REPRESENTATION THEORY

SIMON WADSLEY

LECTURE 1
1. INTRODUCTION

Representation Theory is the study of how symmetries occur in nature; that is
the study of how groups act by linear transformations on vector spaces.

1.1. Linear algebra revision. By wvector space we will always mean a finite di-
mensional vector space over a field k. For this course k will usually be algebraically
closed and of characteristic zero, for example C. However there are rich theories
for more general fields.

Given a vector space V, we define

GL(V)=Aut(V) ={f: V — V| f linear and invertible}

the general linear group of V; GL(V) is a group under composition of linear maps.
Because all our vector spaces are finite dimensional, V' & k¢ for some d > 0.
Such an isomorphism determines a basis eq,...,eq for V. Then

GL(V) = {A € Matqa(k) | det(A) # 0}.

This isomorphism is given by the map that sends the linear map f to the matrix
A such that f(e;) = Ajse;.

Exercise. Check that this does indeed define an isomorphism of groups. ie check
that f is an isomorphism if and only if det A # 0; and that the given map is a
bijective group homomorphism.

1.2. Group representations. Recall the definition of the action of a group G on
a set X. An action of Gon X isamap -: G x X — X;(g,x) — g -« such that
(i) e-x =z for all x € X;
(ii) (gh)-x=g-(h-z) for all g,h € G and = € X.
Recall also that to define such an action is equivalent to defining a group ho-

momorphism p: G — S(X) where S(X) denotes the symmetric group on the set
X.

Definition. A representation p of a group G on a vector space V is a group
homomorphism p: G — GL(V).

By abuse of notation we will sometimes refer to the representation by p, some-
times by the pair (p, V) and sometimes just by V with the p implied. This can
sometimes be confusing but we have to live with it.

Thus defining a representation of G on V corresponds to assigning a linear map
p(g9): V — V to each g € G such that

(i) ple) = idy;
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(i) p(gh) = p(g)p(h) for all g,h € G;
(iii) p(g~') = p(g)~! forall g € G.

Ezercise. Show that (iii) is redundant in the above.

Given a basis for V' a representation p is an assignment of a matrix p(g) to each
g € G such that (i),(ii) and (iii) hold.

Definition. The degree of p or dimension of p is dim V.
Definition. We say a representation p is faithful if ker p = {e}.

Ezxamples.

(1) Let G be any group and V = k. Then p: G — Aut(V);g +— id is called the
trivial representation.
(2) Let G =Z/2 = {1}, V = R2, then

s = (5 1)setn= (5 )

is a group rep of G on V.

(3) Let G = (Z,+), V a vector space, and p a representation of G on V. Then
necessarily p(0) = idy, and p(1) is some invertible linear map f on V. Now
p(2) = p(1 +1) = p(1)?2 = f2. Inductively we see p(n) = f" for all n > 0.
Finally p(—n) = (f*)~! = (f~1)™. So p(n) = f" for all n € Z.

Notice that conversely given any invertible linear map f: V — V we may
define a representation of G on V' by p(n) = f™.

Thus we see that there is a 1-1 correspondance between representations of
Z and invertible linear transformations given by p — p(1).

(4) Let G = (Z/N,+),and p: G — GL(V) arep. As before we see p(n) = p(1)™ for

all n € Z but now we have the additional constraint that p(N) = p(0) = idy .

Thus representations of Z/N correspond to invertible linear maps f such
that f¥ = idy. Of course any linear map such that fV = idy is invertible so
we may drop the word invertible from this correspondance.

FEaxercise. Check the details

(5) If G is a group with generated by z1, ..., x, and with relations (words in z;, xi_l

equal to the identity in G) r1(z1,...,Zn), ..., 'm(®1,...,Ty) , then there is a 1-
1 correspondence between representations of G on V' and n-tuples of invertible
linear maps (A41,...,A,) on V such that r;(Ay,..., A,) = idy.

(6) Let G = S3, the symmetric group of {1,2,3}, and V = R?. Take an equilateral
triangle in V' centred on 0; then G acts on the triangle by permuting the vertices.
Each such symmetry induces a linear transformation of V. For example g =
(12) induces the reflection through the vertex three and the midpoint of the
opposite side, and g = (123) corresponds to a rotation by 27/3.

Ezercise. Choose a basis for R2. Write the coordinates of the vertices of the
triangle in this basis. For each g € S3 write down the matrix of the corre-
sponding linear map. Check that this does define a representation of S5 on V.
Would the calculations be easier in a different basis?

(7) Given a finite set X we may form the vector space kX of functions X to k with
basis (§; | x € X) where §,(y) = dzy.
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Then an action of G on X induces a representation p: G — Aut(kX) by
(p(9)f)(@) = f(g~' - z) called the permutation representation of G on X.

To check this is a representation we must check that each p(g) is linear, that
p(e) = id and p(gh) = p(g)p(h) for each g,h € G.

For the last observe that for each x € X,

p(9)(p(h)f) () = (p(h) f)(g~ x) = f(h™ g z) = p(gh) f ().
Notice that p(9)de(y) = 0z,g-1.y = 0g.z,y 50 p(g)dz = bg... So by linearity
P(9) (D pex Axlz) = 3- Aabg.a-
(8) In particular if G is finite then the action of G on itself induces the regular
representation kG of G. The regular representation is always faithful because
gen, = ey, for all h € G implies that gh = h for all h € G and so g = e.

LECTURE 2

1.3. The category of representations. We want to classify all representations
of a group G but first we need a good notion of when two representations are the
same.

Notice that if p: G — GL(V) is a representation and ¢: V. — V' is a vector
space isomorphism then we may define p’: G — GL(V') by p'(g) = ¢ o p(g) o o~ .
Then p’ is also a representation.

Definition. We say that p: G — GL(V) and p': G — GL(V’) are isomorphic
representations if there is a linear isomorphism ¢: V' — V' such that

0'(9) =¢opg)o o tforalge@
ie. if p'(g) o = po p(g). We say that ¢ intertwines p and p'.

Notice that if ¢ intertwines p and p’ and ¢’ intertwines p’ and p” then ¢’ inter-
twines p and p” and ¢~ ! intertwines p’ and p. Thus isomorphism is an equivalence
relation.

If p: G — GL4(k) is a matrix representation then an intertwining map k¢ — k¢
is an invertible matrix P and the matrices of the reps it intertwines are related by
0'(g) = Pp(‘g)P~'. Thus matrix representations are equivalent precisely if they
correspond to the same representation with respect to different bases.

FEzxzamples.

(1) If G = {e} then a representation of G is just a vector space and two vector
spaces are isomorphic as representations if and only if they have the same
dimension.

(2) If G = Z then p: G — GL(V) and p': G — GL(V') are isomorphic reps if
and only if there are bases of V' and V' such that p(1) and p’(1) are the same
matrix. In other words isomorphism classes of representations of Z correspond
to conjugacy classes of invertible matrices. Over C the latter is classified by
Jordan Normal Form (more generally by rational canonical form).

(3) If G = Z/2 then isomorphism classes of representations of G correspond to
conjugacy classes of matrices that square to the identity. Since the minimal
polynomial of such a matrix is X2 —1 = (X —1)(X + 1) provided the field does
not have characteristic 2 every such matrix is conjugate to a diagonal matrix
with diagonal entries all +1.
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Ezercise. Show that there are precisely n + 1 isomorphism classes of represen-
tations of Z/2 of dimension n.

Note that two isomorphic representations must have the same dimension but
that the converse is not true.

Definition. Suppose that p: G — GL(V) is a rep. We say that a k-linear subspace
W of V is G-invariant if p(g)(W) C W for all g € G (ie p(g)(w) € W for all g € G
and w € W).

In that case we call W a subrepresentation of V; we may define a representation
pw : G — GL(W) by pw(g)(w) = p(g)(w) for w € W.

We call a subrepresentation W of V' proper if W £V and W # 0. We say that
V' # 0 is drreducible or simple if it has no proper subreps.

Ezxamples.

(1) Any one-dimensional representation of a group is irreducible.

-1 0> (char k # 2).

(2) Suppose that p: Z/2 — GL(k?) is given by —1 0 1

Then there are precisely two non-trivial subreps spanned by (é) and <(1))

respectively.

Proof. Tt is easy to see that these two subspaces are G-invariant. Any non-
trivial subspace must be one dimensional and so by spanned by an eigenvector
of p(—1). But of p(—1) are precisely those already described. |

(3) If G is Z/27Z then the only irreducible representations are one-dimensional.

Proof. Suppose p: G — GL(V) is an irreducible rep. The minimal polynomial
of p(1) divides X? —1 = (X — 1)(X + 1). Thus p(—1) has an eigenvector v.
Now 0 # (v) is a subrep. of V. Thus V = (v). O

Notice we’ve shown along the way that there are precisely two simple reps
of G if k doesn’t have characteristic 2 and only one if it does.

(4) If G = Dg then every irreducible complex representation has dimension at most
2.

Proof. Suppose p: G — GL(V) is an irred. G-rep. Let r be a non-trivial
rotation and s a reflection in G. Then p(r) has a eigenvector v, say. So
p(r)v = Av for some A # 0. Consider W := (v, p(s)v) C V. Since p(s)p(s)v =v
and p(r)p(s)v = p(s)p(r)~tv = A71p(s)v, W is G-invariant. Since V is irred,
w=V. O

Exercise. Classify all irred reps of Dg up to iso (Hint: A* = 1 above). Note in
particular that Dg has an irred. rep. of degree 2.

(5) If G =7 and (p, V) is a representation over C then when is V irreducible?
We can choose a basis for V' so that p(1) is in Jordan Normal Form. It is
easy to see that the Jordan blocks determine invariant subspaces; so if V is
irreducible then there is only one Jordan block. Say p(1) = A then Ae; =
Ae; + e;—1 for some non-zero A and i = 1,...d (where by convention ey = 0).

Ezercise. Show that the invariant subspaces are precisely the subspaces of the
form (eq,...,e) for k < d.
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It follows that the only irreducible representations of Z are one-dimensional.
p:Z—C* 1 A
Proposition. Suppose p: G — GL(V) is a rep. and W C V. Then the following
are equivalent:
(i) W is a subrep;

(i) there is a basis v1,...,vq of V such that vy,...,v, is a basis of W and the
matrices p(g) are all block upper triangular;
(iii) for every basis v1,...,vq of V such that vy, ..., v, is a basis of W the matrices
p(g) are all block upper triangular.
Proof. Think about it! O

Definition. If W is a subrep of a rep (p,V) of G then we may define a quotient
representation by py,w: G — GL(V/W) by p(g)(v + W) = p(g)(v) + W. Since
p(g)W C W for all g € G this is well-defined.

Definition. If (p, V) and (p’, W) are reps of G we say a linear map ¢: V — W is
a G-linear map if v o p(g) = p(g) o ¢ for all g € G. We write Homg(V, W) = {¢ |
¢ is G linear}, a k-vector space.

Note if ¢ € Homg(V, W) is a vector space isomorphism then ¢ intertwines the
isomorphic reps V and W.

Lemma. Suppose (p, V') and (p', W) are representations of G and ¢ € Homeg(V, W)
then
(i) ker  is a subrep of V.
(i) Imy is a subrep of W.
(iii) V/ker ¢ is isomorphic to Ime as reps of G.
Proof.
(i) if v € ker and g € G then p(p(g)v) = p'(g)e(v) =0
(ii) if w = ¢(v) € Im and g € G then ¢ then p/'(g)w = pp(g)v € Imep.
(iii) We know that the linear map ¢ factors through @: V/ker ¢ — Imyp and it
is straightforward to check that for each g € G, Gpy/ker(9) = pim(‘p(g)@ O

LECTURE 3
2. COMPLETE REDUCIBILITY AND MASCHKE’S THEOREM

Question. When can we choose a basis for a representation V' so that all the matrices
p(g) are block diagonal of the same size blocks?

Definition. We say a representation V' is a direct sum of U and W if U and W are
subreps of V such that V = U@®W as vector spaces (ie V =U+W and UNW = 0).

Given two representations (p1,U) and (p2, W) we may define a representation of
G on U ® W by p(g)(u, w) = (p1(g)u, p2(g)w)-

FEzxzamples.

(1) If G acts on a finite set X so that X may be written as the disjoint union
of two G-invariant subsets X; and X3. Then kX = kX; ® kX5 under
[ (f'lef‘Xz)'

That is kX = {f | f(z) =0Vz e Xo} ® {f | f(x) =0Vx € X1}.
More generally if the G-action on X decomposes into orbits as a disjoint
union X = JO; then kX = HkO,;.
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(2) If G acts transitively on a finite set X then U := {f € kX | >y f(z) = 0}
and W := {f € kX | f is constant} are subreps of kX . If k is charactersitic
0 then kX = U & W. What happens if k£ has characteristic p > 07

Proposition. Suppose p: G — GL(V) is a rep. and V =U @ W as vector spaces.
Then the following are equivalent:

(1)) V=U®@®W as reps;

(ii) there is a basis vy, ...,vq of V such thatvy,..., v, is a basis of U and vy41, ... vq
is a basis for W and the matrices p(g) are all block diagonal;
(iii) for every basis vy, ...,vq of V such thatvi,...,v, is a basis of U and v,y1,. .., 04
is a basis for W and the matrices p(g) are all block diagonal.
Proof. Think about it! O

But warning:

Ezample. p: Z/2 — GLy(R); 1 — -1 _2) defines a representation (check).

0 1
The representation R? breaks up as (e1) @ (e; — e2) as subreps even though the
matrix is upper triangular but not diagonal.

So we may rephrase our question:
Question. When does a representation V break up as a direct sum of subreps?

Not always: clearly V' cannot be irreducible. But we see already from the exam-
ple of Z that having proper invariant subspaces doesn’t always suffice to be able to
do this either. However there is an amazing theorem.

Theorem (Maschke’s Theorem). Let G be a finite group and (p,V) a represen-
tation of G over a field k of characteristic zero. Suppose W C V is an invariant
subspace. Then there is a G-invariant complement to W ie a G-invariant subspace
U of V such that V. =U & W.

Corollary (Complete reducibility). If G is a finite group, (p, V) a representation
over a field of characteristic zero. Then V. = Wy & ---W,. is a direct sum of
representations with each W; irreducible.

Proof. By induction on dim V. If dimV = 0 or V is irreducible then the result is
clear. Otherwise V has a non-trivial G-invariant subspace W.

By the theorem there is a G-invariant complement U and V =2 U W as G-reps.
But dim U,dim W < dim V, so by induction they each break up as a direct sum of
irreducibles subreps. Thus V' does also. (Il

Ezample. We saw before that every representation of Z/2 over C is a direct sum
of 1-dimensional subreps as we may diagonalise p(—1). Let’s think about how this
might generalise:

Suppose that G is a finite abelian group, and (p, V') is a complex representation
of G. Each element g € G has finite order so has a minimal polynomial dividing
X" — 1 for n = o(g). In particular it has distinct roots. Thus there is a basis for
V such that p(g) is diagonal. But because G is abelian p(g) and p(h) commute
for each pair g,h € G and so the p(g) may be simultaneously diagonalised (Sketch
proof: if each p(g) is a scalar matrix the result is clear. Otherwise pick g € G such
that p(g) is not a scalar matrix. Each eigenspace E(\) of p(g) will be G-invariant
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since G is abelian. By induction on dimV we may solve the problem for each
subrep E()) and then put these subreps back together). Thus V' decomposes as a
direct sum of one-dimensional reps. Of course, this technique can’t work in general
because (a) p(g) and p(h) won’t commute in general; (b) not every irreducible rep
is one-dimensional in general. Thus we’ll need a new idea.

FEzample. Let G act on a finite set X, and consider the real permutation represen-
tation RX = {f: X — R} with (p(g9)f)(z) = f(g~tx).

