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1 Introduction

In [3] Bieri and Strebel defined a geometric invariant X for finitely generated
modules over the group algebras of finitely generated abelian groups. They
used this to define a criterion for when metabelian groups are finitely presented.
This invariant was further developed by Bieri, Strebel and Groves and has many
interesting applications. In [2] Bieri and Groves showed that when the group
algebra is defined over a Dedekind domain the complement of ¥ must be a closed
rational spherical polyhedral cone.

In [5] and [6] Brookes and Groves defined a similar invariant A for modules
over the crossed product of a division ring by a free finitely generated abelian
group. Such a crossed product is often known as the (coordinate ring of) the
non-commutative torus since in the special case where it is commutative it is
the coordinate ring of an algebraic torus. If in the commutative case we take the
complement of A and identify points that differ by a positive scalar multiple we
obtain ¥. Brookes and Groves were unable to prove that their invariant must
be a rational polyhedral cone, although using the methods of [2] they do prove
a weaker version of the result; they show that for any finitely generated module
M, A(M) must contain a rational polyhedral cone A*(M) of dimension equal
to the Gelfand—Kirillov dimension of M and moreover that the complement
A(M)\A*(M) must be contained inside a rational polyhedral cone of strictly
smaller dimension.

In this paper we use Grobner basis methods to prove the following theorem:

Theorem A. If DA is a crossed product of a division ring D by a free finitely
generated abelian group A, then, for all finitely generated D A-modules M, A(M)
is a closed rational polyhedral cone in Hom(A,R).

To make the Grébner basis methods work we first construct a skew poly-
nomial ring with a ring homomorphism onto our crossed product. We then
construct Grobner bases for left ideals in these skew polynomial rings and use
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them to show that A must always be polyhedral as required. We may view
the skew polynomial rings as deformations of the crossed products analogous to
those deformations made when studying quantum groups or quantum envelop-
ing algebras.
Given a subset S of R” and a point z of S, the local cone of S at x is defined
as
LC,(S)={y € R*|3ep > 0 s.t. Ve € (0,&] z+ €y € S}.

In [8] Brookes and Groves show that given a module M and x € A*(M),
LCy(A™(M)) = A*(gr*(M))

where grX(M) denotes the associated graded module of M with respect to a
non-trival y-filtration. We now prove:

Theorem B. If DA is a crossed product of a division ring D by a free finitely
generated abelian group A, then, for all finitely generated D A-modules M and
for each x € A(M)

LCx(A(M)) = A(gr¥(M)).

This means that if M is a module such that the Gelfand—Kirillov dimension
of M is equal to the Gelfand-Kirillov dimension of grX(M) for each x € A(M)
then A(M) is a homogeneous polyhedron and so A(M) = A*(M).

In [12] we are able to show that grX(M) does always have the right dimension
for cyclic D A-modules of codimension 1 over DA. We then use the techniques of
Bieri and Groves in [2] to show that A(M) is a homogeneous polyhedron for all
finitely generated pure modules M; that is those modules with the property that
every non-zero submodule has the same dimension. This leads to a simplification
of many of the results of Brookes and Groves in [6], [7] and [8].

2 Preliminaries

2.1 Filtrations and Gradings

Suppose that D is a division ring. By a D-algebra we will mean a ring R
equipped with a ring homomorphism from D to R giving R a natural left D-
module structure.

By an R-filtration of a D-algebra R, we will mean a set

{F.Rlu € B}
such that D C FyR, F,R C F, R whenever v < p,
R=|JF,R
HER

and
F,RF,RCF, R

for each p,v € R. We will write F, R for Ups, VR
Given a filtered D-algebra R and a left R-module M, an R-filtration of M
is a set
{FuM]|p € B}



of D-submodules of M such that F,M C F, M whenever v < pu,

M=|]JF,M
pER

and
F,RFMCF, .M

for each p,v € R. Again we write F;f M for ., F, M.
We define the associated graded ring of an R-filtered ring R by

g’ (R) = @ F.R/F,R.
RER

The multiplication in grf(R) is given on homogeneous elements by

(21 +FJ_1R)(.’L'2 +FJ2R)=$1$2+F+ R

p1tpe

and extended linearly. Given z € R we write 0¥ (2) = z + F/ R € gr (R), the
symbol of z, when = € F,R but x ¢ F,/R.

