1. Find all the characters of S_5 obtained by inducing irreducible representations of S_4. Use these to reconstruct the character table of S_5. Then repeat, replacing S_4 by the subgroup $\langle (12345), (2354) \rangle$ of S_5 of order 20.

2. Recall the character table of D_{10} from sheet 2. Explain how to view D_{10} as a subgroup of A_5 and then use induction from D_{10} to A_5 to reconstruct the character table of A_5.

3. Let H be a subgroup of a group G. Show that for every irreducible representation (ρ, V) of G there is an irreducible representation (ρ', W) of H such that ρ is an irreducible component of $\text{Ind}^G_H W$.

Deduce that if A is an abelian subgroup of G then every irreducible representation of G has dimension at most $|G/A|$.

4. Obtain the character table of the dihedral group D_8 by using induction from the cyclic group C_4; you will want to split into two cases according as m is odd or even.

5. Prove that if H is a subgroup of a group G, and K is a subgroup of H, and W is a representation of K then $\text{Ind}^G_K W \cong \text{Ind}^H_K W$.

5. Calculate S^2V and Λ^2V for the two-dimensional irreducible representations of D_8 and of Q_8. Which has the trivial representation as a subrepresentation in each case?

7. Let $\rho: G \to \text{GL}(V)$ be a representation of G of dimension d.

 (a) Compute $\dim S^nV$ and $\dim \Lambda^nV$ for all n.

 (b) Let $g \in G$ and $\lambda_1, \ldots, \lambda_d$ be the eigenvalues of $\rho(g)$. What are the eigenvalues of g on S^nV and Λ^nV?

 (c) Let $f(t) = \det(tI - \rho(g))$ be the characteristic polynomial of $\rho(g)$. What is the relationship between the coefficients of f and χ_{Λ^nV}?

 (d) What is the relationship between $\chi_{S^nV}(g)$ and f? (Hint: start with case $d = 1$).

8. Let $G = S_n$ act naturally on the set $X = \{1, \ldots, n\}$. For each non-negative integer r, let X_r be the set of all r-element subsets of X equipped with the natural action of G, and π_r be the character of the corresponding permutation representation. If $0 \leq l \leq k \leq n/2$, show that

 $$\langle \pi_k, \pi_l \rangle_G = l + 1.$$

Deduce that $\pi_r - \pi_{r-1}$ is a character of an irreducible representation for each $1 \leq r \leq n/2$. What happens for $r > n/2$?

9. Suppose $\rho: G \to \text{GL}(V)$ is an irreducible representation of G with character χ. By considering $V \otimes V$, S^2V and Λ^2V show that

 $$\frac{1}{|G|} \sum_{g \in G} \chi(g^2) = \begin{cases} 0 & \text{if } \chi \text{ is not real-valued} \\ \pm 1 & \text{if } \chi \text{ is real valued}. \end{cases}$$

Deduce that if $|G|$ is odd then G has only one real-valued irreducible character.

10. Suppose that V is a faithful representation of a group G such that χ_V takes r distinct values. Show that each irreducible representation of G is a summand of $V \otimes^n$ for some $n < r$.

 (Hint: Assume for contradiction that $\langle \chi_W, \chi_V \otimes^n \rangle = 0$ for some irreducible representation W.)

12. Show that if V is an irreducible representation of a group G then (up to rescaling) V has only one G-invariant Hermitian inner product.

Comments and corrections to S.J.Wadsley@dpmms.cam.ac.uk.