f : V → V | f linear and invertible}
the general linear group of V ; GL(V ) is a group under composition of linear maps.

Because all our vector spaces are finite dimensional, V ∼= kd for some d > 0.
Such an isomorphism determines a basis e1, . . . , ed for V . Then

GL(V ) ∼= {A ∈ Matd(k) | det(A) 6= 0}.
This isomorphism is given by the map that sends the linear map f to the matrix
A such that f(ei) = Ajiej .

Exercise. Check that this does indeed define an isomorphism of groups. ie check
that f is an isomorphism if and only if detA 6= 0; and that the given map is a
bijective group homomorphism.

1.2. Group representations. Recall the definition of the action of a group G on
a set X. An action of G on X is a map · : G×X → X; (g, x) 7→ g · x such that

(i) e · x = x for all x ∈ X;
(ii) (gh) · x = g · (h · x) for all g, h ∈ G and x ∈ X.

Recall also that to define such an action is equivalent to defining a group ho-
momorphism ρ : G → S(X) where S(X) denotes the symmetric group on the set
X.

Definition. A representation ρ of a group G on a vector space V is a group
homomorphism ρ : G→ GL(V ).

By abuse of notation we will sometimes refer to the representation by ρ, some-
times by the pair (ρ, V ) and sometimes just by V with the ρ implied. This can
sometimes be confusing but we have to live with it.

Thus defining a representation of G on V corresponds to assigning a linear map
ρ(g) : V → V to each g ∈ G such that

(i) ρ(e) = idV ;
1
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(ii) ρ(gh) = ρ(g)ρ(h) for all g, h ∈ G;
(iii) ρ(g−1) = ρ(g)−1 for all g ∈ G.

Exercise. Show that (iii) is redundant in the above.

Given a basis for V a representation ρ is an assignment of a matrix ρ(g) to each
g ∈ G such that (i),(ii) and (iii) hold.

Definition. The degree of ρ or dimension of ρ is dimV .

Definition. We say a representation ρ is faithful if ker ρ = {e}.
Examples.

(1) Let G be any group and V = k. Then ρ : G → Aut(V ); g 7→ id is called the
trivial representation.

(2) Let G = Z/2 = {±1}, V = R2, then

ρ(1) =

(

1 0
0 1

)

; ρ(−1) =

(

−1 0
0 1

)

is a group rep of G on V .
(3) Let G = (Z,+), V a vector space, and ρ a representation of G on V . Then

necessarily ρ(0) = idV , and ρ(1) is some invertible linear map f on V . Now
ρ(2) = ρ(1 + 1) = ρ(1)2 = f2. Inductively we see ρ(n) = fn for all n > 0.
Finally ρ(−n) = (fn)−1 = (f−1)n. So ρ(n) = fn for all n ∈ Z.

Notice that conversely given any invertible linear map f : V → V we may
define a representation of G on V by ρ(n) = fn.

Thus we see that there is a 1-1 correspondance between representations of
Z and invertible linear transformations given by ρ 7→ ρ(1).

(4) Let G = (Z/N,+), and ρ : G→ GL(V ) a rep. As before we see ρ(n) = ρ(1)n for
all n ∈ Z but now we have the additional constraint that ρ(N) = ρ(0) = idV .

Thus representations of Z/N correspond to invertible linear maps f such
that fN = idV . Of course any linear map such that fN = idV is invertible so
we may drop the word invertible from this correspondance.

Exercise. Check the details

(5) If G is a group with generated by x1, . . . , xn and with relations (words in xi, x
−1
i

equal to the identity in G) r1(x1, . . . , xn), . . . , rm(x1, . . . , xn) , then there is a 1-
1 correspondence between representations of G on V and n-tuples of invertible
linear maps (A1, . . . , An) on V such that ri(A1, . . . , An) = idV .

(6) Let G = S3, the symmetric group of {1, 2, 3}, and V = R2. Take an equilateral
triangle in V centred on 0; thenG acts on the triangle by permuting the vertices.
Each such symmetry induces a linear transformation of V . For example g =
(12) induces the reflection through the vertex three and the midpoint of the
opposite side, and g = (123) corresponds to a rotation by 2π/3.

Exercise. Choose a basis for R2. Write the coordinates of the vertices of the
triangle in this basis. For each g ∈ S3 write down the matrix of the corre-
sponding linear map. Check that this does define a representation of S3 on V .
Would the calculations be easier in a different basis?

(7) Given a finite set X we may form the vector space kX of functions X to k with
basis 〈δx | x ∈ X〉 where δx(y) = δxy.
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Then an action of G on X induces a representation ρ : G → Aut(kX) by
(ρ(g)f)(x) = f(g−1 · x) called the permutation representation of G on X.

To check this is a representation we must check that each ρ(g) is linear, that
ρ(e) = id and ρ(gh) = ρ(g)ρ(h) for each g, h ∈ G.

For the last observe that for each x ∈ X,

ρ(g)(ρ(h)f)(x) = (ρ(h)f)(g−1x) = f(h−1g−1x) = ρ(gh)f(x).

Notice that ρ(g)δx(y) = δx,g−1·y = δg·x,y so ρ(g)δx = δg·x. So by linearity
ρ(g)(

∑

x∈X λxδx) =
∑

λxδg·x.
(8) In particular if G is finite then the action of G on itself induces the regular

representation kG of G. The regular representation is always faithful because
geh = eh for all h ∈ G implies that gh = h for all h ∈ G and so g = e.

Lecture 2

1.3. The category of representations. We want to classify all representations
of a group G but first we need a good notion of when two representations are the
same.

Notice that if ρ : G → GL(V ) is a representation and ϕ : V → V ′ is a vector
space isomorphism then we may define ρ′ : G→ GL(V ′) by ρ′(g) = ϕ ◦ ρ(g) ◦ ϕ−1.
Then ρ′ is also a representation.

Definition. We say that ρ : G → GL(V ) and ρ′ : G → GL(V ′) are isomorphic
representations if there is a linear isomorphism ϕ : V → V ′ such that

ρ′(g) = ϕ ◦ ρ(g) ◦ ϕ−1 for all g ∈ G

i.e. if ρ′(g) ◦ ϕ = ϕ ◦ ρ(g). We say that ϕ intertwines ρ and ρ′.

Notice that if ϕ intertwines ρ and ρ′ and ϕ′ intertwines ρ′ and ρ′′ then ϕ′ϕ inter-
twines ρ and ρ′′ and ϕ−1 intertwines ρ′ and ρ. Thus isomorphism is an equivalence
relation.

If ρ : G→ GLd(k) is a matrix representation then an intertwining map kd → kd

is an invertible matrix P and the matrices of the reps it intertwines are related by
ρ′(g) = Pρ(‘g)P−1. Thus matrix representations are equivalent precisely if they
correspond to the same representation with respect to different bases.

Examples.

(1) If G = {e} then a representation of G is just a vector space and two vector
spaces are isomorphic as representations if and only if they have the same
dimension.

(2) If G = Z then ρ : G → GL(V ) and ρ′ : G → GL(V ′) are isomorphic reps if
and only if there are bases of V and V ′ such that ρ(1) and ρ′(1) are the same
matrix. In other words isomorphism classes of representations of Z correspond
to conjugacy classes of invertible matrices. Over C the latter is classified by
Jordan Normal Form (more generally by rational canonical form).

(3) If G = Z/2 then isomorphism classes of representations of G correspond to
conjugacy classes of matrices that square to the identity. Since the minimal
polynomial of such a matrix is X2−1 = (X−1)(X+1) provided the field does
not have characteristic 2 every such matrix is conjugate to a diagonal matrix
with diagonal entries all ±1.
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Exercise. Show that there are precisely n+ 1 isomorphism classes of represen-
tations of Z/2 of dimension n.

Note that two isomorphic representations must have the same dimension but
that the converse is not true.

Definition. Suppose that ρ : G→ GL(V ) is a rep. We say that a k-linear subspace
W of V is G-invariant if ρ(g)(W ) ⊂W for all g ∈ G (ie ρ(g)(w) ∈W for all g ∈ G
and w ∈W ).

In that case we call W a subrepresentation of V ; we may define a representation
ρW : G→ GL(W ) by ρW (g)(w) = ρ(g)(w) for w ∈W .

We call a subrepresentation W of V proper if W 6= V and W 6= 0. We say that
V 6= 0 is irreducible or simple if it has no proper subreps.

Examples.

(1) Any one-dimensional representation of a group is irreducible.

(2) Suppose that ρ : Z/2 → GL(k2) is given by −1 7→
(

−1 0
0 1

)

(char k 6= 2).

Then there are precisely two non-trivial subreps spanned by

(

1
0

)

and

(

0
1

)

respectively.

Proof. It is easy to see that these two subspaces are G-invariant. Any non-
trivial subspace must be one dimensional and so by spanned by an eigenvector
of ρ(−1). But of ρ(−1) are precisely those already described. �

(3) If G is Z/2Z then the only irreducible representations are one-dimensional.

Proof. Suppose ρ : G→ GL(V ) is an irreducible rep. The minimal polynomial
of ρ(1) divides X2 − 1 = (X − 1)(X + 1). Thus ρ(−1) has an eigenvector v.
Now 0 6= 〈v〉 is a subrep. of V . Thus V = 〈v〉. �

Notice we’ve shown along the way that there are precisely two simple reps
of G if k doesn’t have characteristic 2 and only one if it does.

(4) If G = D6 then every irreducible complex representation has dimension at most
2.

Proof. Suppose ρ : G → GL(V ) is an irred. G-rep. Let r be a non-trivial
rotation and s a reflection in G. Then ρ(r) has a eigenvector v, say. So
ρ(r)v = λv for some λ 6= 0. Consider W := 〈v, ρ(s)v〉 ⊂ V . Since ρ(s)ρ(s)v = v
and ρ(r)ρ(s)v = ρ(s)ρ(r)−1v = λ−1ρ(s)v, W is G-invariant. Since V is irred,
W = V . �

Exercise. Classify all irred reps of D6 up to iso (Hint: λ3 = 1 above). Note in
particular that D6 has an irred. rep. of degree 2.

(5) If G = Z and (ρ, V ) is a representation over C then when is V irreducible?
We can choose a basis for V so that ρ(1) is in Jordan Normal Form. It is

easy to see that the Jordan blocks determine invariant subspaces; so if V is
irreducible then there is only one Jordan block. Say ρ(1) = A then Aei =
λei + ei−1 for some non-zero λ and i = 1, . . . d (where by convention e0 = 0).

Exercise. Show that the invariant subspaces are precisely the subspaces of the
form 〈e1, . . . , ek〉 for k 6 d.
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It follows that the only irreducible representations of Z are one-dimensional.
ρ : Z → C×; 1 7→ λ.

Proposition. Suppose ρ : G → GL(V ) is a rep. and W ⊂ V . Then the following
are equivalent:

(i) W is a subrep;
(ii) there is a basis v1, . . . , vd of V such that v1, . . . , vr is a basis of W and the

matrices ρ(g) are all block upper triangular;
(iii) for every basis v1, . . . , vd of V such that v1, . . . , vr is a basis of W the matrices

ρ(g) are all block upper triangular.

Proof. Think about it! �

Definition. If W is a subrep of a rep (ρ, V ) of G then we may define a quotient
representation by ρV/W : G → GL(V/W ) by ρ(g)(v + W ) = ρ(g)(v) + W . Since
ρ(g)W ⊂W for all g ∈ G this is well-defined.

Definition. If (ρ, V ) and (ρ′,W ) are reps of G we say a linear map ϕ : V →W is
a G-linear map if ϕ ◦ ρ(g) = ρ(g) ◦ ϕ for all g ∈ G. We write HomG(V,W ) = {ϕ |
ϕ is G linear}, a k-vector space.

Note if ϕ ∈ HomG(V,W ) is a vector space isomorphism then φ intertwines the
isomorphic reps V and W .

Lemma. Suppose (ρ, V ) and (ρ′,W ) are representations of G and ϕ ∈ HomG(V,W )
then

(i) kerϕ is a subrep of V .
(ii) Imϕ is a subrep of W .
(iii) V/ kerϕ is isomorphic to Imϕ as reps of G.

Proof.
(i) if v ∈ kerϕ and g ∈ G then ϕ(ρ(g)v) = ρ′(g)ϕ(v) = 0
(ii) if w = ϕ(v) ∈ Im and g ∈ G then ϕ then ρ′(g)w = ϕρ(g)v ∈ Imϕ.
(iii) We know that the linear map ϕ factors through ϕ : V/ kerϕ → Imϕ and it

is straightforward to check that for each g ∈ G, ϕρV/ ker ϕ(g) = ρ′Imϕ(g)ϕ �

Lecture 3

2. Complete reducibility and Maschke’s Theorem

Question. When can we choose a basis for a representation V so that all the matrices
ρ(g) are block diagonal of the same size blocks?

Definition. We say a representation V is a direct sum of U and W if U and W are
subreps of V such that V = U⊕W as vector spaces (ie V = U+W and U∩W = 0).

Given two representations (ρ1, U) and (ρ2,W ) we may define a representation of
G on U ⊕W by ρ(g)(u,w) = (ρ1(g)u, ρ2(g)w).

Examples.

(1) If G acts on a finite set X so that X may be written as the disjoint union
of two G-invariant subsets X1 and X2. Then kX ∼= kX1 ⊕ kX2 under
f 7→ (f |X1

, f |X2
).

That is kX = {f | f(x) = 0 ∀x ∈ X2} ⊕ {f | f(x) = 0 ∀x ∈ X1}.
More generally if the G-action on X decomposes into orbits as a disjoint

union X =
⋃Oi then kX ∼=

⊕

kOi.
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(2) IfG acts transitively on a finite setX then U := {f ∈ kX |∑x∈X f(x) = 0}
and W := {f ∈ kX | f is constant} are subreps of kX. If k is charactersitic
0 then kX = U ⊕W . What happens if k has characteristic p > 0?

Proposition. Suppose ρ : G→ GL(V ) is a rep. and V = U ⊕W as vector spaces.
Then the following are equivalent:

(i) V = U ⊕W as reps;
(ii) there is a basis v1, . . . , vd of V such that v1, . . . , vr is a basis of U and vr+1, . . . vd

is a basis for W and the matrices ρ(g) are all block diagonal;
(iii) for every basis v1, . . . , vd of V such that v1, . . . , vr is a basis of U and vr+1, . . . , vd

is a basis for W and the matrices ρ(g) are all block diagonal.

Proof. Think about it! �

But warning:

Example. ρ : Z/2 → GL2(R); 1 7→
(

−1 −2
0 1

)

defines a representation (check).

The representation R2 breaks up as 〈e1〉 ⊕ 〈e1 − e2〉 as subreps even though the
matrix is upper triangular but not diagonal.

So we may rephrase our question:

Question. When does a representation V break up as a direct sum of subreps?

Not always: clearly V cannot be irreducible. But we see already from the exam-
ple of Z that having proper invariant subspaces doesn’t always suffice to be able to
do this either. However there is an amazing theorem.

Theorem (Maschke’s Theorem). Let G be a finite group and (ρ, V ) a represen-
tation of G over a field k of characteristic zero. Suppose W ⊂ V is an invariant
subspace. Then there is a G-invariant complement to W ie a G-invariant subspace
U of V such that V = U ⊕W .

Corollary (Complete reducibility). If G is a finite group, (ρ, V ) a representation
over a field of characteristic zero. Then V ∼= W1 ⊕ · · ·Wr is a direct sum of
representations with each Wi irreducible.

Proof. By induction on dimV . If dimV = 0 or V is irreducible then the result is
clear. Otherwise V has a non-trivial G-invariant subspace W .

By the theorem there is a G-invariant complement U and V ∼= U ⊕W as G-reps.
But dimU,dimW < dimV , so by induction they each break up as a direct sum of
irreducibles subreps. Thus V does also. �

Example. We saw before that every representation of Z/2 over C is a direct sum
of 1-dimensional subreps as we may diagonalise ρ(−1). Let’s think about how this
might generalise:

Suppose that G is a finite abelian group, and (ρ, V ) is a complex representation
of G. Each element g ∈ G has finite order so has a minimal polynomial dividing
Xn − 1 for n = o(g). In particular it has distinct roots. Thus there is a basis for
V such that ρ(g) is diagonal. But because G is abelian ρ(g) and ρ(h) commute
for each pair g, h ∈ G and so the ρ(g) may be simultaneously diagonalised (Sketch
proof: if each ρ(g) is a scalar matrix the result is clear. Otherwise pick g ∈ G such
that ρ(g) is not a scalar matrix. Each eigenspace E(λ) of ρ(g) will be G-invariant
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since G is abelian. By induction on dimV we may solve the problem for each
subrep E(λ) and then put these subreps back together). Thus V decomposes as a
direct sum of one-dimensional reps. Of course, this technique can’t work in general
because (a) ρ(g) and ρ(h) won’t commute in general; (b) not every irreducible rep
is one-dimensional in general. Thus we’ll need a new idea.

Example. Let G act on a finite set X, and consider the real permutation represen-
tation RX = {f : X → R} with (ρ(g)f)(x) = f(g−1x).

Idea: with respect to the given basis δx all the matrices ρ(g) are orthogonal; that
is they preserve distance. This is because the standard inner product with respect
to the basis is 〈f1, f2〉 =

∑

x∈X f1(x)f2(x) and so for each g ∈ G

〈ρ(g)f1, ρ(g)f2〉 =
∑

x∈X

f1(g
−1x)f2(g

−1x) = 〈f1, f2〉

since g permutes the elements of X.
In particular if W is a subrep of RX and W⊥ := {v ∈ RX | 〈v,W 〉 = 0} then if

g ∈ G and v ∈W⊥ and w ∈W we have (suppressing the ρ) 〈w, gv〉 = 〈g−1w, v〉 = 0
since g−1w ∈ W . Thus G preserves W⊥ which is thus a G-invariant complement
to W .

We will first prove our result over C by showing that every complex represen-
tation over C is equivalent to one whose image is a subgroup of the unitary group
Un(C) and using the idea in this example. Then we will adapt the same idea to
work over an arbitrary field of characteristic zero.

Recall: if V is a complex vector space then a Hermitian inner product is a positive
definite Hermitian sesquilinear map (−,−) : V × V → C that is a map satisfying

(i) (ax+ by, z) = a(x, z) + b(y, z) and (x, ay+ bz) = a(x, y) + b(x, z) for a, b ∈ C,
x, y, z ∈ V (sesquilinear);

(ii) (x, y) = (y, x) (Hermitian);
(iii) (x, x) > 0 for all x ∈ V \{0} (positive definite).