Similarly we define the associated graded module of an R-filtered R-module
M

ng(M) = @FuM/F,j_M;
HER

and o (m) = m + FfM € gr¥ (M), the symbol of m, for m € F,M\F;}M.
This is naturally a grf (R) module with action on homogeneous elements given
by

(z+FiRYm+F M)=2em+F!, M

pa1tpe
forz e Fy,Rand m € F,, M.
Given a monoid G and a ring R we say that R is G-graded if R decomposes
as a direct sum of additive subgroups

R=PR.
z€G

with Ry Ry C R, for all z,y € G.
Notice that the associated graded ring of an R-filtered D-algebra is R-graded
when we think of R as a monoid with its usual addition.

2.2 Gelfand—Kirillov dimension

Suppose that R is a finitely generated D-algebra with finite generating set X
such that Dz = zD for each x € X, we set V C R to be the D-vector space
spanned by X. Then we may define

dx(n) = dimp (2 V">
=0
We then define the GK-dimension of R over D by

GKp(R) = limlog,, dx (n).



The proof of Lemma 1.1 of [9] tells us that this definition is independent of the
choice of generating set X.

Similarly given a finitely generated left R-module M with finite generating
set F', we may define

dx r(n) = dimp (Z V’F)
=0
and the GK-dimension of M over D by
GKD(M) = MIOgn dX’F(TL)

again this is independent of the choice of F' and X by the proof of Lemma 1.1
of [9].

It is possible for the GK-dimension of a finitely generated algebra to be
infinite; consider the free associative algebra on two generators for example.
However in the rings we consider it always will be finite. For commutative
algebras it agrees with the usual dimension function.

2.3 Polyhedral cones

We say a subset of R" is a convez polyhedral cone if it can be written as the
intersection of finitely many closed or open linear half spaces in R®. The di-
mension of a convex polyhedral cone S is defined to be the dimension of the
subspace spanned by S and written dim(S). A convex polyhedral cone is said
to be rational if each of the defining half spaces have boundaries induced from
a subspace of Q".

A subset A of R™ is said to be a rational polyhedral cone if it can be written
as a finite union

A=5U---USg

of rational convex polyhedral cones. The dimension of A, dim(A) is defined
to be max(dim(S;)). A polyhedral cone A is said to be homogeneous if it may
be written as a finite union of rational convex polyhedral cones of the same
dimension.

2.4 Crossed products

We say that a G-graded ring R is strongly G-graded if R,R, = R, for all
z,y € G.

If G is a group with identity element e, then we say that a G-graded ring
is a crossed product of R, by G, written R.G, if R, contains a unit Z for each
z €@G.

Given a crossed product of a ring R by a group G, a typical element «a of
RG may be written uniquely as a finite sum

a= Zg‘m
i

with r; non-zero elements of R, and g; distinct elements of G. The set {g;} is
called the support of a, and is written supp(a).



Given a subgroup H of G, RH = {a € RG|supp(a) C H} is a crossed
product of R by H. If H is normal in G then we may consider RG as a crossed
product of RH by G/H.

We now recall the definition by Brookes and Groves of an invariant for
modules over rings of the form DA and some of their results.

Given a group homomorphism x from A to R we may define FXD A to be the
D-linear span of {a € A|x(a) > p}. This defines an Refiltration of DA called
the x-filtration of DA.

We say that an Refiltration {F, M} of a left DA-module M with respect to
the y-filtration of DA is a x-filtration of M.

A xfiltration {F,M} of a DA-module M is said to be trivial if M = F, M
for some p € R.

Definition. Given a DA-module M, A(M) is the subset of Hom(A,R) such
that x € A(M) precisely if there is a non-trivial x-filtration of M or x = 0.

Proposition 2.1 (Proposition 2.1 of [5]). Suppose that M is a left DA-
module with finite generating set X. The following are equivalent for x €
Hom(A4, R)\0.

1. x ¢ A(M);

2. the x-filtration of M given by F\,M = FXDA.X is trivial;
3. M is generated by X over a Noetherian subring of FyDA;
4. M is generated by X over FFDA;

5. for each x € X, there exists « € DA such that a.x = 0 and o (a) = 1.

