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Purpose of notes. Please note that these are not notes of the lectures but notes
made by the lecturer in preparation for the lectures. This means they may not
exactly correspond to what was said and/or written during the lectures.

LECTURE 1
1. EXAMPLES OF GROUPS

Groups are fundamentally about symmetry. More precisely they are an algebraic
tool designed to abstract the notion of symmetry. Symmetry arises all over mathe-
matics; which is to say that groups arise all over mathematics. Roughly speaking a
symmetry is a transformation of an object that preserves certain properties of the
object.

As T understand it, the purpose of this course is two-fold. First to introduce
groups so that those who follow the course will be familiar with them and be better
equipped to study symmetry in any mathematical context that they encounter.
Second as an introduction to abstraction in mathematics, and to proving things
about abstract mathematical objects.

It is perfectly possible to study groups in a purely abstract manner without
geometric motivation. But this seems to both miss the point of why groups are
interesting and make getting used to reasoning about abstract objects more difficult.
So we will try to keep remembering that groups are about symmetry. So what do
we mean by that?

1.1. A motivating example.

Question. What are the distance preserving functions from the integers to the
integers? That is what are the members of the set

Isom(Z) := {f: Z — Z such that |f(n) — f(m)| = |n —m| for all n,m € Z}?

These functions might reasonably be called the symmetries of the integers; they
describe all the ways of ‘rearranging’ the integers that preserve the distance between
any pair.

Let’s begin to answer our question by giving some examples of such functions.
Suppose that a € Z is an integer. We can define the function ‘translation by a’ by

te:n—n+aforneZ.
For any choice of m,n € Z
[ta(n) —ta(m)| = [(n+a) = (m +a)| = [n —m]|.
Thus t, is an element of Isom(Z). We might observe that if @ and b are both integers
then
(taoty)(n) =ta(b+n)=a+b+n=tup(n)

for every integer n, that is that t,4, = t4 0 ty'. Moreover tg is the identity or ‘do
nothing’ function id: Z — Z that maps every integer n to itself. Thus for every
a € Z, t_, is the inverse of t,, that ist, ot_, =id =t_, o t,.

LThis is because two functions f,9: X — Y are the same function, i.e. f = g, precisely if
they have the same effect on every element of the set they are defined on, i.e. f(z) = g(z) for all
reX.
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Suppose now that f € Isom(Z) is a symmetry of the integers. Consider the
function g :=1t_¢() o f. Then for n,m € Z,

lg(n) —g(m)| = [(f(n) = f(0)) = (f(m) = f(O)] = [f(n) = f(m)| = [n —ml],
so g € Isom(Z) is also a symmetry of the integers.

Moreover g(0) = t_¢y(f(0)) = f(0) — f(0) =0, i.e. g fixes the integer 0. What
does this tell us about g? For example, what does it tell us about ¢g(1)? Since g is
a symmetry and g(0) = 0 it must be the case that

lg(D)] = 1g(1) = 0] = |g(1) = g(0)] = [1 - 0] = 1.
That is g(1) = £1.
If g(1) = 1, what else can we say? For any n € Z,

lg(n)| = 1g(n) — g(0)] = [n = 0] = |n|
i.e. g(n) = +n. But also,

l9(n) =1 = lg(n) = g(1)] = |n =1
ie. g(n) =1+ (n—1). These two conditions together force g(n) = n and so g = id.
Now in this case

tyo) =ty oid =ts) © (t—y) © f) = (ts0) © t—y(0)) o f =idof = .
Thus f is translation by f(0) in this case.
What about the case when ¢g(1) = —17 In this case we still must have g(n) = +n
for every integer n but now also

lg(n) + 1] = lg(n) = g(1)] = |n -1
i.e. g(n) = =1+ (n —1). These two conditions together force g(n) = —n and so g
is the ‘reflection about 0’-function

s:n— —n for all n € Z.

Now we’ve seen that s = g =1_s() o f in this case. It follows that f = ;) o s.
We’ve now proven that every element of Isom(Z) is either a translation ¢, or of
the form ¢, o s (with a € Z in either case). That is all symmtries of Z are of the
form n +— n + a or of the form n +— a — n.
It is worth reflecting at this point on some key facts we’ve used in the argument
above which is sometimes known as a ‘nailing to the wall argument’.