If W ⊂ V is a linear subspace of a complex vector space with a Hermitian inner
product and W⊥ = {v ∈ V | (v, w) = 0 ∀w ∈ W} then W⊥ is a vector space
complement to W in V .

Definition. A Hermitian inner product on a G-rep V is G-invariant if (gx, gy) =
(x, y) for all g ∈ G and x, y ∈ V ; equivalently if (gx, gx) = (x, x) for all g ∈ G and
x ∈ V .

Lemma. If (−,−) is a G-invariant Hermitian inner product on a G-rep V and
W ⊂ V is a subrep then W⊥ = {v ∈ V | (v, w) = 0 for all w ∈W} is a G-invariant
complement to W .

Proof. It suffices to prove that W⊥ is G-invariant since W⊥ is a complement to W .
Suppose g ∈ G, x ∈ W⊥ and w ∈ W . Then (gx,w) = (x, g−1w) = 0 since

g−1w ∈W . Thus gx ∈W⊥ as required. �

Proposition (Weyl’s unitary trick). If V is a complex representation of a finite
group G, then there is a G-invariant Hermitian inner product on V .

Proof. Pick any Hermitian inner product 〈−,−〉 on V (ie choose a basis and take
the standard inner product obtained by declaring the basis to be orthonormal and
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extending sesquilinearly). Then define a new inner product (−,−) on V by aver-
aging:

(x, y) := |G|−1
∑

g∈G

〈gx, gy〉.

It is easy to see that (−,−) is sesquilinear and Hermitian symmetric and positive
definite because 〈−,−〉 is so.

But now if h ∈ G and x, y ∈ V then (hx, hy) = |G|−1
∑

g∈G〈ghx, ghy〉 =

|G|−1
∑

g′∈G〈g′x, g′y〉 and so (−,−) is G-invariant. �

Corollary (Maschke’s Theorem for complex representations). Every complex rep-
resentation of a finite group G splits as a direct sum of irreducible subreps.

Lecture 4

Corollary (of Weyl’s unitary trick). Every finite subgroup G of GLn(C) is conju-

gate to a subgroup of Un(C) := {A ∈ Matn(C) | AAT
= I}.

Proof. First notice that A ∈ GLn(C) is unitary if and only if (Ax,Ay) = (x, y) for
all x, y ∈ Cn (here (−,−) denotes the standard inner product with respect to the
standard basis of Cn). Moreover changing basis corresponds to conjugating by an
element of GLn(C).

So we use the unitary trick to find a G-invariant Hermitian inner product 〈−,−〉
and choose an orthonormal basis for Cn with respect to 〈−,−〉 using Gram-Schmidt,
say.

Let P be the change of basis matrix from the standard basis to the newly con-
structed basis. Then 〈Pa, Pb〉 = (a, b) for a, b ∈ V . So for each g ∈ G

(P−1gPa, P−1gPb) = 〈gPa, gPb〉 = 〈Pa, Pb〉 = (a, b).

Thus P−1gP ∈ Un(C) for each g ∈ G as required. �

Thus studying all complex representations of a finite group G is equivalent to
studying unitary (ie distance preserving) ones.

We now adapt our proof of complete reducibility to handle any field of charac-
teristic k, even if there is no notion of inner product.

Theorem (Maschke’s Theorem). Let G be a finite group and V a representation of
G over a field k of characteristic zero. Then every subrep W of V has a G-invariant
complement.

Proof. Choose some projection π : V →W ; ie a k-linear map π : V →W such that
π(w) = w for all w ∈W .

Now kerπ is a vector space complement to W since (1) if v ∈ kerπ ∩W then
v = 0 and (2) π(v − π(v)) = 0 for all v ∈ V so V = W + kerπ. Moreover kerπ is
G-invariant if π ∈ HomG(V,W ). So we try to build a G-linear projection V → W
using π.

Let π′ : V →W be defined by π′(v) = 1
G

∑

g∈G gπ(g−1v).
Notice that

• π′(v) ∈ W for all v ∈ V since W is G-invariant so gπ(g−1v) ∈ W for all
g ∈ G, v ∈ V .

• π′ is k-linear since it is a linear combination of k-linear maps gπg−1.
• π′(w) = w for all w ∈W since gπg−1w = gg−1w = w.
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• π′ ∈ HomG(V,W ) since if v ∈ V and h ∈ G then

|G|hπ′(v) =
∑

g∈G

hgπ(g−1v) =
∑

g′∈G

g′π′(g′−1hv) = |G|π′(hv)

where g′ = hg so g−1 = g′−1h.
Dividing by |G| we see that π′ is G-linear as required.

Thus kerπ′ is the required G-invariant complement to W . �

Remarks.

(1) We can explicitly compute π′ and kerπ′ given (ρ, V ) and W .
(2) Notice that we only use char k = 0 when we invert |G|. So in fact we only need

that the characteristic of k does not divide |G|. (Exercise: What happens for

ρ : Z/2Z → GL2(F2); 1 7→
(

1 1
0 1

)

and W = 〈
(

1
0

)

〉 ⊂ F2
2.)

(3) Whenever V,W are G-reps we can make

Hom(V,W ) = {ϕ : V →W | ϕ is k linear}
into a G-rep by (gϕ)(v) = g(ϕ(g−1v)). Then

HomG(V,W ) = {ϕ ∈ Hom(V,W ) | gϕ = ϕ}
and there is a k-linear projection (for char k not dividing |G|)

Hom(V,W ) → HomG(V,W )

given by ϕ 7→ 1
|G|

∑

g∈G gϕ.

(4) In fact every irreducible representation of G is a submodule of the regular
representation kG (see Ex Sheet 1 Q10 or the section on characters for a proof
in characteristic zero).

An observation that we should have made earlier: if θ : H → G is a group homo-
morphism then every representation ρ : G→ GL(V ) of G induces a representation
ρθ : H → GL(V ) of H.

If H is a subgroup of G and θ is inclusion we call this restriction to H.

3. Schur’s Lemma

We’ve proven in characteristic zero that every representation V of a finite group
G decomposed V =

⊕

Vi with Vi irreducible. We might ask how unique this is.
Three possible hopes

(1) (uniqueness of factors) If
⊕k

i=1 Vi
∼=
⊕k′

i=1 V
′
i with Vi, V

′
i irreducible then k = k′

and there is σ ∈ Sk such that V ′
σ(i)

∼= Vi.

(2) (uniqueness of isotypical decomposition) For each V there exist unique subreps
W1, . . . ,Wk st V =

⊕

Wi and if Vi 6 Wi and Vj 6 Wj are irred. subreps then
Vi

∼= Vj if and only if i = j.
(3) (uniqueness of decomposition) For each V there is only one way to decompose

V =
⊕

Vi with Vi irreducible.

Notice that (3) is clearly too strong. For example if G is the trivial group and
dimV > 1 then every line in V gives an irreducible subrep. This non-uniqueness is
roughly measured in this case by GL(V ).

Notice also that (2) (and so (1)) is true for Z/2Z — the Wi are the eigenspaces
of ρ(1).
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Theorem (Schur’s Lemma). Suppose that V and W are irreducible reps of G over
k. Then

(i) every element of HomG(V,W ) is either 0 or an isomorphism,
(ii) if k is algebraically closed then dimk HomG(V,W ) is either 0 or 1 .

In other words irreducible representations are rigid.

Proof. (i) Let ϕ be a non-zero G-linear map from V to W . Then kerϕ is a G-
invariant subspace of V . Thus kerϕ = 0, since it cannot be the whole of V .
Similarly imϕ is a subrep of W so imϕ = W since it cannot be 0. Thus ϕ is both
injective and surjective, so an isomorphism.

(ii) Suppose ϕ1, ϕ2 ∈ HomG(V,W ) are non-zero. Then by (i) they are both
isomorphisms. Consider ϕ = ϕ−1

1 ϕ2 ∈ HomG(V, V ). Since k is algebraically closed
we may find λ an eigenvalue of ϕ then ϕ − λ idV has non-trivial kernel and so is
zero. Thus ϕ−1

1 ϕ2 = λ idV and ϕ2 = λϕ1 as required. �

Lecture 5

Proposition. If V, V1 and V2 are k-representations of G then

HomG(V, V1 ⊕ V2) ∼= HomG(V, V1) ⊕ HomG(V, V2)

and

HomG(V1,⊕V2, V ) ∼= HomG(V1, V ) ⊕ HomG(V2, V ).

Proof. Let πi : V1 ⊕ V2 → Vi be the G-linear projection onto Vi with kernel V3−i.
Then the map HomG(V, V1 ⊕ V2) → HomG(V, V1) ⊕ HomG(V, V2) given by ϕ 7→
(π1ϕ, π2ϕ) has inverse (ψ1, ψ2) 7→ ψ1 + ψ2.

Similarly the map HomG(V1,⊕V2, V ) ∼= HomG(V1, V ) ⊕ HomG(V2, V ) given by
ϕ 7→ (ϕ|V1

, ϕ|V2
) has inverse (ψ1, ψ2) 7→ ψ1π1 + ψ2π2. �

Now, recall,

Theorem (Schur’s Lemma). Suppose that V and W are irreducible reps of G over
k. Then

(i) every element of HomG(V,W ) is either 0 or an isomorphism,
(ii) if k is algebraically closed then dimk HomG(V,W ) is either 0 or 1 .

Corollary. Suppose k is algebraically closed and

V ∼=
r
⊕

i=1

Vi

is a decomposition of a k-rep. of G into irreducible components.
Then for each irreducible representation W of G,

|{i | Vi
∼= W}| = dim HomG(W,V ).

Proof. By induction on r. If r = 0, 1 we’re done.

If r > 1 consider V as
(

⊕r−1
i=1 Vi

)

⊕ Vr. By the Proposition

dim HomG(W,

(

r−1
⊕

i=1

Vi

)

⊕ Vr) = dim HomG(W,

r−1
⊕

i=1

Vi) + dim HomG(W,Vr).

Now the result follows by the induction hypothesis. �
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Important question: How do we actually compute these numbers dim HomG(V,W ).

Corollary. (of Schur’s Lemma) Every irreducible complex representation of a finite
abelian group G is one-dimensional.

Proof. Let (ρ, V ) be a complex irred. rep of G. For each g ∈ G, ρ(g) ∈ HomG(V, V ).
So by Schur, ρ(g) = λg idV for some λg ∈ C. Thus for v ∈ V non-zero, 〈v〉 is a
subrep of V . �

Corollary. Every finite abelian group G has precisely |G| complex irreducible rep-
resentations.

Proof. Let ρ be an irred. complex rep of G. By the last corollary, dim ρ = 1. So
ρ : G→ C× is a group homomorphism.

Since G is a finite abelian group G ∼= Cn1
× · · · × Cnk

some n1, . . . , nk. Now
if G = G1 × G2 is the direct product of two groups then there is a 1-1 corre-
spondance between the set of group homomorphisms G → C× and the of pairs
(G1 → C×, G2 → C×) given by restriction ϕ 7→ (ϕ|G1

, ϕ|G2
). Thus we may reduce

to the case G = Cn = 〈x〉 is cyclic.
Now ρ is determined by ρ(x) and ρ(x)n = 1 so ρ(x) must be an nth root of unity.

Moreover we may choose ρ(x) however we like amongst the nth roots of 1. �

Examples.
G = C4 = 〈x〉. G = C2 = 〈x, y〉.
1 x x2 x3

ρ1 1 1 1 1
ρ2 1 i −1 −i
ρ3 1 −1 1 1
ρ4 1 −i −1 i

1 x y xy
ρ1 1 1 1 1
ρ2 1 −1 1 −1
ρ3 1 1 −1 −1
ρ4 1 −1 −1 1

Note there is no natural correspondence between elements of G and representa-
tions ρ.

Note too that the rows of these matrices are orthogonal with respect to the
standard Hermitian inner product: 〈v, w〉 =

∑

viwi.

Lemma. If (ρ1, V1) and (ρ2, V2) are non-isomorphic one-dimensional representa-

tions of a finite group G then
∑

g∈G ρ1(g)ρ2(g) = 0

Proof. We’ve seen that HomG(V1, V2) is a G-rep under gϕ(v) = ρ2(g)ϕρ1(g
−1)

and
∑

g∈G gϕ ∈ HomG(V1, V2) = 0 by Schur. Since ρ1(g) is always a root of

unity, ρ1(g
−1) = ρ1(g). Pick an isomorphism ϕ ∈ Hom(V1, V2). Then 0 =

∑

g∈G ρ2(g)ϕρ1(g
−1) =

∑

g∈G ρ1gρ2(g)ϕ as required. �

Corollary. Suppose G is an abelian group then every complex representation V of
G has a unique isotypical decomposition.

Proof. For each homomorphism θi : G → C× (i = 1, . . . , |G|) we can define Wi to
be the subspace of V defined by

Wi = {v ∈ V | ρ(g)v = θi(g)v for all g ∈ G}.
Since V is completely reducible and every irreducible rep of G is one dimensional

V =
∑

Wi. We need to show that for each i Wi ∩
∑

j 6=iWj = 0. It is equivalent to

show that
∑

wi = 0 with wi ∈Wi implies wi = 0 for all i.
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But
∑

wi = 0 with wi in Wi certainly implies 0 = ρ(g)
∑

wi =
∑

θi(g)wi. By
choosing an ordering g1, . . . , g|G| of G we see that the |G| × |G| matrix θi(gj) is
invertible by the lemma. Thus wi = 0 for all i as required. �

Corollary. (of Schur’s Lemma) If G has a faithful complex irreducible representa-
tion then the centre of G, Z(G) is cyclic.

Proof. Let V be a faithful complex irreducible rep of G, and let z ∈ Z(G). Then
let ϕz : V → V be defined by ϕz(v) = zv. Since gz = zg for all g ∈ G, ϕz ∈
HomG(V, V ) = C idV by Schur, ϕz = λz idV , say.

Now Z(G) → C; z 7→ λz is a representation of Z(G) that must be faithful since
V is faithful. In particular Z(G) is isomorphic to a finite subgroup of C×. But
every such subgroup is cyclic. �

Lecture 6

4. Characters

4.1. Definitions. We’ll now always assume k = C although almost always a field
of characteristic zero containing all nth roots of unity would suffice.

We’ve seen that to count the number of times an irreducible representation
W occurs as a summand of a completely reducible representation V it suffices to
compute dim HomG(V,W ) but have no strategy to do this in general. It turns out
that the theory of characters makes this very easy.

Definition. Given a representation ρ : G → GL(V ), the character of ρ is the
function χ = χρ = χV : G→ k given by g 7→ tr ρ(g).

Since for matrices tr(AB) = tr(BA), the character does not depend on the choice
of basis for V [tr(X−1AX) = tr(AXX−1) = tr(A)]. By the same argument we also
see that equivalent reps have the same character.

Proposition. Let (ρ, V ) be a complex rep of G with character χ

(i) χ(e) = dimV ;
(ii) χ(g) = χ(hgh−1) for all g, h ∈ G;

(iii) χ(g−1) = χ(g) if o(g) is finite.
(iv) If χ′ is the character of (ρ′, V ′) then χ+ χ′ is the character of V ⊕ V ′.

Proof.
(i) χ(e) = tr idV = dimV .
(ii) ρ(hgh−1) = ρ(h)ρ(g)ρ(h)−1. Thus ρ(hgh−1) and ρ(g) are conjugate and so

have the same trace.
(iii) if ρ(g) has eigenvalues λ1, . . . , λn (with multiplicity) then χ(g) =

∑

λi. But

as o(g) is finite each λi must be a root of unity. Thus χ(g) =
∑

λi =
∑

λ−1
i but of

course the λ−1
i are the eigenvalues of g−1.

(iv) is clear. �

The proposition tells us that the character of ρ contains very little data; just a
complex number for each conjugacy class in G. The extraordinary thing that we
will see is that it contains all we need to know to reconstruct ρ up to isomorphism.

Example. Let G = D2n = 〈s, t | s2 = 1, tn = 1, sts−1 = t−1〉, the dihedral group
of order 2n for n odd. This acts on R2 by symmetries of the n-gon; with t acting
by rotation by 2π/n and s acting by a reflection. To compute the character of



REPRESENTATION THEORY 13

this rep we just need to know the eigenvalues of the action of each element. Each
reflection (element of the form sti) will act by a matrix with eigenvalues ±1. Thus

χ(sti) = 0 for all i. The rotations tr act by matrices

(

cos 2πr/n − sin 2πr/n
sin 2πr/n cos 2πr/n

)

thus χ(tr) = 2 cos 2πr/n.

Definition. We say a function f : G → C is a (complex-valued) class function if
f(hgh−1) = f(g) for all g, h ∈ G. We’ll write CG for the complex vector space of
class functions on G.

Notice that if G is finite and O1, . . . ,Or is a list of the conjugacy classes of G
then the ‘delta functions’ δOi

: G→ C given by y 7→ 1 if y ∈ Oi and y 7→ 0 otherwise
form a basis for CG. In particular dim CG is the number of conjugacy classes in G.

We make CG into a Hermitian inner product space by defining

〈f, f ′〉 = |G|−1
∑

f(g)f ′(g).

It is easy to check that this does define an Hermitian inner product and that
the functions δOi

are pairwise orthogonal. Notice that 〈δOi
, δOi

〉 = |Oi|/|G| =
|CG(xi)|−1 for any xi ∈ Oi.

Thus if x1, . . . , xr are conjugacy class representatives, then we can write

〈f, f ′〉 =
r
∑

i=1

|CG(xi)|−1|f(xi)f
′(xi).

4.2. Orthogonality.

Theorem (Orthogonality of characters). If V and V ′ are complex irreducible rep-
resentations of a finite group G then 〈χV , χV ′〉 is 1 if V ∼= V ′ and 0 otherwise.

Notice that this theorem tells us that the characters of irreducible reps form part
of an orthonormal basis for CG. In particular the number of irreducible represen-
tations is bounded above by the number of conjugacy classes of G. In fact we’ll
see that the characters span the space of class functions and so that the number
of irreps is precisely the number of conjugacy classes in G. We saw this when G is
abelian last time.

Recall that if V,W are reps of G, Hom(V,W ) = {f : V →W | f is k linear} into
a G-rep by (g.f)(v) = g(f(g−1v)). Let’s compute the character of Hom(V,W ).

Lemma. If V and W are reps of a group G then for g ∈ G of finite order,
χHomG(V,W )(g) = χV (g)χW (g).