Lemma 2.2 (Corollary 2.2 of [5]). Suppose that
0-L—+M-—-N=0

is a short exact sequence of finitely generated D A-modules. Then

A(M) = A(L) U A(N)

2.5 Strongly graded skew polynomial rings

A strongly graded skew polynomial ring in n variables over a division ring D is
a strongly N"-graded ring, R, such that each component has dimension 1 as a

D-module, i.e.
R = @ Dr,
a€EN?
where the r,’s are non-zero elements of R, such that we have Dr, = r,D and
Dry.Drg = Drop for each a, f € N*.
Given an element 7 of R we will define the support of r to be the set of « in
N” such that the component of r in R, is non-zero.



Lemma 2.3. If R is a strongly graded skew polynomial ring in n variables over
D then there is a sequence D = Ry, Ry, ..., R, = R of subrings of R such that
each R; is a strongly graded skew polynomial ring in i variables over D with
elements z;11 € R;i11 and automorphisms o; € Aut(R;) with the property that

TTiy1 = .’ll'z'+10i(7') €ER
for each r € R; and such that the ring generated by R; and x;11 is Riy1.
Note this lemma permits us to use the following evocative notation:

R= @Dxa

a€ENn
We will call the elements 1.x* monomials in R, where x* denotes the product

.- z2 in that order.

Proof. We will write e; to denote the element of N* whose i-th entry is 1 and

whose other entries are all zero; so N* is generated as a monoid by e, ..., e,.
For notational convenience in this proof we will write N* only to mean the
submonoid generated by e, ..., e;. We set
R, = @ Dra
a€N?

It is easy to see that R; is a subring of R that is a strongly graded skew polyno-
mial ring in 4 variables over D and that R; 1 is generated by R; and z;41 = 7,
for each i.

It remains to prove that there is an automorphism o; of R; such that rz;; =
x;y104(r) for each r € R;. If r € R; then it may be written as ZaeN,- doTe With
do € D for each a. As R;;1 is strongly graded, for each a € N there is a
d/, € D such that

da’l“am‘“_l = mi+1d:1Ta-

Now rzit1 = Tit1 ) aeni @aTa, SO there is certainly a map o; from R; to it-
self with the required property. It now just remains to prove that o; is an
automorphism. This is an easy check. [l

Corollary 2.4. Any strongly graded skew polynomial ring in n variables over
a division Ting is a Noetherian domain.

Proof. Just iteratively apply Theorem 1.2.9 of [10].

3 Grobner bases for skew polynomial rings

In this section we develop a theory of Grébner bases for strongly graded skew
polynomial rings. From now on we assume R is a strongly graded skew polyno-
mial ring in n variables over D. As observed in section 2.5, Lemma 2.3 enables
us to choose 21, ...,2, € R and then adopt the notation R = @y~ Dx*.
Given x € Hom(N", R), the set of monoid homomorphisms from N* to R, we
define an R-filtration of R: F)XR is the D-module spanned by those monomials
x% such that x(a) > p. We will often just write x to denote this filtration



instead of FX, so for example grX(M) = gr¥™ (M). Notice that grX(R) = R for
all such x.

We will say two monoid homomorphisms x, x' € Hom(N*, R) are equivalent
with respect to a left ideal I precisely if grX(I) = grX' (I).

We aim to prove the following:

Theorem. If I is a non-zero left ideal of R then Hom(N™,R) has finitely many
equivalence classes with respect to I and each class is a convex polyhedron in
Hom(N",R) = R".

We begin with some definitions. Suppose that < is a total ordering on N"

and that r =3 -\ AaX®.

Definition. The Newton diagram of r is the set N(r) = {a|\, # 0}. If
r # 0 the privileged exponent of r with respect to < is exp (r) = max«(N(r)).
Finally given a left ideal I of R we define

Exp. () i= {exp ()0 # 1 € I}.

The privileged exponent should be thought of as a generalisation of the
notion of degree for a polynomial in one variable. Whenever we talk about the
privileged exponent of 0 we will mean a formal symbol that is smaller than every
element of N".