Idea: with respect to the given basis d, all the matrices p(g) are orthogonal; that
is they preserve distance. This is because the standard inner product with respect
to the basis is (f1, f2) = > cx fi(z)f2(x) and so for each g € G

(p(9)fr.p(9)f2) = Y filg™ w) falg~ ') = (1, fo)

zeX

since g permutes the elements of X.

In particular if W is a subrep of RX and W+ := {v € RX | (v, W) = 0} then if
g€ Gandv € Wt and w € W we have (suppressing the p) (w, gv) = (g" w,v) =0
since g~'w € W. Thus G preserves W which is thus a G-invariant complement
to W.

We will first prove our result over C by showing that every complex represen-
tation over C is equivalent to one whose image is a subgroup of the unitary group
U, (C) and using the idea in this example. Then we will adapt the same idea to
work over an arbitrary field of characteristic zero.

Recall: if V' is a complex vector space then a Hermitian inner product is a positive
definite Hermitian sesquilinear map (—,—): V x V — C that is a map satisfying

(i) (ax +by,2) =a(x,z) +b(y,2) and (z,ay + bz) = a(x,y) + b(x, 2) for a,b € C,

x,y,z € V (sesquilinear);
(ii) (z,y) = (y,x) (Hermitian);
(iii) (=,z) > 0 for all z € V\{0} (positive definite).

If W C V is a linear subspace of a complex vector space with a Hermitian inner
product and Wt = {v € V | (v,w) = 0 Vw € W} then W is a vector space
complement to W in V.

Definition. A Hermitian inner product on a G-rep V is G-invariant if (g, gy) =
(z,y) for all g € G and z,y € V; equivalently if (gz, gz) = (z,z) for all g € G and
zeV.

Lemma. If (—,—) is a G-invariant Hermitian inner product on a G-rep V and
W CV is a subrep then W+ = {v € V | (v,w) =0 for all w € W} is a G-invariant
complement to W.

Proof. Tt suffices to prove that W+ is G-invariant since W+ is a complement to .

Suppose g € G, € W+ and w € W. Then (gz,w) = (2,97 'w) = 0 since
g 'w € W. Thus gr € W as required. (I
Proposition (Weyl’s unitary trick). If V is a complex representation of a finite
group G, then there is a G-invariant Hermitian inner product on V.

Proof. Pick any Hermitian inner product (—, —) on V (ie choose a basis and take
the standard inner product obtained by declaring the basis to be orthonormal and
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extending sesquilinearly). Then define a new inner product (—, —) on V by aver-
aging:
(z,y) =G| > (92, gy).
geG

It is easy to see that (—, —) is sesquilinear and Hermitian symmetric and positive
definite because (—, —) is so.

But now if h € G and z,y € V then (hz,hy) = |G|7' 3 co{ghz, ghy) =
|G|t > gecld'r,g'y) and so (—, —) is G-invariant. O

Corollary (Maschke’s Theorem for complex representations). Every complex rep-
resentation of a finite group G splits as a direct sum of irreducible subreps.

LECTURE 4

Corollary (of Weyl’s unitary trick). Every finite subgroup G of GL,,(C) is conju-
gate to a subgroup of U, (C) := {A € Mat,, (C) | AA" = I}.

Proof. First notice that A € GL,(C) is unitary if and only if (Ax, Ay) = (x,y) for
all z,y € C" (here (—, —) denotes the standard inner product with respect to the

standard basis of C™). Moreover changing basis corresponds to conjugating by an
element of GL, (C).

So we use the unitary trick to find a G-invariant Hermitian inner product (—, —)
and choose an orthonormal basis for C™ with respect to (—, —) using Gram-Schmidst,
say.

Let P be the change of basis matrix from the standard basis to the newly con-
structed basis. Then (Pa, Pb) = (a,b) for a,b € V. So for each g € G

(P~'gPa, P~*gPb) = (gPa, gPb) = (Pa, Pb) = (a,b).
Thus P~1gP € U,(C) for each g € G as required. O

Thus studying all complex representations of a finite group G is equivalent to
studying unitary (ie distance preserving) ones.

We now adapt our proof of complete reducibility to handle any field of charac-
teristic k, even if there is no notion of inner product.

Theorem (Maschke’s Theorem). Let G be a finite group and V' a representation of
G over a field k of characteristic zero. Then every subrep W of V' has a G-invariant
complement.

Proof. Choose some projection w: V' — W ie a k-linear map m: V' — W such that
m(w) =w for all w € W.

Now ker is a vector space complement to W since (1) if v € kerm N W then
v=0and (2) 7(v—7(v)) =0 forall v € Vso V=W + kerw. Moreover ker 7 is
G-invariant if 7 € Homg(V, W). So we try to build a G-linear projection V- — W
using .

Let ’: V — W be defined by 7/(v) = & > gec gr(g~1v).

Notice that

o '(v) € W for all v € V since W is G-invariant so gn(g~*v) € W for all
geGuveV.
e 7’ is k-linear since it is a linear combination of k-linear maps gmg~*.

o 7'(w) = w for all w € W since grg~'w = gg~'w = w.
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o ' € Homg(V, W) since if v € V and h € G then
|G|hr'(v) = hgn(g~'v) = Y g'7'(g" ' hw) = |G|’ (hw)

geG g'eqG
where ¢/ = hgso g~ ' = ¢ 'h.
Dividing by |G| we see that 7’ is G-linear as required.

Thus ker 7’ is the required G-invariant complement to W. (]

Remarks.
(1) We can explicitly compute 7’ and ker 7’ given (p, V') and W.
(2) Notice that we only use char k = 0 when we invert |G|. So in fact we only need

that the characteristic of k does not divide |G|. (Exercise: What happens for

p: )27 — GLy(Fs); 1 — (é D and W — <<(1))> CF2)

(3) Whenever V, W are G-reps we can make
Hom(V,W) ={p: V — W | ¢ is k linear}
into a G-rep by (g9¢)(v) = g(p(g~ v)). Then
Homg (V. W) = {¢ € Hom(V, W) | g¢ = ¢}
and there is a k-linear projection (for char k not dividing |G|)
Hom(V, W) — Homg(V, W)

given by ¢ = 157 2 e 9%-

(4) In fact every irreducible representation of G is a submodule of the regular
representation kG (see Ex Sheet 1 Q10 or the section on characters for a proof
in characteristic zero).

An observation that we should have made earlier: if §: H — G is a group homo-
morphism then every representation p: G — GL(V) of G induces a representation
pd: H— GL(V) of H.

If H is a subgroup of G and 0 is inclusion we call this restriction to H.

3. SCHUR'S LEMMA

We’ve proven in characteristic zero that every representation V of a finite group
G decomposed V = @V; with V; irreducible. We might ask how unique this is.
Three possible hopes

(1) (uniqueness of factors) If @le Vv & @f;l V! with V;, V/ irreducible then k = &’
and there is o € Sy such that Va’(i) =~ V.

(2) (uniqueness of isotypical decomposition) For each V there exist unique subreps
Wi, .. , Wi st V=@ W, and if V; < W; and V; < W; are irred. subreps then
Vi 2V if and only if ¢ = j.

(3) (uniqueness of decomposition) For each V' there is only one way to decompose
V =@V, with V; irreducible.

Notice that (3) is clearly too strong. For example if G is the trivial group and
dim V' > 1 then every line in V' gives an irreducible subrep. This non-uniqueness is
roughly measured in this case by GL(V).

Notice also that (2) (and so (1)) is true for Z/2Z — the W; are the eigenspaces
of p(1).
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Theorem (Schur’s Lemma). Suppose that V. and W are irreducible reps of G over
k. Then

(i) every element of Homeg(V, W) is either 0 or an isomorphism,
(i1) if k is algebraically closed then dimy Homeg(V, W) is either 0 or 1 .

In other words irreducible representations are rigid.

Proof. (i) Let ¢ be a non-zero G-linear map from V to W. Then kery is a G-
invariant subspace of V. Thus ker¢ = 0, since it cannot be the whole of V.
Similarly imy is a subrep of W so imy = W since it cannot be 0. Thus ¢ is both
injective and surjective, so an isomorphism.

(ii) Suppose 1,2 € Homg(V,W) are non-zero. Then by (i) they are both
isomorphisms. Consider ¢ = @] 'y € Homg(V, V). Since k is algebraically closed
we may find A an eigenvalue of ¢ then ¢ — Aidy has non-trivial kernel and so is
zero. Thus <p1_1g02 = Aidy and o = A1 as required. O

LECTURE 5

Proposition. If V, Vi and V; are k-representations of G then
Homeg(V, Vi & Va) = Homg (V, V1) @ Homeg (V, Va)
and
Homg (V1, @V, V) 2 Homg(V1, V) @ Homeg(Va, V).
Proof. Let m;: Vi & Vo — V; be the G-linear projection onto V; with kernel V3_;.
Then the map Homg(V, V1 @ Vo) — Homg(V, V1) @ Homg(V, V2) given by ¢ —

(m1, Ta¢p) has inverse (11, 1h2) — 11 + Yo.
Similarly the map Homg(Vy, @V, V) =& Homeg(V1, V) @ Home(Va, V) given by

Y = (@‘Vl?@‘v2) has inverse (1/’1’1/)2) — 7/1171 + 1/}27'['2, (I
Now, recall,

Theorem (Schur’s Lemma). Suppose that V' and W are irreducible reps of G over
k. Then

(i) every element of Homg(V, W) is either 0 or an isomorphism,
(i) if k is algebraically closed then dimy Homeg(V, W) is either 0 or 1 .

Corollary. Suppose k is algebraically closed and

V%é%
i=1

is a decomposition of a k-rep. of G into irreducible components.
Then for each irreducible representation W of G,

[{i | V; 2 W}| = dim Homg (W, V).

Proof. By induction on r. If r = 0,1 we’re done.
If r > 1 consider V as (@:;11 Vi) @ V,.. By the Proposition

r—1 r—1

dim Homg (W, (@ Vi> ®V,) = dim Homg (W, EB Vi) + dim Homg (W, V;.).
i=1 i=1

Now the result follows by the induction hypothesis. ([l
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Important question: How do we actually compute these numbers dim Homg (V, W).

Corollary. (of Schur’s Lemma) Every irreducible complex representation of a finite
abelian group G is one-dimensional.

Proof. Let (p, V) be a complex irred. rep of G. For each g € G, p(g) € Homg(V, V).
So by Schur, p(g) = A\gidy for some Ay € C. Thus for v € V non-zero, (v) is a
subrep of V. O

Corollary. Every finite abelian group G has precisely |G| complex irreducible rep-
resentations.

Proof. Let p be an irred. complex rep of G. By the last corollary, dimp = 1. So
p: G — C* is a group homomorphism.

Since G is a finite abelian group G = C,,, x --- x Cp, some nq,...,n;. Now
if G = G X G is the direct product of two groups then there is a 1-1 corre-
spondance between the set of group homomorphisms G — C* and the of pairs
(G1 — C*,Gy — C*) given by restriction ¢ — (¢|a,,¥|a,).- Thus we may reduce
to the case G = C,, = (x) is cyclic.

Now p is determined by p(z) and p(z)™ = 1 so p(x) must be an nth root of unity.

Moreover we may choose p(x) however we like amongst the nth roots of 1. (]
Ezxamples.
G=0Cy=(x). G=0Cy = (z,y).
‘ 1 z 22 23 ‘ 1 T Yy xy
p2 |1 i -1 — p2 |1 —1 1 -1
pz|1 -1 1 1 ps |1 1 -1 -1
pa|l —i =1 4 pa|l -1 -1 1

Note there is no natural correspondence between elements of G and representa-
tions p.

Note too that the rows of these matrices are orthogonal with respect to the
standard Hermitian inner product: (v,w) = > Tw;.

Lemma. If (p1,V1) and (p2,Va) are non-isomorphic one-dimensional representa-
tions of a finite group G then 3, p1(g)p2(g) =0

Proof. We've seen that Homg(V1,Vz) is a G-rep under gp(v) = pa(g)pp1(g?

)
and dec gp € Homg(V1,Va) = 0 by Schur. Since p;1(g) is always a root of
unity, p1(¢9~') = pi1(g). Pick an isomorphism ¢ € Hom(V;,V3). Then 0
Ygea P2(9)epi(97") = 3 e PLgp2(g) as required.

Ol

Corollary. Suppose G is an abelian group then every complex representation V. of
G has a unique isotypical decomposition.

Proof. For each homomorphism 6;: G — C* (i = 1,...,|G|) we can define W; to
be the subspace of V' defined by
W, ={v eV |plg)v=_0;(g)v for all g € G}.

Since V' is completely reducible and every irreducible rep of G is one dimensional
V =3 W;. We need to show that for each i W; N3, W; = 0. It is equivalent to
show that Y w; = 0 with w; € W; implies w; = 0 for all i.
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But Y w; = 0 with w; in W; certainly implies 0 = p(g) > w; = > 0;(9)w;. By
choosing an ordering g1,...,gjq| of G we see that the |G| x |G| matrix 0;(g;) is
invertible by the lemma. Thus w; = 0 for all ¢ as required. (]

Corollary. (of Schur’s Lemma) If G has a faithful complex irreducible representa-
tion then the centre of G, Z(G) is cyclic.

Proof. Let V be a faithful complex irreducible rep of G, and let z € Z(G). Then
let ,: V — V be defined by ¢.(v) = zv. Since gz = zg for all g € G, ¢, €
Homg(V,V) = Cidy by Schur, ¢, = A, idy, say.

Now Z(G) — C;z +— A, is a representation of Z(G) that must be faithful since
V is faithful. In particular Z(G) is isomorphic to a finite subgroup of C*. But
every such subgroup is cyclic. ([l

LECTURE 6
4. CHARACTERS

4.1. Definitions. We’ll now always assume k = C although almost always a field
of characteristic zero containing all nth roots of unity would suffice.

We’ve seen that to count the number of times an irreducible representation
W occurs as a summand of a completely reducible representation V' it suffices to
compute dim Homg (V, W) but have no strategy to do this in general. It turns out
that the theory of characters makes this very easy.

Definition. Given a representation p: G — GL(V), the character of p is the
function x = x, = xv: G — k given by g — tr p(g).

Since for matrices tr(AB) = tr(BA), the character does not depend on the choice
of basis for V [tr(X1AX) = tr(AX X ~!) = tr(A)]. By the same argument we also
see that equivalent reps have the same character.

Proposition. Let (p,V) be a complex rep of G with character x
(i) x(e) = dim V;
(ii) x(g) = x(hgh™") for all g,h € G;
(iir) x(g~") = x(g) if olg) is finite.
() If X' is the character of (p', V') then x + X' is the character of V@ V'.
Proof.

(i) x(e) =tridy = dim V.

(i) p(hgh™) = p(h)p(g)p(h)~t. Thus p(hgh~!) and p(g) are conjugate and so
have the same trace.

(i) if p(g) has eigenvalues A1, ..., A, (with multiplicity) then x(g) = > \;. But
as o(g) is finite each \; must be a root of unity. Thus x(g) = S\, = 3. A; " but of
course the )\;1 are the eigenvalues of g~ 1.

(iv) is clear. O

The proposition tells us that the character of p contains very little data; just a
complex number for each conjugacy class in G. The extraordinary thing that we
will see is that it contains all we need to know to reconstruct p up to isomorphism.

Example. Let G = Dy, = (s,t | s = 1,t" = 1,sts~! = t~!), the dihedral group
of order 2n for n odd. This acts on R? by symmetries of the n-gon; with ¢ acting
by rotation by 27/n and s acting by a reflection. To compute the character of
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this rep we just need to know the eigenvalues of the action of each element. Each
reflection (element of the form st*) will act by a matrix with eigenvalues +1. Thus

N ) . , . cos2nr/n  —sin27wr/n
X(st") = 0 for all i. The rotations ¢" act by matrices (sin omr/n cos2mr/n
thus x(¢") = 2cos 27r /n.