Proof. Given g ∈ G we may choose bases v1, . . . , vn for V and w1, . . . , wm for W
such that gvi = λivi and gwj = µjwj . Then the functions fij(vk) = ∂ikwj extend to

linear maps that form a basis for Hom(V,W ) and (g.fij)(vi) = λ−1
i µjwj thus gfij =

λ−1
i µjfij and χHom(V,W )(g) =

∑

i,j λ
−1
i µj = χV (g−1)χW (g) = χV (g)χW (g). �

Lemma. If U is a rep of G then dim{u ∈ U | gu = u} = 〈1, χ〉 = |G|−1
∑

g∈G χU (g).

Proof. Let π : U → U be defined by π(u) = |G|−1
∑

g∈G gu, and write UG := {u ∈
U | gu = u}. Then hπ(u) = π(u) for all u ∈ U so π(u) ∈ UG for all u ∈ U .
Moreover πUG = idUG by direct calculation. Thus

dimUG = tr idUG = trπ = |G|−1
∑

g∈G

χU (g)
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as required. �

Proposition. If V and W are representations of G then dim HomG(V,W ) =
〈χW , χV 〉.
Proof. This follows immediately from the two lemmas. �

Corollary (Orthogonality of characters). If χ, χ′ are characters of irreducible reps
then 〈χ, χ′〉 = δχ,χ′ .

Proof. Apply the Proposition and Schur’s Lemma �

Suppose now that V1, . . . , Vk is the list of all irreducible complex reps of G up
to isomorphism and the corresponding characters are χ1, . . . , χk. Then Maschke’s
Theorem tells us that any representation V may be written as a direct sum of copies
of the Vi, V ∼=

⊕

niVi. Thus χ =
∑

niχi.
As the χi are orthonormal we may compute 〈χ, χi〉 = ni. This is another proof

that the decomposition factors of V are determined by their composition factors.
However we get more: the composition factors of V can be computed purely from
its character; that is if we have a record of each of the irreducible characters, then
we now have a practical way of calculating how a given representation breaks up
as a direct sum of its irreducible components. Our main goal now is to investigate
how we might produce such a record of the irreducible characters.

Corollary. If ρ and ρ′ are reps of G then they are isomorphic if and only if they
have the same character.

Proof. We have already seen that isomorphic reps have the same character. Sup-
pose that ρ and ρ′ have the same character χ. Then they are each isomorphic to
〈χ1, χ〉ρ1 ⊕ · · · ⊕ 〈χk, χ〉ρk and thus to each other. �

Lecture 7

We begin by recalling

Theorem (Orthogonality of characters). If V and V ′ are complex irreducible rep-
resentations of a finite group G then 〈χV , χV ′〉 is 1 if V ∼= V ′ and 0 otherwise.

Corollary. If ρ and ρ′ are reps of G then they are isomorphic if and only if they
have the same character.

Notice that complete irreducibility was a key part of the proof of this corollary,
as well as orthogonality of characters. For example the two reps of Z given by

1 7→ idC2 and 1 7→
(

1 1
0 1

)

are not isomorphic but have the same trace. Complete

irreducibility tells us we don’t need to worry about gluing.

Corollary. If ρ is a complex representation of G with character χ then ρ is irre-
ducible if and only if 〈χ, χ〉 = 1.

Proof. One direction follows immediately from the theorem on orthogonality of
characters. For the other direction, assume that 〈χ, χ〉 = 1. Then we may write
χ =

∑

niχi for some non-negative integers ni. By orthogonality of characters
1 = 〈χ, χ〉 =

∑

n2
i . Thus χ = χj for some j, and χ is irreducible. �

This is a good way of calcuating whether a representation is irreducible.
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Examples.

(1) Consider the action of D6 on C2 by extending the symmetries of a triangle.
χ(1) = 2, χ(12) = χ(23) = χ(13) = 0, and χ(123) = χ(132) = −1. Now

〈χ, χ〉 = 1/6(22 + 3 · 02 + 2 · (−1)2) = 1

so this rep is irreducible.
(2) Consider the action of S4 on CX for X = {1, 2, 3, 4} induced from the

natural action of S4 on X. The conjugacy classes in S4 are 1 of size 1, (ab)
of size

(

4
2

)

= 6, (abc) of size 4.2 = 8, (ab)(cd) of size 3 and (abcd) of size 6.
We can compute that the character of this rep is given by

χ(g) = #{fixed points of g}.
So χ(1) = 1, χ((ab)) = 2, χ((abc)) = 1 and χ((ab)(cd) = χ(abcd) = 0. Thus
〈χ, χ〉 = 1/24(42+6·22+8·12+3·02) = 2. Thus if we decompose χ =

∑

niχi

into irreducibles we know
∑

n2
i = 2 then we must have χ = χ′ + χ′′ with

χ′ and χ′′ non-isomorphic irreps.
Notice that 〈1, χ〉 = 1/24(4+6 ·2+8 ·1+0) = 1 so one of the irreducible

constituents is the trivial rep. The other has character χ− 1.
In fact we have seen these subreps explicitly in this case. The constant

functions gives a trivial subrep and the orthogonal complement with respect
to the standard inner product (that is the set of functions that sum to zero)
gives the other.

Theorem (The character table is square). The irreducible characters of a finite
group G form a basis for the space of class functions CG on G.

Corollary. The number of irreducible representations is the number of conjugacy
classes in the group.

Corollary. For each g ∈ G, χ(g) is real for every character χ if and only if g is
conjugate to g−1.

Proof. Since χ(g−1) = χ(g), χ(g) is real for every character χ if and only if χ(g) =
χ(g−1) for every character χ. Since the irreducible characters span the space of class
functions this is equivalent to g and g−1 living in the same conjugacy class. �

Proof of Theorem. We already know that the irreducible characters are linearly
independent (and orthonormal) we need to show that they span CG. Let I =
〈χ1, . . . , χr〉 be the span of the irred. characters. We need to show that I⊥ = 0.

Suppose f : G → C ∈ I⊥. For each representation (ρ, V ) of G we may define

ϕ ∈ Hom(V, V ) by ϕ = 1
|G|

∑

g∈G f(g)ρ(g). Now

ρ(h)−1ϕρ(h) =
1

|G|
∑

g∈G

f(g)ρ(h−1gh) =
1

|G|
∑

g′∈G

f(g′)ρ(g′)

since f is a class function, and we see that in fact ϕ ∈ HomG(V, V ). Moreover

trϕ = 〈f, tr ρ〉 = 0

since f ∈ I⊥.
Now if V is irreducible then Schur’s Lemma tells us that ϕ = λ idV for some

λ ∈ C. Since trϕ = 0 it follows that λ = 0 and so ϕ = 0.
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But every representation breaks up as a direct sum of irreducible representations
V =

⊕

Vi and ϕ breaks up as
⊕

ϕi. So ϕ = 0 always.

But if V is the regular representation CG then ϕ∂e = |G|−1
∑

g∈G f(g)∂g = f .
Thus f = 0. �

4.3. Character tables. We now want to classify all the irreducible representations
of a given finite group and we know that it suffices to write down the characters of
each one.

The character table of a group is defined as follows: we list the conjugacy classes
of G, O1, . . . ,Or (by convention always O1 = {e}) and choose gi ∈ Oi we then list
the irreducible characters χ1, . . . , χk (by convention χ1 = χC the character of the
trivial rep. Then we write the matrix

e x2 · · · xi · · · xk

χ1 1 1 · · · 1 · · · 1
...

...
χj · · · · · · · · · χj(xi) · · · · · ·
...

...

χk

...

Examples.

(1) C3 = 〈x〉
e x x2

χ1 1 1 1
χ2 1 ω ω2

χ3 1 ω2 ω

Notice that the rows are indeed orthogonal. The columns are too in this case.
(2) S3

There are three conjugacy classes: the identity is in a class on its own O1;
the three transpositions live in a another class O2; and the two 3-cycles live in
the third class O3.

There are three irreducible representations all together. We know that the
trivial representation 1 has character 1(g) = 1 for all g ∈ G. We also know
another 1-dimensional representation ǫ : S3 → {±1} given by g 7→ 1 if g is even
and g 7→ −1 if g is odd.

To compute the character χ of the last representation we may use orthogo-
nality of characters. Let χ(e) = a, χ((12)) = b and χ((123)) = c (a, b and c are
each real since each g is conjugate to its inverse). We know that 0 = 〈1, χ〉 =
1
6 (a+ 3b+ 2c), 0 = 〈ǫ, χ〉 = 1

6 (a− 3b+ 2c), and 1 = 〈χ, χ〉 = 1
6 (a2 + 3b2 + 2c2).

Thus we see quickly that b = 0, a + 2c = 0 and a2 + 2c2 = 0. We also know
that a is a positive integer. Thus a = 2 and c = −1.

1 3 2
e (12) (123)

1 1 1 1
ǫ 1 −1 1
χ 2 0 −1

In fact we already knew about this 2-dimensional representation; it is the one
coming from the symmetries of a triangle inside R2.
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Lecture 8

Proposition (Column Orthogonality). If G is a finite group and χ1, . . . , χr is a
complete list of the irreducible characters of G then for each g, h ∈ G,

r
∑

i=1

χi(g)χi(h) = 0 if g and h are not conjugate in G

= |CG(g)| otherwise.

In particular
∑r

i=1 dimV 2
i = |G|.

Example. S3

1 3 2
e (12) (123)

1 1 1 1
ǫ 1 −1 1
χ 2 0 −1

12 + 12 + 22 = 6 = |S3|
12 + (−1)2 + 02 = 2 = |CS3

((12))|
12 + 12 + (−1)2 = 3 = |CS3

((123))|
1 · 1 + 1 · −1 + 2 · 0 = 0

etc.

Proof of Proposition. LetX be character table thought of as a matrix; Xij = χi(gj)
and let D be the diagonal matrix whose diagonal entries are |CG(gi)|

Orthogonality of characters tell us that
∑

k

|CG(gk)|−1XikXjk = ∂ij

ie XD−1Xt = I.
Since X is square we may write this as D−1X

t
= X−1. Thus X

t
X = D.

This may be rewritten as
∑

k XkiXkj = Dij . ie
∑

k χk(gi)χk(gj) = ∂ij |CG(gi)| as
required. �

Examples.
G = S4

1 3 8 6 6
e (12)(34) (123) (12) (1234)

1 1 1 1 1 1
ǫ 1 1 1 −1 −1
χ3 3 −1 0 1 −1
ǫχ3 3 −1 0 −1 1
χ5 2 2 −1 0 0

The trivial 1 and sign ǫ characters may be constructed in the same way as for S3.
We calculated last time that the natural permuation character breaks up as the
sum of a trivial character and a character whose values χ3(g) are the number of
fixed points of g minus 1.

We saw on Example Sheet 1 (Q2) that given a 1-dimensional represntation θ
and an irreducible representation ρ we may form another irreducible representation
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θ⊗ ρ by θ⊗ ρ(g) = θ(g)ρ(g). It is not hard to see that χθ⊗ρ(g) = θ(g)χρ(g). Thus
we get another irreducible character ǫχ3. (Exercise: prove that θ(g)ρ(g) is always
irreducible using characters)

We can then complete the character table using column orthogonality: We note
that 24 = 12 + 12 + 32 + 32 + χ5(e)

2 thus χ5(e) = 2. Then using
∑5

1 χi(1)χi(g) =
|CG(g)| we can construct the remaining values in the table.

Notice that the two dimensional representation corresponding to χ5 may be
obtained by composing the surjective group homomorphism S4 → S3 (with kernel
the Klein-4-group) with the irreducible two dimension rep of S3.
G = A4. Each irreducible representation of S4 may be restricted to A4 and its
character values on elements of A4 will be unchanged. In this way we get three
characters of A4, 1, ψ2 = χ3|A4

and ψ3 = χ5|A4
. If we compute 〈1,1〉 we of course

get 1. If we compute 〈ψ2, ψ2〉 we get 1
12 (32 + 3 ∗ 11 + 8 ∗ 02) = 1 so ψ2 remains

irreducible. However 〈ψ3, ψ3〉 = 1
12 (22 +3 ∗ 22 +8 ∗ (−1)2) = 2 so ψ3 breaks up into

two non-isomorphic irreducible reps of A4.

Exercise. Use this infomation to construct the whole character table of A4.

4.4. Permuation representations. Suppose that X is a finite set with a G-
action. Recall that CX = {f : X → C} is a representation of G via gf(x) =
f(g−1x).

Lemma. If χ is the character of CX then χ(g) = |{x ∈ X | gx = x}|.
Proof. If X = {x1, . . . , xd} and gxi = xj then g∂xi

= ∂xj
so the ith column of g has

a 1 in the jth entry and zeros elsewhere. So it contributes 1 to the trace precisely
if xi = xj . �

Corollary. If V1, . . . , Vk is a complete list of irreducible reps of a finite group G
then the regular representation kG decomposes as n1V1 ⊕ · · · ⊕ nkVk with ni =
dimVi = χi(e). In particular |G| =

∑

n2
i .

Proof. χkG(e) = |G| and χkG(g) = 0 for g 6= e. Thus if we decompose kG we obtain

ni = 〈χkG, χi〉 = |G|−1|G|χi(e) = χi(e)

as required. �

Proposition (Burnside’s Lemma). Let G be a finite group and X a finite set with
a G-action and χ the character of CX. Then 〈1, χ〉 is the number of orbits of G
on X.

Proof. If we decompose X into a disjoint of orbits X1 ∪ · · · ∪Xk then we’ve seen

that CX =
⊕k

i=1 CXi. So χX =
∑k

i=1 χXi
and we may reduce to the case that

G-acts transitively on X.
Now

|G|〈χX , 1〉 =
∑

g∈G

χX(g) =
∑

g∈G

|{x ∈ X | gx = x}

= |{(g, x) ∈ G×X | gx = x}| =
∑

x∈X

|{g ∈ G | gx = x}

=
∑

x∈X

|StabG(x)| = |X||StabG(X)| = |G|
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as required. �

Lecture 9

Recall from last time,

Lemma. If χ is the character of CX then χ(g) = |{x ∈ X | gx = x}|.
and

Proposition (Burnside’s Lemma). Let G be a finite group and X a finite set with
a G-action and χX the character of CX. Then 〈1, χX〉 is the number of orbits of
G on X.

If X is a set with a G-action we may view X ×X as a set with a G-action via
(g, (x, y)) 7→ (gx, gy).

Corollary. If G is a finite group and X is a finite set with a G-action and χ is
the character of the permutation representation CX then 〈χ, χ〉 is the number of
G-orbits on X ×X.

Proof. Notice that (x, y) is fixed by g ∈ G if and only if both x and y are fixed.
Thus χX×X(g) = χX(g)χX(g) by the lemma.

Now 〈χX , χX〉 = 1
|G|

∑

g∈G χX(g)χX(g) = 〈1, χX×X〉 and the result follows from

Burnside’s Lemma. �

Remark. If X is any set with a G-action with |X| > 1 then {(x, x)|x ∈ X} ⊂ X×X
is G-stable and so is the complement {(x, y) ∈ X ×X | x 6= y}.

We say that G acts 2-transitively on X if G has only two orbits on X×X. Given
a 2-transitive action of G on X we’ve seen that the character χ of the permutation
representation satisfies 〈χ, χ〉 = 2 and 〈1, χ〉 = 1. Thus CX has two irreducible
summands — the constant functions and the functions f such that

∑

x∈X f(x) = 0.

Exercise. If G = GL2(Fp) then decompose the permutation rep of G coming from
the action of G on Fp ∪ {∞} by Mobius transformations.

5. Normal subgroups and lifting characters

Lemma (cf Example Sheet 1 Q3). Suppose N is a normal subgroup of G.
For every representation ρ : G/N → GL(V ), there is a representation ρ : G →

GL(V ) obtained by composing ρ with the natural surjection G→ G/N . In this way
there is a 1-1 correspondance between representations of G/N and representations
of G with kernel containing N .

The characters χρ and χρ of ρ and ρ respectively satisfy χρ(g) = χρ(gN) for
each g ∈ G.

Moreover the correspondance restricts to a 1-1 correspondance between irre-
ducible representations of G/N and irreducible representations of G with kernel
containing N .

Proof. The first paragraph follows from the first isomorphism theorem for groups.
For g ∈ G, χρ(g) = tr ρ(g) = tr ρ(gN) = χρ(gN) since ρ(g) = ρ(gN).
We could do the last part directly but let’s use characters:

〈χρ, χρ〉G = 1
|G|

∑

g∈G χρ(g)χρ(g) = |N |
|G|

∑

gN∈G/N χρ(gN)χρ(gN) = 〈χρ, χρ〉G/N .

�
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Remark. We saw this when we computed the character table for G = S4 and
N = V4 = 〈(12)(34), (13)(24)〉 last time.

1 3 8 6 6
e (12)(34) (123) (12) (1234)

1 1 1 1 1 1
ǫ 1 1 1 −1 −1
χ5 2 2 −1 0 0
χ3 3 −1 0 1 −1
ǫχ3 3 −1 0 −1 1

1, ǫ and χ5 all have kernel containing V4 and we can see the character table for
S3

∼= G/V4 inside the character table for S4.

Definition. The derived subgroup of a group G is the subgroup G′ generated by
all elements of the form ghg−1h−1 with g, h ∈ G.

Lemma. G′ is the unique smallest normal subgroup of G such that G/G′ is abelian
(that is if G/N is abelian then G′ ⊂ N).
G has precisely |G/G′| representations of dimension 1.

Proof. Suppose N is a normal subgroup of G. Then G/N is abelian if and only
if gNhN = hNgN for all g, h ∈ G. Thus ghg−1h−1N = N and ghg−1h−1 ∈ N .
Thus G′ 6 N and for the first part it suffices to prove that G′ is normal. But if
g, h, k ∈ G then

k(ghg−1h−1)k−1 = (kgk−1)(khk−1)(kgk−1)−1(khk−1)−1

and it follows easily that G′ is normal.
For the last part, if ρ : G→ GL1(k) is a 1-dimensional rep then ρ(ghg−1h−1) =

ρ(g)ρ(h)ρ(g)−1ρ(h)−1 so by the previous lemma, 1-dimensional reps of G corre-
spond to 1-dimensional reps of G/G′. We’ve seen already that there are |G/G′| of
the latter. �

6. The character ring

Given a group G, the set of class functions CG comes equipped with certain
algebraic structures: it is a commutative ring under pointwise addition and mul-
tiplication — ie (f1 + f2)(g) = f1(g) + f2(g) and f1f2(g) = f1(g)f2(g) for each
g ∈ G, the additive identity is the constant function value 0 and the multiplica-
tive identity constant value 1; there is a ring automorphism ∗ of order two given
by f∗(g) = f(g−1); and, when G is finite, there is an inner product given by
〈f1, f2〉 = 1

|G|

∑

g∈G f
∗
1 (g)f2(g).