In order to develop the theory of Grobner bases we need to have a well
ordering of the monomials in R to ensure that we have a process of reduction that
stops. As the orderings that we are interested in, those coming from elements of
Hom(N",R), are not well orderings in general, we follow Assi, Castro-Jiménez,
and Granger in [1] and work inside R[t] and associate our given ordering with
an ordering of the terms in there. Given @ € N* we write |a| = )" a; for the
total degree of . We say that a total ordering < on N is compatible with sums
if whenever a, 8 and «y are in N* with a < 3, we have a +v < 4. Whenever
< is a total ordering on N that is compatible with sums, we define a total
well-ordering <" on N**1 that is also compatible with sums as follows:

A . . either |a| + k < |8] +1

(a, k) <™ (B,1) if and only if { or (ja| + k = || + 1 and & < B).

Notice that R[t] is a strongly N**!_graded skew polynomial ring and so has
a notion of a Newton diagram and a privileged exponent with respect to <”.
It also possesses an N-grading by total degree. When we say an element p of
RJt] is homogeneous we mean with respect to this total degree grading and will
write deg(p) to mean this degree.

Given a filtration F,, R of R we may define a filtration of R[t] by F,(R[t]) =
(FLR)H]

The following proposition is the key to making the Grébner basis machinery
work.

Proposition 3.1 (Division algorithm). Let < be a total ordering of N* com-
patible with sums. Suppose that {r1,...,7} is a set of homogeneous elements
in R[t]. For each p € R[t] there exists (q1,-..,qk, ) € R[t]**! such that

k
Lp=Y,qri+r



2. expn(giri) <" exp_n(p) for each i
3. N(r)nUL, (expon (i) + NvHL) = 0.

Proof. We define the ¢;’s and r recursively as follows: we begin by setting
g = 0 for each i and setting r = p. If N'(r) N UL, (exp_n(r;) + N"*1) is non-
empty then we let a be its maximal element and let j be the least integer such
that @ € (expon(rj) + N**1). There exists 3 € N*™! and d € D such that
a=f+expon(r;) and a € N (r — dxPr;). We now replace g; by ¢; + dx” and
then r by p — Zle ¢;r; and continue.

This process terminates since at each stage the maximal element of

N(r)n | ) (expen(ri) + N*T)

-

1

k3

is smaller than before and <" is a well ordering. Notice that at each stage
expn(giri) <" exp_n(p) for each i, since on each iteration exp_n(dx’r;) <
expn(r) < expon(p). O
Remark. If we begin with a homogeneous p then each of the ¢;’s and the r
resulting from the division algorithm will also be homogeneous, and for each i,
deg(p) = deg(r) = deg(q;)+deg(r:), since on each iteration deg(x”)+deg(r;) =
deg(r) = deg(p).

We are now ready to define a Grébner basis

Definition. Given a left ideal I in R we say that a finite subset {r1,...,7x} of
I is a Grobner basis with respect to < if Exp_(I) = Ule (exp(rs) + N*).

We say that o Grébner basis {r1,...,rr} is minimal if for all pairs of distinct
(D €XpP< (Tz) ¢ €XpP< (Tj) + N™.
We say that a Grébner basis {r1,...,7} is reduced if for all pairs of distinct

i,4, N(ri) N (exp(r;) + N*) = 0.
We say that a Grébner basis is homogeneous if it consists of homogeneous
elements with respect to the total degree grading.

We continue by showing that a homogeneous Grébner basis for an ideal
of R[t] is a generating set and that every graded ideal with respect to the
total degree grading (we will just call such a graded ideal from now on) has a
homogeneous Grobner basis.

Lemma 3.2. If J is a graded left ideal in R[t] and {r1,...,7} is a homogeneous
Grébner basis for J with respect to <", then

k
J = Rt]r;.
i=1
Proof. Let p € J. By the division algorithm there exist ¢1,...,q; and r in R[t]
such that p = °r_, giri +7 and N'(r) NExpx (J) =0. Butr € J,s0r =0. O

Proposition 3.3. Every non-zero graded left ideal, J, in R[t] has a homoge-
neous reduced Grébner basis.



Proof. Let J be the left ideal in R[t] generated by the set of x* for a €
Exp_x(J). As R[t] is Noetherian, J has a finite generating set of monomi-
als each of which occurs as the privileged exponent of some r € J. Since J
is graded these elements may be chosen to be homogeneous. Thus J has a

homogeneous Grobner basis {r1,...,7;}, say.
Now suppose that no homogeneous Grébner basis for J has fewer than k
elements. It follows that {ri,...,7} is actually a minimal Grébner basis: if

expn(ri) € expen(r;) + N1 for some distinct pair 4,5, then Exp_n(J) =
Uizi(expon (1) + N*1), contradicting the minimality of k.