Definition. We say a function f: G — C is a (complex-valued) class function if
f(hgh™) = f(g) for all g,h € G. We’ll write Cg for the complex vector space of
class functions on G.

Notice that if G is finite and Oq,...,O, is a list of the conjugacy classes of G
then the ‘delta functions’ dp,: G — C given by y — 1l ify € O, and y — 0 otherwise
form a basis for Cq. In particular dim C¢ is the number of conjugacy classes in G.

We make Cq into a Hermitian inner product space by defining

(£, 1) =1GI7" > F9)f'(9)-
It is easy to check that this does define an Hermitian inner product and that
the functions dp, are pairwise orthogonal. Notice that (do,,d00,) = |0:|/|G| =
|Cq(z;)|~! for any z; € O;.

Thus if z1,...,z, are conjugacy class representatives, then we can write
T
(1 1) = 1Calas) | F @) £ ().
i=1

4.2. Orthogonality.

Theorem (Orthogonality of characters). If V and V' are complex irreducible rep-
resentations of a finite group G then (xv,xv/) is 1 if V=2V’ and 0 otherwise.

Notice that this theorem tells us that the characters of irreducible reps form part
of an orthonormal basis for Cg. In particular the number of irreducible represen-
tations is bounded above by the number of conjugacy classes of G. In fact we’ll
see that the characters span the space of class functions and so that the number
of irreps is precisely the number of conjugacy classes in G. We saw this when G is
abelian last time.

Recall that if V, W are reps of G, Hom(V,W) = {f: V — W | f is k linear} into
a G-rep by (g.f)(v) = g(f(g~v)). Let’s compute the character of Hom(V, W).

Lemma. If V and W are reps of a group G then for g € G of finite order,
XHome (v,w) (9) = xv(9)xw(9)-

Proof. Given g € G we may choose bases vy,...,v, for V and wy,...,w,, for W
such that gv; = A\jv; and gw; = p;w;. Then the functions f;;(vi) = 0;rw; extend to
linear maps that form a basis for Hom(V, W) and (g.f;;)(vi) = A; 'pjw; thus gfi; =
At fiy and Xgomviwy (9) = > Nty = xv (g™ Hxw (9) = xv(9)xw (9)- U

Lemma. IfU is arep of G thendim{u € U | gu = u} = (1,x) = |G| ! >_gec Xu(9).

Proof. Let w: U — U be defined by 7(u) = |G| ™1 > gec 9u, and write U¢:={uce
U | gu = u}. Then hr(u) = n(u) for all u € U so n(u) € U for all u € U.
Moreover ;¢ = idye by direct calculation. Thus
dimU% = tridye = trm = |G| ™! Z xu(g)
geG
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as required. O

Proposition. If V' and W are representations of G then dimHomg(V,W) =
<XW7XV>'

Proof. This follows immediately from the two lemmas. ([

Corollary (Orthogonality of characters). If x, X' are characters of irreducible reps
then (X, X') = 0y,

Proof. Apply the Proposition and Schur’s Lemma O

Suppose now that Vi,...,V; is the list of all irreducible complex reps of G up
to isomorphism and the corresponding characters are xi,..., x%. Then Maschke’s
Theorem tells us that any representation V' may be written as a direct sum of copies
of the V;, V= Pn;V;. Thus x = > nix;.

As the x; are orthonormal we may compute (x, x;) = n;. This is another proof
that the decomposition factors of V' are determined by their composition factors.
However we get more: the composition factors of V can be computed purely from
its character; that is if we have a record of each of the irreducible characters, then
we now have a practical way of calculating how a given representation breaks up
as a direct sum of its irreducible components. Our main goal now is to investigate
how we might produce such a record of the irreducible characters.

Corollary. If p and p' are reps of G then they are isomorphic if and only if they
have the same character.

Proof. We have already seen that isomorphic reps have the same character. Sup-
pose that p and p’ have the same character x. Then they are each isomorphic to
(X1, X)p1 @ -+ ® (Xk, X)pr and thus to each other. O

LECTURE 7
We begin by recalling

Theorem (Orthogonality of characters). If V and V' are complex irreducible rep-
resentations of a finite group G then (xv,xv/) is 1 if V=2V’ and 0 otherwise.

Corollary. If p and p’' are reps of G then they are isomorphic if and only if they
have the same character.

Notice that complete irreducibility was a key part of the proof of this corollary,
as well as orthogonality of characters. For example the two reps of Z given by

1+ idc2 and 1 +— are not isomorphic but have the same trace. Complete

1
0 1
irreducibility tells us we don’t need to worry about gluing.
Corollary. If p is a complex representation of G with character x then p is irre-
ducible if and only if (x,x) = 1.

Proof. One direction follows immediately from the theorem on orthogonality of
characters. For the other direction, assume that (x,x) = 1. Then we may write
X = Y_nix; for some non-negative integers n;. By orthogonality of characters
1= (x,x) =Y. n?. Thus y = x; for some j, and y is irreducible. O

This is a good way of calcuating whether a representation is irreducible.
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FEzxzamples.

(1) Consider the action of Dg on C? by extending the symmetries of a triangle.
x(1) =2, x(12) = x(23) = x(13) =0, and x(123) = x(132) = —1. Now

so this rep is irreducible.
(2) Consider the action of Sy on CX for X = {1,2,3,4} induced from the
natural action of Sy on X. The conjugacy classes in Sy are 1 of size 1, (ab)
of size (;1) =6, (abc) of size 4.2 = 8, (ab)(cd) of size 3 and (abed) of size 6.
We can compute that the character of this rep is given by

x(g) = #{fixed points of g}.

So x(1) =1, x((ab)) = 2, x((abc)) = 1 and x((ab)(cd) = x(abed) = 0. Thus
(X, x) = 1/24(4%+6-2248-1243-02) = 2. Thus if we decompose x = > n;X;
into irreducibles we know Y n? = 2 then we must have y = x’ + x” with
X' and x” non-isomorphic irreps.

Notice that (1,x) = 1/24(4+6-248-1+0) = 1 so one of the irreducible
constituents is the trivial rep. The other has character y — 1.

In fact we have seen these subreps explicitly in this case. The constant
functions gives a trivial subrep and the orthogonal complement with respect
to the standard inner product (that is the set of functions that sum to zero)
gives the other.

Theorem (The character table is square). The irreducible characters of a finite
group G form a basis for the space of class functions Cg on G.

Corollary. The number of irreducible representations is the number of conjugacy
classes in the group.

Corollary. For each g € G, x(g) is real for every character x if and only if g is
conjugate to g~ ".

Proof. Since x(g71) = x(9), x(g) is real for every character  if and only if x(g) =
x(g~1) for every character x. Since the irreducible characters span the space of class
functions this is equivalent to g and g~! living in the same conjugacy class. (]

Proof of Theorem. We already know that the irreducible characters are linearly

independent (and orthonormal) we need to show that they span Co. Let I =

(X1, ---,Xr) be the span of the irred. characters. We need to show that I+ = 0.
Suppose f: G — C € I+. For each representation (p,V) of G we may define

¢ € Hom(V, V) by ¢ = ,%;\ > gec F(9)p(g). Now

p(h)! ‘G|Zf p(h™"gh) = ‘G|Zf

9geG g'eG

since f is a class function, and we see that in fact ¢ € Homg(V, V). Moreover

tro = (f,trp) =0
since f € I+.
Now if V is irreducible then Schur’s Lemma tells us that ¢ = Aidy for some
A € C. Since tr ¢ = 0 it follows that A = 0 and so ¢ = 0.
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But every representation breaks up as a direct sum of irreducible representations
V =@ V; and ¢ breaks up as € ;. So ¢ = 0 always.

But if V is the regular representation CG then ¢d, = |G|~} deg f(9)0, = f.
Thus f = 0. O

4.3. Character tables. We now want to classify all the irreducible representations
of a given finite group and we know that it suffices to write down the characters of
each one.

The character table of a group is defined as follows: we list the conjugacy classes
of G, Oy,...,0, (by convention always @1 = {e}) and choose g; € O; we then list
the irreducible characters xi,...,xx (by convention x; = xc the character of the
trivial rep. Then we write the matrix

e x2 DRI ‘rl DR xk
1| 1 1 ... 1 1
X‘] DRI DY DY X](:L‘z)
Xk
Exzamples.
(1) C3 = (z)
e z z°
il 1 1
2|1l w w?
x3 |1l w? w
Notice that the rows are indeed orthogonal. The columns are too in this case.
(2) Ss

There are three conjugacy classes: the identity is in a class on its own Ox;
the three transpositions live in a another class Os; and the two 3-cycles live in
the third class Os.

There are three irreducible representations all together. We know that the
trivial representation 1 has character 1(g) = 1 for all ¢ € G. We also know
another 1-dimensional representation e: S5 — {£1} given by g — 1 if g is even
and g — —1 if g is odd.

To compute the character y of the last representation we may use orthogo-
nality of characters. Let x(e) = a, x((12)) = b and x((123)) = ¢ (a, b and c are
each real since each g is conjugate to its inverse). We know that 0 = (¥, x) =
Ha+3b+2c),0=(e,x) = t(a—3b+2c), and 1 = (x,x) = (a®+3b* +2¢?).
Thus we see quickly that b = 0, a + 2¢ = 0 and a? + 2¢? = 0. We also know
that a is a positive integer. Thus a = 2 and ¢ = —1.

1 3 2
e (12) (123)
11 1 1
el -1 1
Y|l2 o -1
In fact we already knew about this 2-dimensional representation; it is the one
coming from the symmetries of a triangle inside R2.
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LECTURE 8

Proposition (Column Orthogonality). If G is a finite group and x1,...,Xr 1S a
complete list of the irreducible characters of G then for each g,h € G,

in(g)xi(h) =0 if g and h are not conjugate in G
i=1

= |Cq(g)| otherwise.
In particular Y;_, dim V? = |G|.

Example. S
1 3 2
e (12) (123)
11 1 1
ell -1 1
xl2 o -1
124+12+2% =6 =S
12+ (=1)* 4+ 0* = 2 = |Cs,((12)))|
124124 (=1)? =3 =|Cs,((123))]
1-141--142-0=0
etc.

Proof of Proposition. Let X be character table thought of as a matrix; X;; = xi(g;)
and let D be the diagonal matrix whose diagonal entries are |C(g;)]
Orthogonality of characters tell us that

> 1Ca(gn)| ™ Xk X = 0y

k
ie XD71Xt =1
Since X is square we may write this as D-'X' = X~'. Thus X' X = D.
This may be rewritten as >, Xi; Xp; = Dij. ie >, xu(9:)xx(g;) = 0i|Cc(g:)| as
required. O
Ezxamples.
G=25,
1 3 8 6 6
e (12)(34) (123) (12) (1234)
1|1 1 1 1 1
e |1 1 1 -1 -1
s |3 -1 0 1 ~1
exs | 3 -1 0 -1 1
X5 | 2 2 -1 0 0

The trivial 1 and sign e characters may be constructed in the same way as for Ss.
We calculated last time that the natural permuation character breaks up as the
sum of a trivial character and a character whose values x3(g) are the number of
fixed points of g minus 1.

We saw on Example Sheet 1 (Q2) that given a 1-dimensional represntation 6
and an irreducible representation p we may form another irreducible representation
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@ pby 0 p(g) =60(g)p(g). It is not hard to see that xeg,(9) = 0(g)x,(g). Thus
we get another irreducible character exs. (Exercise: prove that 6(g)p(g) is always
irreducible using characters)

We can then complete the character table using column orthogonality: We note
that 24 = 12 + 12 4 32 + 32 + y5(e)? thus ys(e) = 2. Then using Z‘;’ xi(Dxi(g) =
|Cc(g)| we can construct the remaining values in the table.

Notice that the two dimensional representation corresponding to x5 may be

obtained by composing the surjective group homomorphism S; — Ss (with kernel
the Klein-4-group) with the irreducible two dimension rep of Ss.
G = A,. Each irreducible representation of S; may be restricted to A4 and its
character values on elements of A4 will be unchanged. In this way we get three
characters of Ay, 1, ¥o = x3|a, and ¥3 = x5|a,. If we compute (1,1) we of course
get 1. If we compute (1g,109) we get %(32 +3 %1+ 8%0%) = 1 so ¢ remains
irreducible. However (13,13) = 75(22 4+ 322+ 8% (—1)?) = 2 so 13 breaks up into
two non-isomorphic irreducible reps of Ay.

Ezercise. Use this infomation to construct the whole character table of Ay.

4.4. Permuation representations. Suppose that X is a finite set with a G-
action. Recall that CX = {f: X — C} is a representation of G via gf(z) =
flg~'a).

Lemma. If x is the character of CX then x(g9) = |{z € X | gx = z}|.

Proof. If X = {x1,...,24} and gx; = x; then g0d,, = 0., so the ith column of g has
a 1 in the jth entry and zeros elsewhere. So it contributes 1 to the trace precisely

Corollary. If Vi,..., V) is a complete list of irreducible reps of a finite group G
then the regular representation kG decomposes as niVy & -+ ® nip Vi with n; =
dimV; = yi(e). In particular |G| = n?.

Proof. xrc(e) = |G| and xra(g) = 0 for g # e. Thus if we decompose kG we obtain
ni = (xwe, xi) = |GG lxa(e) = xile)

as required. (Il

Proposition (Burnside’s Lemma). Let G be a finite group and X a finite set with
a G-action and x the character of CX. Then (1,x) is the number of orbits of G
on X.

Proof. If we decompose X into a disjoint of orbits X; U - U X}, then we’ve seen
that CX = @le CX;. So xx = Zle Xx, and we may reduce to the case that
G-acts transitively on X.

Now

Gl(xx, 1) => xx(9) =Y HzeX|gr=a}

geG geG
={(g:m) eGx X |gr=a} =) HgeG|gr=u}
zeX

= ) " |Stabg(z)| = |X||Staba(X)| = |G

zeX
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as required. O

LECTURE 9
Recall from last time,
Lemma. If x is the character of CX then x(g9) = |{z € X | gx = z}|.
and

Proposition (Burnside’s Lemma). Let G be a finite group and X a finite set with
a G-action and xx the character of CX. Then (1,xx) is the number of orbits of
G on X.

If X is a set with a G-action we may view X X X as a set with a G-action via
(9, (z,y)) — (g, 9y)-

Corollary. If G is a finite group and X is a finite set with a G-action and x is
the character of the permutation representation CX then {x,x) is the number of
G-orbits on X x X.

Proof. Notice that (z,y) is fixed by g € G if and only if both x and y are fixed.
Thus xxxx(9) = xx(9)xx(g) by the lemma.

Now (xx,Xxx) = ﬁ >gec Xx(9)xx(g9) = (1, xx xx) and the result follows from
Burnside’s Lemma. [

Remark. If X is any set with a G-action with | X| > 1 then {(z,z)]z € X} C X x X
is G-stable and so is the complement {(z,y) € X x X |z # y}.

We say that G acts 2-transitively on X if G has only two orbits on X x X. Given
a 2-transitive action of G on X we’ve seen that the character x of the permutation
representation satisfies (x,x) = 2 and (1,x) = 1. Thus CX has two irreducible
summands — the constant functions and the functions f such that ) __ f(z) = 0.

Ezxercise. If G = GLy(F,) then decompose the permutation rep of G coming from
the action of G on F, U {oco} by Mobius transformations.

5. NORMAL SUBGROUPS AND LIFTING CHARACTERS

Lemma (cf Example Sheet 1 Q3). Suppose N is a normal subgroup of G.

For every representation p: G/N — GL(V), there is a representation p: G —
GL(V) obtained by composing p with the natural surjection G — G/N. In this way
there is a 1-1 correspondance between representations of G/N and representations
of G with kernel containing N.

The characters x, and x5 of p and p respectively satisfy x,(9g)
each g € G.