We will see that all this structure is related to structure on the category of
representations: we have already seen some of this. If V1 and V2 are representations
with characters χ1 and χ2 then χ1+χ2 = χV1⊕V2

and 〈χ1, χ2〉 = dim HomG(V1, V2).

Definition. The character ring R(G) of a group G is defined by

R(G) := {χ1 − χ2 | χ1, χ2 are characters of reps of G} ⊂ CG.

We’ll see that the character ring inherits all the algebraic structure of CG men-
tioned above.
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6.1. Duality.

Definition. If G is group and (ρ, V ) is a representation of G then the dual repre-
sentation (ρ∗, V ∗) of G is given by ρ∗(g)(θ)(v) = θ(ρ(g−1)(v) for θ ∈ V ∗.

Remark. We’ve already seen the dual representation; if k is the trivial representation
then V ∗ = Hom(V, k).

Lemma. The dual representation is a representation and χV ∗ = χ∗(V ).

Proof. First,

ρ∗(gh)θ(v) = θ(ρ(gh)−1(v))

= θ(ρ(h)−1ρ(g)−1(v))

= ρ∗(h)θ(ρ(g)−1(v))

= ρ∗(g)ρ∗(h)θ(v)

as required.
Suppose that v1, . . . , vm is a basis for V and θ1, . . . , θm is the dual basis for

V ∗. Given g ∈ G, if the diagonal entries of ρ(g−1) wrt v1, . . . , vm are λ1, . . . , λm

then we can compute the diagonal entries of ρ∗ wrt θ1, . . . , θm as ρ∗(θk)(vk) =
θk(ρ(g−1vk) = λk. In particular tr ρ∗(g) =

∑

λi = tr ρ(g−1) as required. �

Definition. We say that V is self-dual if V ∼= V ∗ as representations of G.

Over C, V is self-dual if and only if χV (g) ∈ R for all g ∈ G.

Examples.

(1) G = C3 = 〈x〉 and V = C. Ifρ is given by ρ(x) = ω = e
2πi
3 then ρ∗(x) = ω2 = ω

so V is not self-dual
(2) G = Sn: since g is always conjugate to its inverse in Sn, χ∗ = χ always and so

every representation is self-dual.

Lecture 10

6.2. Tensor products. Suppose that V and W are vector spaces over a field k,
with bases v1, . . . , vm and w1, . . . , wn respectively. We may view V ⊕W either as
the vector space with basis v1, . . . , vm, w1, . . . , wn (so dimV ⊕W = dimV +dimW )
or more abstractly as the vector space of pairs (v, w) with v ∈ V and w ∈ W and
pointwise operations.

Definition. The tensor product V ⊗W of V and W is the vector space with basis
given by symobls vi ⊗ wj for 1 6 i 6 m and 1 6 j 6 n and so

dimV ⊗W = dimV · dimW.

Example. If X and Y are sets then kX⊗kY has basis ∂x⊗∂y for x ∈ X and y ∈ Y .
Identifying this element with the function ∂x,y on X × Y given by ∂x,y(x′, y′) =
∂xx′∂yy′ we see that kX ⊗ kY ∼= kX × Y .

If v =
∑

λivi ∈ V and w =
∑

µjwj ∈ W , it is common to write v ⊗ w for the
element

∑

i,j(λiµj)vi ⊗ wj ∈ V ⊗W . But note that usually not every element of

V ⊗W may be written in the form v ⊗ w (eg v1 ⊗ w1 + v2 ⊗ w2).

Lemma. There is a bilinear map V ×W → V ⊗W given by (v, w) 7→ v ⊗ w.
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Proof. First, we should prove that if x, x1, x2 ∈ V and y, y1, y2 ∈W then

x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2

and

(x1 + x2) ⊗ y = x1 ⊗ y + x2 ⊗ y.

We’ll just do the first; the second is symmetric.
Write x =

∑

i λivi, yk =
∑

j µ
k
jwj for k = 1, 2. Then

x⊗ (y1 + y2) =
∑

i,j

λi(µ
1
j + µ2

j )vi ⊗ wj

and

x⊗ y1 + x⊗ y2 =
∑

i,j

λiµ
1
jvi ⊗ wj +

∑

i,j

λiµ
2
jvi ⊗ wj .

These are equal.
We should also prove that for λ ∈ k and v ∈ V and w ∈W then

(λv) ⊗ w = λ(v ⊗ w) = v ⊗ (λw).

The proof is similar to the above. �

Exercise. Show that given vector spaces U, V and W there is a 1−1 correspondance
between

{linear maps V ⊗W → U} ↔ {bilinear maps V ×W → U}
given by composition with the bilinear map (v, w) → v ⊗ w above.

Lemma. If x1, . . . , xm is any basis of V and y1, . . . , ym is any basis of W then
xi ⊗ yj for 1 6 i 6 m and 1 6 j 6 n is a basis for V ⊗W . Thus the definition of
V ⊗W does not depend on the choice of bases.

Proof. It suffices to prove that the set {xi ⊗ yj} spans V ⊗W since it has size mn.
But if vi =

∑

r Arixr and wj =
∑

sBsjys then vi ⊗ wj =
∑

r,sAriBsjxi ⊗ yj . �

Remark. In fact we could have defined V ⊗W in a basis independent way in the
first place: let F be the (infinite dimensional) vector space with basis v ⊗ w for
every v ∈ V and w ∈W ; and R be the subspace generated by (λv)⊗w−λ(v⊗w),
v⊗(λw)−λ(v⊗w) for v ∈ V , w ∈W and λ ∈ k along with (x1+x2)⊗y−x1⊗y−x2⊗y
and x ⊗ (y1 + y2) − x ⊗ y1 − x ⊗ y2 for x, x1, x2 ∈ V and y, y1, y2 ∈ W ; then
V ⊗W ∼= F/R naturally.

Exercise. Show that for vector spaces U, V and W there is a natural (basis inde-
pendent) isomorphism

(U ⊕ V ) ⊗W → (U ⊗W ) ⊕ (V ⊗W ).

Definition. Suppose that V and W are as above and ϕ : V → V and ψ : W →W
are linear maps. We can define ϕ⊗ ψ : V ⊗W → V ⊗W as follows:

(ϕ⊗ ψ)(vi ⊗ wj) = ϕ(vi) ⊗ ψ(wj).

Example. If ϕ is represented by the matrix Aij and ψ is represented by the matrix
Bij and we order the basis vi ⊗ wj lexicographically (ie v1 ⊗ w1, v1 ⊗ w2, . . . , v1 ⊗
wn, v2 ⊗ w1, . . . , vm ⊗ wn) then ϕ⊗ ψ is represented by the block matrix
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





A11B A12B · · ·
A21B A22B · · ·

...
...

. . .







Lemma. The linear map ϕ⊗ ψ does not depend on the choice of bases.

Proof. It suffices to show that for any v ∈ V and w ∈W ,

(ϕ⊗ ψ)(v ⊗ w) = ϕ(v) ⊗ ψ(w).

Writing v =
∑

λivi and w =
∑

µjwj we see

(ϕ⊗ ψ)(v ⊗ w) =
∑

i,j

λiµjϕ(vi) ⊗ ψ(wj) = ϕ(v) ⊗ ψ(w)

as required. �

Remark. The proof really just says V ×W → V ⊗W defined by (v, w) 7→ ϕ(v)⊗ψ(w)
is bilinear and φ⊗ ψ is its correspondant in the bijection

{linear maps V ⊗W → V ⊗W} → {bilinear maps V ×W → V ⊗W}
above.

Lemma. Suppose that ϕ,ϕ1, ϕ2 ∈ Hom(V, V ) and ψ,ψ1, ψ2 ∈ Hom(W,W )

(i) (ϕ1ϕ2) ⊗ (ψ1ψ2) = (ϕ1 ⊗ ψ1)(ϕ2 ⊗ ψ2) ∈ Hom(V ⊗W,V ⊗W );
(ii) idV ⊗ idW = idV ⊗W ; and
(iii) tr(ϕ⊗ ψ) = trϕ · trψ.

Proof. Given v ∈ V , w ∈W we can use the previous lemma to compute

(ϕ1ϕ2) ⊗ (ψ1ψ2)(v ⊗ w) = ϕ1ϕ2(v) ⊗ ψ1ψ2(w) = (ϕ1 ⊗ ψ1)(ϕ2 ⊗ ψ2)(v ⊗ w).

Since elements of the form v⊗w span V ⊗W and all maps are linear it follows that

(ϕ1ϕ2) ⊗ (ψ1ψ2) = (ϕ1 ⊗ ψ1)(ϕ2 ⊗ ψ2)

as required.
(ii) is clear.
For the formula relating traces it suffices to stare at the example above:

tr







A11B A12B · · ·
A21B A22B · · ·

...
...

. . .






=
∑

i,j

BiiAjj = trA trB.

�

Lecture 11

Recall the lemma from the end of last time

Lemma. Suppose that ϕ,ϕ1, ϕ2 ∈ Hom(V, V ) and ψ,ψ1, ψ2 ∈ Hom(W,W )

(i) (ϕ1ϕ2) ⊗ (ψ1ψ2) = (ϕ1 ⊗ ψ1)(ϕ2 ⊗ ψ2) ∈ Hom(V ⊗W,V ⊗W );
(ii) idV ⊗ idW = idV ⊗W ; and
(iii) tr(ϕ⊗ ψ) = trϕ · trψ.

Definition. Given two representation (ρ, V ) and (ρ′,W ) of a group G we can define
the representation (ρ⊗ ρ′, V ⊗W ) by (ρ⊗ ρ′)(g) = ρ(g) ⊗ ρ′(g).
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Proposition. If (ρ, V ) and (ρ′,W ) are representations of G then (ρ⊗ ρ′, V ⊗W )
is a representation of G and χρ⊗ρ′ = χρ · χρ′ .

Proof. This is an straightforward consequence of the lemma. �

Remarks.

(1) It follows that R(G) is closed under multiplication.
(2) Tensor product of representations defined here is consistent with our earlier

notion when one of the representations is one-dimensional.
(3) It follows from the lemma that if (ρ, V ), (ρ′,W ) are reps of G then we may

make V ⊗W into a rep of G×G via

ρV ⊗W (g, h) = ρ(g) ⊗ ρ′(h).

In the proposition we then restrict this representation to the diagonal sub-
group G ∼= {(g, g)} ⊂ G×G.

(4) If X,Y are finite sets with G-action it is easy to verify that kX ⊗ kY ∼=
kX × Y as representations of G (or even of G×G).

Now return to our assumption that k = C.

Exercise. Show both directly and using characters that if U, V,W are representa-
tions of G then V ⊗W ∼= Hom(V ∗,W ) and Hom(V ⊗W,U) ∼= Hom(V,Hom(W,U))
as representations of G.

Question. If V and W are irreducible then must V ⊗W be irreducible?

We’ve seen the answer is yes is one of V and W is one-dimensional but it is not
usually true.

Example. G = S3

1 3 2
e (12) (123)

1 1 1 1
ǫ 1 −1 1
V 2 0 −1

Clearly, 1 ⊗W = W always. ǫ ⊗ ǫ = 1, ǫ ⊗ V = V and V ⊗ V has character χ2

given by χ2(1) = 4, χ2(12) = 0 and χ2(123) = 1. Thus χ2 decomposes as 1+ ǫ+χ.

In fact V ⊗ V, V ⊗ V ⊗ V, . . . are never irreducible if dimV > 1.
Given a vector space V , define σ = σV : V ⊗ V → V ⊗ V by σ(v ⊗ w) 7→ w ⊗ v

for all v, w ∈ V (exercise: check this does uniquely define a linear map). Notice
that σ2 = id and so σ decomposes V ⊗ V into two eigenspaces:

S2V := {a ∈ V ⊗ V | σa = a}
Λ2V := {a ∈ V ⊗ V | σa = −a}

Lemma. Suppose v1, . . . , vm is a basis for V .

(i) S2V has a basis vivj := vi ⊗ vj + vj ⊗ vi for 1 6 i, j 6 d.
(ii) Λ2V has a basis vi ∧ vj := vi ⊗ vj − vj ⊗ vi 1 6 i < j 6 d.

Thus dimS2V = 1
2m(m+ 1) and dim Λ2V = 1

2m(m− 1).

Remark. We usually write vi ∧ vj =: −vj ∧ vi for j < i and vi ∧ vi = 0.
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Proof. It is easy to check that the union of the two claimed bases form a basis for
V ⊗ V , that the vivj do all live in S2V and that the vi ∧ vj do all live in Λ2V .
Everything follows. �

Exercise. We may view V ⊗ V as a representation of C2 via ρ(1) = σ. What is
the character χ of ρ? What are 〈1, χ〉C2

and 〈ǫ, χ〉C2
? How does this relate to the

lemma just proven?

Proposition. Let (ρ, V ) be a representation of G.

(i) S2V and Λ2V are subreps of V ⊗ V and V ⊗ V = S2V ⊕ Λ2V .
(ii) for g ∈ G,

χS2V (g) =
1

2
(χ(g)2 + χ(g2))

χΛ2V (g) =
1

2
(χ(g)2 − χ(g2)).

Proof. For (i) we need to show that if a ∈ V ⊗ V and σV (a) = λa for λ = ±1 then
σV ρ(g)(a) = λρ(g)(a) for each g ∈ G. For this it suffices to prove that σg = gσ (ie
σ ∈ HomG(V ⊗ V, V ⊗ V )). But σ ◦ g(v ⊗ w) = gw ⊗ gv = g ◦ σ(v ⊗ w).

To compute (ii), let v1, . . . , vm be a basis of eigenvectors for ρ(g) with eigenvalues
λ1, . . . , λm. Then g(vivj) = (λiλj)vivj and g(vi ∧ vj) = (λiλj)vi ∧ vj .

Thus χS2V (g) =
∑

i6j λiλj, whereas

χ(g)2 + χ(g2) = (
∑

i

λi)
2 +

∑

i

λ2
i = 2

∑

i6j

λiλj.

Similarly χΛ2V (g) =
∑

i<j λiλj , and

χ(g)2 − χ(g2) = (
∑

i

λi)
2 −

∑

i

λ2
i =

∑

i<j

λiλj .

�

Example. S4

1 3 8 6 6
e (12)(34) (123) (12) (1234)

1 1 1 1 1 1
ǫ 1 1 1 −1 −1
χ3 3 −1 0 1 −1
ǫχ3 3 −1 0 −1 1
χ5 2 2 −1 0 0
χ2

3 9 1 0 1 1
χ3(g

2) 3 3 0 3 −1
S2χ3 6 2 0 2 0
Λ2χ3 3 −1 0 −1 1

Thus S2χ3 = χ5 + χ3 + 1 and Λ2χ3 = ǫχ3.

Exercise. Show that if V is self-dual then either 〈1, χS2V 〉 6= 0 or 〈1, χΛ2V 〉 6= 0.



26 SIMON WADSLEY

Lecture 12

Last time we thought about S2V and Λ2V as subrepresentations of V ⊗V . More
generally, for any vector space V we may consider V ⊗n = V ⊗ · · · ⊗ V . Then for
any ω ∈ Sn we can define a linear map σω : V ⊗n → V ⊗n by

σω : v1 ⊗ · · · vn 7→ vω−1(1) ⊗ · · · vω−1(n)

for v1, . . . , vn ∈ V (exercise check this uniquely defines a linear map).
In this way we can define a representation of Sn on V ⊗n. Moreover if V is a

representation of G then the action of G on V ⊗n via v1⊗· · ·⊗vn 7→ gv1⊗· · ·⊗gvn

commutes with the Sn-action. Thus we can decompose V ⊗n as a rep of Sn and
each isotypical component should be a G-invariant subspace of V ⊗n. In particular
we can make the following definition.

Definition. Suppose that V is a vector space we define

(i) the nth symmetric power of V to be

SnV := {a ∈ V ⊗n | σω(a) = a for all ω ∈ Sn}
and

(ii) the nth exterior (or alternating) power of V to be

ΛnV := {a ∈ V ⊗n | σω(a) = ǫ(ω)a for all ω ∈ Sn}.
Note that SnV ⊕ ΛnV = {a ∈ V ⊗n | σω(a) = a for all ω ∈ An} ( V ⊗n.

Exercise. Show that if V is a rep of G then SnV and ΛnV are subreps of V ⊗n. For
each g ∈ G of finite order compute the characters of SnV and ΛnV in terms of the
eigenvalues of g on V .

[Hint: if v1, . . . , vr is a basis for V then
{

1

n!

∑

σ∈Sn

vσ(i1) ⊗ vσ(in) | 1 6 i1 6 · · · 6 in 6 r

}

is a basis for SnV and
{

1

n!

∑

σ∈Sn

ǫ(σ)vσ(i1) ⊗ vσ(in) | 1 6 i1 < · · · < in 6 r

}

is a basis for ΛnV .]

For any vector space V , Λdim V ∼= k and ΛnV = 0 if n > dimV .

Exercise. Show that if (ρ, V ) is a representation of G then the representation G→
GL(Λdim V V ) ∼= k× is given by g 7→ det ρ(g); ie the dimV th exterior power of V is
isomorphic to det ρ.

In characteristic zero, we may stick these vector spaces together to form algebras.

Definition. Given a vector space V we may define the tensor algebra of V ,

TV := ⊕n>0V
⊗n

(where V ⊗0 = k). Then TV is a (non-commutative) graded ring with the product
of v1 ⊗ · · · ⊗ vr ∈ V ⊗r and w1 ⊗ · · · ⊗ ws ∈ V ⊗s given by

v1 ⊗ · · · ⊗ vr ⊗ w1 ⊗ · · · ⊗ ws ∈ V ⊗r+s.
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with graded quotient rings the symmetric algebra of V ,

SV := TV/(x⊗ y − y ⊗ x | x, y ∈ V ),

and the exterior algebra of V ,

ΛV := TV/(x⊗ y + y ⊗ x | x, y ∈ V ).

One can show that SV ∼=
⊕

n>0 S
nV under x1 ⊗ · · · ⊗ xn 7→ x1 · · ·xn and

ΛV ∼=
⊕

n>0 ΛnV under x1 ⊗ · · · ⊗ xn 7→ x1 ∧ · · · ∧ xn.
Now SV is a commutive ring and ΛV is graded commutative; that is if x ∈ ΛrV

and y ∈ ΛsV then x ∧ y = (−1)rsy ∧ x.
Proposition. Suppose G and H are finite groups.