(1) We've used that the composition of two symmetries of the integers is itself
a symmetry of the integers. In fact, we’ve only used this for some special
cases but it is true in general since if f, g € Isom(Z) and n,m € Z then

[f(g(n)) = flg(m))| = |g(n) — g(m)| = [n —m].
We might note that for a,n € Z,
s(ta(n)) =s(n+a) = —a—n=1t_4,(s(n))
and so sot, =t_, 0s. Thus order of composition matters.

(2) We've used that there is a ‘do nothing’ symmetry of the integers id and
that for any other symmetry f, foid = f =idof.

(3) We've used that symmetries are ‘undo-able’, that is that given any sym-
metry f there is a symmetry g such that go f =id = f o g (in fact we've
only used this for f = t, and f = s and only that there is a g such that
g o f =1id but again it is true as stated. (Why?).
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(4) We've used that composition of symmetries is associative, that is that for
symmetries f,g and h, (fog)oh = fo(goh).
We'll see that these properties say precisely that Isom(Z) is a group.

1.2. Some initial definitions. First we need to make some definitions.
Definition. Suppose that S is a set. A binary operation on S is a function
0: Sx 8= S;(x,y)—xoy.

This defintion means that a binary operation is something that takes an ordered
pair of elements of S and uses them to produce an element of S. If roy =youx
then we say that x and y commute (with respect to o). We say o is commutative
if every pair of elements of S commute.

FEzxzamples.

(1) Composition of functions is a non-commutative binary operation on Isom(Z).

(2) Addition, multiplication, and subtraction are all binary operations on Z.
Note that addition and multiplication are both commutative operations on
Z but distinct integers never commute with respect to subtraction.

(3) Addition and multiplication are also binary operations on N := {1,2,3,...}.
Subtraction is not a binary operation on N since 2 — 3 ¢ N.

(4) Exponentiation: (a,b) — b* is a binary operation on N.

(5) If X is any set and S = {f : X — X} is the set of all functions from X to
itself then composition of functions is a binary operation on S.

Definition. A binary operation o on a set S is associative if (zoy)oz =xo(yoz)
for all z,y,z € S.

This means that when o is associative there is a well-defined element zoyoz € S
i.e. it doesn’t matter which of the two o we use first. It will be instructive to
convince yourself that if o is an associative binary operation on S and w,z,y,z € S
then

wo(zoyoz)=(woxr)o(yoz)=(woxroy)oz
Having done this you should also convince yourself that there is nothing special
about four and the obvious generalisation holds for any (finite) number of elements
of S whenever o is associative. This means that whenever o is an associative binary
operation we may (and will!) omit brackets, writing for example woxzoyoz without
ambiguity. If it is clear what operation we have in mind we will often omit it too,
writing wxyz, for example.

Ezxzamples.
(1) Addition and multiplication are associative when viewed as binary opera-
tions on Z or N. Subtraction is not associative on Z since ((0—1)—2) = —3
but 0— (1—2) =1 —3.
(2) Exponentiation (a,b) — b* is not associative on N since 2% = 29 but

(23)2 =26 £ 29,
(3) Composition is always an associative operation on the set of functions from
X to X since if f,g and h are three such functions and z € X then

((fog)oh)(x) = f(g(h(z))) = (f o (g0 h))(z).
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Definition. A binary operation o on a set S has an identity if there is some element
e € S such that forallz € S, ecx=x=xo0e.

Ezxamples.

(1) 0 is an identity for addition on Z but addition has no identity on N. 1 is
an identity for multiplication on both these sets. Subtraction on Z does
not have an identity since if e — x = x for all x € Z then e = 2z for all
x € Z and this is absurd. Note however that x — 0 = «x for all x € Z. We
sometimes say that 0 is a right identity for subtraction to d9escribe this.

(2) (a,b) — b* does not have an identity but 1 is a left identity in the obvious
sense.

(3) If X is any set then the identity function id: X — X;s + s is an identity
for composition of functions from X to X.

Lemma. If a binary operation o on a set S has an identity then it is unique.