Moreover the correspondance restricts to a 1-1 correspondance between irre-
ducible representations of G/N and irreducible representations of G with kernel
containing N .

Xxz(gN) for

Proof. The first paragraph follows from the first isomorphism theorem for groups.
For g € G, x,(9) = trp(g) = trp(gN) = xz(gNN) since p(g) = p(gN).
We could do the last part directly but let’s use characters:
ki N kil
(Xps X0) & = o1 Lge Xo@D)Xo(9) = 15 Xgneayn Xo@N)Xa(gN) = (x5 Xp) /-
O
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Remark. We saw this when we computed the character table for G = S; and
N =V, =((12)(34), (13)(24)) last time.

1 3 8 6 6

e (12)(34) (123) (12) (1234)
1|1 1 1 1 1
e |1 1 1 -1 -1
X5 | 2 2 -1 0 0
X3 |3 -1 0 1 -1
exs | 3 -1 0 -1 1

1,e¢ and x5 all have kernel containing V4 and we can see the character table for
S3 22 G/Vy inside the character table for Sy.

Definition. The derived subgroup of a group G is the subgroup G’ generated by
all elements of the form ghg~'h~! with g,h € G.

Lemma. G’ is the unique smallest normal subgroup of G such that G/G' is abelian
(that is if G/N is abelian then G' C N ).

G has precisely |G/G'| representations of dimension 1.

Proof. Suppose N is a normal subgroup of G. Then G/N is abelian if and only
if gNhN = hNgN for all g,h € G. Thus ghg 'h™'N = N and ghg~'h~! € N.
Thus G’ < N and for the first part it suffices to prove that G’ is normal. But if
g,h,k € G then

k(ghg WYk~ = (kgk ™) (khk~")(kgk ™)~ (khk ™)~

and it follows easily that G’ is normal.

For the last part, if p: G — GL;(k) is a 1-dimensional rep then p(ghg=th=1) =
p(9)p(h)p(g)~Lp(h)~! so by the previous lemma, 1-dimensional reps of G corre-
spond to 1-dimensional reps of G/G’. We've seen already that there are |G/G’| of
the latter. 0

6. THE CHARACTER RING

Given a group G, the set of class functions Cs comes equipped with certain
algebraic structures: it is a commutative ring under pointwise addition and mul-
tiplication — ic (fi + f2)(9) = fi(g) + fa(g) and fifa(g) = f1(g)fa(g) for each
g € G, the additive identity is the constant function value 0 and the multiplica-
tive identity constant value 1; there is a ring automorphism * of order two given
by f*(g9) = f(¢97'); and, when G is finite, there is an inner product given by
(1 12) = i Spec J1(0) F2(9):

We will see that all this structure is related to structure on the category of
representations: we have already seen some of this. If V4 and V5 are representations
with characters x1 and x2 then x1+x2 = xvyev, and (x1, x2) = dim Homg (V4, V2).

Definition. The character ring R(G) of a group G is defined by
R(G) :={x1 — x2 | x1, x2 are characters of reps of G} C C¢.

We’ll see that the character ring inherits all the algebraic structure of C¢ men-
tioned above.
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6.1. Duality.

Definition. If G is group and (p, V) is a representation of G then the dual repre-
sentation (p*,V*) of G is given by p*(g)(0)(v) = 0(p(g~1)(v) for € V*.

Remark. We’ve already seen the dual representation; if k is the trivial representation
then V* = Hom(V, k).

Lemma. The dual representation is a representation and xyv+ = x*(V).

Proof. First,

p*(gh)8(v) = 8(p(gh)~* (v))
=0(p(h) " p(g) "' (v))
= p*(MB(p(g) ' (v))
=p"(9)p" (h)0(v
as required.

Suppose that vyi,...,v,, is a basis for V and 64,...,0,, is the dual basis for
V*. Given g € G, if the diagonal entries of p(g~!) wrt v1,..., vy are A1,..., Am
then we can compute the diagonal entries of p* wrt 61,...,0,, as p*(0k)(vy) =
0r(p(g o) = Mg In particular trp*(g) = Y. \; = trp(g~!) as required. O

Definition. We say that V is self-dual if V=2 V* as representations of G.
Over C, V is self-dual if and only if xy(g) € R for all g € G.

Ezxamples.

(1) G=Cs=(z)and V = C. Ifp is given by p(z) =w = e’5" then p*(z) =w? =@
so V is not self-dual

(2) G =S, since g is always conjugate to its inverse in S,,, x* = x always and so
every representation is self-dual.

LECTURE 10

6.2. Tensor products. Suppose that V and W are vector spaces over a field k,
with bases v1,...,v,, and wy,...,w, respectively. We may view V @& W either as
the vector space with basis vy, ..., U, w1, ..., w, (sodim VAW = dim V +dim W)
or more abstractly as the vector space of pairs (v, w) with v € V and w € W and
pointwise operations.

Definition. The tensor product V@ W of V and W is the vector space with basis
given by symobls v; ® w; for 1 <i<m and 1 < j < n and so

dmV QW =dimV - dim W.
Ezample. If X and Y are sets then kX ® kY has basis 0, ®0, forx € X andy € Y.

Identifying this element with the function 9, , on X X Y given by 9, ,(2',y’) =
Oz Oy, We see that kX @ kY = kX x Y.

Ifv=>% A\v; € Vand w=>3 pjw; € W, it is common to write v ® w for the
element >, ;(Aipj)v; ® wj € V. @ W. But note that usually not every element of
V ® W may be written in the form v ® w (eg v1 ® w1 + v2 ® wa).

Lemma. There is a bilinear map V. x W — V @ W given by (v,w) — v @ w.
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Proof. First, we should prove that if x, 1,22 € V and y,y1,y2 € W then
TR (Y1+y2) =T @Y1+ TR Yo

and
(11 +22) QY =21 QY + 12 ® .

We'll just do the first; the second is symmetric.
Write z = >, \ivi, yp = Zj ,u;?wj for K =1,2. Then

T® (Y1 +y2) = Z X + 115)vi @ w;
,J
and
TRUA TRy =D N @i+ > Aipdv; @ w;.
1,5 0,J
These are equal.
We should also prove that for A € k and v € V and w € W then

(W) ew=Aveow)=v (Aw).
The proof is similar to the above. (I

Ezercise. Show that given vector spaces U,V and W there is a 1 —1 correspondance
between

{linear maps V@ W — U} « {bilinear maps V x W — U}
given by composition with the bilinear map (v, w) — v ® w above.

Lemma. If x1,...,x, is any basis of V and yi1,...,Yym 1 any basis of W then
z;Qy; for1<i<mand 1< j<nisa basis for V@ W. Thus the definition of
V @ W does not depend on the choice of bases.

Proof. It suffices to prove that the set {z; ® y,;} spans V @ W since it has size mn.
But if v; =) Ay, and w; = Y Bsjys then v; ® w; = ZT,S AyiBsjr; @y;. O

Remark. In fact we could have defined V @ W in a basis independent way in the
first place: let F' be the (infinite dimensional) vector space with basis v ® w for
every v € V and w € W; and R be the subspace generated by (Av) ® w — A(v ® w),
v (Aw)—A(v@w) forv € V, w € W and X € k along with (1 +22)Qy—21y—z2@y
and z ® (y1 + y2) — 2 @y — ¢ Q@ yo for z,x1,20 € V and y,y1,y2 € W; then
V @ W = F/R naturally.

Ezercise. Show that for vector spaces U,V and W there is a natural (basis inde-
pendent) isomorphism

UoV)eW - UeW)d (VeWw).

Definition. Suppose that V and W are as above and ¢p: V — V and ¢p: W — W
are linear maps. We can define p @ ¢¥: VW — V ® W as follows:

(v @) (vi @ wj) = p(vi) @ P (w;).

Ezample. If ¢ is represented by the matrix A;; and % is represented by the matrix
B;; and we order the basis v; ® w; lexicographically (ie v1 @ wq,v1 @ wa,...,v1 @
Wy, Vg @ W1, ...,V ® wy,) then ¢ ® ¥ is represented by the block matrix
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Ay B AxB

Lemma. The linear map ¢ @ ¥ does not depend on the choice of bases.
Proof. Tt suffices to show that for any v € V and w € W,

(P @Y)(v@w) = p(v) @ p(w).

Writing v = > \jv; and w = ) pjw; we see
(PP (e w) =Y Aiyp(vi) © Y(w;) = p(v) @ P(w)
]
as required. O
Remark. The proof really just says VxW — V@W defined by (v, w) — ¢(v)@¢(w)
is bilinear and ¢ ® v is its correspondant in the bijection
{linear maps V@ W — V @ W} — {bilinear maps Vx W — V @ W}

above.

Lemma. Suppose that ¢, 1,2 € Hom(V, V) and ¥, 11,19 € Hom(W, W)

(i) (p1p2) ® (Y12) = (¢1 @ ¥1)(p2 ® P2) € Hom(V @ W,V @ W);
(’LZ) idv ® ldW = idV®W,’ and

(i) tr(e ® ) =tro-tr.

Proof. Given v € V, w € W we can use the previous lemma to compute

(P192) ® (Y192) (v @ w) = V1P2(v) @ Y1¢ha(w) = (1 ®@ Y1) (P2 @ P2)(v ® w).

Since elements of the form v ® w span V ® W and all maps are linear it follows that

(P192) ® (Y1th2) = (1 ® Y1) (P2 ® 12)
as required.
(ii) is clear.
For the formula relating traces it suffices to stare at the example above:
AnB  ApB
tr | AnB AnB | _ ZB”Ajj =trAtr B.

(2]

LECTURE 11
Recall the lemma from the end of last time

Lemma. Suppose that ¢, 1,2 € Hom(V, V) and ¥, 1,19 € Hom(W, W)
(i) (p19p2) @ (Y1¢h2) = (p1 ®@ Y1) (p2 @ 1P2) € Hom(V @ W,V @ W);
(’LZ) idy ®idy = id\/@W,’ and
(i) tr(e ® ) =tr-trap.
Definition. Given two representation (p, V) and (p’, W) of a group G we can define
the representation (p® p/, V@ W) by (p® p')(g) = p(g9) ® p'(9).
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Proposition. If (p,V) and (p', W) are representations of G then (p® p',V @ W)
is a representation of G and Xpep = Xp * Xp'-

Proof. This is an straightforward consequence of the lemma. O

Remarks.

(1) It follows that R(G) is closed under multiplication.

(2) Tensor product of representations defined here is consistent with our earlier
notion when one of the representations is one-dimensional.

(3) It follows from the lemma that if (p, V'), (p’, W) are reps of G then we may
make V ® W into a rep of G x G via

pvew (g,h) = p(g) ® p'(h).

In the proposition we then restrict this representation to the diagonal sub-
group G = {(g,9)} C G x G.

(4) If X,Y are finite sets with G-action it is easy to verify that kX ® kY =
kX x Y as representations of G (or even of G x G).

Now return to our assumption that £ = C.

Ezxercise. Show both directly and using characters that if U, V, W are representa-
tions of G then V@ W = Hom(V*, W) and Hom(V @ W, U) = Hom(V, Hom(W,U))
as representations of G.

Question. If V and W are irreducible then must V ® W be irreducible?

We’ve seen the answer is yes is one of V' and W is one-dimensional but it is not
usually true.

Example. G = Ss

1 3 2
e (12) (123)
11 1 1
e |1 -1
Vi2 0 -1

Clearly, 1@ W = W always. e®e=1,e¢®V =V and V ® V has character x?
given by x%(1) = 4, x*(12) = 0 and x?(123) = 1. Thus x? decomposes as 1+ ¢+ x.

Infact VR V,V®V ®V,...are never irreducible if dimV > 1.

Given a vector space V, define c =oy: VRV -V @V by oc(v @w) — w®wv
for all v,w € V (exercise: check this does uniquely define a linear map). Notice
that 02 = id and so ¢ decomposes V ® V into two eigenspaces:

S?Vi:={a€eV®V|oa=a}
AV :={aeVaV|oa=—a}

Lemma. Suppose vi,...,v, is a basis for V.
(i) S*V has a basis v;vj = v; @ vj +v; @v; for 1 <i,j < d.
(ii) A2V has a basis v; Avj =0, ®v; —v; @v; 1 <i<j<d.
Thus dim S?V = $m(m + 1) and dim A?V = Zm(m — 1).

Remark. We usually write v; A v; =: —v; Av; for j <4 and v; Av; = 0.
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Proof. 1t is easy to check that the union of the two claimed bases form a basis for
V ® V, that the v;v; do all live in S2V and that the v; A v; do all live in A?V.

Everything follows.

FEzercise. We may view V ® V as a representation of Cy via p(1) = 0. What is
the character x of p? What are (1, x)c, and (e, x)c,? How does this relate to the

lemma just proven?

Proposition. Let (p,V) be a representation of G.

(i) S?V and A?V are subreps of V@V and V@V = S?V @ A?V.
(i1) for g € G,
1 2 2

(x(9)" +x(9))

XS?V(Q) = 9

xav(9) = 5 (x(9)” ~ x(e):

Proof. For (i) we need to show that if a € V ® V and oy (a) = Aa for A = £1 then
ovp(g)(a) = Ap(g)(a) for each g € G. For this it suffices to prove that og = go (ie
o€ Homg(VeV,.VeV)). But coglv@w) =gw®gv=goo(v®@w).

To compute (ii), let vy, ..., vy be a basis of eigenvectors for p(g) with eigenvalues

M, Am. Then g(vv;) = (MNAj)vv; and g(v; Avj) = (AAj)v A ;.
Thus xs2v(9) = >_;<; AiAj, whereas

X(9)* + x(¢%) = (Z Ai)? + Z AP =2 Z A

Similarly xazy(g) = Zi<j Aidj, and

X(9)? = x(g%) = (3" = DN = A,

1<j

Ezxample. Sy
1 3 8 6 6
e (12)(34) (123) (12) (1234)

1 1 1 1 1 1

€ 1 1 1 -1 -1

X3 |3 -1 0 1 -1
exs |3 -1 0 -1 1
x5 |2 2 -1 0 0
2 ]9 1 0 1 1

x3(9%) | 3 3 0 3 -1
S%xs | 6 2 0 2 0
A?ys |3 -1 0 -1 1

Thus S?x3 = x5 + x3 + 1 and A%y3 = exs.

Ezercise. Show that if V' is self-dual then either (1, xg2y) # 0 or (1, xp2y) # 0.
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LECTURE 12

Last time we thought about S?V and A%V as subrepresentations of V ® V. More
generally, for any vector space V we may consider V" =V @ --- ® V. Then for
any w € S,, we can define a linear map o,,: V" — V& by

0wt V1@ Up = Uy-1(1) @+ Vy—1(p)

for v1,...,v, €V (exercise check this uniquely defines a linear map).

In this way we can define a representation of S, on V®". Moreover if V is a
representation of G then the action of G on V" via 1 ® - @, — gv1 ®@ - - - ® gy,
commutes with the S,-action. Thus we can decompose V" as a rep of S,, and
each isotypical component should be a G-invariant subspace of V®™. In particular
we can make the following definition.

Definition. Suppose that V is a vector space we define
(i) the n'* symmetric power of V to be

S"V ={aecV® |o,(a) =aforallwe S,}

and
(ii) the n'* exterior (or alternating) power of V to be

A"V :={a e V®" | o,(a) = e(w)a for all w € S, }.
Note that S"V @ A"V ={a € V®" | o,(a) =a for allw € A,} C V™.

Ezxercise. Show that if V is a rep of G then S™V and A™V are subreps of V®", For
each g € G of finite order compute the characters of S™V and A™V in terms of the
eigenvalues of g on V.