Let (ρ1, V1), . . . , (ρr, Vr) be a complete list of the irreducible complex represen-
tations of G and (ρ′1,W1), . . . , (ρ

′
s,Ws) a complete list of the irreducible complex

representations of H. For each 1 6 i 6 r and 1 6 j 6 s, (ρi ⊗ ρ′j , Vi ⊗ Wj)
is an irreducible complex representation of G × H. Moreover, all the irreducible
representations of G×H arise in this way.

We have seen this before when G and H are abelian since then all these repre-
sentations are 1-dimensional.

Proof. Let χ1, . . . , χr be the characters of V1, . . . , Vr and ψ1, . . . , ψs the characters
of W1, . . . ,Ws.

The character of Vi ⊗Wj is χi ⊗ ψj : (g, h) 7→ χi(g)ψj(h). Then

〈χi ⊗ ψj , χk ⊗ ψl〉G×H = 〈χi, χk〉G〈ψj , ψl〉H = ∂ik∂jl.

So the χi ⊗ ψj are irreducible and pairwise distinct.
Now

∑

i,j dim(Vi ⊗Wj)
2 = (

∑

i dimV 2
i )(
∑

j dimW 2
j ) = |G|||H| = |G × H| so

we must have them all. �

7. Induction

Suppose that H is a subgroup of G. We have a way of turning representations
of G into representations of H; we restrict the homomorphism ρ : G → GL(V ) to
H.

We would like a similar way of building representations of G from representations
of H. There is a good way of doing so called induction although it is a little more
delicate than restriction.

If G is a finite group and W is a k-vector space we may define Hom(G,W ) to
be the vector space of all functions G → W under pointwise addition and scalar
multiplication. This may be made into a representation of G by defining

(g · f)(x) := f(g−1x)

for each g, x ∈ G. If w1, . . . , wn is a basis for W then {∂gwi | g ∈ G, 1 6 i 6 n} is
a basis for Hom(G,W ). So dim Hom(G,W ) = |G|dimW .

Lemma. Hom(G,W ) ∼= (dimW )kG as representations of G.

Proof. Given a basis w1, . . . , wn for W , define the linear map

Θ:

n
⊕

i=1

kG→ Hom(G,W )
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by

Θ((fi)
n
i=1)(x) =

n
∑

i=1

fi(x)wi.

It is easy to see that Θ is injective because the wi are linearly independent so by
comparing dimensions we see that Θ is a vector-space isomorphism.

It remains to prove that Θ is G=linear. If g, x ∈ G then

g · (Θ((fi)
n
i=1))(x) =

n
∑

i=1

fi(g
−1x)wi = Θ(g · (fi)

n
i=1)(x)

as required. �

Exercise. Use the basis of Hom(G,W ) given above to find a character-theoretic
proof of the lemmma.

Now, if H is a subgroup of G and W is a representation of H then we can define

HomH(G,W ) := {f ∈ Hom(G,W ) | f(xh) = h−1f(x) ∀x ∈ G,h ∈ H},
a k-linear subspace of Hom(G,W ).

Example. If W = k is the trivial representation of H then f ∈ HomH(G, k) if and
only if f(xh) = f(x) for h ∈ H and x ∈ G. That is HomH(G, k) consists of the
functions that are constant on each left coset in G/H. Thus HomH(G, k) can be
identified with the permutation module kG/H where G acts on the left cosets G/H
in the usual way.

Lemma. HomH(G,W ) is a G-invariant subspace of Hom(G,W ).

Proof. Let f ∈ HomH(G,W ), g, x ∈ G and h ∈ H we must show that

(g · f)(xh) = h−1(g · f)(x).

But (g · f)(xh) = f(g−1xh) = h−1f(g−1x) = h−1(g · f)(x) as required. �

Definition. Suppose that H is a subgroup of G of finite index and W is a represen-
tation of H. We define the induced representation to be IndG

H W := HomH(G,W )

Lecture 13

Recall from last time:

Definition. Suppose that H is a subgroup of G of finite index and W is a repre-
sentation of H. We define the induced representation by

IndG
H W := HomH(G,W ) = {f : G→W | f(xh) = h−1f(x) for all x ∈ G,h ∈ H}

Remark. Since IndG
H 1 = kG/H, IndG

H does not send irreducibles to irreducibles in
general.

Proposition. Suppose W is a representation of H then

(i) dim IndG
H W = |G|

|H| dimW ;

(ii) for g ∈ G,

χIndG
H

W (g) =
1

|H|
∑

x∈G

xgx−1∈H

χW (x−1gx).
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Remarks.

(1) x−1gx ∈ H if and only if gxH = xH so if W is the trivial representation
the rhs of formula in (ii) becomes |{xH ∈ G/H | gxH = xH}| and we get
the permutation character of kG/H as required.

(2) If we write χ◦
W for the function on G such that χ◦

W (g) = χW (g) if x ∈ H
and χ◦

W (g) = 0 if g 6∈ H, then the formula in (ii) becomes

χIndG
H

W (g) =
1

|H|
∑

x∈G

χ◦
W (x−1gx);

this is clearly a class function.
(3) If [h1], . . . , [hm] is a list of the H-conjugacy classes such that x−1gx ∈ [hi]

some x ∈ G then we can write this as

χIndG
H

W (g) =

m
∑

i=1

|CG(g)|
|CH(hi)|

χW (hi).

This is the most useful formula for computation.

Proof of Proposition. Let x1, . . . , xr be left coset representatives in G/H. Then
f ∈ HomH(G,W ) is determined by the values of f(x1), . . . , f(xr) ∈W .

Moreover, given w1, . . . , wr ∈ W we can define f ∈ HomH(G,W ) via f(xih) =
h−1wi for i = 1, . . . , r and h ∈ H. Thus

Θ: HomH(G,W ) →
r
⊕

i=1

W

defined by f 7→ (f(xi))
r
i=1 is an isomorphism of vector spaces and part (i) is done.

Following this argument, we see that given w ∈W , and 1 6 i 6 r, we can define
ϕi,w ∈ HomH(G,W ) by

ϕi,w(xjh) = ∂ijh
−1w

for each h ∈ H and 1 6 j 6 r.
Now given g ∈ G, let’s consider how g acts on a ϕi,w. For each coset represen-

tative xi there is a unique σ(i) and hi ∈ H such that g−1xi = xσ(i)hi ∈ xσ(i)H,
and

(g · ϕi,w)(xj) = ϕi,w(g−1xj) = ϕi,w(xσ(j)hj) = ∂iσ(j)h
−1
j w.

Thus g · ϕi,w = ϕσ−1(i),h−1

σ−1(i)
w.

Thus g acts on
⊕r

i=1W via a block permutation matrix and we only get con-
tributions to the trace from the non-zero diagonal blocks which correspond to the
fixed points of σ. Moreover if σ(i) = i then g acts on Wi via h−1

i = x−1
i gxi

Thus

tr gIndG
H

W =
∑

i

χ◦
W (x−1

i gxi).

Since G = {xih | h ∈ H} and χ◦
W (h−1gh) = χ◦

W (g) for all g ∈ G and h ∈ H we
may rewrite this as

tr gIndG
H

W =
1

|H|
∑

x∈G

χ◦
W (xgx−1)

as required. �
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Example. G = S3 and H = C3 = {1, (123), (132)}.
If W is any rep of H then

χIndG
H

W (e) = 2χW (e),

χIndG
H

W ((12)) = 0, and

χIndG
H

W ((123)) = χW ((123)) + χW ((132)).

So

C3 1 (123) (132)
χ1 1 1 1
χ2 1 w w2

χ3 1 w2 w

s3 1 (12) (123)
Indχ1 2 0 2
Indχ2 2 0 −1
Indχ3 2 0 −1

So IndG
H χ2 = IndG

H χ3 is the 2-dimensional irreducible character of S3 and

IndG
H χ1 = 1 + ǫ as expected.

If V is a representation of G, we’ll write ResG
H V for the representation of H

obtained by restriction.

Proposition (Frobenius reciprocity). Let V be a representation of G, and W a
representation of H, then

(i) 〈χV , IndG
H χW 〉G = 〈ResG

H χV , χW 〉H ;

(ii) HomG(V, IndG
H W ) ∼= HomH(ResG

H V,W ).

Proof. We’ve already seen that (i) implies (ii).
Now

〈χV , IndG
H χW 〉G =

1

|G|
∑

g∈G

χV (g)χIndG
H

W (g)

=
1

|G||H|
∑

g∈G

∑

x∈G

χV (g)χ◦
W (x−1gx)

=
1

|G|
∑

x∈G

∑

g′∈G

χV (xg′x−1)χ◦
W (g′) (g′ = x−1gx)

=
1

|H|
∑

g′∈H

χV (g′)χW (g′)

= 〈ResG
H χV , χW 〉H

as required. �

Exercise. Prove (ii) directly by considering

Θ: HomG(V,HomH(G,W )) → HomH(V,W )

defined by Θ(f)(v) = f(v)(e).

7.1. Mackey Theory. This is the study of representations like ResG
K IndG

H W for
H,K subgroups of G and W a representation of H. We can (and will) use it to

chracterise when IndG
H W is irreducible.

Recall that if G acts transitively on a set X then for x ∈ X there is a bijection
G/StabG(x)→̃X given by g StabG(x) 7→ gx that commutes with the G-action (ie
g′(g StabG(x)) = (g′g) StabG(x) 7→ g′gx = g′(gx)).
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If H,K are subgroups of G we can restrict the action of G on G/H to K

K ×G/H → G/H; (k, gh) 7→ kgH.

The the union of an orbit of this action is called a double coset. The union of the
K-orbit of gH is written KgH := {kgh | k ∈ K,h ∈ H}.
Definition. K\G/H := {KgH | g ∈ G} is the set of double cosets.

The double cosets K\G/H partition G.
Notice that kgH = gH if and only if k ∈ gHg−1. Thus as a set with a K-action,

KgH→̃K/(K ∩ gHg−1).

Proposition. If G,H,K as above then

ResG
K IndG

H 1 ∼=
⊕

g∈K\G/H

IndK
gHg−1∩K 1.

Proof. This follows from the discussion above, together with the general facts that
IndG

H 1 = kG/H and that if X =
⋃

Xi is a decomposition of X into orbits then
kX ∼=

⊕

kXi. �

Lecture 14

Recall from last time,

Proposition. If G is a finite group and H,K are subgroups of G, then

ResG
K IndG

H 1 ∼=
⊕

g∈K\G/H

IndK
gHg−1∩K 1.

Given any representation (ρ,W ) of H and g ∈ G, we can define (gρ,g W ) to be
the representation of gH := gHg−1 6 G on the underlying vector space W given
by (gρ)(ghg−1) = ρ(h) for h ∈ H.

Theorem (Mackey’s Restriction Formula). If G is a finite group with subgroups
H and K, and W is a representation of H then

ResG
K IndG

H W ∼=
⊕

g∈K\G/H

IndK
K∩gH Res

gH
gH∩K

gW.

Proof. For each double coset KgH we can define

Vg = {f ∈ IndG
H W | f(x) = 0 for all x 6∈ KgH}.

Then Vg is a K-invariant subspace of IndG
H W since we always have (kf)(x) =

f(k−1x). Thus there is a decomposition

ResG
K IndG

H W ∼=
⊕

g∈K\G/H

Vg

and it suffices to show that for each g,

Vg
∼= IndK

K∩gH Res
gH
gH∩K

gW

as representations of K.
Define an injective linear map Θ: Vg → Hom(K,g W ) by Θ(f)(k) = f(kg). If

k′ ∈ K then

(k′Θ(f))(k) = f(k′−1kg) = (k′f)(kg) = Θ(k′f)(k)
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and so Θ ∈ HomK(Vg,Hom(K,g W )).
Next, if ghg−1 ∈ K for some h ∈ H,

Θ(f)(kghg−1) = f(kgh)

= ρ(h−1)f(kg)

= (gρ)(ghg−1)−1Θ(f)(k)

Thus Im Θ 6 IndK
K∩gH Res

gH
K∩gH

gW . It remains to prove that this inclusion is an
equality. We can do this by comparing dimensions:

∑

g∈K\G/H

dimVg = dimW
|G|
|H|

= dimW
∑

g∈K\G/H

|K|
|gH ∩K| (by the proposition)

=
∑

g∈K\G/H

dim IndK
K∩gH Res

gH
K∩gH

gW

Thus dimVg = dim IndK
K∩gH Res

gH
K∩gH

gW as required. �

Corollary (Character version of Mackey’s Restriction Formula). If χ is a character
of a representation of H then

ResG
K IndG

H χ =
∑

g∈K\G/H

IndK
gH∩K

gχ.

where gχ is the class function on gH ∩K given by gχ(x) = χ(g−1xg).

Exercise. Prove this corollary directly with characters

Corollary (Mackey’s irreducibility criterion). If H is a subgroup of G and W is a

representation of H, then IndG
H is irreducible if and only if

(i) W is irreducible and

(ii) for each g ∈ G\H, the two representations Res
gH
H∩gH

gW and ResH
gH∩H W of

H ∩g H have no irreducible factors in common.

Proof.

HomG(IndG
H W, IndG

H W )
Frob. recip.∼= HomH(W,ResG

H IndG
H W )

Mackey∼=
⊕

g∈H\G/H

HomH(W, IndH
H∩gH Res

gH
H∩gH

gW )

Frob. recip.∼=
⊕

g∈H\G/H

HomH∩gH(ResH
H∩gH W,Res

gH
H∩gH

gW )

We know that IndG
H W is irreducible precisely if this space has dimension 1. The

summand corresponding to the coset HeH = H is HomH(W,W ) which has dimen-
sion 1 precisely if W is irreducible and the other summands are all zero precisely if
condition (ii) of the statement holds. �
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Corollary. If H is a normal subgroup of G ,and W is an irreducible rep of H then
IndG

H W is irreducible if and only if gχW 6= χW for all g ∈ G\H.

Proof. Since H is normal, gHg−1 = H for all g ∈ G. Moreover gW is irreducible
since W is irreducible.

So by Mackey’s irreducibility criterion, IndG
H W irreducible precisely if W 6∼= gW

for all g ∈ G\H. This last is equivalent to χW 6= gχW as required.
�

Example.
G = D8 > H = C4, the rotations.

C4 1 r r2 r3

χ1 1 1 1 1
χ2 1 i −1 −i
χ3 1 −1 1 −1
χ4 1 −i −1 i

D8 1 r r2 s sr
Indχ1 2 2 2 0 0
Indχ2 2 0 −2 0 0
Indχ3 2 −2 2 0 0
Indχ4 2 0 −2 0 0

We see that sχ1 = χ1,
sχ2 = χ4,

sχ3 = χ3,
sχ4 = χ2.

We can see directly that Indχ1 and Indχ3 are reducible and Indχ2 = Indχ4 is
irreducible.

Lecture 15

7.2. Frobenius groups.

Definition. A Frobenius group is a finite group G having a subgroup H such that
H ∩ gHg−1 = {e} for all g ∈ G\H.

Theorem. (Frobenius) Let G be a finite group acting faithfully and transitively on
a set X. If each g ∈ G\{e} fixes at most one element of X then

K = {1} ∪ {g ∈ G | gx 6= x for all x ∈ X}
is a normal subgroup of G of order X.

Proof. For x ∈ X, let H = StabG(x).
We know that StabG(gx) = gHg−1. But by the hypothesis on the action

StabG(gx) ∩ StabG(x) = {e}
whenever gx 6= x. Thus H has |X| conjugates and G has (|H| − 1)|X| elements
that fix precisely one element of X.

But |G| = |H||X| by the orbit-stabiliser theorem, and so

|K| = |H||X| − (|H| − 1)|X| = |X|
as required. We must show that it is a normal subgroup of G.

Our strategy will be to prove that it is the kernel of some representation of G.
Suppose e 6= h ∈ H and that h = gh′g−1 for some g ∈ G and h′ ∈ H then

h ∈ StabG(x) ∩ StabG(gx), so gx = x and g ∈ H. Thus

• h and h′ in H are conjugate in G if and only if they are conjugate in H.
• |CG(h)| = |CH(h)| for e 6= h ∈ H

Now if χ is a character of H we can compute IndG
H χ:

IndG
H χ(g) =











|X|χ(e) if g = e

χ(h) if g = h ∈ H\{e}
0 if g ∈ K\{e}
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Suppose now that χ1, . . . , χr is a list of the irreducible characters of H and let
θi = IndG

H χi + χi(e)1G − χi(e) IndG
H 1H ∈ R(G) for i = 1, . . . , r and so

θi(g) =











χi(e) if g = e

χi(h) if g = h ∈ H

χi(e) if g ∈ K

If θi were a character then the corresponding representation would have ker-
nel containing K. Since θi ∈ R(G) we can write it as a Z-linear combination of
irreducible characters θi =

∑

niψi, say.
On the one hand, we can compute

〈θi, θi〉G =
1

|G|
∑

g∈G

|θi(g)|2

=
1

|G|





∑

h∈H\{e}

|X||χi(h)|2 +
∑

k∈K

χi(e)
2





=
|X|
|G|

(

∑

h∈H

χi(h)|2
)

= 〈χi, χi〉H = 1

But on the other hand it must be
∑

n2
i . Thus θi is ±ψ for some character ψ of

G. Since θi(e) > 0 it must actually be an irreducible character.
To finish we write θ =

∑

χi(e)θi and so θ(h) =
∑

χi(e)χi(h) = 0 for h ∈ H\{e}
by column orthogonality, and θ(k) =

∑

χi(e)
2 = |H| for k ∈ K. Thus K = ker θ is

a normal subgroup of G. �

Remarks.

(1) Any Frobenius group satisfies the conditions of the theorem. The normal
subgroup K is called the Frobenius kernel and the group H is called the
Frobenius complement.

(2) No non-character theoretic proof of the theorem is known.
(3) In his thesis Thompson proved, amongst other things, that the Frobenius

kernel must be a direct product of its Sylow subgroups.

8. Arithmetic properties of characters

In this section we’ll investigate how arithmetic properties of characters produce
a suprising interplay between the structure of the group and properties of the
character table. The highlight of this will be the proof of Burnside’s famous paqb-
theorem that says that the order of a simple group cannot have precisely two distinct
prime factors.

We’ll need to quote some results about arithmetic without proof; proofs should
have been provided in the Number Fields course. We’ll continue with our assump-
tion that k = C and also assume that our groups are finite.
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8.1. Arithmetic results.

Definition. x ∈ C is an algebraic integer if it is a root of a monic polynomial with
integer coefficients.