Proof. Suppose that ¢ and €’ are both identities on S. Then eoe’ = ¢ =€ oe
since e is an identity. But also €’ oe = ¢ = e o€’ since €’ is an identity. Thus e = €’
as required. O

LECTURE 2

Definition. If a binary operation o on a set S has an identity e then we say that
it has inverses if for every x € S there is some y € S such that zroy=e=yox.

Ezxamples.

(1) + on Z has inverses since for every n € Z, n+ (—n) = 0 = (—n) + n.
Multiplication does not have inverses on N or Z since there is no integer
(and therefore no natural number) n such that 2n = 1.

(2) Multiplication defines an associative binary operation on the rationals Q
with an identity (1) but it still does not have inverses. Although for every
non-zero rational ¢, 1/q is also rational and ¢-1/¢g =1 =1/q- ¢, 0 is also
rational and there is no rational r such that r-0 = 1. However multiplication
does have inverses on the set Q\{0}.

(3) In general composition on the set of functions X — X does not have in-
verses. For example the function f: Z — Z;n — 0 has no inverse since if
g: Z — Z were an inverse then we’d have f(g(n)) = n for all n € Z but in
fact however g is defined f(g(1)) = 0. This idea can be adapted to show
that whenever | X| > 1 there is a function f: X — X that has no inverse.

Definition. A set G equipped with a binary operation o is a group if

(i) the operation o is associative;
(ii) the operation o has an identity;
(iii) the operation o has inverses.

FExamples.

(1) Isom(Z) is a group (under composition).
(2) (Z,+) is a group since + is associative and has an identity and inverses.
(3) (N,+) is not a group since it does not have an identity.
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(4) (Z,—) is not a group since — is not associative.?

(5) (Z,-) is not a group since it does not have inverses but (Q\{0}, -) is a group.

(6) If X is a set with more than one element then the set of functions X — X
is not a group under composition of functions since not all such functions
have inverses.

We will sometimes say that G is a group without specifying the operation o.
This is laziness and the operation will always be implicit and either clear what it is
(in concrete settings) or unimportant what it is (in abstract settings). We’ll nearly
always call the identity of a group e (or e if we want to be clear which group it is
the identity for) if we don’t know it by some other name.

Definition. We say that a group G is abelian if any pair of elements of G commute.

Definition. We say that a group G is finite if it has finitely many elements as a
set. We call the number of elements of a finite group G the order of G written |G|.

Ezample. For every integer n > 1 we can define a group that is the set Z, :=
{0,1,...,n — 1} equipped with the operation 4+, where x +,, y is the remainder
after dividing = + y by n®. It is straightforward to see that Z, is an abelian group
of order n.

Lemma. Suppose that G is a group.

1

(i) inverses are unique i.e. if g € G there is precisely one element g~* in G such

that g~'g = e =gg™';

(it) for all g€ G, (g7") "' =g;
(iii) for all g,h € G, (gh)™!t = h=tg™! (the shoes and socks lemma,).

Proof. (i) By assumption every element g € G has at least one inverse. We must
show that there is at most one. Suppose that h,k € G such that gh = e = hg and
gk = e = kg. Then
h=eh=kgh=ke=k
i.e. h and k are the same element of G.
(i) Given g € G, g satisfies the equations for the inverse of g~ ! i.e.

g9t =e=gg"

soby (i), (7)) =g
(iii) Given g,h € G,
(gh)(h'g™!) =ghh™lg~ =geg™l =gg~ =
and similarly (h='g~1)(gh) = e. O

Notation. For each element g in a group G and natural number n we define g"
recursively by g' := ¢ and g" := g¢g"~ ! for n > 1. We'll also write ¢ := e and
g" == (g~1)~™ for integers n < 0. It follows that g?¢g® = g2*® for all a,b € Z.

Definition. If G is a group then we say that ¢ € G has finite order if there is
a natural number n such that g" = e. If g has finite order, we call the smallest
natural number n such that g™ = e the order of g and write o(g) = n.

2recall that it also does not have an identity but to see that it is not a group it suffices to see
that any one of the three properties fails.
3212 is familiar from everyday life. When is it used?
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1.3. Further geometric examples.