Beginning with our minimal homogeneous Grébner basis {r1, ..., 7} we now
construct {si,...,sx} a homogeneous reduced Grébner basis for J inductively
as follows:

Using the division algorithm to divide r; by {s1,...,8;-1,7t1,--.,7%} for
each ¢ < k in turn we may find ¢;; and s; such that

T = Z(Hjsj + Z qijTj + 8i

j<i j>i
and
N(si) N [ (J(expan(s) + N U J(expan(ry) + N7 | = 1§
J<i Jj>i
At each stage, {s1,...,8i—1,74,---,7k} is a minimal Grobner basis for J

since, as we will see, exp_n(s;) is the same as exp_»(r;). Thus

expen | D aijsi+ D aijry | <" expon(ri)
j<i i>i
and so exp_n(s;) = expn(r;). In particular {si,...,s} is a homogeneous
Grobner basis for J. By construction

N(si)N U expn(sj) + NP | = 0.
J#i
for each i, so {s1,...,8} is reduced as required.
[l

Lemma 3.4. Let J be a non-zero graded left ideal of R[t]. Write J,, for the
mth component of J, a subset of R[t],,, the m* component of R[t] with respect
to the total degree grading. For any total ordering < of N* that is compatible
with sums

Hjy(m) := dimp(R[t|m/Im) = |{a € N”+1\Exp<h(J)||a| =m}|.

Proof. Using Proposition 3.3, pick a Grobner basis {r,...,r;} for J. Using
the division algorithm we see that for all p € R|[t],, there exist ¢i, ..., gk, such
that for each i, ¢;r; € Jm, p =Y giri + 7 and N (r) C N"*'\Exp_x(J).

It follows that the image of {x*||a| = m and o & Exp_»(J)} in R[t]m/Jm is
a spanning set for R[t],,/Jm as a D-vector space. Since the privileged exponent
of every element of J,,, must lie in Ule(exp <(ri) + N"*1) the set is also linearly
independent. [l



Theorem 3.5. Let J be a non-zero graded left ideal of R[t] with respect to the
total degree grading. The set of Exp_n(J) is finite as < ranges over all the total
orderings of N* that are compatible with sums.

Proof. By Lemma 3.4 it is sufficient to prove that the set of subsets E of N*+1
such that E + N**! = E and H;(m) = |[{a € N*™'\E||la] = m}| is finite.
Suppose for contradiction that there is an infinite sequence (E;);>1 of distinct
sets of this type.

Let k; be the minimal integer such that the k!® component J, is non-zero.
Then there is element a; € N*t! of total degree k; such that o lies in infinitely
many of the E;. Indeed, by passing to a subsequence E;; if necessary we may
assume that «; lies in each F;.

It follows that S; := a; + N*+! C E; for all i. So there is a ky least such
that

Hy(ks) # [{o € N""1\S1||a| = k2}.

Now there is an element as € N*t1 of total degree ky such that ay lies in
infinitely many of the E; but not in S;. Again by passing to a subsequence if
necessary we may assume that Sy := S;U(ap +N*"*1) C E; for all i. Continuing
in this way we may construct an infinite strictly ascending chain of subsets S;
of N1 such that S; + N*t! = §; for each i. This is impossible. O

We now fix a total well ordering < on N” that is compatible with sums. Given
an element xy € Hom(N", R), we define a total ordering <, on N"* compatible
with sums as follows:

a <, fif and only if (x(a) > x(B)) or (x(a) = x(8) and a < B).

Notice that the inequality sign here is the opposite of what might be ex-
pected. This is to retain consistency with other notation. Also notice that <,
is compatible with sums because < and x are both compatible with sums.

Recall that for each left ideal J in R[t], grX(J) denotes the associated graded
ideal of J with respect to the x-filtration on R[t] that comes from the y-filtration
on R and that for each p in RJ[t], oX(p) denotes the symbol of p with respect to
this filtration.

Definition. Let h be the map from R to R[t]

h ( > ,\axa> = ) Aathlolxe

aEN™ aEN™

where k = max{|a||Aq # 0}.
Let H be the ring homomorphism from R[t] to R given by evaluation of t at
1.

We will also, by an abuse of notation, use H to denote the map N*+1 to N*
given by projecting onto the first n terms.