Facts.

Fact 1 The algebraic integers form a subring of C

Fact 2 If x ∈ Q is an algebraic integer then x ∈ Z (cf Numbers and Sets 2009
Example Sheet 3 Q12)

Fact 3 Any subring of C that is finitely generated as an abelian group consists of
algebraic integers.

Lemma. If χ is the character of a representation of a finite group G, then χ(g) is
an algebraic integer for all g ∈ G.

Proof. We know that χ(g) is a sum of nth roots of unity for n = |G|. Since each
nth root of unity is by defintion a root of Xn − 1 this follows from Fact 1. �

8.2. The group algebra. Before we go further we need to explain how to make
the vector space kG into a ring. There are in fact two sensible ways to do this. The
first of these is by pointwise multiplication: f1f2(g) = f1(g)f2(g) for all g ∈ G will
make kG into a commutative ring. But more usefully for our immediate purposes
we have the convolution product

f1f2(g) :=
∑

x∈G

f1(gx)f2(x
−1)

that makes kG into a (possibly) non-commutative ring. Notice in particular that
with this product ∂g1

∂g2
= ∂g1g2

and so we may rephrase the multiplication as

(
∑

g∈G

λg∂g)(
∑

h∈G

µh∂h) =
∑

k∈G

(
∑

gh=k

λgµh)∂k.

From now on this will be the product we have in mind when we think of kG as a
ring.

We notice in passing that a kG-module is the ‘same’ as a representation of G:
given a representation (ρ, V ) of G we can make it into a kG-module via

fv =
∑

g∈G

f(g)ρ(g)(v).

for f ∈ kG and v ∈ V . Conversely, given a finitely generated kG-module M we can
view M as a representation of G via ρ(g)(m) = ∂gm.

Exercise. Suppose that kX is a permutation representation of G. Calculate the
action of f ∈ kG on kX under this correspondance.

Lecture 16

For the sake of the rest of the section, we need to understand the centre Z(kG)
of kG; that is the set of f ∈ kG such that fh = hf for all h ∈ kG.

Lemma. Suppose that f ∈ kG. Then f is in Z(kG) if and only if f ∈ CG, the
set of class functions on G. In particular dimk Z(kG) is the number of conjugacy
classes in G.
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Proof. Suppose f ∈ kG. Notice that fh = hf for all h ∈ kG if and only if f∂g = ∂gf
for all g ∈ G, since then

fh =
∑

g∈G

fh(g)∂g =
∑

g∈G

h(g)∂gf = hf.

But ∂gf = f∂g if and only if ∂gf∂g−1 = f and

(∂gf∂g−1)(x) = (∂gf)(xg) = f(g−1xg).

So if f ∈ Z(kG) if and only if f ∈ CG as required. �

Remark. The multiplication on Z(kG) is not the same as the multiplication on CG

that we have seen before even though both have the same additive groups and both
are commutative rings.

Definition. Suppose O1 = {e}, . . . ,Or are the conjugacy classes of G, define the
class sums C1, . . . , Cr to be the class functions on G so that

Ci =

{

1 g ∈ Oi

0 g 6∈ Oi.

We called these ∂Oi
before. Also we’ll fix gi ∈ Oi for simplicity.

We’ve seen that the class sums form a basis for Z(kG).

Proposition. There are non-negative integers aijk such that CiCj =
∑

k aijkCk

for i, j, k ∈ {1, . . . , r}.
The aijk are called the structure constants for Z(kG).

Proof. Since Z(kG) is a ring, we can certainly write CiCj =
∑

aijkCk for some
aijk ∈ k.

However, we can explicitly compute for gk ∈ Ok,

(CiCj)(gk) =
∑

x∈G

Ci(gkx)Cj(x
−1) = |{(x, y) ∈ Oi ×Oj | xy = gk}|,

a non-negative integer. �

Suppose now that (ρ, V ) is an irreducible representation of G. Then if z ∈ Z(kG)
we see that z : V → V given by zv =

∑

g∈G z(g)ρ(g)v ∈ HomG(V, V ).
By Schur’s Lemma it follows that z acts by a scalar λz ∈ k on V . In this way

we get an algebra homomorphism wρ : Z(kG) → k; z 7→ λz.
Taking traces we see that

dimV · λz =
∑

g∈G

z(g)χV (g).

So

wρ(Ci) =
χ(gi)

χ(e)
|Oi| for gi ∈ Oi.

We now see that wρ only depends on χρ (and so on the isomorphism class of ρ)
and we write wχ = wρ.

Lemma. The values wχ(Ci) are algebraic integers.

Note this isn’t a priori obvious since 1
χ(e) will not be an algebraic integer for

χ(e) 6= 1.
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Proof. Since wχ is an algebra homomorphism Z(kG) → k,

wχ(Ci)wχ(Cj) =
∑

k

aijkwχ(Ck).

So the subring of C generated by wχ(Ci) for i = 1, . . . , r is a finitely generated
abelian group. The result follows from Fact 3 above. �

Exercise. Show that

aijk =
|G|

|CG(gi)||CG(gj)|
∑

χ

χ(gi)χ(gj)χ(g−1
k )

χ(1)
.

(Hint: use column orthogonality, the last lemma and its proof.)

8.3. Degrees of irreducibles.

Theorem. If V is an irreducible representation of a group G then dimV divides
|G|.

Proof. Let χ be the character of V . We’ll show that |G|
χ(e) is an algebraic integer

and so (since it is rational) an actual integer by Fact 2 above.

|G|
χ(e)

=
1

χ(e)

∑

g∈G

χ(g)χ(g−1)

=

r
∑

i=1

1

χ(e)
|Oi|χ(gi)χ(g−1

i )

=

r
∑

i=1

wχ(Ci)χ(g−1
i )

But the set of algebraic integers form a ring (by Fact 1 above) and each wχ(Ci)

and χ(g−1
i ) is an algebraic integer so |G|

χ(e) is an algebraic integer as required. �

Examples.

(1) If G is a p-group and χ is an irreducible character then χ(e) is always a
power of p. In particular if |G| = p2 then, since

∑

χ χ(e)2 = p2, every
irreducible rep is 1-dimensional and so G is abelian.

(2) If G = An or Sn and p > n is a prime, then p cannot divide the dimension
of an irreducible rep.

In fact a stronger result is true:

Theorem (Burnside (1904)). If (ρ, V ) is an irreducible representation then dimV
divides |G/Z(G)|.

You should compare this with |Oi| = |G|/|CG(gi)| divides |G/Z(G)|.

Proof. If z ∈ Z = Z(G) then by Schur’s Lemma z acts on V by λzI for some
λz ∈ k.

For each m > 2, consisder the irreducible representation of Gm given by

ρ⊗m : Gm → GL(V ⊗m).
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If z = (z1, . . . , zm) ∈ Zm then z acts on V ⊗m via
∏m

i=1 λzi
I. Thus if

∏m
1 zi = 1

then z ∈ ker ρ⊗m.
Let Z ′ = {(z1, . . . , zm ∈ Zm |∏m

i=1 zi = 1} so |Z ′| = |Z|m−1. We may view ρ⊗m

as a degree (dimV )m) irreducible representation of Gm/Z ′.
Since |Gm/Z ′| = |G|m/|Z|m−1 we can use the previous theorem to deduce that

(dimV )m divides |G|m/|Z|m−1.
By choosing m very large and considering prime factors we can deduce the result:

if pr divides dimV then prm divides |G/Z|m|Z| for allm and so pr divides |G/Z|. �

Proposition. If G is a simple group then G has no irreducible representations of
degree 2.

Proof. If G is cyclic then G has no irreducible representations of degree bigger than
1, so we may assume G is non-abelian.

If |G| is odd then we may apply the theorem above.
If |G| is even then G has an element x of order 2. By example sheet 2 Q2,

for every irreducible χ, χ(x) ≡ χ(e) mod 2. So if χ(e) = 2 then χ(x) = ±2, and
ρ(x) = ±I. Thus ρ(x) ∈ Z(ρ(G)), a contradiction sinceG is non-abelian simple. �

Lecture 17

8.4. Burnside’s paqb Theorem.

Theorem (Burnside (1904)). Let p, q be primes and G a group of order paqb with
a, b non-negative integers such that a+ b > 2, then G is not simple.

Remarks.

(1) It follows that every group of order paqb is soluble. That is, there is a chain
of subgroups G = G0 > G1 > · · · > Gr = {e} with Gi+1 normal in Gi and
Gi/Gi+1 abelian for all i.

(2) Note that |A5| = 22 · 3 · 5 so the order of a simple group can have precisely
3 prime factors.

(3) If b = 0 then we’ve seen this before; Z(G) has an element of order p which
generates a proper normal subgroup.

(4) The first purely group theoretic proof of the paqb-theorem appeared in 1972.
(5) In 1963 Feit and Thompson published a 255 page paper proving that every

group of odd order in soluble.

The key step in the proof of the paqb-theorem is the following:

Proposition. If G is a non-cyclic finite group with a conjugacy class Oi 6= {e}
such that |Oi| has prime power order then |G| is not simple.

Granting the Proposition we can prove the theorem as follows: if a, b > 0, then
let Q be a Sylow-q-subgroup of G. Since Z(Q) 6= 1 we can find g ∈ Z(Q). Then qb

divides |CG(g)|, so the conjugacy class containing g has order pr for some 0 6 r 6 a.
The theorem now follows immediately from the Proposition.

To prove the Proposition we need some Lemmas

Lemma. Suppose 0 6= α = 1
m

∑m
i=1 λi with all λi n

th roots of 1 is an algebraic
integer. Then |α| = 1.
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Sketch proof (non-examinable). By assumption α ∈ Q(ǫ) where ǫ = e2πi/n.
Let G = Gal(Q(ǫ)/Q). It is known that {β ∈ Q(ǫ) | σ(β) = β for all σ ∈ G} = Q.
Consider N(α) :=

∏

σ∈G σ(α). Since N(α) is fixed by every element of G, N(α) ∈
Q. Moreover N(α) is an algebraic integer since Galois conjugates of algebraic
integers are algebraic integers — they satisfy the same integer polynomials. Thus
N(α) ∈ Z.

But for each σ ∈ G, |σ(α)| = | 1
m

∑

σ(λi)| 6 1. Thus N(α) = ±1, and |α| = 1 as
required. �

Lemma. Suppose χ is an irreducible character of G, and O is a conjugacy class
in G such that χ(e) and |O| are coprime. For g ∈ O, |χ(g)| = χ(e) or 0.

Proof. By Bezout, we can find x, y ∈ Z such that aχ(e) + b|O| = 1. Define

α :=
χ(g)

χ(e)
= aχ(g) + b

χ(g)

χ(e)
|O|

Then α satisfies the conditions of the previous lemma and so this lemma follows. �

Proof of Proposition. Suppose for contradication that G is simple and has an ele-
ment g ∈ G that lives in a conjugacy class O of order pr.

If χ is a non-trivial irreducible character of G then |χ(g)| < χ(1) since otherwise
ρ(g) is a scalar matrix and so lies in Z(ρ(G)) ∼= Z(G).

Thus by the last lemma, for every non-trivial irreducible character, either p
divides χ(e) or |χ(g)| = 0 . By column orthogonality,

0 =
∑

χ

χ(e)χ(g).

Thus −1
p =

∑

χ6=1

χ(e)
p χ(g) in an algebraic integer in Q. Thus 1

p in Z the desired

contradiction. �

9. Topological groups

Consider S1 = U1(C) = {g ∈ C× | |g| = 1} ∼= R/Z.
By considering R as a Q-vector space we see that as a group

S1 ∼= Q/Z ⊕
⊕

x∈X

Q

for an an uncountable set X.
Thus we see that as an abstract group S1 has uncountably many irreducible

representations: for each λ ∈ R we can define a one-dimensional representation by

ρλ(e2πiµ) =

{

1 µ 6∈ Qλ

e2πiµ µ ∈ Qλ

Then ρλ = ρλ′ if and only if Qλ = Qλ′. In this way we get uncountably many
irreducible representations of S1 (we haven’t listed them all). We don’t really have
any control over the situation.

However, S1 is not just a group; it comes with a topology as a subset of C.
Moreover S1 acts naturally on complex vector spaces in a continuous way.

Definition. A topological group G is a group G which is also a topological space
such that the multiplication map G × G → G; (g, h) 7→ gh and the inverse map
G→ G; g 7→ g−1 are continuous maps.
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Examples.

(1) GLn(C) with topology from Cn2

.
(2) G finite — with the discrete topology.
(3) O(n) = {A ∈ GLn(R) | ATA = I}; SO(n) = {A ∈ O(n) | detA = 1}.
(4) U(n) = {A ∈ GLn(C) | ATA = I}; SU(n) = {A ∈ U(n) | detA = 1}.
(5) *G profinite such as Zp, the completion of Z with respect to the p-adic metric.

Definition. A representation of a topological group G on a vector space V is a
continuous group homomorphism G→ GL(V ).

Remarks.

(1) If X is a topological space then α : X → GLn(C) is continuous if and only if
the maps x 7→ αij(x) = α(x)ij are continuous for all i, j.

(2) If G is a finite group with the discrete topology. Then continous function
G→ X just means function G→ X.

Theorem. Every one dimensional (cts) representation of S1 is of the form z 7→ zn

for some n ∈ Z.

It is easy to see that the given maps are representations, we must show that they
are the only ones.

Lemma. If ψ : (R,+) → R is a continous group homomorphism then there is some
λ ∈ R such that ψ(x) = λx for all x ∈ R.

Proof. Let λ = ψ(1). Since ψ is a group homomorphism, ψ(n) = λn for all n ∈ Z.
Then mψ(n/m) = ψ(n) = λn and so ψ(n/m) = λn/m. That is ψ(x) = λx for all
x ∈ Q. But Q is dense in R and ψ is continuous so ψ(x) = λx for all x ∈ R. �

Lemma. If ψ : (R,+) → S1 is a continuous group homomorphism then ψ(x) =
e2πiλx for some λ ∈ R.

Proof. Claim: if ψ : R → S1 is any continuous function with ψ(0) = 1 then there
is a unique continuous function α : R → R such that α(0) = 0 and ψ(x) = e2πiα(x).
(Sketch proof of claim: locally α(x) = 1

2πi logψ(x) we can choose the branches of
log to make the pieces glue together continuously).

Now given the claim, if ψ is a group homomorphism and α is the map defined
by the claim we can define a continuous function R2 → R by

∆(a, b) := α(a+ b) − α(a) − α(b).

Since e2πi∆(a,b) = ψ(a + b)ψ(a)−1ψ(b)−1 = 1, ∆ only takes values in Z. Thus ∆
is constant. Since ∆(a, 0) = 0 for all a we see that ∆ ≡ 0 and so α is a group
homomorphism. By the previous lemma we see α(x) = λx for some λ ∈ R and so
ψ(x) = e2πiλx as required. �

Lecture 18

Last time we proved

Lemma. If ψ : (R,+) → S1 is a continuous group homomorphism then ψ(x) =
e2πiλx for some λ ∈ R.

We’ll now use this to prove
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Theorem. Every one dimensional (cts) representation of S1 is of the form z 7→ zn

for some n ∈ Z.

Proof. Let ρ : S1 → GL1(C) be a continuous representation. Since S1 is compact,
ρ(S1) has closed and bounded image. Since ρ(zn) = ρ(z)n for n ∈ Z, it follows that
ρ(S1) ⊂ S1.

Now let ψ : R → S1 be defined by ψ(x) = ρ(e2πix), a continuous homomorphism.
By the most recent Lemma, ρ(e2πix) = ψ(x) = e2πiλx for some λ ∈ R.

Since also ρ(e2πix) = 1 we see λ ∈ Z. �

Our most powerful idea for studying representations of finite groups has been
averaging over the group; that is the operation 1

|G|

∑

g∈G. When considering more

general topological groups we should replace
∑

by
∫

.

Definition. LetG be a topological group. Let C(G) = {f : G→ C | f is continuous}.
Then a linear map

∫

G
: C(G) → C (write

∫

G
f =

∫

G
f(g) dg) is called a Haar mea-

sure if

(i)
∫

G
1 = 1 (so

∫

G
is normalised so total volume is 1;

(ii)
∫

G
f(xg)dg =

∫

G
f(g)dg for all x ∈ G (so

∫

G
is translation invariant).

Examples.

(1) If G finite, then
∫

G
f = 1

|G|

∑

g∈G f(g).

(2) If G = S1,
∫

G
f = 1

2π

∫ 2π

0
f(eiθ) dθ.

Theorem. If G is a compact Hausdorff group, then there is a unique Haar measure
on G.

Proof. Omitted �

We’ve seen a Haar measure on S1 and will compute one on SU(2) later.

Corollary (Weyl’s Unitary Trick). If G is a compact Hausdorff group then ev-
ery continuous representation (ρ, V ) has a G-invariant invariant Hermitian inner
product

Proof. Same as for finite groups: let (−,−) be any inner product on V , then

〈v, w〉 =

∫

G

(ρ(g)v, ρ(g)w) dg

is the required G-invariant inner product. �

Corollary (Maschke’s Theorem). If G is a compact Hausdorff group then every
continuous representation of G is completely reducible.

Proof. Same as for finite groups: Given a rep (ρ, V ) choose a G-invariant inner
product. If W is a subrep of V then W⊥ is a G-invariant complement. �

We can use the Haar measure to put an inner product on the space CG of (con-
tinuous) class functions:

〈f, f ′〉 :=

∫

G

f(g)f ′(g) dg.

If ρ : G → GL(V ) is a continuous representation then χρ := tr ρ is a continuous
class function since each ρ(g)ii is continuous.
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Corollary (Orthogonality of Characters). If G is a compact Hausdorff group and
(ρ, V ) and (ρ′,W ) are continuous irreducible reps of G then

〈χV , χW 〉 =

{

1 if V ∼= W

0 if χV 6= χW .

Proof. Same as for finite groups:

〈χV , χW 〉 =

∫

G

χV (g)χW (g) dg

= dim HomG(1,Hom(V,W ))

= dim HomG(V,W ).

Then apply Schur’s Lemma. �

It is also possible to make sense of ‘the characters span the space of class func-
tions’ but this requires a little more analysis in the form of the Peter–Weyl theorem.

Example. G = S1.
We’ve already seen that the one-dimensional reps of S1 are all of the form z 7→ zn

for n ∈ Z. Since S1 is abelian we can use our usual argument to see that these
are all irreducible reps — given any rep ρ we can find a simultaneous eigenvector
for each ρ(g). Thus the ‘character table’ of S1 has rows χn indexed by Z with
χn(eiθ) = einθ.

