1. Write down the three types of elementary matrices and find their inverses. Show that an \(n \times n \) matrix \(A \) is invertible if and only if it can be written as a product of elementary matrices. Use this method to find the inverse of
\[
\begin{pmatrix}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 3 & -1
\end{pmatrix}.
\]

2. (Another proof of the row rank column rank equality.) Let \(A \) be an \(m \times n \) matrix of (column) rank \(r \). Show that \(r \) is the least integer for which \(A \) factorises as \(A = BC \) with \(B \in \text{Mat}_m(F) \) and \(C \in \text{Mat}_{r,n}(F) \). Using the fact that \((BC)^T = C^TB^T\), deduce that the (column) rank of \(A^T \) equals \(r \).

3. Let \(V \) be a 4-dimensional vector space over \(\mathbb{R} \), and let \(\{\xi_1, \xi_2, \xi_3, \xi_4\} \) be the basis of \(V^* \) dual to the basis \(\{x_1, x_2, x_3, x_4\} \) for \(V \). Determine, in terms of the \(\xi_i \), the bases dual to each of the following:
 \begin{enumerate}
 \item \(\{x_2, x_1, x_4, x_3\} \);
 \item \(\{x_1, 2x_2, x_3, x_4\} \);
 \item \(\{x_1 + x_2, x_2 + x_3, x_3 + x_4, x_4\} \);
 \item \(\{x_1, x_2 - x_1, x_3 - x_2 + x_1, x_4 - x_3 + x_2 - x_1\} \).
 \end{enumerate}

4. Let \(P_n \) be the space of real polynomials of degree at most \(n \). For \(x \in \mathbb{R} \) define \(\varepsilon_x \in P_n^* \) by \(\varepsilon_x(p) = p(x) \). Show that \(\varepsilon_0, \ldots, \varepsilon_n \) form a basis for \(P_n^* \), and identify the basis of \(P_n \) to which it is dual.

5. \(a) \) Show that if \(x \neq y \) are vectors in the finite dimensional vector space \(V \), then there is a linear functional \(\theta \in V^* \) such that \(\theta(x) \neq \theta(y) \).
 \(b) \) Suppose that \(V \) is finite dimensional. Let \(A, B \leq V \). Prove that \(A \leq B \) if and only if \(A^\circ \geq B^\circ \). Show that \(A = V \) if and only if \(A^\circ = \{0\} \).

6. For \(A \in \text{Mat}_{m,m}(F) \) and \(B \in \text{Mat}_{m,n}(F) \), let \(\tau_A(B) \) denote \(trAB \). Show that, for each fixed \(A \), \(\tau_A : \text{Mat}_{m,n}(F) \to F \) is linear. Show moreover that the mapping \(A \mapsto \tau_A \) defines a linear isomorphism \(\text{Mat}_{m,m}(F) \to \text{Mat}_{m,m}(F)^* \).

7. \(a) \) Let \(V \) be a non-zero finite dimensional real vector space. Show that there are no endomorphisms \(\alpha, \beta \) of \(V \) with \(\alpha \beta - \beta \alpha = \text{id}_V \).
 \(b) \) Let \(V \) be the space of infinitely differentiable functions \(\mathbb{R} \to \mathbb{R} \). Find endomorphisms \(\alpha \) and \(\beta \) of \(V \) such that \(\alpha \beta - \beta \alpha = \text{id}_V \).

8. Suppose that \(\psi : U \times V \to F \) is a bilinear form of rank \(r \) on finite dimensional vector spaces \(U \) and \(V \) over \(F \). Show that there exist bases \(e_1, \ldots, e_m \) for \(U \) and \(f_1, \ldots, f_n \) for \(V \) such that
\[
\psi \left(\sum_{i=1}^m x_i e_i, \sum_{j=1}^n y_j f_j \right) = \sum_{k=1}^r x_k y_k
\]
for all \(x_1, \ldots, x_m, y_1, \ldots, y_n \in F \). What are the dimensions of the left and right kernels of \(\psi \)?