Notice that each element of the image of h is homogeneous and H o h = idg,
and so if I is a left ideal of R then R[t]h(I) is a graded left ideal of R[t] and
H(R[t]h(I)) =I.

Also notice that H(oX(p)) = oX(H (p)) for each homogeneous p € R[t].

Lemma 3.6. If {r1,...,rr} is a homogeneous Grobner basis for a graded left
ideal J of R[t] with respect to <%, then grX(J) = Zle R[t]oX(r;). Moreover

10



{oX(r1),...,0X(rK,)} is a homogeneous Grobner basis for grX(J) with respect to
<h.
Proof. Let p € J be homogeneous. We define a sequence p; as follows:
Let pg = p. For i > 1, let p; = pi—1 — (d;x%r;;) where 1 < j; < k and
a; € N1 are chosen such that exp_u(rj,) + & = expn(p;—1) and d; € D
X X
such that exp_n(p;) <! exp_n(pi-1). We may make these choices because
X X
expn (J) = U(expon (i) + N1, since {ry,...,r;} is a homogeneous Grobner
X X
basis for J.
Since we chose < to be a well ordering of N, there is a least m such that

x(exp. (H(pm))) > x(exp. (H(po))). Then

Zd X aX(r;,) ZR[t]ax ;).

Finally, notice that by construction

expn (0X(p)) = exp<;(p) = exp<;(7‘j1) + a1 € expen(0X(ry,)) + Nt

Lemma 3.7. Let I be a left ideal of R. We have
H(gr*(R[t]h(I))) = gr¥(I)

Proof. Suppose that f is in R[t]h(I). We may write f
fi € h(I) homogeneous of degree i. Now oX(f) = >_, oX(f
indexing set {i;}. So

>, fi with each
for some suitable

i) B

N = 3 HE (1) = Y0 (H ()
But H(f;;) € I for each j and so H(cX(f)) € grX(I) as required.
Conversely, if r € I then oX(r) = H(oX(h(r))) € H(grX(R[t]h(I))) as re-
quired. O

Proposition 3.8. Let J be a non-zero homogeneous left ideal of R[t]. The set of
associated graded ideals {grX(J)|x € Hom(N" R)} is finite. Moreover for each
x € Hom(N",R), {x' € Hom(N",R)|grX (J) = grX(J)} is a convex polyhedron.

Proof. We know from Theorem 3.5 that the set {Exp_n(J)|x € Hom(N",R)}
is finite, so to prove the first part it is enough to show that the set
{ng(J)|Exp<;(J) = E,x € Hom(N",R)} is finite for any £ C N** with
E+Ntl =F

Fix such an E and pick x € Hom(N*,R) such that Exp<;(J) = E if any
exist. By Proposition 3.3 there is a homogeneous reduced Grobner basis S =
{r1,...,r} for J with respect to <’; when E = Ule(exp<;(ri) + Nt

Suppose now that x' € Hom(N",R) with Exp<;, (J) = E. Since

NG 0 (expay () + N7 = 0
J#i

11



and exp<;(ri) € EXP<Z, (J), exp_r, (r;) = exp<;(1‘i) for each ¢ and so S is a

reduced Grobner basis for J with respect to <)’z,.
It follows from Lemma 3.6 that

k
g (/) = 3 Bl (r)

for each such x'. It is clear that this just leaves finitely many possibilities.
We now fix x € Hom(N",R) and let E[x] denote the set

{x' € Hom(N", R)|gtX (J) = gr¥(J)}.

Suppose that {r1,...,r;} is a homogeneous reduced Grébner basis for J
with respect to <?. We claim that

E[x] = {X'|0X’ (r;) = oX(r;) for each i}.

The proof of the claim will complete the proof of this Proposition since it ex-
presses E[x] as an intersection of hyperplanes of the form x'(a) = x'(8) for a
and 3 in N (¢X(H(r;))) and open half-spaces of the form x/(a) < x'(v) for a in
N(oX(H(r;))) and v in N'(H (r:))\N (oX(H (r;)))-

We now prove the claim.

Firstly suppose that x' € E[x].