Now if V is any rep of S1 then by Machke’s Theorem V breaks up as a direct
sum of one dimensional subreps and so its character χV is of the form

χV (z) =
∑

n∈Z

anz
n

with an non-negative integers and only finitely many non-zero. As usual an is the
number of copies of ρn : z 7→ zn in the decomposition of V . Thus we can compute

an = 〈χn, χV 〉 =
1

2π

∫ 2π

0

χV (eiθ)e−inθ dθ.

Thus

χV (eiθ) =
∑

n∈Z

(

1

2π

∫ 2π

0

χV (eiθ′

)e−inθ′

dθ′
)

einθ.

So Fourier decomposition gives the decomposition of χV into irreducible charac-
ters and the Fourier mode is the multiplicity of an irreducible character.

Remark. In fact by the theory of Fourier series any continuous function on S1 can
be uniformly approximated by a finite C-linear combination of the χn.

Moreover the χn form a complete orthonormal set in the Hilbert space of square-
integrable complex-valued functions on S1. That is every function f on S1 such

that
∫ 2π

0
|f(eiθ)|2 dθ exists has a unique series expansion

f(eiθ) =
∑

n∈Z

(

1

2π

∫ 2π

0

f(eiθ′

)e−inθ′

dθ′
)

einθ

converging in the norm ||f || = 1
2π

∫ 2π

0
|f(eiθ)|2 dθ.
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Lecture 19

9.1. Conjugacy classes of SU(2).

Recall that SU(2) = {A ∈ GL2(C) | ATA = I,detA = 1}.
If A =

(

a b
c d

)

∈ SU(2) then since detA = 1, A−1 =

(

d −b
−c a

)

.

Thus d = a and c = −b. Moreover aa+ bb = 1. In this way we see that

SU(2) =

{(

a b

−b a

)

| a, b ∈ C and |a|2 + |b|2 = 1

}

which may be viewed topologically as S3 ⊂ C2 ∼= R4.
More precisely if

H := R · SU(2) =

{(

z w
−w z

)

| w, z ∈ C

}

⊂M2(C).

Then ||A||2 = detA defines a norm on H ∼= R4 and SU(2) is the unit sphere in H. If
A ∈ SU(2) and X ∈ H then ||AX|| = ||X|| since ||A|| = 1. So, after normalisation,
usual integration of functions on S3 defines a Haar measure on SU(2).

Definition. Let T =

{(

a 0
0 a−1

)

| a ∈ C, |a| = 1

}

∼= S1, a maximal torus in

SU(2).

Also define s =

(

0 1
−1 0

)

∈ SU(2)

Lemma.

(i) if t ∈ T then sts−1 = t−1;
(ii) s2 = −I ∈ Z(SU(2))

(iii) NSU(2)(T ) = T ∪ sT =

{(

a 0
0 a−1

)

,

(

0 a
−a−1 0

)

| a ∈ C, |a| = 1

}

Proof. All three parts follow from direct computation (exercise). �

Proposition.

(i) Every conjugacy class O in SU2 contains an element of T .
(ii) More precisely. if O is a conjugacy class then O∩T = {t, t−1} for some t ∈ T

— t = t−1 if and only if t = ±I when O = {t}.
(iii) There is a bijection

{conjugacy classes in SU(2)} → [−1, 1]

given by A 7→ 1
2 trA.

Proof. (i) For every unitary matrix A there is an orthonormal basis of eigenvectors
of A; that is there is a unitary matrix P such that PAP−1 is diagonal. We want
to arrange that detP = 1. But we can replace P by Q =

√
detPP . Thus every

conjugacy class O in SU(2) contains a diagonal matrix t. Since additionally t ∈
SU(2), t ∈ T .

(ii) If ±I ∈ O the result is clear.
Suppose t ∈ O ∩ T for some t 6= ±I. Then

O = {gtg−1 | g ∈ SU(2)}.
We’ve seen before that sts−1 = t−1 so O ∩ T ⊃ {t, t−1}.
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Conversely, if t′ ∈ O∩T then t′ and t must have the same eigenvalues since they
are conjugate. This suffices to see that t′ ∈ {t±1}.

(iii) To see the given function is injective, suppose that 1
2 trA = 1

2 trB. Then
since detA = detB = 1, A and B must have the same eigenvalues. By part (i)
they are both diagonalisable and by the proof of part (ii) this suffices to see that
they are conjugate.

To see that it is surjective notice that 1
2 tr

(

eiθ 0
0 e−iθ

)

= cosθ. Since cos : R → R

has image [−1, 1] the given function is surjective. �

Let’s write Ox = {A ∈ SU(2) | 1
2 trA = x} for x ∈ [−1, 1]. We’ve proven that

the Ox are the conjugacy classes in SU(2). Clearly O1 = {I} and O−1 = {−I}.
Proposition. If −1 < x < 1 then Ox is homeomorphic to S2.

Proof. First we observe that Ox
∼= SU(2)/T for each −1 < x < 1. To see this it

suffices to show that T = CSU2

((

λ 0
0 λ−1

))

for λ 6= λ−1. But

(

a b
c d

)(

λ 0
0 λ−1

)

=

(

λa λb
λ−1c λ−1d

)

and
(

λ 0
0 λ−1

)(

a b
c d

)

=

(

λa λ−1b
λc λ−1d

)

.

For these to be equal for λ 6= λ−1 we require b = c = 0.
Next we recall that SU(2) acts on S2 ∼= C ∪ {∞} by Mobius transformations:

(

a b
c d

)

· z =
az + b

cz + d
.

This action is transitive since for each z ∈ C there are a, b ∈ C such that |a|2+|b|2 =

1 and a/b = z (exercise). Then

(

a −b
b a

)

· ∞ = a/b.

But StabSU(2)(∞) = T so SU(2)/T ∼= S2. �

9.2. Representations of SU(2).
Now we understand the conjugacy classes of SU(2), we’ll try to work out its

representation theory.
Let Vn be the complex vectorspace of homogeneous polynomials in two variables

x, y. So dimVn = n+ 1. Then GL2(C) acts on Vn via

ρn : GL2(C) → GL(Vn)

given by

ρn

((

a b
c d

))

f(x, y) = f(ax+ cy, bx+ dy).

Examples.
V0 = C has the trivial action.
V1 = C2 is the standard representation of GL2(C

2) on C2 with basis x, y.
V2 = C3 has basis x2, xy, y2 then

ρ2

((

a b
c d

))

=





a2 ab b2

2ac ad+ bc 2bd
c2 cd d2




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Since SU(2) is a subgroup of GL2(C) we can view Vn as a representation of
SU(2) by restriction. In fact as we’ll see, the Vn are all irreducible reps of SU(2)
and every irreducible rep of SU(2) is isomorphic to one of these.

Remark. −I ∈ Z(SU(2)) acts on Vn as −1 on if n is odd and as 1 if n is even.

Lemma. A continuous class function f : SU(2) → C is determined by its restric-

tion to T and f |T is even ie f

((

z 0
0 z−1

))

= f

((

z−1 0
0 z

))

.

Proof. We’ve seen that each conjugacy class in SU(2) meets T and so a class
fucntion is determined by its restriction to T . Then evenness follows from the
additional fact that T ∩ O = {t±1} for some t ∈ T . �

Thus we can view the character of a representation ρ of SU(2) as an even function
χρ : S1 → C.

Lemma. If χ is a character of a representation of SU(2) then χ|T is a Laurent
polynomial ie a finite N linear combination of functions

(

z 0
0 z−1

)

7→ zn for n ∈ Z.

Proof. If V is a continuous representation of SU(2) then Res
SU(2)
T V is a continuous

representation of T and χResT V is the restriction of χV to T . But we’ve proven
already that every continuous representation of T has character of the given form.

�

Lecture 20

Write

N[z, z−1] :=

{

∑

n∈Z

anz
n | an ∈ N and only finitely many an 6= 0

}

and

N[z, z−1]ev = {f ∈ N[z, z−1] | f(z) = f(z−1)}.
We showed last time that for every continuous representation V of SU(2), the

character χV ∈ N[z, z−1]ev after identifying it with its restriction to T .
The next thing to do is compute the character χn of (ρn, Vn), the representation

consisting of degree n homogeneous polynomials in x and y.

ρn

((

z 0
0 z−1

))

(xiyj) = (zx)i(z−1y)j = zi−jxiyj .

So xiyj is an eigenvector for each t ∈ T and T acts on Vn via

ρn

((

z 0
0 z−1

))

=



















zn

zn−2

zn−4

. . .

z2−n

z−n



















.
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Thus

χn

((

z 0
0 z−1

))

= zn + zn−2 + · · · + z2−n + z−n =
zn+1 − z−(n+1)

z − z−1
∈ N[z, z−1]ev.

Theorem. Vn is irreducible as a reperesentation of SU(2).

Proof. Let 0 6= W 6 Vn be a SU(2)-invariant subspace. We want to show that
W = Vn.

Let 0 6= w =
∑

λi(x
n−iyi) ∈W . We claim that xn−iyi ∈W whenever λi 6= 0.

We prove the claim by induction on k = |{i | λi 6= 0}|.
If k = 1 then w is a non-zero scalar multiple of xn−iyi and we’re done.
If k > 1 choose i such that λi 6= 0 and z ∈ S1 such that {zn, zn−2, . . . , z2−n, zn}

are distict complex numbers. Then

ρn

((

z 0
0 z−1

))

w − zn−2iw =
∑

λj(z
n−2j − zn−2i)(xn−jyj) ∈W

since W is SU(2)-invariant. Now λj(z
n−2j − zn−2i) 6= 0 precisely if λj 6= 0 and

j 6= i. Thus by the induction hypothesis xjyn−j ∈ W for all j 6= i with λj 6= 0. It
follows that also xiyn−i = 1

λi
(w −∑j 6=i λjx

jyn−j) ∈W as required.

Now we know that xiyn−i ∈W for some i. Since

1√
2

(

1 1
−1 1

)

xiyn−i =
1√
2
((x− y)i(x+ y)n−i) ∈W

we can use the claim to deduce that xn ∈ W . Repeating the same calculation for
i = n, we see that (x+ y)n ∈W and so, by the claim again, xiyn−i ∈W for all i.

Thus W = Vn. �

Alternative proof:
We can identify Ocos θ = {A ∈ SU(2) | 1

2 trA = cos θ} with the two-sphere

{(Im(a))2 + |b|2 = sin2 θ} of radius | sin θ|. Thus if f is a class-function on SU(2),
since f is constant on each Ocos θ,
∫

SU(2)

f(g) dg =
1

2π2

∫ 2π

0

1

2
f

((

eiθ 0
0 e−iθ

))

4π sin2 θ dθ =
1

π

∫ 2π

0

f(eiθ) sin2 θ dθ.

Note this is normalised correctly, since 1
π

∫ 2π

0
sin2 θ dθ = 1. So it suffices to prove

that 1
π

∫ 2π

0
|χVn

(eiθ)|2 sin2 θ dθ = 1 for z = eiθ. (exercise: verify this).

Theorem. Every irreducible representation of SU(2) is isomorphic to Vn for some
n > 0.

Proof. Let V be an irreducible representation of SU(2) so χV ∈ N[z, z−1]ev. Now
χ0 = 1, χ1 = z+ z−1, χ2 = z2 +1+ z−2, . . . form a basis of Q[z, z−1]ev as (non-f.d.)
Q-vector spaces. Thus χV =

∑

aiχi for some ai ∈ Q, only finitely many non-zero.
Clearing denominators and moving negative terms to the left-hand-side, we get

a formula
mχV +

∑

i∈I

miχi =
∑

j∈J

mjχj

for some disjoint finite subsets I, J ⊂ N and m,mi ∈ N. By orthogonality of
characters and complete reducibility we obtain

mV ⊕
⊕

i∈I

miVi
∼=
⊕

j∈J

mjVj
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since V is irreducible and V ∼= Vj some j ∈ J . �

9.3. Tensor products of representations of SU(2). We’ve seen that if V,W

are representations of SU(2) such that Res
SU(2)
T V ∼= Res

SU(2)
T W then V ∼= W . We

want to understand ⊗ for representations of SU(2).

Proposition. If G ∼= SU(2) or S1 and V,W are representations of G then

χV ⊗W = χV · χW .

Proof. By the discussion above we only need to consider G ∼= S1.
If V and W have eigenbases e1, . . . , en and f1, . . . , fm such that zei = zniei and

zfj = zmjfj then z(ei ⊗ fj) = zni+mj (ei ⊗ fj). So

χV ⊗W (z) =
∑

i,j

zni+mj =

(

∑

i

zni

)





∑

j

zmj



 = χV (z)χW (z)

as required. �

Let’s compute some examples for SU(2):

χV1⊗V1
(z) = (z + z−1)2 = z2 + 1 + z−2 + 1 = χV2

+ χV0

and

χV2⊗V1
(z) = (z2 + 1 + z−2)(z + z−1) = z3 + 2z + 2z−1 + z−3 = χV3

+ χV1
.

Proposition (Clebsch–Gordan rule). For n,m ∈ N,

Vn ⊗ Vm
∼= Vn+m ⊕ Vn+m−2 ⊕ · · · ⊕ V|n−m|+2 ⊕ V|n−m|.

Proof. Without loss of generality, n > m. Then

(χn · χm)(z) =
zn+1 − z−n−1

z − z−1
· (zm + zm−2 + · · · + z−m)

=

m
∑

j=0

zn+m+1−2j − z−(n+m+1−2j)

z − z−1

=

m
∑

j=0

χn+m−2j(z)

�

9.4. Representations of SO(3).

Proposition. There is an isomorphism of topological groups SU(2)/{±I} ∼= SO(3).

Corollary. Every irreducible representation of SO(3) is of the form V2n for some
n > 0.

Proof. It follows from the Proposition that irreducible representations of SO(3)
correspond to irreducible representations of SU(2) such that −I acts trivially. But
we saw before that −I acts on Vn as −1 when n is odd and as 1 when n is even. �
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Lecture 21

Let’s prove the proposition from the end of last time:

Proposition. There is an isomorphism of topological groups SU(2)/{±I} ∼= SO(3).

Proof. Consider H◦ = {A ∈ H | trA = 0} = R〈
(

i 0
0 −i

)

,

(

0 1
−1 0

)

,

(

0 i
i 0

)

〉
equipped with the norm ||A|| = detA.
SU(2) acts by isometries on H◦ via (X,A) 7→ XAX−1 giving a group homomor-

phism

θ : SU(2) → SO(3)

with kernel Z(SU(2)) = {±I}. Since SU(2) is compact and SO(3) is Hausdorff
the continuous group isomorphism θ̄ : SU(2)/{±I} → Imθ is a homeomorphism so
it suffices to prove that Imθ = SO(3).

Now
(

eiθ 0
0 e−iθ

)(

ai b

−b −ai

)(

e−iθ 0
0 eiθ

)

=

(

ai e2iθb

−e−iθb −ai

)

so

(

eiθ 0
0 e−iθ

)

acts on R〈i, j,k〉 by rotation in the jk-plane through an angle 2θ.

Exercise. Show that

(

cos θ sin θ
− sin θ cos θ

)

acts by rotation through 2θ in the ik-plane,

and

(

cos θ i sin θ
i sin θ cos θ

)

acts by rotation through 2θ in the ij-plane. Deduce that

Imθ = SO(3).

�

10. Character table of GL2(Fq) and related groups

10.1. GL2(Fq). Let p > 2 be a prime, q = pa a power of p for some a > 0, and Fq

be the field with q-elements.

G := GL2(Fq) =

{(

a b
c d

)

| a, b, c, d ∈ Fq and ad− bc 6= 0

}

.

We are going to construct the character table of G. Our main strategy will be
induction from 1-dimensional representations of large subgroups.

Let N =

{(

1 b
0 1

)

| b ∈ Fq

}

an abelian subgroup of G of order q (a Sylow p-

subgroup of G) and B =

{(

a b
0 d

)

| b ∈ Fq, a, d ∈ Fq
×

}

a Borel subgroup of G.

Then N is normal in B and B/N ∼= Fq
× × Fq

×.
G acts transitively on Fq ∪ {∞} via Mobius transformations

(

a b
c d

)

(z) =
az + b

cz + d
for z ∈ Fq

and
(

a b
c d

)

(∞) = a/c

so B = StabG(∞). Thus |G| = |B|(q + 1) = q(q − 1)2(q + 1).
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Writing s =

(

0 1
1 0

)

we see that

(

a b
0 d

)

s

(

1 β
0 1

)

=

(

b a+ bβ
d βd

)

.

Hence BsN contains q|B| elements so must be G\B. Thus BsN = BsB and
B\G/B has two double cosets B and BsB (this is called Bruhat decomposition).

By Mackey’s irreduciblity criterion it follows that if W is an irreducible rep-
resentation of B, then IndG

B W is an irreducible representation of G precisely if

ResB
B∩sB W 6∼= Res

sB
B∩sB

sW . Since s swaps 0,∞ ∈ Fq ∪ {∞},

sB = StabG(0) =

{(

a 0
c d

)

| a, d ∈ Fq
×, c ∈ Fq

}

and B ∩ sB =

{(

a 0
0 d

)}

=: T .

One final important subgroup is K :=

{(

x ǫy
y x

)

| x, y ∈ Fq not both zero

}

where ǫ is fixed non-square in Fq (the squaring map on Fq is a group homomorphism
with kernel ±1 so half of the elements of Fq are non-squares so we may fix one).

Now K ∪
(

0 0
0 0

)

is a field with q2 elements under usual matrix operations

(exercise: check this). So K ∼= Cq2−1 — a ‘non-split torus’.

If y 6= 0, then

(

x ǫy
y x

)

is not diagonalisable over Fq since its characteristic

polynomial is t2 − 2xt+ x2 − ǫy2 = (t− x)2 − ǫy2 which has no roots in Fq.
Next, we compute the conjugacy classes in G. Certainly if two elements of G

are conjugate they have the same minimal polynomial. In fact, we will see this is a
total invariant for conjugacy classes (exercise: prove this directly).

Suppose A ∈ GL2(Fq) has linear minimal polynomial X − λ, say, for some

λ ∈ Fq
×. Then A = λI. So A lives in a conjugacy class of size 1. There are q − 1

such classes.
Next, if A has minimal polynomial (X − λ)2 for some λ ∈ Fq

× then there is

w ∈ Fq
2 such that (A − λ)w 6= 0 but (A − λ)2w = 0. Then v := (A − λ)w,w is

a basis for Fq
2 and Av = λv, Aw = v + λw so A is conjugate to

(

λ 1
0 λ

)

. Now

CG

((

λ 1
0 λ

))

=

{(

a b
0 a

)

| a, b ∈ Fq, a 6= 0

}

so

(

λ 1
0 λ

)

is in a conjugacy class

of order q(q−1)(q2−1)
(q−1)q = q2 − 1. There are q − 1 such classes.

