1. Show that none of the following matrices are similar:

\[
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}, \quad \begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

Is the matrix

\[
\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\]

similar to any of them? If so, which?

2. Find a basis with respect to which \(\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \) is in Jordan normal form. Hence compute \(\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}^n \).

3. (a) Recall that the Jordan normal form of a \(3 \times 3 \) complex matrix can be deduced from its characteristic and minimal polynomials. Give an example to show that this is not so for \(4 \times 4 \) complex matrices.

(b) Let \(A \) be a \(5 \times 5 \) complex matrix with \(A^4 = A^2 \neq A \). What are the possible minimal and characteristic polynomials? If \(A \) is not diagonalisable, how many possible JNFs are there for \(A \)?

4. Let \(\alpha \) be an endomorphism of the finite dimensional vector space \(V \) over \(\mathbb{F} \), with characteristic polynomial \(\chi_\alpha(t) = t^n + c_{n-1}t^{n-1} + \cdots + c_0 \). Show that \(\det(\alpha) = (-1)^nc_0 \) and \(\tr(\alpha) = -c_{n-1} \).

5. Let \(\alpha \) be an endomorphism of the finite-dimensional vector space \(V \), and assume that \(\alpha \) is invertible. Describe the eigenvalues and the characteristic and minimal polynomial of \(\alpha^{-1} \) in terms of those of \(\alpha \).

6. Prove that the inverse of a Jordan block \(J_m(\lambda) \) with \(\lambda \neq 0 \) has Jordan normal form a Jordan block \(J_m(\lambda^{-1}) \). For an arbitrary invertible square matrix \(A \), describe the Jordan normal form of \(A^{-1} \) in terms of that of \(A \).

Prove that any square complex matrix is similar to its transpose.

7. Let \(V \) be a vector space of dimension \(n \) and \(\alpha \) an endomorphism of \(V \) with \(\alpha^n = 0 \) but \(\alpha^{n-1} \neq 0 \). Show that there is a vector \(y \) such that \(\langle y, \alpha(y), \alpha^2(y), \ldots, \alpha^{n-1}(y) \rangle \) is a basis for \(V \).

Show that if \(\beta \) is an endomorphism of \(V \) which commutes with \(\alpha \), then \(\beta = p(\alpha) \) for some polynomial \(p \). [Hint: consider \(\beta(y) \).] What is the form of the matrix for \(\beta \) with respect to the above basis?

8. Let \(A \) be an \(n \times n \) matrix all the entries of which are real. Show that the minimal polynomial of \(A \) over the complex numbers has real coefficients.

9. Let \(V \) be a 4-dimensional vector space over \(\mathbb{R} \), and let \(\{\xi_1, \xi_2, \xi_3, \xi_4\} \) be the basis of \(V^* \) dual to the basis \(\{x_1, x_2, x_3, x_4\} \) for \(V \). Determine, in terms of the \(\xi_i \), the bases dual to each of the following:

(a) \(\{x_2, x_1, x_4, x_3\} \);
(b) \(\{x_1, 2x_2, \frac{1}{2}x_3, x_4\} \);
(c) \(\{x_1 + x_2, x_2 + x_3, x_3 + x_4, x_4\} \);
(d) \(\{x_1 , x_2 - x_1, x_3 - x_2 + x_1, x_4 - x_3 + x_2 - x_1\} \).

10. Let \(P_n \) be the space of real polynomials of degree at most \(n \). For \(x \in \mathbb{R} \) define \(\varepsilon_x \in P_n^* \) by \(\varepsilon_x(p) = p(x) \).

Show that \(\varepsilon_0, \ldots, \varepsilon_n \) form a basis for \(P_n^* \), and identify the basis of \(P_n \) to which it is dual.

11. Let \(\alpha : V \to V \) be an endomorphism of a finite dimensional complex vector space and let \(\alpha^* : V^* \to V^* \) be its dual. Show that a complex number \(\lambda \) is an eigenvalue for \(\alpha \) if and only if it is an eigenvalue for \(\alpha^* \). How are the algebraic and geometric multiplicities of \(\lambda \) for \(\alpha \) and \(\alpha^* \) related? How are the minimal and characteristic polynomials for \(\alpha \) and \(\alpha^* \) related?
12. (a) Show that if \(x \neq y \) are vectors in the finite dimensional vector space \(V \), then there is a linear functional \(\theta \in V^* \) such that \(\theta(x) \neq \theta(y) \).
(b) Suppose that \(V \) is finite dimensional. Let \(A, B \leq V \). Prove that \(A \leq B \) if and only if \(A^o \geq B^o \).
Show that \(A = V \) if and only if \(A^o = \{0\} \).