Consider s; = oX (r;) € grX (J) = grX(J). Since {ry,..., 7} is a re-
duced Grobner basis for J with respect to <§, expn(0X(r;)) = exp<;(rj)
and N (s;) C N(r;) we have

N(s;) N (expen(0X(r;)) + N"T1) C N (r;) N (eXP<;(Tj) + N"H) =0.

for each j # i.
But as s; € grX(J) it follows from Lemma 3.6 that

k
exp<h U exp<h )) Nﬂ+1)

and so expcn(s;) € expen(oX(r;)) + N*T1. As N(s;) C N(r;) this forces
expon(s;) = expon(0X(r;)). So expn(s; — oX(r;)) <" expn(oX(r;)). But we
have N (s; —oX(r;)) C N(r;) and (s; —0X(r;)) € grX(J). So exp_n(s;i—oX(r;)) €
expn(0X(r;) + N**1). This means that s; — oX(r;) = 0 and so oX (r;) = oX(r;)
as required.

Conversely, suppose that x' € Hom(N",R) such that oX(r;) = oX (r;) for
each 7. Lemma 3.6 implies that grX(J) is generated by {oX(r;)|1 < i < k} and
so grX(J) C grX'(J). If the containment here were strict it would follow that

Bxpy (7) = Bxpn (84(7)) G Expn (g () = Bxpr, ()

a contradiction of Lemma, 3.4.
The claim is now proved.
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Recall that given a left ideal I of R we say two monoid homomorphisms
X, X' € Hom(N™ R) are equivalent with respect to I precisely if grX(I) = grXx (I).

Theorem 3.9. If I is a non-zero left ideal of R then Hom(N" ,R)} has finitely
many equivalence classes with respect to I and each class is a polyhedral cone
in Hom(N",R) =2 R" .

Proof. This follows from Lemma, 3.7 and Propostion 3.8 since these imply that
equivalence class containing x € Hom(N"  R) is the finite union of the cones

{x' € Hom(N", R)[gr¥ (R[]A(I)) = J}
over those left ideals J in R[t] with H(J) = grX(I). O

Lemma 3.10. If I is a left ideal of R and x,x' € Hom(N*,R) then for ¢ > 0
sufficiently small ) ,
gr* (gr¥(1)) = grX* X (I).

Proof. By Proposition 3.8 there exists € such that {x + ex'|e € (0, €]} is con-
tained in one equivalence class with respect to R[t]h(I). It also follows from
the proof of Proposition 3.8 that if {ry,...,r;} be a reduced Gronber basis for
R[t)h(I) with respect to the ordering <)’2 teoy then it is a reduced Grébner basis

for R[t]h(I) with respect to the ordering <”, ., for each € € (0, €].

Now pick any € € (0,e0]. We have N (oXtX'(r;)) € N(oX(r;)) for each
1 <4<k and so ) )
oX (X (r;)) = oXTX (r;).

!

By Lemma 3.6, grxtex (R[t]h(I)) is generated by {oxteX' (1)1 < i < k}
and so grXteX (R[t]h(I)) C grX (grX(R[t]h(I))). If the containment were strict
it would follow that

Exp o (g2 X (R{A(I))) & Expon (¥ (gr¥(RIA(D))))-
This is impossible due to Lemma 3.4, so we have
gt (RIM(T)) = gr¥’ (gr¥(R[t]A(D))).

The result now follows by applying H to each side of this equation and using
Lemma, 3.7. O

4 Crossed products

Suppose that DA is a crossed product of a division ring D by a finitely generated
free abelian group A of rank n. Let {a1,...,a,} be a generating set for A.

Proposition 4.1. There is a strongly graded skew polynomial ring over D in
2n wvariables, R = D[z1,...,%Zn,Y1,---,Yn], and a D-algebra homomorphism
¢ : R — DA such that ¢(x;) = @; and ¢(y;) = a; ' for each 1 <i < n.

Proof. First notice that the subring of DA generated by ag,...,a, and D is
a strongly graded skew polynomial ring in n variables. So by Lemma 2.3 we
may form Ry = Dlzy,...,%,] and a homomorphism ¢¢ : Ry — DA such that
¢o(x;) = a; for each i. Suppose we have constructed a strongly graded skew
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polynomial ring in n + s variables, R; = D[z1,...,Zp,Y1,---,Ys], and a homo-
morphism ¢, : Ry, — DA such that ¢(z;) = @; for 1 <i <n and ¢(y;) = a; *
for 1 <i < s. Notice that S = {z%,, : k € N} is an Ore set in R;, and that
conjugation by x4 inside (Rs)g induces an automorphism 65 of R;.