If A has minimal polynomial (X−λ)(X−µ) for some distinct λ, µ ∈ Fq
×. Then

A is conjugate to

(

λ 0
0 µ

)

and to

(

µ 0
0 λ

)

. Moreover CG

((

λ 0
0 µ

))

= T . So
(

λ 0
0 µ

)

is in a conjugacy class of order q(q−1)(q2−1)
(q−1)2 = q(q + 1). There are

(

q−1
2

)

such classes.
Finally if A has minimal polynomial (X − λ)2 − ǫµ2 for µ ∈ Fq

× then A could

be

(

λ ǫµ
µ λ

)

.
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Now

CG

((

λ ǫµ
µ λ

))

=

{(

a b
c d

)

|
(

a b
c d

)(

λ ǫµ
µ λ

)

=

(

λ ǫµ
µ λ

)(

a b
c d

)}

= K

so

(

λ ǫµ
µ λ

)

lives in a conjugacy class of size q(q−1)(q2−1)
q2−1 = q(q − 1). There are at

least q(q − 1)/2 such classes.
We’ve now covered

(q − 1) + (q2 − 1)(q − 1) + q(q + 1)

(

q − 1

2

)

+ (q2 − q)
q(q − 1)

2
= |G|

elements so there are precisely q(q−1)/2 classes with irreducible quadratic minimal
polynomial.

In summary

Representative CG No of elts No of such classes
(

λ 0

0 λ

)

G 1 q − 1
(

λ 1

0 λ

) (

a b

0 a

)

q2 − 1 q − 1
(

λ 0

0 µ

)

T q(q + 1)
(

q−1
2

)

(

λ ǫµ

µ λ

)

K q(q − 1)
(

q
2

)

Lecture 22

Recall our notation from last time. G = GL2(Fq) > B =

{(

a b

0 d

)}

has normal

subgroup N =

{(

1 b

0 1

)}

.

Then Z = Z(G) =

{(

a 0

0 a

)}

, T =

{(

a 0

0 d

)}

, K =

{(

x ǫy

y x

)}

for some

fixed non-square ǫ in Fq.

Finally s =

(

0 1

1 0

)

and G = B ∪BsB.

The conjugacy classes in GL2(Fq) are

Representative CG No of elts No of such classes
(

λ 0

0 λ

)

G 1 q − 1
(

λ 1

0 λ

)

ZN q2 − 1 q − 1
(

λ 0

0 µ

)

T q(q + 1)
(

q−1
2

)

(

λ ǫµ

µ λ

)

K q(q − 1)
(

q
2

)

Let’s warm ourselves up by computing the character table of B.
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If x, y ∈ B are conjugate in G then because G = B ∪BsB either x is conjugate
to y in B or x is conjugate to sys−1 (or both). So classes in G split into at most
two pieces when restricted to B.

The conjugacy classes in B are

Representative CG No of elts No of such classes
(

λ 0

0 λ

)

B 1 q − 1
(

λ 1

0 λ

)

ZN q − 1 q − 1
(

λ 0

0 µ

)

T q (q − 1)(q − 2)

Now B/N ∼= T ∼= Fq
× × Fq

×. So if θ0, . . . , θq−2 are the characters of Fq
× arranged

so that θiθj = θi+j (where + is understood mod q − 1) then for every pair i, j
between 0 and q − 2 we have a 1-dimensional representation of B given by

αij

((

a b

0 d

))

= θi(a)θj(d)

giving (q − 1)2 linear reps.
Fix γ a non-trivial 1-dimensional representation of Fq. Then for each i between

0 and q − 2 we can define a 1-dimensional representation of ZN by

ρi

((

a b

0 a

))

= θi(a)γ(b).

Defining µi to be the character of IndB
ZN ρi we see that

µi

((

λ 0

0 λ

))

= (q − 1)θi(λ),

µi

((

λ 1

0 λ

))

=
∑

b∈Fq
×

θi(λ)γ(b)

= θi(λ)(q〈1, γ〉Fq
− 1)

= −θi(λ)

µi

((

λ 0

0 µ

))

= 0

So 〈µi, µi〉 = 1
q(q−1)2

(

(q − 1)(q − 1)2 + (q − 1)(q − 1)1
)

= 1 and the character

table of B is
(

λ 0

0 λ

) (

λ 1

0 λ

) (

λ 0

0 µ

)

αij θi(λ)θj(λ) θi(λ)θj(λ) θi(λ)θj(µ)

µi (q − 1)θi(λ) −θi(λ) 0

Let’s start computing some representations of G.
As det : G→ Fq

× is a surjective group homomorphism, for each i = 0, . . . , q− 2,
χi := θi ◦ det is a 1-dimensional representation of G.

Next, we consider IndG
B 1 = C(Fq ∪ {∞}).
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(

λ 0

0 λ

)

acts on Fq ∪ {∞} as z 7→ z so with q + 1 fixed points.

(

λ 1

0 λ

)

acts on Fq ∪ {∞} as z 7→ z + 1
λ so only ∞ is fixed.

(

λ 0

0 µ

)

acts on Fq ∪ {∞} via z 7→ λ
µ so 0 and ∞ are the fixed points.

Finally

(

λ ǫµ

µ ǫ

)

acts on Fq ∪ {∞} without fixed points.

Since G acts 2-transitively on Fq ∪ {∞}, the representation V0 := IndG
B 1 − 1

(consisting of G-invariant functions on Fq ∪ {∞} that sum to zero) is irreducible

with character χV0

((

λ 0

0 λ

))

= q, χV0

((

λ 1

0 λ

))

= 0, χV0

((

λ 0

0 µ

))

= 1,

χV0

((

λ ǫµ

µ ǫ

))

= −1. This is known as the Steinberg representation.

By tensoring Vi with χi we obtain q − 1 representations of dimension q, (If you
prefer, χVi

= χIndG
B

αii
− χi).

Next we can induce αij for i 6= j. Since ResB
T αij 6= Res

sB
T

sαji, IndG
B αij is an

irreducible character by Mackey’s irreducibility criterion.

Thus we get irreducible characters χWij
so that χWij

((

λ 0

0 λ

))

= (q+1)θi(λ)θj(λ),

χWij

((

λ 1

0 λ

))

= θi(λ)θj(λ), χWij

((

λ 0

0 µ

))

= θi(λ)θj(µ) + θj(λ)θi(µ) and

χWij

((

λ ǫµ

µ λ

))

= 0.

Notice that Wij
∼= Wji and Wij ⊗χk = Wi+k,j+k so no new representations this

way.
So far we have

(

λ 0

0 λ

) (

λ 1

0 λ

) (

λ 0

0 µ

) (

λ ǫµ

µ λ

)

# of reps

χi θi(λ)2 θi(λ)2 θi(λ)θi(µ) θi(λ
2 − ǫµ2) q − 1

Vi qθi(λ)2 0 θi(λ)θi(µ) −θi(λ
2 − ǫµ2) q − 1

Wij (q + 1)θi(λ)θj(λ) θi(λ)θj(λ) θi(λ)θj(µ) + θj(λ)θi(µ) 0 (q−1)(q−2)
2

The next natural thing to do is compute IndG
B µi. It has character given by

IndG
B µi

((

λ 0

0 λ

))

=(q + 1)(q − 1)θi(λ),

IndG
B µi

((

λ 1

0 λ

))

= − θi(λ),

IndG
B µi

((

λ 0

0 µ

))

=0 and

IndG
B µi

((

λ ǫµ

µ λ

))

= 0.
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Thus

〈IndG
B µi, IndG

B µi〉 =
1

|G|
(

(q + 1)2(q − 1)2(q − 1) + (q − 1)(q2 − 1)
)

1

q

(

q2 − 1) + 1
)

= q

so IndG
B µi has many irreducible factors.

Lecture 23

The story so far:

# classes q − 1 q − 1
(

q−1
2

) (

q
2

)

|ccl| 1 q2 − 1 q(q + 1) q(q − 1)

CG G ZN T K

rep

(

λ 0

0 λ

) (

λ 1

0 λ

) (

λ 0

0 µ

) (

λ ǫµ

µ λ

)

# of reps

χi θi(λ)2 θi(λ)2 θi(λ)θi(µ) θi(λ
2 − ǫµ2) q − 1

Vi qθi(λ)2 0 θi(λ)θi(µ) −θi(λ
2 − ǫµ2) q − 1

Wij (q + 1)θi(λ)θj(λ) θi(λ)θj(λ) θi(λ)θj(µ) + θj(λ)θi(µ) 0 (q−1)(q−2)
2

IndG
B µi (q2 − 1)θi(λ) −θi(λ) 0 0 (q − 1)

We also computed 〈IndG
B µi, IndG

B µi〉 = q.
Our next strategy is to induce characters from K. K ∼= Cq2−1. Recall

K ∪ {0} =

{(

x ǫy

y x

)}

is a field with q2 elements. If we write x +
√
ǫy for the matrix

(

x ǫy

y x

)

, then

(x +
√
ǫy)(w +

√
ǫz) = (xw + ǫyz) + (xz + yw)

√
ǫ as we might expect. Moreover

(x+
√
ǫy)q = xq +

√
ǫ
q
yq = x−√

ǫy and

det(x+
√
ǫy) = (x+

√
ǫy)(x−

√
ǫy) = (x+

√
ǫy)q+1.

Notice that Z 6 K with

(

λ 0

0 λ

)

= λ in our new notation.

Suppose that ϕ : K → C× is a 1-dimensional character of K. Then Φ := IndG
K ϕ

has character given by
Φ(λ) = q(q − 1)ϕ(λ), Φ(λ +

√
ǫµ) = ϕ(λ +

√
ǫµ) + ϕ(λ − √

ǫµ) for µ 6= 0 and
Φ = 0 away from these conjugacy classes.

Let’s compute

〈Φ,Φ〉 =
1

|G|



(q − 1)q2(q − 1)2 +
q(q − 1)

2

∑

ν∈K\Z

|ϕ(ν) + ϕ(νq)|2



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But
∑

|ϕ(ν) + ϕ(νq)|2 =
∑

ν∈K\Z

(ϕ(ν) + ϕ(νq)
(

ϕ(ν−1) + ϕ(ν−q)
)

=
∑

ν∈K\Z

(

2 + ϕ(νq−1) + ϕ(ν1−q)
)

= 2(q2 − q) + 2
∑

ν∈K

ϕq−1(ν) − 2
∑

λ∈Z

ϕ(λq−1)

But if ϕq−1 6= 1 then the middle term in the last sum is 0 since 〈ϕq−1,1〉 = 0.
Since λq−1 = 1 for λ ∈ Fq the third term is also easy to compute. Putting this
together we get 〈Φ,Φ〉 = q − 1 when ϕq−1 6= 1.

We similarly compute

〈IndG
B µi,Φ〉 =

1

|G|
∑

λ∈Z

(q2 − 1)θi(λ)q(q − 1)ϕ(λ)

= (q − 1)〈θi,ResK
Z ϕ〉Z

Now, for each ϕ such that ϕq−1 6= 1 (there are q2−q such choices) there is some i

such that ResK
Z ϕ = θi then our calculations tell us that if βϕ = IndG

B µi−Φ ∈ R(G)
then

〈βϕ, βϕ〉 = q − 2(q − 1) + (q − 1) = 1.

Since also βϕ(1) = q − 1 > 0 it follows that βϕ is an irreducible character. Since

βϕ = βϕq (and ϕq2

= ϕ) we get
(

q
2

)

characters in this way and the character table
of GL2(Fq) is complete.

# classes q − 1 q − 1
(

q−1
2

) (

q
2

)

rep

(

λ 0

0 λ

) (

λ 1

0 λ

) (

λ 0

0 µ

) (

λ ǫµ

µ λ

)

# of reps

χi θi(λ)2 θi(λ)2 θi(λ)θi(µ) θi(λ
2 − ǫµ2) q − 1

Vi qθi(λ)2 0 θi(λ)θi(µ) −θi(λ
2 − ǫµ2) q − 1

Wij (q + 1)θi(λ)θj(λ) θi(λ)θj(λ) θi(λ)θj(µ) + θj(λ)θi(µ) 0
(

q−1
2

)

βϕ (q − 1)ϕ(λ) −ϕ(λ) 0 −(ϕ+ ϕq)(λ+
√
ǫµ)

(

q
2

)

10.2. PGL2(Fq).
The group PGL2(Fq) := GL2(Fq)/Z may be viewed as ‘the Mobius group’ on

Fq ∪ {∞} since Z is the kernel of this action of GL2 on this set.
We can write down the character table of PGL2(Fq) immediately from the char-

acter table of GL2(Fq): irreducible reps of PGL2 correspond 1− 1 with irreducible
reps of GL2 with kernel containing Z.
θi(λ)2 = 1 for λ ∈ Z if i = 0 or q−1

2 so writing θ = θ q−1
2

and naively observ-

ing that

(

λ 0

0 λ

)

∈ Z,

(

λ λ

0 λ

)

∈
(

1 1

0 1

)

Z ,

(

λ 0

0 µ

)

∈
(

1 0

0 µ
λ

)

Z and that

(

λ
√
ǫµ

µ λ

)

∈
(

λ
µ

√
ǫ

1 µ
λµ

)

, we see that the character table of PGL2(Fq) is



REPRESENTATION THEORY 55

rep

(

1 0

0 1

) (

1 1

0 1

) (

1 0

0 µ

) (

λ ǫ

1 λ

)

# of reps

1 1 1 1 1 1

χ q−1
2

1 1 θ(µ) θ(λ2 − ǫ) 1

V0 q 0 1 −1 1

V q−1
2

q 0 θ(µ) −θ(λ2 − ǫ) 1

Wi,(q−1−i) (q + 1) 1 θi(µ) + θi(µ
−1) 0 q−3

2

βϕ (q − 1) −1 0 −(ϕ+ ϕq)(λ+
√
ǫ) q−1

2

where in the last row we require ResK
Z ϕ = 1 so ϕq+1 = 1 but as before ϕq−1 6= 1.

These two conditions are equivalent to ϕq+1 = 1 and ϕ2 6= 1 so there are q+1−2 =
q − 1 such choices. Since βϕ = βϕq we see that there are q−1

2 such characters as
claimed.

The conjugacy classes still need to be more carefully computed though. The
first two columns are fine. In each case there is precisely one conjugacy class of this
form.

In PGL2(Fq) the elements

(

1 0

0 µ

)

Z and

(

1 0

0 µ−1

)

Z are conjugate via s (we

can also see they are conjugate by staring at the character table and remembering
the characters span the space of class functions). There is a special case when

µ = −1 since then µ = µ−1. Thus we get one class

(

1 0

0 −1

)

Z with centraliser

〈T, s〉/Z and q−3
2 classes with representatives

(

1 0

0 µ±1

)

Z and centralizer T/Z.

Similarly in PGL2(Fq) the elements ±
(

0 ǫ

1 0

)

are conjugate via

(

−1 0

0 1

)

(again their conujugacy can also be established by considering the character ta-

ble) so these are representatives of a single class with centraliser 〈K,
(

−1 0

0 1

)

〉/Z

and for each λ 6= 0 there is a conjugacy class with representatives

(

±λ ǫ

1 ±λ

)

and

centralizer K/Z. there are q−1
2 of these classes.

So we now have 7 types of conjugacy classes with 1, 1, 1, 1, q−3
2 , q−1

2 classes of the
different types. Notice a correspondance between these numbers and the number
of representations of each type.

Lecture 24

10.3. PSL2(Fq). We see from the character table of PGL2(Fq) that it has an index
2 normal subgroup given by kerχq−12. This subgroup is the image of SL2(Fq) →
PGL2(Fq) so is isomorphic to SL2(Fq)/{±I}. We call it PSL2(Fq). It has order
q(q2−1)

2 .
What happens next depends on whether or not −1 is a square in Fq. We know

that (−1) is a square if and only if (1)
q−1
2 = 1 if and only if q ≡ 1 mod 4.

Let’s consider the case that q ≡ 1 mod 4 and write i for some square root of
−1.
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Exercise. Show that the following table describes the conjugacy classes of PSL2(Fq)

rep

(

1 0

0 1

) (

1 1

0 1

) (

1 ǫ

0 1

) (

i 0

0 −i

) (

µ 0

0 µ−1

) (

λ µǫ

µ λ

)

# classes 1 1 1 1 q−5
4

q−1
4

size of class 1 q2−1
2

q2−1
2

q(q+1)
2 q(q + 1) q(q − 1)

Restricting the character table of PGL2(Fq) to PSL2(Fq) gives

rep

 

1 0

0 1

!  

1 1

0 1

!  

1 ǫ

0 1

!  

i 0

0 −i

!  

µ 0

0 µ−1

!  

λ ǫµ

µ λ

!

# of reps

1 1 1 1 1 1 1 1

V0 q 0 0 1 −1 1 1

Wj,(q−1−j) (q + 1) 1 1 2θj(−1) θj(µ
2) + θj(µ

−2) 0 q−5
4

+ 1

βϕ (q − 1) −1 −1 0 0 −(ϕ + ϕq)(λ2
− ǫµ2) q−1

4

To see the number of reps of each type observe that when restricted to PSL2(Fq),
Wj,q−1−j

∼= W q−1
2 −j, q−1

2 +j and βϕ
∼= βϕ−1 .

If H 6 G is an index 2 subgroup and χ is an irreducible character of G then
〈ResG

H χ,ResG
H χ〉 6 2 with equality if and only if χ(g) = 0 for all g ∈ G\H. (Proof:

〈Resχ,Resχ〉 = 1
H

∑

h∈H |χ(h)|2 6 2〈χ, χ〉 with equality precisely when claimed.)

Exercise. Deduce that 1,V0 and βϕ are irreducible as reps of PS2(Fq) and Wj,q−1−j

is irreducible whenever i 6= q−1
4 .

Thus we have 1 + 1 + q−1
4 + q−5

4 irreducible characters already and W q−1
4 ,3 q−1

4

splits into the remaining two irreducible characters. Use column orthogonality to
see the two characters both have degree q+1

2 and so complete the character table.
Deduce that PSL2(Fq) is simple for q ≡ 1 mod 4.

Repeat everything for q ≡ 3 mod 4 and deduce PSL2(Fq) is always simple for
q > 5.