13. For \(A \in \text{Mat}_{n,m}(\mathbb{F}) \) and \(B \in \text{Mat}_{m,n}(\mathbb{F}) \), let \(\tau_A(B) \) denote \(\text{tr}AB \). Show that, for each fixed \(A \), \(\tau_A: \text{Mat}_{n,m}(\mathbb{F}) \to \mathbb{F} \) is linear. Show moreover that the mapping \(A \mapsto \tau_A \) defines a linear isomorphism \(\text{Mat}_{n,m}(\mathbb{F}) \to \text{Mat}_{m,n}(\mathbb{F})^* \).

14. Show that the dual of the space \(P \) of real polynomials is isomorphic to the space \(\mathbb{R}^N \) of all sequences of real numbers, via the mapping which sends a linear form \(\xi : P \to \mathbb{R} \) to the sequence \((\xi(1), \xi(t), \xi(t^2), \ldots) \).
In terms of this identification, describe the effect on a sequence \((a_0, a_1, a_2, \ldots)\) of the linear maps dual to each of the following linear maps \(P \to P \):
(a) The map \(D \) defined by \(D(p)(t) = p'(t) \).
(b) The map \(S \) defined by \(S(p)(t) = p(t^2) \).
(c) The map \(E \) defined by \(E(p)(t) = p(t - 1) \).
(d) The composite \(DS \).
(e) The composite \(SD \).
Verify that \((DS)^* = S^*D^* \) and \((SD)^* = D^*S^* \).

The remaining two questions are based on non-examinable material

15. Let \(V \) be a vector space of finite dimension over a field \(F \). Let \(\alpha \) be an endomorphism of \(V \) and let \(U \) be an \(\alpha \)-invariant subspace of \(V \) is a subspace such that \(\alpha(U) \leq U \). Define \(\overline{\alpha} \in \text{End}(V/U) \) by \(\overline{\alpha}(v + U) = \alpha(v) + U \). Check that \(\overline{\alpha} \) is a well-defined endomorphism of \(V/U \).
Consider a basis \((v_1, \ldots, v_n)\) of \(V \) containing a basis \((v_1, \ldots, v_k)\) of \(U \). Show that the matrix of \(\alpha \) with respect to \((v_1, \ldots, v_n)\) is \(\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \), where \(A \) the matrix of the restriction \(\alpha_U: U \to U \) of \(\alpha \) to \(U \) with respect to \((v_1, \ldots, v_k)\), and \(B \) the matrix of \(\overline{\alpha} \) with respect to \((v_{k+1} + U, \ldots, v_n + U) \). Deduce that \(\chi_\alpha = \chi_{\alpha_U} \chi_{\overline{\alpha}} \).

16. (Another proof of the Cayley Hamilton Theorem.) Assume that the Cayley Hamilton Theorem holds for any endomorphism on any vector space over the field \(\mathbb{F} \) of dimension less than \(n \). Let \(V \) be a vector space of dimension \(n \) and let \(\alpha \) be an endomorphism of \(V \). If \(U \) is a proper \(\alpha \)-invariant subspace of \(V \), use the previous question and the induction hypothesis to show that \(\chi_\alpha(\alpha) = 0 \). If no such subspace exists, show that there exists a basis \(\langle v, \alpha(v), \ldots, \alpha^{n-1}(v) \rangle \) of \(V \).
Show that \(\alpha \) has matrix
\[
\begin{pmatrix}
0 & -a_0 \\
1 & \ddots & -a_1 \\
& \ddots & 0 \\
& & 1 & -a_{n-1}
\end{pmatrix}
\]
with respect to this basis, for suitable \(a_i \in \mathbb{F} \). Show that \(\chi_\alpha(t) = t^n + a_{n-1}t^{n-1} + \cdots + a_0 \) and that \(\chi_\alpha(\alpha)(v) = 0 \). Deduce that \(\chi_\alpha(\alpha) = 0 \) as an element of \(\text{End}(V) \).