1.3.1. Symmetry groups of regular polygons. Suppose we want to consider the set
Dy, of all symmetries of a regular polygon P with n vertices (for n > 3) living
in the complex plane C. By symmetry of P we will mean a distance preserving
transformation of the plane that maps P to itself. We might as well assume that
the centre of P is at the origin 0 and that one of the vertices is the point 1 = 1+0i*.

Proposition. Ds, is a group of order 2n under composition.

LECTURE 3

Proof. First we observe that if g,h € Dy, then for z,w € C,

lg(h(z) = g(h(w))] = [h(2) = h(w)| = |z — w],

and if p € P then g(h(p)) € P since h(p) € P. Thus composition of functions defines
a binary operation on Dy,,. Since composition of functions is always associative this
operation on Dy, is associative. Moreover the identity function id is obviously a
symmetry of P. Thus to see that Ds, is a group it remains to show that every
element of Ds, is invertible. We could do this directly but instead we’ll use a nailing
to the wall argument as we did for Isom(Z).

Let r: C — C; z + ¢*™/"z denote rotation anticlockwise about 0 by 27/n. Then
r does preserve distances in C as

() = r(w)] = |27/ ||z — w| = |z — w|

and r(P) = P i.e. r € Dy,. Moreover "™ € Dy, for all m € N and r" = id; i.e.
r~l=pn-l

Similarly let s: C — C; z — Z denote complex conjugation; i.e. reflection in the
real axis. Once again s preserves distances in C and s(P) = P. Moreover s? = id;
ie sl =s.

We will try to write down all the elements of Do, using r and s.

Consider the set V := {e2™*/" | k = 0,1,...n — 1} C C of nth roots of unity in
the complex plane, the set of vertices of our regular n-gon. Any element of Ds,, will
preserve V; that is to say if g € Dy, then g(V) = V5. So if we pick any g € Da,

then g(1) = e>™*/™ for some k = 0,1,...,n — 1. Thus
Tn_kg(].) _ eQﬂ'i(n—k)e%rik/n =1.

27i/n 27ri/n‘

Now e and e~27/" are the only two elements of V of distance |1 — e
from 1. Thus r" *g(e?™/") = e*27m/n,

If r”_kg(e%i/") = e2™/n then T"‘kg is a distance preserving transformation of
C fixing 0,1 and €2m/"  Thus r"_kg =id and g = rk.

If r”_kg(eg’”/”) = ¢=27/" then sr"_kg is a distance preserving transformation
of C fixing 0,1 and e2m/m  Thus sr” kg =1id and g = r*s.

So we have computed that

Dagp = {r¥ r*slk = 0,...,n —1}.
4we’ll be able to make precise why this assumption is reasonable later but it should at least

seem reasonable already.
SRecall that g(V) := {g(v) |v € V}.
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Thus it has 2n elements as required. We can compute for z € C,

518 (2) = s(e¥ kI ) = e72mk/ng — phg(2).

Thus r*srfs = r¥*r~%ss = e and r*s is self-inverse. Geometrically r*s denote

reflection in the line through 0 and the point e™*/2" To show this we can compute

rks(0) = 0,
rks(1) = ¥ /" and
rk8<e7rik/n) — e‘n’ik/n-

More generally if we wish to multiply elements in this standard form,

pkopl = pktal
rhorls = Tk+"ls,
rks.pt = pFa(=Dg and

rks.pls = 7']”"(71).

In particular sr = r"~'s = r~!s. It would be instructive to reflect on the geometric

meaning of these equations. O

1.3.2. Symmetry groups of regular solids. Suppose that X is a regular solid in R3.
We can consider Sym(X), the group of distance preserving transformations p of
R? such that p(X) = X. These form a group. We will consider the cases X a
tetrahedron and X a cube later in the course.

1.3.3. The Symmetric group. We might hope that given any set X the set of in-
vertible functions from X to X forms a group under composition; that is the set of
functions f: X — X such that there is some g: X — X such that fog =id = go f.
This is true but not immediate: we need to check that composition of functions is
a binary operation on this set; that is that the composition of two invertible func-
tions is invertible. Some people would say that we need to check that the binary
operation is closed but ‘closure’ is built into our definition of binary operation.