[Hint: if vy, ..., v, is a basis for V then

1 - .

n! Z Vo (iy) @ Vo(in) | 1 i1 <o i <7

nt e

is a basis for SV and
1
{nl Z €(0) Vo (iy) @ Vo (i,) | 1 <1 <-or <y < r}

" oESn

is a basis for A"V ]
For any vector space V, AY™V =~k and A"V =0 if n > dim V.

Ezercise. Show that if (p, V') is a representation of G then the representation G —
GL(AY™VV) = kX is given by g + det p(g); ie the dim V*" exterior power of V is
isomorphic to det p.

In characteristic zero, we may stick these vector spaces together to form algebras.
Definition. Given a vector space V we may define the tensor algebra of V',
TV = @@oV@"

(where V®° = k). Then TV is a (non-commutative) graded ring with the product
of 1@ -®@v, € VO and wy ® -+ @ ws € VO given by

MR QU QU Q- Quws € VETTS,
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with graded quotient rings the symmetric algebra of V,

SV =TV/(z@y-yz|z,ycV),
and the exterior algebra of V,

AV =TV/(z@y+y@z|z,ycV).

One can show that SV = @n>0 S™V under 1 ® -+ ® T, — T1---x, and
AV = @H>OA”V under 1 ® -+ Q@ Xy = T1 A -+ A Ty.

Now SV is a commutive ring and AV is graded commutative; that is if z € A"V
and y € A*V then z Ay = (—1)"y A x.

Proposition. Suppose G and H are finite groups.

Let (p1,V1),...,(pr, Vi) be a complete list of the irreducible complex represen-
tations of G and (py,W1),...,(p%, Ws) a complete list of the irreducible complex
representations of H. For each 1 < i < r and 1 < j < s, (p; ®p;-,Vi ® W;)
is an irreducible complex representation of G x H. Moreover, all the irreducible
representations of G X H arise in this way.

We have seen this before when G and H are abelian since then all these repre-
sentations are 1-dimensional.

Proof. Let x1,..., X be the characters of V1,...,V,. and 1, ..., %, the characters
of W, ..., Ws.
The character of V; ® W; is x; ® ¥;: (g, h) — xi(9);(h). Then

(Xi ®Vj, xk @ Vi)axu = (Xi> Xk)a (), Y1) n = Oix0j1.
So the x; ® 9, are irreducible and pairwise distinct.
Now >, . dim(V; ® W;)? = (ZidimViz)(Zj dimWf) = |G|||H| = |G x H| so
we must have them all. O

7. INDUCTION

Suppose that H is a subgroup of G. We have a way of turning representations
of G into representations of H; we restrict the homomorphism p: G — GL(V) to
H.

We would like a similar way of building representations of G from representations
of H. There is a good way of doing so called induction although it is a little more
delicate than restriction.

If G is a finite group and W is a k-vector space we may define Hom(G, W) to
be the vector space of all functions G — W under pointwise addition and scalar
multiplication. This may be made into a representation of G by defining

(¢- @)= flg""z)
for each g,z € G. If wy,...,w, is a basis for W then {Jyw; | g € G,1 < i < n}is
a basis for Hom(G, W). So dim Hom(G, W) = |G| dim W.

Lemma. Hom(G, W) = (dim W)kG as representations of G.
Proof. Given a basis wy,...,w, for W, define the linear map

0: P kG — Hom(G, W)

i=1
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by

(f111 Zfz

It is easy to see that © is injective because the w; are linearly independent so by
comparing dimensions we see that O is a vector-space isomorphism.
It remains to prove that © is G=linear. If g,z € G then

g9 (©((fi)iz1) Zfz (97 w)w; = O(g - (fi)izy) (@)

as required. O

FEzercise. Use the basis of Hom(G, W) given above to find a character-theoretic
proof of the lemmma.

Now, if H is a subgroup of G and W is a representation of H then we can define
Hompy (G, W) := {f € Hom(G, W) | f(zh) = h™f(z) Yz € G,h € H},
a k-linear subspace of Hom(G, W).

Ezample. If W = k is the trivial representation of H then f € Hompy (G, k) if and
only if f(axh) = f(z) for h € H and = € G. That is Homp (G, k) consists of the
functions that are constant on each left coset in G/H. Thus Hompg (G, k) can be
identified with the permutation module kG/H where G acts on the left cosets G/H
in the usual way.

Lemma. Hompy (G, W) is a G-invariant subspace of Hom(G,W).
Proof. Let f € Homgy (G, W), g,z € G and h € H we must show that
(g- f)ah) =h~ (g f)(=).

But (g- f)(zh) = f(g tah) = h=1f(g7'z) = h~1(g - f)() as required. O
Definition. Suppose that H is a subgroup of G of finite index and W is a represen-
tation of H. We define the induced representation to be Ind$ W := Homy (G, W)

LECTURE 13

Recall from last time:

Definition. Suppose that H is a subgroup of G of finite index and W is a repre-
sentation of H. We define the induced representation by

d$ W = Homy (G, W) = {f: G — W | f(zh) = h~ f(x) for all z € G, h € H}

Remark. Since Indg 1=kG/H, Indfl does not send irreducibles to irreducibles in
general.
Proposition. Suppose W is a representation of H then

(i) dim Indf; W = {5} dim W;

(i) for g € G,

XIndi(g):m Z xw(z ™ gx).
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Remarks.

(1) x~'gz € H if and only if grH = xH so if W is the trivial representation
the rhs of formula in (ii) becomes |{zH € G/H | gxH = xH}| and we get
the permutation character of kG/H as required.

(2) If we write x§, for the function on G such that x3,(9) = xw(g) if x € H
and xy(g) =01if g € H, then the formula in (ii) becomes

Xlndgw 9) |H| ZXW T 933

zeG
this is clearly a class function.
(3) If [h1],- .-, [hm] is a list of the H-conjugacy classes such that 2 =gz € [hy]
some z € G then we can write this as
|CG
Xlndg W Z | hl)

This is the most useful formula for computation.

Proof of Proposition. Let x1,...,x, be left coset representatives in G/H. Then
f € Hompg (G, W) is determined by the values of f(z1),..., f(z,) € W.

Moreover, given wy,...,w, € W we can define f € Homy (G, W) via f(x;h) =
h~tw; fori=1,...,r and h € H. Thus

©: Homp(G,W) — @W

defined by f — (f(x;))f_; is an isomorphism of vector spaces and part (i) is done.

Following this argument, we see that given w € W, and 1 < i < r, we can define

Yiw € Hompy (G, W) by
(pi,u,(l‘jh) = aijhflw
foreach he Hand 1 < j<r.

Now given g € G, let’s consider how g acts on a ¢;,,. For each coset represen-
tative x; there is a unique o(i) and h; € H such that ¢~ 'z; = 2,4)hs € 2, H
and

(9 Piw) (@) = 0iw(925) = @iw(To(hy) = Oiayh; ' w.
Thus g - @iw = ¢, - 1(4),h="! Taw

Thus g acts on @_, W via a block permutation matrix and we only get con-
tributions to the trace from the non-zero diagonal blocks which correspond to the
fixed points of 0. Moreover if o(i) = i then g acts on W; via hi_l = xi_lgxi

Thus

T Gmag w = ZX?/V($;19$i)~
i
Since G = {x;h | h € H} and 3§, (h~1gh) = X3 (g) for all g € G and h € H we
may rewrite this as

T Gmag w = H Z Xy (zgz ™)
| | zeG

as required. ([
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Ezample. G = S3 and H = C3 = {1, (123), (132)}.
If W is any rep of H then

XIndGW(e) 2xw ()7
Xlndgw(( 2)) =0,

Xtnat w((123)) = ((123)) T ((132)).
Cs |1 (123) (132) ss |1 (12) (123)
g, X1 1 1 1 Indx; | 2 0 2
x2 |1 w w? Ind xo | 2 0 -1
x3 |1 w? w Ind xs | 2 0 -1
So Ind$ xo = Ind% 3 is the 2-dimensional irreducible character of S and

Ind% x1 = 1 + € as expected.

If V is a representation of G, we’ll write Resg V for the representation of H
obtained by restriction.

Proposition (Frobenius reciprocity). Let V' be a representation of G, and W a
representation of H, then

(i) (xv,Indf xw)e = (Resf xv, xw)

(ii) Homg (V,Ind$ W) =2 Homy (Res$ V, W).

Proof. We've already seen that (i) implies (ii).
Now

(xv, Indf xw)c =@ G| > xv(9)Xtmag w(9)
geG

|G||H|ZZXV (z~ 995)

geG zeG

| Z > xv(zgz Nxiy(g) (¢ =2 "gz)

ze€G g’'€eG
Z xv (g )xw(g')
g 'eH

= (Res$; xv, xw)u

as required. (Il

Ezercise. Prove (ii) directly by considering
©: Homg(V,Hompy (G, W)) — Homp (V, W)
defined by O(f)(v) = f(v)(e).

7.1. Mackey Theory. This is the study of representations like Res?( Inde W for
H, K subgroups of G and W a representation of H. We can (and will) use it to
chracterise when Indg W is irreducible.

Recall that if G acts transitively on a set X then for € X there is a bijection
G/ Stabg(z)=>X given by g Stabg(x) — gz that commutes with the G-action (ie
g'(gStabg(x)) = (¢'g) Stabg () — g'gz = ¢'(g)).
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If H, K are subgroups of G we can restrict the action of G on G/H to K
K xG/H — G/H; (k,gh) — kgH.

The the union of an orbit of this action is called a double coset. The union of the
K-orbit of gH is written KgH := {kgh | k € K,h € H}.

Definition. K\G/H := {KgH | g € G} is the set of double cosets.

The double cosets K\G/H partition G.
Notice that kgH = gH if and only if k € gHg~!. Thus as a set with a K-action,
KgH=K/(KNgHg™1).

Proposition. If G, H, K as above then
Res& Ind$ 1 2 @ Ind;{Hg_lmK 1.
geK\G/H

Proof. This follows from the discussion above, together with the general facts that
md$ 1 = kG/H and that if X = |JX; is a decomposition of X into orbits then
EX 2 PkX;. O

LECTURE 14
Recall from last time,
Proposition. If G is a finite group and H,K are subgroups of G, then
ResfiIndfi1= P Indly, 1nx 1.
geK\G/H

Given any representation (p, W) of H and g € G, we can define (9p,9 W) to be
the representation of YH := gHg~! < G on the underlying vector space W given
by (9p)(ghg™") = p(h) for h € H.

Theorem (Mackey’s Restriction Formula). If G is a finite group with subgroups
H and K, and W is a representation of H then

Resfi Indfi W= P Indjgney Res,fing IW.
geK\G/H
Proof. For each double coset KgH we can define
Vy,={femdf W | f(zx)=0forall ¢ KgH}.
Then V, is a K-invariant subspace of Ind$ W since we always have (kf)(z) =
f(k=1z). Thus there is a decomposition
Resi ndg W= @ V,
geK\G/H
and it suffices to show that for each g,
V, = nd¥ , ; Resy & IW

as representations of K.
Define an injective linear map ©: V, — Hom(K, W) by O(f)(k) = f(kg). If
k' € K then

(K'O()(k) = f(k''kg) = (K f)(kg) = O(K f)(k)
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and so © € Homg (V,, Hom(K,9 W)).
Next, if ghg~! € K for some h € H,

O(f)(kghg™") = f(kgh)
= p(h™") f(kg)
= (%0)(ghg™")'O(f)(K)

Thus Im © < Ind%,, Res}%g g 9W. It remains to prove that this inclusion is an
equality. We can do this by comparing dimensions:

G
> dimV, = dimW%
geK\G/H | ‘
K
=dimW Z |9Hﬁ|K| (by the proposition)
geK\G/H
= Z dimInd% -, ; Resil, 7 IW
geK\G/H
Thus dim V; = dim IndﬁmH Res}%gH 9W as required. g

Corollary (Character version of Mackey’s Restriction Formula). If x is a character
of a representation of H then

Res& Ind% x = Z nd¥n 5 Ix-
geK\G/H

where 9 is the class function on 9H N K given by Ix(z) = x(g7'zg).

Ezercise. Prove this corollary directly with characters

Corollary (Mackey’s irreducibility criterion). If H is a subgroup of G and W is a
representation of H, then Indg 1s irreducible if and only if
(i) W is irreducible and

(ii) for each g € G\H, the two representations Resyit, ; IW and Resty g W of
H N9 H have no irreducible factors in common.

Proof.
Frob. recip.
Home(Ind% W,IndG W) = Homp (W, Res$ Ind$ W)
Mackey B
o P Homy(W,Indjin, g Resyiha gy OW)
geH\G/H
Frob. recip.

= @ HomHﬂgH(RenggH W, Resifr{]gH W)
geH\G/H

We know that Indg W is irreducible precisely if this space has dimension 1. The
summand corresponding to the coset HeH = H is Homg (W, W) which has dimen-
sion 1 precisely if W is irreducible and the other summands are all zero precisely if
condition (ii) of the statement holds. O
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Corollary. If H is a normal subgroup of G ,and W is an irreducible rep of H then
Indg W is irreducible if and only if Ixw # xw for all g € G\H.

Proof. Since H is normal, gHg~! = H for all g € G. Moreover W is irreducible
since W is irreducible.

So by Mackey’s irreducibility criterion, Indg W irreducible precisely if W 2% 9W
for all g € G\H. This last is equivalent to xw # 9xw as required.

O
Example.
G = Dg > H = (4, the rotations.
04‘1 roor2 3 Dg |1 r r2 s sr
x1|1 1 1 1 Indx; | 2 2 2 0 0
x2 |1 ¢ =1 —i Indxs | 2 0 -2 0 O
ys|l -1 1 -1 Indys |2 =2 2 0 0
xa |1l —1 =1 4 Indyxy | 2 0 -2 0 O

We see that *x1 = x1, *X2 = X4, X3 = X3, "X4 = X2
We can see directly that Ind x; and Ind x3 are reducible and Ind xyo = Ind x4 is
irreducible.

LECTURE 15
7.2. Frobenius groups.

Definition. A Frobenius group is a finite group G having a subgroup H such that
HNgHg ' = {e} for all g € G\H.

Theorem. (Frobenius) Let G be a finite group acting faithfully and transitively on
a set X. If each g € G\{e} fizes at most one element of X then

K={1}U{geG|gx#x foralzecX}

is a normal subgroup of G of order X.
Proof. For x € X, let H = Stabg(x).

We know that Stabg(gz) = gHg~!. But by the hypothesis on the action

Stabg(gx) N Stabg(z) = {e}

whenever gz # x. Thus H has |X| conjugates and G has (|H| — 1)|X| elements
that fix precisely one element of X.

But |G| = |H||X| by the orbit-stabiliser theorem, and so

[K| = [H||X] = (H| = 1)]X]| = [X]

as required. We must show that it is a normal subgroup of G.
Our strategy will be to prove that it is the kernel of some representation of G.
Suppose e # h € H and that h = gh/g~! for some ¢ € G and h' € H then
h € Stabg(x) N Stabg(gz), so gr = x and g € H. Thus

e hand i’ in H are conjugate in G if and only if they are conjugate in H.
o |[Cq(h)|=|Cu(h)| fore#he H
Now if x is a character of H we can compute Indg X:
[ X[x(e) ifg=e
Indf x(9) = { x(h)  ifg=he H\{e}
0 if g € K\{e}
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Suppose now that xi,..., X is a list of the irreducible characters of H and let
0; = Ind%, x; + xi(e)1g — xi(e) nd% 15 € R(G) for i = 1,...,r and so

xi(e) ifg=e
0.(9) = { xilh) fg=heH
xi(e) ifge K

If 6; were a character then the corresponding representation would have ker-
nel containing K. Since #; € R(G) we can write it as a Z-linear combination of
irreducible characters 8; = > n;1;, say.

On the one hand, we can compute

1 )
(6,05 = @l > 6ig)

geG

_ L S IXa®P+ 3 xie)?