9. Let \(A \) and \(B \) be \(n \times n \) matrices over a field \(F \). Show that the \(2n \times 2n \) matrix
\[
C = \begin{pmatrix} I & B \\ -A & 0 \end{pmatrix}
\]
by elementary row operations (which you should specify). By considering the determinants of \(C \) and \(D \), obtain another proof that \(\det AB = \det A \det B \).
10. Let A, B be $n \times n$ matrices, where $n \geq 2$. Show that, if A and B are non-singular, then

(i) $\text{adj}(AB) = \text{adj}(B)\text{adj}(A)$,
(ii) $\det(\text{adj} A) = (\det A)^{n-1}$,
(iii) $\text{adj}(\text{adj} A) = (\det A)^{n-2}A$.

What happens if A is singular? [Hint: Consider $A + \lambda I$ for $\lambda \in \mathbb{F}$.]

11. Show that the dual of the space P_1 of real polynomials is isomorphic to the space \mathbb{R}^n of all sequences of real numbers, via the mapping which sends a linear form $\xi : P \rightarrow \mathbb{R}$ to the sequence $(\xi(1), \xi(t), \xi(t^2), \ldots)$.

In terms of this identification, describe the effect on a sequence (a_0, a_1, a_2, \ldots) of the linear maps dual to each of the following linear maps $P \rightarrow P$:
(a) The map D defined by $D(p)(t) = p'(t)$.
(b) The map S defined by $S(p)(t) = p(t^2)$.
(c) The map E defined by $E(p)(t) = p(t - 1)$.
(d) The composite DS.
(e) The composite SD.

Verify that $(DS)^* = S^*D^*$ and $(SD)^* = D^*S^*$.

12. Suppose that $\psi : V \times V \rightarrow F$ is a bilinear form on a finite dimensional vector space V. Take U a subspace of V with $U = W^\perp$ some subspace W of V. Suppose that $\psi|_{U \times U}$ is non-singular. Show that ψ is also non-singular.

13. Let V be a vector space. Suppose that $f_1, \ldots, f_n, g \in V^*$. Show that g is in the span of f_1, \ldots, f_n if and only if $\bigcap_{k=1}^n \ker f_k \subset \ker g$.

14. Let $\alpha : V \rightarrow V$ be an endomorphism of a real finite dimensional vector space V with $\text{tr}(\alpha) = 0$.

(i) Show that, if $\alpha \neq 0$, there is a vector v with $\alpha(v)$ linearly independent. Deduce that there is a basis for V relative to which α is represented by a matrix A with all of its diagonal entries equal to 0.

(ii) Show that there are endomorphisms β, γ of V with $\alpha = \beta \gamma - \gamma \beta$.

The final question is based on non-examinable material.

15. Let Y and Z be subspaces of the finite dimensional vector spaces W and V respectively. Suppose that $\alpha : V \rightarrow W$ is a linear map such that $\alpha(Y) \subset Z$. Show that α induces linear maps $\alpha|_Y : Y \rightarrow Z$ via $\alpha|_Y(y) = \alpha(y)$ and $\bar{\alpha} : V/Y \rightarrow W/Z$ via $\bar{\alpha}(v + Y) = \alpha(v) + Z$.

Consider a basis (v_1, \ldots, v_n) for V containing a basis (v_1, \ldots, v_k) for Y and a basis (w_1, \ldots, w_m) for W containing a basis (w_1, \ldots, w_l) for Z. Show that the matrix representing α with respect to (v_1, \ldots, v_n) and (w_1, \ldots, w_m) is a block matrix of the form $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$. Explain how to determine the matrices representing $\alpha|_Y$ with respect to the bases (v_1, \ldots, v_k) and (w_1, \ldots, w_l) and representing $\bar{\alpha}$ with respect to the bases $(v_{k+1} + Y, \ldots, v_n + Y)$ and $(w_{l+1} + Z, \ldots, w_m + Z)$ from this block matrix.