Lemma. Suppose that f1, fo: X — X are invertible. Then fi1 o fo: X — X s
invertible.

Proof. There are functions g1,g2: X — X such that f; o g1 = id = g1 o f1 and
fo0go =id = g5 o f5. Then since o is associative

(fiof2)o(g20g1) = froidogy =1id
and
(g20g1) 0 (fio fa) =gaoidofy =id.
O

It follows that for every set X, the set S(X) = {f: X — X | f is invertible} is a
group under the composition of functions. It is called the symmetric group on X°.
We call elements of the symmetric group permutations of X. If X = {1,...,n} we
write S, instead on S(X). We will return to the groups S, later in the course.

6The name comes from the fact that it can be viewed as the set of symmetries of the set X.
This is quite a subtle idea but you might like to think further about it when you come to revise
the course
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1.4. Subgroups and homomorphisms. Sometimes when considering the sym-
metries of an object we want to restrict ourselves to considering symmetries that
preserve certain additional properties of the object. In fact we’ve already seen this,
the sets of distance preserving transformations of C and of R? are both groups of
symmetries under composition. The groups Ds,, and Sym(X) for X a regular solid
are defined to consist of those symmetries that preserve a certain subset of the
whole space. Similary, instead of considering Ds,, the group of all symmetries of
a regular n-gon we might want to restrict only to those symmetries that preserve
orientation, that is the rotations. This idea leads us to the notion of subgroup.

Definition. If (G, o) is a group then a subset H C G is a subgroup if o restricts to
a binary operation on H” and (H,0) is a group. We write H < G to denote that
H is a subgroup of G.

Examples.

1) Isom(Z) < S(Z).

) Dy, < Isom(C) < S(C).

3) Isom™(Z) :={f: Z = Z| f(n) — f(m) =n —m for all n,m € Z} < Isom(Z).

4) Z is a subgroup of (Q,+).

5) If H C Dy, consists of all rotations of the n-gon then H is a subgroup.

6) For any n € Z, nZ := {an € Z | a € Z} is a subgroup of (Z, +).

7) For every group G, {e} < G (the trivial subgroup) and G < G (we call a
subgroup H of G with H # G a proper subgroup).

(
(
(
(
(
(
(

LECTURE 4

Lemma (Subgroup criteria). A subset H of a group G is a subgroup if and only if
the following conditions hold

(i) for every pair of elements hy,hs € H, h1hy € H;

(ii) the identity e € H;
(iii) for every h € H, h™* € H.

Proof. We must show that if conditions (i)-(iii) hold then H is a group. Condition
(1) tells us that the binary operation on G restricts to one on H. That this oper-
ation is associative follows immediately from the associativity of its extension to
G. Condition (ii) tells us that it has an identity® and condition (iii) tells us H has
inverses®.

We must also show that if H is a subgroup of G then conditions (i)-(iii) hold.
That condition (i) holds is immediate from the definition of subgroup. If ey is
the identity in H then eye = ey = eey since e is the identity in G. But also
egey = ey since ey is the identity in H. Thus ege = egey. But ey has an
inverse in G and we see that eI_ileHe = e;lleHeH ie e = ey € H i.e. condition (ii)
holds. That condition (iii) holds follows from uniqueness of inverses in G since for
h € H the inverse of h in H will also be an inverse of h in G. (]

Remark. Our subgroup criteria contain no mention of associativity since as noted
in the proof it is immediate from the associativity of the operation on G.

7precisely hioho € H for all h1,hes € H
8the same identity as G since if h € H then h € G so eh = h = he
9the inverse h~! of h € H C G in G is also an inverse in H since hh~1 = e = h~1h.
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There is an even shorter set of criteria for a subset to be a subgroup.

Corollary. A subset H of G is a subgroup precisely if it is non-empty and h;lhg €
H for all hy,hs € H.

Proof. Suppose that conditions (i)-(iii) of the last lemma hold. Condition (ii) tells
us that H is non-empty and conditions (iii) and (i) combined give that hy *hy € H
for all hy,hy € H.