G heH\{e} keK

- '|XG,|' (Z xi<h>|2)

heH
= (Xi, Xi)m =1

But on the other hand it must be >"n?. Thus 6; is £ for some character ¥ of
G. Since 6;(e) > 0 it must actually be an irreducible character.

To finish we write § = > x;(e)8; and so 8(h) = > xi(e)xi(h) =0 for h € H\{e}
by column orthogonality, and (k) = 3" x;(e)? = |H| for k € K. Thus K = ker @ is
a normal subgroup of G. O

Remarks.

(1) Any Frobenius group satisfies the conditions of the theorem. The normal
subgroup K is called the Frobenius kernel and the group H is called the
Frobenius complement.

(2) No non-character theoretic proof of the theorem is known.

(3) In his thesis Thompson proved, amongst other things, that the Frobenius
kernel must be a direct product of its Sylow subgroups.

8. ARITHMETIC PROPERTIES OF CHARACTERS

In this section we’ll investigate how arithmetic properties of characters produce
a suprising interplay between the structure of the group and properties of the
character table. The highlight of this will be the proof of Burnside’s famous p®q¢®-
theorem that says that the order of a simple group cannot have precisely two distinct
prime factors.

We'll need to quote some results about arithmetic without proof; proofs should
have been provided in the Number Fields course. We’ll continue with our assump-
tion that £ = C and also assume that our groups are finite.
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8.1. Arithmetic results.

Definition. x € C is an algebraic integer if it is a root of a monic polynomial with
integer coefficients.

Facts.

Fact 1 The algebraic integers form a subring of C

Fact 2 If x € Q is an algebraic integer then € Z (cf Numbers and Sets 2009
Example Sheet 3 Q12)

Fact 3 Any subring of C that is finitely generated as an abelian group consists of
algebraic integers.

Lemma. If y is the character of a representation of a finite group G, then x(g) is
an algebraic integer for all g € G.

Proof. We know that x(g) is a sum of n'" roots of unity for n = |G|. Since each
n*" root of unity is by defintion a root of X™ — 1 this follows from Fact 1. (|

8.2. The group algebra. Before we go further we need to explain how to make
the vector space kG into a ring. There are in fact two sensible ways to do this. The
first of these is by pointwise multiplication: f; f2(g) = f1(g)f2(g) for all g € G will
make kG into a commutative ring. But more usefully for our immediate purposes
we have the convolution product

fifa(9) =Y filgx) fala™)
z€G

that makes kG into a (possibly) non-commutative ring. Notice in particular that
with this product 0y, 0g, = 04,4, and so we may rephrase the multiplication as

(O A0) (D 1n0n) =Y (Y Aghn)Ok.
9eC heG kEG gh=r

From now on this will be the product we have in mind when we think of kG as a
ring.

We notice in passing that a kG-module is the ‘same’ as a representation of G:
given a representation (p, V') of G we can make it into a kG-module via

fo=">" f(9)r(g)(v).
geG
for f € kG and v € V. Conversely, given a finitely generated kG-module M we can
view M as a representation of G via p(g)(m) = 9,m.

Ezxercise. Suppose that kX is a permutation representation of G. Calculate the
action of f € kG on kX under this correspondance.

LECTURE 16

For the sake of the rest of the section, we need to understand the centre Z(kG)
of kGj; that is the set of f € kG such that fh = hf for all h € kG.

Lemma. Suppose that f € kG. Then f is in Z(kG) if and only if f € Cq, the
set of class functions on G. In particular dimy, Z(kG) is the number of conjugacy
classes in G.
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Proof. Suppose f € kG. Notice that fh = hf for all h € kG if and only if fO, = 0, f
for all g € G, since then

fh="Y " fh(9)0y =Y h(9)dyf = hf.

geG geG
But 0, f = f0, if and only if 9, f0,-+ = f and
(9.f0y-1) () = (94f)(xg) = (g™ xg).
So if f € Z(kG) if and only if f € Cg as required. O

Remark. The multiplication on Z(kG) is not the same as the multiplication on Cg
that we have seen before even though both have the same additive groups and both
are commutative rings.

Definition. Suppose O = {e},..., O, are the conjugacy classes of G, define the

class sums C1,...,C) to be the class functions on G so that
1 i
o = geO
0 g¢0..

We called these 0o, before. Also we'll fix g; € O; for simplicity.
We've seen that the class sums form a basis for Z(kG).

Proposition. There are non-negative integers a;j, such that C;C; = 3, a;;1Ck
fori,j ke {l,...,r}.

The a;;i are called the structure constants for Z(kG).

Proof. Since Z(kG) is a ring, we can certainly write C;C; = )" a;;xC}, for some
ik € k.
However, we can explicitly compute for g; € Oy,
(CiCy)(gr) = Y Cilgr)Ci(x™") = [{(z,y) € O; x O; | 2y = gi},
zeG
a non-negative integer. ([

Suppose now that (p, V') is an irreducible representation of G. Then if z € Z(kG)
we see that z: V — V given by 20 =" - 2(9)p(g9)v € Home(V, V).

By Schur’s Lemma it follows that z acts by a scalar A, € k on V. In this way
we get an algebra homomorphism w,: Z(kG) — k;z — A..

Taking traces we see that

dimV - X, = > 2(g)xv(9)-
geG

So

N xX91) o
w,(C;) = © |O;| for g; € O;.

We now see that w, only depends on x, (and so on the isomorphism class of p)
and we write w, = w,,.
Lemma. The values wy(C;) are algebraic integers.

Note this isn’t a priori obvious since ﬁ will not be an algebraic integer for

x(e) # 1.
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Proof. Since w, is an algebra homomorphism Z(kG) — k,
wy (Cwy (C) =Y agjewy (Ch).
k

So the subring of C gencrated by w, (C;) for i = 1,...,r is a finitely generated
abelian group. The result follows from Fact 3 above. (]

Ezercise. Show that

|G| ngz X(95 ).

Qg =
Y |CG gz HCG gj |

(Hint: use column orthogonality, the last lemma and its proof.)
8.3. Degrees of irreducibles.

Theorem. If V is an irreducible representation of a group G then dimV divides
Gl

Proof. Let x be the character of V. We’ll show that ‘(el) is an algebraic integer
and so (since it is rational) an actual integer by Fact 2 above.

)'fe') = ﬁ > x(g)x(g™)
geG

_ Z ﬁ\@lx(gi)x(gfl)

But the set of algebraic integers form a ring (by Fact 1 above) and each w, (C})

and x(g; 1) is an algebraic integer so % is an algebraic integer as required. [

FEzxzamples.

(1) If G is a p-group and x is an irreducible character then x(e) is always a
power of p. In particular if |G| = p? then, since >ox x(e)? = p?, every
irreducible rep is 1-dimensional and so G is abelian.

(2) f G= A, or S, and p > n is a prime, then p cannot divide the dimension
of an irreducible rep.

In fact a stronger result is true:

Theorem (Burnside (1904)). If (p,V) is an irreducible representation then dim 'V
divides |G/Z(G)|.

You should compare this with |O;| = |G|/|Cs(g;)| divides |G/Z(G)).

Proof. If z € Z = Z(QG) then by Schur’s Lemma z acts on V' by A.I for some
Az €k
For each m > 2, consisder the irreducible representation of G™ given by

pem" G™ — GL(VE™).
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If 2= (21,...,2m) € Z™ then z acts on VO™ via []7"; \,,I. Thusif [[]" 2 =1
then z € ker p®™.

Let Z' = {(21,.,2m € Z™ | [[/2, 2: = 1} so |Z'| = | Z|™~1. We may view p®™
as a degree (dim V)™) irreducible representation of G™/Z’.

Since |G™/Z'| = |G|™/|Z|™~! we can use the previous theorem to deduce that
(dim V)™ divides |G|™/|Z|™~ 1.

By choosing m very large and considering prime factors we can deduce the result:
if p" divides dim V then p™™ divides |G/Z|™|Z] for all m and so p” divides |G/Z|. O

Proposition. If G is a simple group then G has no irreducible representations of
degree 2.

Proof. If G is cyclic then G has no irreducible representations of degree bigger than
1, so we may assume G is non-abelian.

If |G| is odd then we may apply the theorem above.

If |G| is even then G has an element x of order 2. By example sheet 2 Q2,
for every irreducible x, x(x) = x(e) mod 2. So if x(e) = 2 then x(x) = £2, and
p(z) = £I. Thus p(z) € Z(p(G)), a contradiction since G is non-abelian simple. O

LECTURE 17

8.4. Burnside’s p?¢® Theorem.

Theorem (Burnside (1904)). Let p,q be primes and G a group of order p®q® with
a, b non-negative integers such that a +b > 2, then G is not simple.

Remarks.

(1) It follows that every group of order p®q® is soluble. That is, there is a chain
of subgroups G = Go > Gy > -+ > G, = {e} with G;11 normal in G; and
G;/Gi+1 abelian for all i.

(2) Note that |A5| = 22-3-5 so the order of a simple group can have precisely
3 prime factors.

(3) If b = 0 then we’ve seen this before; Z(G) has an element of order p which
generates a proper normal subgroup.

(4) The first purely group theoretic proof of the p®q®-theorem appeared in 1972.

(5) In 1963 Feit and Thompson published a 255 page paper proving that every
group of odd order in soluble.

The key step in the proof of the p®qP-theorem is the following:

Proposition. If G is a non-cyclic finite group with a conjugacy class O; # {e}
such that |O;| has prime power order then |G| is not simple.

Granting the Proposition we can prove the theorem as follows: if a,b > 0, then
let @ be a Sylow-g-subgroup of G. Since Z(Q) # 1 we can find g € Z(Q). Then ¢°
divides |Cz(g)|, so the conjugacy class containing g has order p” for some 0 < r < a.
The theorem now follows immediately from the Proposition.

To prove the Proposition we need some Lemmas

Lemma. Suppose 0 # o = + Yo A with all A n* roots of 1 is an algebraic

m
integer. Then |a| = 1.
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Sketch proof (non-ezaminable). By assumption a € Q(e) where € = e2™/™,

Let G = Gal(Q(€)/Q). It is known that {6 € Q(e) | o(5) = § for all 0 € G} = Q.

Consider N(a) := [[,cg (). Since N(a) is fixed by every element of G, N(a) €
Q. Moreover N(a) is an algebraic integer since Galois conjugates of algebraic
integers are algebraic integers — they satisfy the same integer polynomials. Thus
N(a) € Z.

But for each o € G, ()| = |2 > o(\;)| < 1. Thus N(a) = +1, and |a| =1 as
required. (I

Lemma. Suppose x is an irreducible character of G, and O is a conjugacy class
in G such that x(e) and |O| are coprime. For g € O, |x(g9)| = x(e) or 0.

Proof. By Bezout, we can find z,y € Z such that ax(e) + b|O| = 1. Define

_ X9 _ x(9)
“T e TR

Then « satisfies the conditions of the previous lemma and so this lemma follows. []

Proof of Proposition. Suppose for contradication that G is simple and has an ele-
ment g € G that lives in a conjugacy class O of order p".

If x is a non-trivial irreducible character of G then |x(g)| < x(1) since otherwise
p(g) is a scalar matrix and so lies in Z(p(G)) = Z(G).

Thus by the last lemma, for every non-trivial irreducible character, either p

divides x(e) or |x(g)| =0 . By column orthogonality,

0="> " x(e)x(9)-

Thus % = Zxa'fl %X(g) in an algebraic integer in Q. Thus 1% in Z the desired

contradiction. O

9. TOPOLOGICAL GROUPS

Consider S' =U;(C) = {ge C* | |g| =1} X R/Z.
By considering R as a Q-vector space we see that as a group

S'=Q/ze PQ
zeX
for an an uncountable set X.
Thus we see that as an abstract group S' has uncountably many irreducible
representations: for each A € R we can define a one-dimensional representation by

. 1 A
,O,\(627m#) — { amin H € Q
e ©we QA

Then py = py if and only if Q\ = QN. In this way we get uncountably many
irreducible representations of S! (we haven’t listed them all). We don’t really have
any control over the situation.

However, S' is not just a group; it comes with a topology as a subset of C.
Moreover S! acts naturally on complex vector spaces in a continuous way.

Definition. A topological group G is a group G which is also a topological space
such that the multiplication map G x G — G;(g,h) — gh and the inverse map
G — G; g+ g~ are continuous maps.
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FEzxzamples.

(1) GL,(C) with topology from c’.

(2) G finite — with the discrete topology.

(3) O(n) ={A € GL,(R) | ATA=1}; SO(n) ={A € O(n) | det A= 1}.
(4) Un) ={A € GL,(C) | ATA=1}; SU(n)={AcU(n)|det A=1}.
(5

) *G profinite such as Z,, the completion of Z with respect to the p-adic metric.

Definition. A representation of a topological group G on a vector space V is a
continuous group homomorphism G — GL(V).

Remarks.

(1) If X is a topological space then a: X — GL,(C) is continuous if and only if
the maps = — «;;(x) = a(z);; are continuous for all i, 5.

(2) If G is a finite group with the discrete topology. Then continous function
G — X just means function G — X.

Theorem. Every one dimensional (cts) representation of S is of the form z +— 2"
for somen € Z.

It is easy to see that the given maps are representations, we must show that they
are the only ones.

Lemma. Ifv¢: (R,+) — R is a continous group homomorphism then there is some
A € R such that ¥(x) = Az for all z € R.

Proof. Let A = 1(1). Since v is a group homomorphism, ¥(n) = An for all n € Z.
Then my)(n/m) = ¥ (n) = An and so ¢(n/m) = An/m. That is ¢(z) = Az for all
x € Q. But Q is dense in R and 1) is continuous so ¢ (z) = Az for all z € R. d

Lemma. If ¢: (R,+) — S is a continuous group homomorphism then 1(x) =
2™ for some \ € R.

Proof. Claim: if ¢: R — S! is any continuous function with ¢(0) = 1 then there
is a unique continuous function a: R — R such that a(0) = 0 and ¢ (x) = e2™(@),
(Sketch proof of claim: locally a(z) = i logt(z) we can choose the branches of
log to make the pieces glue together continuously).

Now given the claim, if ¢ is a group homomorphism and « is the map defined
by the claim we can define a continuous function R? — R by

A(a,b) := ala+b) — ala) — a(b).
Since €m0 = 4)(a + b)yp(a)*p(b)~' = 1, A only takes values in Z. Thus A
is constant. Since A(a,0) = 0 for all a we see that A = 0 and so « is a group
homomorphism. By the previous lemma we see a(x) = Az for some A € R and so
P(x) = €2 as required. O
LECTURE 18

Last time we proved

Lemma. If ¢: (R,+) — S is a continuous group homomorphism then (x) =
2™ for some A € R.

We'll now use this to prove
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Theorem. Every one dimensional (cts) representation of S* is of the form z — 2"
for somen € Z.

Proof. Let p: St — GL,(C) be a continuous representation. Since S! is compact,
p(S1) has closed and bounded image. Since p(z") = p(z)" for n € Z, it follows that
p(Sh) c St.

Now let ¢: R — S be defined by ¥ (z) = p(e***®), a continuous homomorphism.
By the most recent Lemma, p(e?™®) = v(x) = e>™** for some A € R.

Since also p(e?™*) = 1 we see \ € Z. O

Our most powerful idea for studying representations of finite groups has been
averaging over the group; that is the operation ﬁ > gec- When considering more
general topological groups we should replace Y by .

Definition. Let G be a topological group. Let C(G) = {f: G — C| f is continuous}.
Then a linear map [: C(G) — C (write [, f = [,f(g)dg) is called a Haar mea-

sure if

(i) [o1=1 (so [, is normalised so total volume is 1;
(ii) [, f(zg)dg = [, f(g)dg for all z € G (so [, is translation invariant).

