1. Let \(\rho \) be a representation of a group \(G \). Show that \(\det \rho \) is a representation of \(G \). What is its degree?

2. Let \(\theta \) be a one-dimensional representation of a group \(G \) and \(\rho: G \to GL(V) \) another representation of \(G \). Show that \(\theta \otimes \rho: G \to GL(V) \) given by \(\theta \otimes \rho(g) = \theta(g) \cdot \rho(g) \) defines a representation of \(G \). If \(\rho \) is irreducible, must \(\theta \otimes \rho \) also be irreducible?

3. Suppose that \(N \) is a normal subgroup of a group \(G \). Given a representation of the quotient group \(G/N \) on a vector space \(V \), explain how to construct an associated representation of \(G \) on \(V \). Which representations of \(G \) arise in the way?

Recall that \(G' \) is defined to be the normal subgroup of \(G \) generated by elements of the form \(ghg^{-1}h^{-1} \) with \(g, h \in G \). Show that the 1-dimensional representations of \(G \) are precisely those that arise from 1-dimensional representations of \(G/G' \).

4. Let \(\rho: \mathbb{Z} \to GL_2(\mathbb{C}) \) be the representation defined by \(\rho(1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \). Show that \(\rho \) is not completely reducible.

By a similar construction, show that if \(k \) is a field of characteristic \(p \) there is a two dimensional \(k \)-representation of \(C_p \) that is not completely reducible.

5. Let \(C_n \) be the cyclic group of order \(n \). Explicitly decompose the complex regular representation \(\mathbb{C}C_n \) as a direct sum of irreducible subrepresentations.

6. Let \(D_{10} \) be the dihedral group of order 10. Show that every irreducible \(\mathbb{C} \)-representation of \(D_{10} \) has degree 1 or 2. By describing them explicitly, show that there are precisely four such representations up to isomorphism. Show moreover that for each such representation it is possible to choose a basis so that all the representing matrices have real entries.

7. What are the irreducible real representations \(\rho: C_n \to GL(V) \) of a cyclic group of order \(n \)? Compute \(\text{Hom}_\mathbb{R}(V, V) \) in each case. How does the real regular representation \(\mathbb{R}C_n \) of \(C_n \) break up as a direct sum of irreducible representations?

8. Write down a presentation of the quaternion group \(Q_8 \) of order 8. Show that (up to isomorphism) there is only one irreducible complex representation of \(Q_8 \) of dimension at least two. Show that this representation cannot be realised over \(\mathbb{R} \) and deduce that that \(Q_8 \) is not isomorphic to a subgroup of \(GL_2(\mathbb{R}) \).

Find a four-dimensional irreducible real representation \(V \) of \(Q_8 \). Compute \(\text{Hom}_G(V, V) \) in this case.

9. Suppose that \(k \) is algebraically closed. Using Schur’s Lemma, show that if \(G \) is a finite group with trivial centre and \(H \) is a subgroup of \(G \) with non-trivial centre, then any faithful representation of \(G \) is reducible after restriction to \(H \). What happens for \(k = \mathbb{R} \)?

10. Let \((\rho, V)\) be an irreducible complex representation of a finite group \(G \). For each \(v \in V \), show that the \(\mathbb{C} \)-linear map \(CG \to V \) given by \(\delta_g \mapsto \rho(g)(v) \) is \(G \)-linear and deduce that \(V \) is isomorphic to a subrepresentation of \(CG \). What is \(\dim \text{Hom}_G(CG, V) \)?

11. Let \(G \) be the subgroup of the symmetric group \(S_6 \) generated by \((123), (456)\) and \((23)(56)\). Show that \(G \) has an index two subgroup of order 9 and four normal subgroups of order 3. By considering quotients show that \(G \) has two complex representations of degree 1, and four pairwise non-isomorphic irreducible complex representations of degree 2, none of which is faithful. Does \(G \) have a faithful irreducible complex representation?

12. Show that if \(\rho: G \to GL(V) \) is a representation of a finite group \(G \) on a real vector space \(V \) then there is a basis for \(V \) with respect to which the matrix representing \(\rho(g) \) is orthogonal for every \(g \in G \). Which finite groups have a faithful two-dimensional real representation?

Comments and Corrections to S.J.Wadsley@dpmms.cam.ac.uk.