Now we set Rsy1 = Rg[ysy1;6s]; that is Rsyq is the skew polynomial ring
with indeterminate y,41 and coefficients in R, and with automorphism 8, so that
TYs+1 = Ys+10s(r) (see section 1.2 of [10]). Since ¢s(r)@sr1 * = Tag1 " ¢s(0s(r))
for each r € R, we may extend ¢, to a map ¢sy1 : Rsp1 — DA such that
Pst1(Yst1) = Tog1 - O

We now fix DA and a pair (R, ¢) given by Proposition 4.1.

There is a unique monoid map 7 : N°® — A with 7(e;) = a; and 7(e;yn) =
a;' for 1 < i < n. This defines an rational embedding of Hom(A,R) into
Hom(N*" R); x = X = x o .

Proposition 4.2. If I is a left ideal of DA then grX(I) = ¢(gr*(¢p1(1))).

Proof. Suppose that f € R with ¢(f) € I. Then either oX(f) lies in the kernel
of ¢ or ¢(aX(f)) = oX(#(f)). In either case ¢(oX(f)) € grX(I).

Now suppose that @ € I. We may choose f € R such that ¢(f) = «
and no two elements of A/(f) map to the same element of A under 7. Then

oX(a) = ¢(0%(f)), s0 oX() € $(gr* (¢~ (1)) O

Suppose that M is a module over DA with finite generating set X. Recall
from Proposition 2.1 that

A(M) ={x € Hom(A,R)|1 & grX(annp(z)) for some z € X}.

Theorem 4.3. If M is a finitely generated D A-module then A(M) is a closed
rational polyhedral cone.

Proof. That A(M) is closed follows easily from the equivalence of conditions
(1) and (5) in Proposition 2.1.

Suppose that X is a generating set for M. For each € X let M, be the DA-
submodule of M generated by z. By Lemma 2.2, A(M) = |J,x A(M,). Since
the finite union of rational polyhedral cones is always a rational polyhedral cone,
we may assume without loss of generality that M is a cyclic left D A-module
M = DA/I, say.

Now, A(M) = {x € Hom(A,R)|grX(I) # DA}. But by Proposition 4.2
grX(I) = DA if and only if ¢(gr¥(¢~1(I))) = DA. Now using Theorem 3.9 we
see that the set

{xl¢(gr*(¢7" (1)) # DA} C Hom(N", R)

is the rational polyhedral cone constisting of the intersection of the rational
subspace 7~1(Hom(N",R)) and a rational polyhedral cone consisting of the
union of some of the rational polyhedral cones that are equivalence classes with
respect to the left ideal ¢ 1(I) of R.

The result follows. O

Lemma 4.4. If I is a left ideal of DA and x,x' € Hom(A,R) then for e > 0
sufficiently small ) ,
gr¥ (gr¥(I)) = gr¥* X (I).
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Proof. By Lemma 3.10 applied to the left ideal ¢—1(I) of R there is an €y > 0
such that

grX’ (gr¥ (¢ (1)) = gr™ ¥ (¢~ 1(1)),

for each € € (0, €]. Applying ¢ to each side of this equation and using Proposition
4.2 we obtain:

gV (e (1) = ler

= G (¢ (1))
= gt ()

as required. O

Theorem 4.5. If M is a DA-module generated by the finite set X and x €
A(M) then
LCy(A(M)) = A(gr*(M)).

where M is given the x-filtration FXM = F}X(DA).X.
Proof. Suppose that x € A(M). Recall that
LC(A(M)) = {x' € Hom(A,R)|(3eo > 0)(Ve € (0,€0))x + ex’ € A(M)}.

Now x + ex’ € A(M) precisely if grX+<X' (annp(z)) # DA for some z € X.
By Lemma, 4.4, for e sufficiently small,

gt (annp a(z)) = g (gr* (amnp a ().

So x' € LCy (A(M)) precisely if grX’ (grX(annpa(z))) # DA for some z € X.
But grX(M) is generated by the set oX(X) and x' € A(grX(M)) precisely if
grX’ (grX(annp 4 (z))) = grX’ (annpa(cX(z))) # DA for some z € X. The result
follows.
|
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