FEzxzamples.
(1) It G finite, then [5 f = &1 > e f(9)-
(2) IfaG = Sl’ fo _ 1 Q”f(eie)dﬁ.

27 JO

Theorem. If G is a compact Hausdorff group, then there is a unique Haar measure
on G.

Proof. Omitted (]
We've seen a Haar measure on S* and will compute one on SU(2) later.

Corollary (Weyl’s Unitary Trick). If G is a compact Hausdorff group then ev-
ery continuous representation (p, V) has a G-invariant invariant Hermitian inner
product

Proof. Same as for finite groups: let (—, —) be any inner product on V', then

(v,w) = /G(p(g)vyp(g)w) dg

is the required G-invariant inner product. ([

Corollary (Maschke’s Theorem). If G is a compact Hausdorff group then every
continuous representation of G is completely reducible.

Proof. Same as for finite groups: Given a rep (p,V) choose a G-invariant inner
product. If W is a subrep of V then W+ is a G-invariant complement. ([l

We can use the Haar measure to put an inner product on the space Cg of (con-
tinuous) class functions:

U f) = /G F@f () dg.

If p: G — GL(V) is a continuous representation then x, := trp is a continuous
class function since each p(g);; is continuous.
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Corollary (Orthogonality of Characters). If G is a compact Hausdorff group and
(p, V) and (p', W) are continuous irreducible reps of G then

1 ifveEw

v xw) = {0 if Xv # xw-

Proof. Same as for finite groups:

(ovsxw) = /G o @ (9) dg

= dim Homg (1, Hom(V, W))
= dim Homg (V, W).

Then apply Schur’s Lemma. [

It is also possible to make sense of ‘the characters span the space of class func-
tions’ but this requires a little more analysis in the form of the Peter—Weyl theorem.

Ezample. G = S*.

We’ve already seen that the one-dimensional reps of S! are all of the form z +— 2"
for n € Z. Since S! is abelian we can use our usual argument to see that these
are all irreducible reps — given any rep p we can find a simultaneous eigenvector
for each p(g). Thus the ‘character table’ of S has rows y,, indexed by Z with
Xn(ew) — einG_

Now if V is any rep of S' then by Machke’s Theorem V breaks up as a direct
sum of one dimensional subreps and so its character xy is of the form

xv(z) = Z anz"

ne”Z

with a, non-negative integers and only finitely many non-zero. As usual a,, is the
number of copies of p,,: z — 2" in the decomposition of V. Thus we can compute

1

27
an = (Xn,XV) = ﬂ/ xv(e)e™™ do.
0

Thus
0 I 0\ —iné’ ind
0\ __ 7 —in / in
xv(e”) = ngez (277 /o xv (e e do > e,

So Fourier decomposition gives the decomposition of yy into irreducible charac-
ters and the Fourier mode is the multiplicity of an irreducible character.

Remark. In fact by the theory of Fourier series any continuous function on S! can
be uniformly approximated by a finite C-linear combination of the x,,.

Moreover the x,, form a complete orthonormal set in the Hilbert space of square-
integrable complex-valued functions on S'. That is every function f on S' such
that f027r| f(e?)]? df exists has a unique series expansion

f(eié) _ Z (1 2Trf(ei9')e—in0' d0/> eind

2
neZ 0

converging in the norm ||f|| = 5= O%\f(em)F de.
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LECTURE 19

9.1. Conjugacy classes of SU(2).
Recall that SU(2) = {A € GLy(C) | ATA=1,det A =1}.

If A= (a b) € SU(2) then since det A =1, A= = ( d b).
c d —c a

Thus d = @ and ¢ = —b. Moreover a@ + bb = 1. In this way we see that
SU(2) = {(_“b Z) |a,b€ C and |af? + b2 = 1}
which may be viewed topologically as S3 c C2 = R%.
More precisely if
H:=R-5U(2) = {(Zw f) |w, z € c} C My(C).

Then ||A||? = det A defines a norm on H =2 R* and SU(2) is the unit sphere in H. If
A€ SU(2) and X € H then ||AX]|| = ||X]]| since ||A]| = 1. So, after normalisation,
usual integration of functions on S? defines a Haar measure on SU(2).

Definition. Let 7' = {<g a(_)1> |aeC,lal = 1} ~ SYa mazimal torus in
SU(2).
0 1
Also define s = (_1 O) e SU(2)
Lemma.

(i) if t € T then sts™* =t71;
(ii) s> = —I € Z(SU(2))

0 0
(iii) Ngy@)(T) =T UsT = {<8 a_1> , (—a_l 8) |aeC,lal = 1}

Proof. All three parts follow from direct computation (exercise). O

Proposition.
(i) Every conjugacy class O in SUs contains an element of T.
(ii) More precisely. if O is a conjugacy class then ONT = {t,t=1} for somet € T
—t=t"1 if and only if t = £I when O = {t}.
(iii) There is a bijection
{conjugacy classes in SU(2)} — [—1,1]
given by A — étrA.

Proof. (i) For every unitary matrix A there is an orthonormal basis of eigenvectors
of A; that is there is a unitary matrix P such that PAP~! is diagonal. We want
to arrange that det P = 1. But we can replace P by Q = v/ det PP. Thus every
conjugacy class O in SU(2) contains a diagonal matrix ¢. Since additionally ¢ €
SU(2),teT.

(ii) If £1 € O the result is clear.

Suppose t € ONT for some t # +I. Then

O={gtg~" | g€ SU(2)}.
We've seen before that sts™! =¢71 so ONT D {t, ¢t 1}.
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Conversely, if t’ € ONT then ¢’ and ¢ must have the same eigenvalues since they
are conjugate. This suffices to see that ¢’ € {t+1}.

(iii) To see the given function is injective, suppose that %trA = %tr B. Then
since det A = det B = 1, A and B must have the same eigenvalues. By part (i)
they are both diagonalisable and by the proof of part (ii) this suffices to see that
they are conjugate.

o0
0

has image [—1, 1] the given function is surjective. O

Let’s write O, = {A € SU(2) | tr A = 2} for 2 € [-1,1]. We’ve proven that
the O, are the conjugacy classes in SU(2). Clearly O; = {I} and O_; = {-I}.
Proposition. If —1 < x < 1 then O, is homeomorphic to S>.

Proof. First we observe that O, = SU(2)/T for each —1 < x < 1. To see this it

suffices to show that T'= Cgy, <(3 )\(_)1>) for A # AL, But

a bY /A 0 [ Aa Ab
c d)\0 X' \\le Ald
A0 a b\ (X A7 1b
0 X1/ \e d) \x X/
For these to be equal for A # A~! we require b = ¢ = 0.
Next we recall that SU(2) acts on S = C U {co} by Mobius transformations:

a b Z_az—|—b
c d T ez4d

This action is transitive since for each z € C there are a,b € C such that |a|?+[b]* =

To see that it is surjective notice that % tr < 60i0> = cosfl. Since cos: R — R

and

1 and a/b = z (exercise). Then <Z _ab) <00 = a/b.
But Stabgy (2)(c0) = T so SU(2)/T = 5. O

9.2. Representations of SU(2).

Now we understand the conjugacy classes of SU(2), we’ll try to work out its
representation theory.

Let V,, be the complex vectorspace of homogeneous polynomials in two variables
z,y. SodimV,, =n+ 1. Then GL2(C) acts on V,, via

pn: GLy(C) - GL(V,)
given by

o (83)) FGo) = flas + b+ a)

C

FEzxzamples.

Vo = C has the trivial action.

V; = C? is the standard representation of GLy(C?) on C? with basis x, y.
Vo = C? has basis 22, 2y, y? then

b2

o b a? ab
02 (( d)) = | 2ac ad+bc 2bd
¢ c? cd d?



REPRESENTATION THEORY 45

Since SU(2) is a subgroup of GLs(C) we can view V,, as a representation of
SU(2) by restriction. In fact as we’ll see, the V,, are all irreducible reps of SU(2)
and every irreducible rep of SU(2) is isomorphic to one of these.

Remark. —I € Z(SU(2)) acts on V,, as —1 on if n is odd and as 1 if n is even.

Lemma. A continuous class function f: SU(2) — C is determined by its restric-

tion to T and f|r is even ie f ((S z(_)l>> =f ((Z(;l (Z))) .

Proof. We've seen that each conjugacy class in SU(2) meets T and so a class
fucntion is determined by its restriction to 7. Then evenness follows from the
additional fact that TN O = {t*'} for some t € T. O

Thus we can view the character of a representation p of SU(2) as an even function
Xp: St — C.

Lemma. If x is a character of a representation of SU(2) then x|r is a Laurent
polynomial ie a finite N linear combination of functions

<(z) O)Hz"forneZ.

»—1

Proof. If V is a continuous representation of SU(2) then ReS;U(Z) V is a continuous
representation of 7' and XRges, v is the restriction of xy to T. But we’ve proven

already that every continuous representation of T has character of the given form.
O

LECTURE 20
Write

N[z, 271 = {Z anz" | a, € N and only finitely many a,, # O}
neZ

and
N[z, 27']* = {f € N[z,27'] | f(2) = f(="1)}.
We showed last time that for every continuous representation V' of SU(2), the
character xy € N[z, 271 after identifying it with its restriction to T

The next thing to do is compute the character x,, of (pn, V;,), the representation
consisting of degree n homogeneous polynomials in = and y.

p (5 0)) i) = Gyt =iy

z

So x'y’ is an eigenvector for each t € T and T acts on V,, via

n—2
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Thus

z 0 _.n n—2 2—n —n Zn+1 B Z_(n+1) —1jev
Xn((o z1>>_z +2"E 4T 42 s — € N[z, z77]*.

Theorem. V,, is irreducible as a reperesentation of SU(2).

Proof. Let 0 # W <V, be a SU(2)-invariant subspace. We want to show that
W =1V,.
Let 0 # w =Y \i(z" %y’) € W. We claim that 2" ‘y® € W whenever \; # 0.
We prove the claim by induction on k = |[{i [ A; # 0}].

If k=1 then w is a non-zero scalar multiple of "%y’ and we’re done.

If k > 1 choose i such that \; # 0 and z € S! such that {z",2"72,... 227" 2"}
are distict complex numbers. Then

pn(<8 201>) w— 2" = 37 N (Y - ) (@i y) e W

since W is SU(2)-invariant. Now \;(2"~2 — 2"=2%) = 0 precisely if A\; # 0 and
j # 4. Thus by the induction hypothesis z7y"~7 € W for all j # i with \; # 0. It
i, n—1 1

follows that also z'y" ™" = (w—>_, 4 \;jxly"=7) € W as required.
Now we know that z*y"~* € W for some ¢. Since
S5 (4 1)er = e e ew
we can use the claim to deduce that 2™ € W. Repeating the same calculation for
i =n, we see that (z + y)” € W and so, by the claim again, z'y"~* € W for all 1.
Thus W =V,. (I

Alternative proof:
We can identify Ocosg = {A € SU(2) | 2trA = cos@} with the two-sphere

{(Tm(a))? + |b|> = sin® 0} of radius |sin@|. Thus if f is a class-function on SU(2),
since f is constant on each Ocgsy,

/ f(g)dg = — /2ﬁ1f<(ew 0 ))4 §in20do — %f( ) sin? 0 do
= — - — 7T S1N = — (& Sin .
SU(2) V= o2 0o 2 0 e T Jo

Note this is normalised correctly, since — fo sin?#df = 1. So it suffices to prove

that L 02ﬂ|XVn (e?)|?sin* 0 df = 1 for z = ela. (exercise: verify this).

Theorem. FEvery irreducible representation of SU(2) is isomorphic to V,, for some
n > 0.

Proof. Let V be an irreducible representation of SU(2) so xy € N[z, 271]¢?. Now
Xo=1,x1=2+2"1x2=22+1+272 ... form a basis of Q[z,27!]¢ as (non-f.d.)
Q-vector spaces. Thus xy = > a;x; for some a; € Q, only finitely many non-zero.

Clearing denominators and moving negative terms to the left-hand-side, we get

a formula
mxy + ZmiXi = ijXj
iel jed
for some disjoint finite subsets I,J C N and m,m; € N. By orthogonality of
characters and complete reducibility we obtain

mV@@miVi = @mjvj

i€l jeJ
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since V is irreducible and V = V; some j € J. O

9.3. Tensor products of representations of SU(2). We've seen that if V, W

are representations of SU(2) such that ResiU(Q) V= ResiU(Q) W then V = W. We
want to understand ® for representations of SU(2).

Proposition. If G = SU(2) or St and V,W are representations of G then
XVeWw = XV ' XW-

Proof. By the discussion above we only need to consider G = S*.
If V and W have eigenbases e1,...,e, and f1,..., fi, such that ze; = 2™e; and
zf; = 2™ f; then z(e; ® f;) = z™1™i(e; ® f;). So

xvew(z) = Zznﬁmj = (Z Z”) Z 2™ | = xv(2)xw ()

as required. O

Let’s compute some examples for SU(2):
Xviovi (2) = (242717 =22 + 14+ 272+ 1 = xv, +xv,
and
(a2 -2 —1y _ ,3 —1, -3 _
Xvaov, (2) = (2" +14+2")(z+2" ) =2"+22+22"" +27° = xv + X1~
Proposition (Clebsch-Gordan rule). For n,m € N,
Vo @V & n+m D Vn+m72 DD ‘/\n—m\-',-Q @ ‘/\n—m|~

Proof. Without loss of generality, n > m. Then

ZnJrl _ anfl

(Xn - xm)(2) = L1 (M4 2R ™)

Zn+m+1f2j o Zf(n+m+172j)

M-

z—z1

<.
Il
o

M-

Xn+m—2;(2)

<.
Il
=

9.4. Representations of SO(3).
Proposition. There is an isomorphism of topological groups SU (2)/{£I} = SO(3).

Corollary. Every irreducible representation of SO(3) is of the form Va, for some
n > 0.

Proof. Tt follows from the Proposition that irreducible representations of SO(3)
correspond to irreducible representations of SU(2) such that —I acts trivially. But
we saw before that —I acts on V,, as —1 when n is odd and as 1 when n is even. [
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LECTURE 21
Let’s prove the proposition from the end of last time:

Proposition. There is an isomorphism of topological groups SU (2)/{£I} = SO(3).

Proof. Consider H° = {A € H | trA = 0} = R((é O.> , (_01 (1)> , (0 é))

—1 i
equipped with the norm ||A|| = det A.
SU(2) acts by isometries on H° via (X, A) — X AX ! giving a group homomor-
phism
6: SU(2) — SO(3)
with kernel Z(SU(2)) = {£I}. Since SU(2) is compact and SO(3) is Hausdorff
the continuous group isomorphism 0: SU(2)/{£I} — Imé is a homeomorphism so
it suffices to prove that Imf = SO(3).

Now , , ,
et? 0 ai b e”® 0 _ ai e2ip
0 e ®)\-b —ai 0 €9 \—ey —qi

6
SO (60 601-9) acts on R(i, j, k) by rotation in the jk-plane through an angle 26.

FEzercise. Show that cos ¢ sm0> acts by rotation through 26 in the ik-plane,

—sinf cos@
cosf isinf
isinf cos@

Imf = SO(3).

) acts by rotation through 260 in the ij-plane. Deduce that

O

10. CHARACTER TABLE OF GLy(F;) AND RELATED GROUPS

10.1. GL2(F,). Let p > 2 be a prime, ¢ = p® a power of p for some a > 0, and F,
be the field with g-elements.

G :=GLy(F,) = {([Cl Z) | a,b,c,d € Fy and ad—bcyﬁO}.

We are going to construct the character table of G. Our main strategy will be
induction from 1-dimensional representations of large subgroups.

Let N = {(é l{) |be Fq} an abelian subgroup of G of order ¢ (a Sylow p-
a b

subgroup of G) and B = {(0 d) |beF, a,de qu} a Borel subgroup of G.

Then N is normal in B and B/N 2 F,* x F,*.
G acts transitively on F, U {oo} via Mobius transformations

a b az+b
(c d)(z)— erforzqu

cz

<ch Z) (0) =a/c
so B = Stabg(co). Thus |G| = |Bl(g+1) = q(q — 1)?(g + 1).

and
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Writing s = (0

1
1 O> we see that

606 )= 57

Hence BsN contains ¢|B| elements so must be G\B. Thus BsN = BsB and
B\G/B has two double cosets B and BsB (this is called Bruhat decomposition).

By Mackey’s irreduciblity criterion it follows that if W is an irreducible rep-
resentation of B, then Indg W is an irreducible representation of G precisely if
ResB . g W % Res 2. 5 *W. Since s swaps 0,00 € F, U {0},

*B = Stabg(0) = {((Cl 2) |a,d € F,*,c€ Fq}

S N a O —
and BN B—{(O d)}_'T'

One final important subgroup is K := {(x

Yy
where € is fixed non-square in Fy (the squaring map on I, is a group homomorphism
with kernel 1 so half of the elements of Fy are non-squares so we may fix one).
Now K U <8 8
(exercise: check this). So K = Cp2_; — a ‘non-split torus’.

6:3) | z,y € F, not both zero}

is a field with ¢? elements under usual matrix operations

If y # 0, then (; 6;/) is not diagonalisable over IF, since its characteristic

polynomial is t? — 2zt + 22 — ey? = (¢t — ) — ey? which has no roots in F,.

Next, we compute the conjugacy classes in G. Certainly if two elements of G
are conjugate they have the same minimal polynomial. In fact, we will see this is a
total invariant for conjugacy classes (exercise: prove this directly).

Suppose A € GL3(F,;) has linear minimal polynomial X — A, say, for some
A€ F,”. Then A= \. So A lives in a conjugacy class of size 1. There are ¢ — 1
such classes.

Next, if A has minimal polynomial (X — \)? for some A € F,* then there is
w € F,? such that (A — M)w # 0 but (A — A\)?w = 0. Then v := (A — Nw,w is

a basis for F,> and Av = \v, Aw = v 4 Aw so A is conjugate to <())\ }\) Now

Cq <(3 i\)) = {(g 2) |a,beFy,a# O} SO <8\ }\) is in a conjugacy class

of order %(1«1)2—1) = ¢?> — 1. There are ¢ — 1 such classes.

If A has minimal polynomial (X —\)(X — ) for some distinct A, p € F,*. Then

. . A0 ©w 0 A0 _
A is conjugate to (0 M) and to (O )\>' Moreover Cg ((0 M>) =1T. So

(6\ 2) is in a conjugacy class of order %(1(1)22_1) = q(q +1). There are (‘151)

such classes.
Finally if A has minimal polynomial (X — \)? — eu? for p € F,* then A could

A e
be <M )\>.
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Now
A en . a b a b A €LY A €L a b B
co(( ) ={C D E D D=6 ) 5))-x
SO 2 €>l\$ lives in a conjugacy class of size %@f—l) = ¢(q — 1). There are at

least q(q — 1)/2 such classes.
We’ve now covered

(q—1>+<q2—1><q—1>+q<q+1>(q‘1) ra -t g

2

elements so there are precisely ¢(¢—1)/2 classes with irreducible quadratic minimal

polynomial.
In summary
Representative Ca No of elts | No of such classes
A0
G 1 -1
(6 %) q
Al a b 9
(0 >\> <O a> ¢ -1 ¢-1
A0
T 1 a1
(o) dla+1) ()
A€
K -1 a
%) oa-1) ®

LECTURE 22

Recall our notation from last time. G = GLy(F,) > B = { (a b) } has normal

0 d
o v = { (1 )}
S () R () O (9 |

fixed non-square € in ;.
Finally s = ((1) (1)> and G = BU BsB.

The conjugacy classes in GLy(F,) are

Representative | C | No of elts | No of such classes
OO el 1 | e
<3 i) ZN ¢ -1 q—1
G [rfaen|
(2 9) | x| - ©®

Let’s warm ourselves up by computing the character table of B.



REPRESENTATION THEORY 51

If z,y € B are conjugate in G then because G = B U BsB either z is conjugate
to y in B or z is conjugate to sys~! (or both). So classes in G split into at most
two pieces when restricted to B.

The conjugacy classes in B are

Representative | Cg | No of elts | No of such classes
(())\ ?\) B 1 q—1
(())\ /1\> ZN q—1 q—1
6 7] « | @va-2

Now B/N =T = F,* xF,*. So if fp,...,0,_2 are the characters of F,* arranged
so that 6,0; = 6;;; (where + is understood mod ¢ — 1) then for every pair i, j
between 0 and ¢ — 2 we have a 1-dimensional representation of B given by

o) ((O 2)) — 0,(a)0,(d)

giving (¢ — 1)? linear reps.
Fix v a non-trivial 1-dimensional representation of F,. Then for each ¢ between
0 and g — 2 we can define a 1-dimensional representation of ZN by

o ((0 b)) — 0i(a) (D)

Defining p; to be the character of Indg ~ Pi we see that

i ((3 2)) = (g —1)8;(N),

(3 1) = X eono

So (i, i) = ﬁ ((g—1)(g—1)*+(g—1)(¢—1)1) = 1 and the character

table of B is
A0 A1 A0
0 A 0 A 0 u

aij [ 0:(N0;(N) | 0:(N0;(N) | 0:(N)0; (1)
pi | (@—1)0:(N) | —0:(N) 0
Let’s start computing some representations of G.
As det: G — F,* is a surjective group homomorphism, for each i =0,...,q—2,
Xi = 0; o det is a 1-dimensional representation of G.
Next, we consider Ind% 1 = C(F, U {o0}).
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<)\ g) acts on F, U {00} as z — z so with ¢ + 1 fixed points.

0 X

Al
( ) acts on F, U {oo} as z +— z + 1 so only oo is fixed.
) acts on F, U {oo} via z — % so 0 and oo are the fixed points.

Finally (/\ €M> acts on F, U {oo} without fixed points.
pooE€

Since G acts 2-transitively on F, U {oo}, the representation V; := Ind%1 — 1
(consisting of G-invariant functions on F, U {oo} that sum to zero) is irreducible

s (3 )+ (3] S0 (2 D)

A
XVo << 6”)) = —1. This is known as the Steinberg representation.
L€
By tensoring V; with y; we obtain ¢ — 1 representations of dimension ¢, (If you
prefer, XV = XIndg [T Xl)
Next we can induce «y; for ¢ # j. Since Res? Qi # ResSTB Souy, Indg oyj is an
irreducible character by Mackey’s irreducibility criterion.

Thus we get irreducible characters xyy,; so that xw,; ((3 g)) = (¢+1)8;(M)8;(N),

Xwis ((3 i)) = 0.8, (N), X, ((3 2)) — 6,(N)6; (1) + 6;(N6i(n) and

v (o 7)) -0

Notice that W;; = Wj;; and Wi; ® xx = Witk j+x S0 no new representations this
way.
So far we have

A0 Al A0 A€l
(0 A) (0 A) (0 u) (u A) # ofreps

Xi 0:(X)? 6;(\)? 0:(X)0: (1) 0;( N2 — ep?) q—1
Vi q0;(A)? 0 0:(A)0i (1) —0;(N —ep?) | g1
Wi | (a+ D8NG | 6,080 | 0:(0)8;(1) +6;(N)6i() 0 le=le-9)

The next natural thing to do is compute Indg ;. It has character given by
A0
mag (3 1)) =+ D= 080,
Tnd$ e Y= —am
B :u’l 0 )\ - 2 9
G 0
Ind3 ps (( M)) =0 and

A e

>

S >
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Thus
(Ind$ 115, Ind$ ;) =1 (@ + D*(g—1)%(q— 1)+ (g —1)(¢* — 1))
1 2
AU ) =4
SO Indg 1; has many irreducible factors.
LECTURE 23
The story so far:
# classes g—1 qg—1 (qgl) (g)
|ecl| 1 ¢ —1 q(g+1) qlg—1)
Cq G ZN T K
A0 A1 A0 A ep
f
o | G 1G] G Q) e
Xi 0:())* 0;(\)? 0:(A)0: (1) 0:(N* — en?) qg—1
Vi q0;())? 0 0:(X)0i (1) —0;(N —ep?) | g1
Wis | (a+ 108N | :00 N | 0:00, (1) + 0;(\6i(p) 0 (et
Ind$ 1 (% — 1)0;(\) —6;(\) 0 0 (q—1)

We also computed (Ind% s;, Tnd$ ;) = ¢.

Our next strategy is to induce characters from K. K = C2_;. Recall

o= {(; 2}

is a field with ¢? elements. If we write x + /ey for the matrix <$ Ey), then
Yy x

(x + Vey)(w + Vez) = (zw + eyz) + (22 + yw)+/e as we might expect. Moreover
(z+Vey)? = 27 + /"y =z — /ey and

det(z 4+ Vey) = (z + Vey)(x — Vey) = (z + Vey)TH.

Notice that Z

A
< K with
wi (O "

0

) = ) in our new notation.

Suppose that ¢: K — C* is a 1-dimensional character of K. Then & := Indf( %)
has character given by
®(A) = qlg — De(A), A+ Ven) = oA+ Veu) + o(A — V/ep) for p # 0 and
® = 0 away from these conjugacy classes.

Let’s compute

1
<(I)7(I)>:@ (q_

1)g*(q —
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But
S lew)+ e = > (p) + o) (e(v™") + e(v™9)
veK\Z
= > (2+e )+ e )
veK\Z
=2 - +2> e ) -2> e\

veK NEZ

But if 97! # 1 then the middle term in the last sum is 0 since (971, 1) = 0.
Since A\77! =1 for A € F, the third term is also easy to compute. Putting this
together we get (®,®) = ¢ — 1 when @971 # 1.

We similarly compute

(Ind$ s, B) = > (@® = 1)8:;(Nalg — (M)
Gl =%

= (¢ — 1)(6i,Res ¢) 7

Now, for each ¢ such that ¢9=1 # 1 (there are ¢> — ¢ such choices) there is some i
such that Resy ¢ = 6; then our calculations tell us that if 3, = md$ p; —® € R(G)
then

(BerBe) =q—20q -1+ (¢—1) =1
Since also (,(1) = ¢ —1 > 0 it follows that (3, is an irreducible character. Since

By = Bpa (and apq2 = ) we get (%) characters in this way and the character table
of GLy(F,) is complete.

# classes qg—1 g—1 (qgl) )
A0 Al A0 A€
e (0 A) (0 /\> (0 u) (u /\) # of xeps
Xi 0;(\)? 0;(\)? 0:(A)0; (1) 0:i(\° — ep?) q—1
Vi q0i(N)? 0 0:(A\)0i (1) —0:(A\* — epr?) q—1
Wiy | (g+1)8:(0)8; () | 0:(N0;(0) | 6:(N)6; (1) + 6; (M) (1) 0 (3"
By (¢ —1De(N) —p(A) 0 —(p+ M)A+ Vep) (3)

10.2. PGLy(F,).

The group PGLy(F,) := GL2(F,)/Z may be viewed as ‘the Mobius group’ on
F, U {oc} since Z is the kernel of this action of GLy on this set.

We can write down the character table of PG Ly (F,) immediately from the char-
acter table of GLy(F,): irreducible reps of PG Ly correspond 1 — 1 with irreducible
reps of G Ly with kernel containing Z.

;N2 =1for X\ e Zifi=0or q%l so writing 6 = 0%;1 and naively observ-

1
ing that (3 S\) € Z, (g\ i‘) € (é 1>Z, (8 2) € (0 S)Z and that
X

R

, we see that the character table of PGL2(F,) is

>=
=
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rep (1 0) (1 1) (1 0) ()\ e) 2 of reps
0o 1) \o 1 0 u 1 A
1 1 1 1 1 1
Xt 1 1 O() (N2 — ) 1
Vo q 0 1 1 1
VqT—l q 0 0(1) —0(\% —¢) 1
Wi q=1—i) | (@+1) 1 0; (1) +0; (1) 0 [1;73
Be (¢—1) -1 0 —(p+ M)A+ Ve) o

where in the last row we require RGSIZ( ¢ =150 @it =1 but as before @71 £ 1.
These two conditions are equivalent to 971 = 1 and ©? # 1 so there are g+1—2 =
g — 1 such choices. Since 3, = B,« we see that there are %1 such characters as
claimed.

The conjugacy classes still need to be more carefully computed though. The
first two columns are fine. In each case there is precisely one conjugacy class of this
form.

1 0 1 0

In PGLy(Fy) the elements ( ) Z and < 1

0 u 0 p
can also see they are conjugate by staring at the character table and remembering
the characters span the space of class functions). There is a special case when

) Z are conjugate via s (we

1

1
p = —1 since then p = p~+. Thus we get one class ( 0 ) Z with centraliser

0 -1

1 0
(T, s)/Z and % classes with representatives (0 j:l) Z and centralizer T'/Z.
W

Similarly in PGLy(F,) the elements + ((1) (6)) are conjugate via (_01 ?)

(again their conujugacy can also be established by considering the character ta-

-1
ble) so these are representatives of a single class with centraliser (K, ( 0 (1)) )/ Z

. . . . +A
and for each X\ # 0 there is a conjugacy class with representatives < 1 i€A> and

centralizer K/Z. there are q—;l of these classes.

So we now have 7 types of conjugacy classes with 1,1,1,1, ‘I;QB, q—;l classes of the
different types. Notice a correspondance between these numbers and the number

of representations of each type.

LECTURE 24

10.3. PSLy(F,). We see from the character table of PGL2(F,) that it has an index
2 normal subgroup given by ker x,_12. This subgroup is the image of SLy(F,) —
PGLs(F,) so is isomorphic to SLy(F,)/{£I}. We call it PSLy(FF,). It has order
a(g®~1)

\QNhat happens next depends on whether or not —1 is a square in ;. We know
that (—1) is a square if and only if (1)*=" =1 if and only if ¢ =1 mod 4.

Let’s consider the case that ¢ = 1 mod 4 and write ¢ for some square root of
—1.
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Ezercise. Show that the following table describes the conjugacy classes of PSLo(Fy)

10 11 1 € i 0 uwo 0 A e
rep , 1
0 1 0 1 0 1 0 —i 0 u [T
# classes 1 1 1 1 5 !t
. 2 2
size of class 1 et -t o L alg+1) | ql¢—1)
Restricting the character table of PGLy(F,) to PSLy(F,) gives
1 0 1 1 1 e i 0 nw 0 A€l
1 1 1 1 1 1 1 1
Vo q 0 0 1 -1 1 1
Wig-1-5 | (¢+1) 1 1 20;(=1) | 0;(u*) +0;(n™?) 0 e
Be (¢—1) -1 -1 0 0 —(p+ o)\ —ep?) | It

©7)

To see the number of reps of each type observe that when restricted to PSLy(F,),
Wj,qflfj = W%*j,%_hw’ and ﬂ%’ = ﬂw—l.

If H < G is an index 2 subgroup and x is an irreducible character of G then

<Resg X, Res% X) < 2 with equality if and only if x(g) = 0 for all ¢ € G\H. (Proof:

(Resx,Resx) = % > e IX(R)[> < 2(x, x) with equality precisely when claimed.)

Ezercise. Deduce that 1,V and 3, are irreducible as reps of P.Sy(F,) and Wj 4—1_;
is irreducible whenever i # %1.

Thus we have 1 + 1 + %1 + % irreducible characters already and WqTfl 3azL
splits into the remaining two irreducible characters. Use column orthogonality to
see the two characters both have degree q;—l and so complete the character table.
Deduce that PSLy(F,) is simple for ¢ =1 mod 4.

Repeat everything for ¢ = 3 mod 4 and deduce PSLy(F,) is always simple for
q=5.