For the converse, since H is non-empty, there is some h € H. By assumption e =
h=th € H so condition (ii) holds. Now for h € H, h~'e = h~! € H by assumption
i.e. condition (iii) holds. Finally, for hy,he € H, hihs = (h;l)_lhg € H. O

Ezample. The set H = {f € Isom(Z)|f(0) = 0} is a subgroup of Isom(Z). We can
see this using the corollary. Certainly id(0) = 0 so H # @. Moreover if hy, hy € H
then

hitha(0) = k1 (0) = hythe(0) =id(0) = 0.
Note that this argument isn’t much simpler than verifying conditions (i)-(iii) of the
lemma in practice.

We will also be interested in maps between groups. However we won’t typically
be interested an arbitary functions between two groups but only those that respect
the structure of the two groups. More precisely we make the following definition.

Definition. If (G,0) and (H, %) are two groups then 6: H — G is a group homo-
morphism (or just homomorphism) precisely if 6(hy * ha) = 0(h1) o §(ha) for all
hi,hy € H.

Definition. A group homomorphism 0: H — G is an isomorphism if € is invertible
as a function; ie if there is a function §~': G — H such that # 0 ! = idg and
9~ lol = idg.

Ezxzamples.

(1) If H < G then the inclusion map ¢: H — G;h +— h is a group homomorphism.
It is not an isomorphism unless H = G.

(2) The function 6: Z — Z,, such that 6(a) is the remainder after dividing a by n
is always a homomorphism from (Z,+) to (Z,,, +») but never an isomorphism.

(3) If G is any group and g € G is any element then 6: Z — G; n — g¢" is a
homomorphism from (Z,+) to G. Indeed every homomorphism from (Z,+) to
G arises in this way.

(4) 0: Z — Isom™(Z); n + t,,1° is an isomorphism.

(5) The exponential function defines an isomorphism

exp: (R,+) = ({r eR|r>0},);a— e
The inverse map is given by log = log,.

If you are alert you will be asking why we don’t require homomorphisms 6: H —
G to satisfy 0(ey) = eq and (h=1) = §(h)~! for all h € H. The following lemma
shows that this is because these properties follow from our definition.

Lemma. Suppose that 8: H — G is a group homomorphism.
(Z) 9(6[{) = €qg.
(ii) For allh € H, (h~') =0(h)~'.

10recall tn denotes translation by n
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Proof. (i) Since 6 is a homomorphism 6(ey) = 0(egen) = O(em)f(em). Thus
eq =0(er) '0(ex) = 0(exr) " 0(er)0(er) = O(er) as required.

(ii) Pick h € H. Then 8(h)8(h=1) = §(hh~') = O(ey) = eg (by (i)). Similarly
O(h~10(h) = 0(h=th) = (er) = eq. Thus O(h~1) = 6(h)~! as required. O

Definition. If §: H — G is a group homomorphism then the kernel of 6 is defined
by
kerf:={h e H|60(h)=eq}
and the image of 0 is defined by
Imé :=6(H).

Proposition. If 0: H — G is a homomorphism then ker 8 is a subgroup of H and
Im 6 is a subgroup of G.

Proof. We've seen (ep) = eq so ey € ker) and eg € Im 6.

Suppose that ki, ks € kerf. Then O(kike) = 0(k1)0(k2) = egec = eq, ie.
kiky € ker6. Similarly 0(k;') = 0(k1)™' = e5' = eq, ie. k' € ker . So
kerf < H.

Suppose now that 6(hy),0(h2) € Im 6. Then 6(h1)0(ha) = 6(h1hs) so 0(h1)0(hs) €
Im@. Similarly (hi)~! = 0(h1"), so 8(h1)~ € Im6. So Im 6 < G. 0

LECTURE 5

Theorem (Special case of the isomorphism theorem). A group homomorphism
0: H — G is an isomorphism if and only if ker® = {eg} and Im6 = G. In this
case, 0~1: G — H is a group homomorphism (and so also an isomorphism,).

Proof. Suppose that @ has an inverse. Certainly ey € kerf and so 0~ '(eg) =
0~ '0(ey) = ey. Thus if k € kerf then k = 6710(k) = 6~ '(eq) = ey and so
ker = {ey}. Moreover for each g € G, 071(g9) € H and g = 0(67(g)). Thus
G =1Imb6.

Conversely, suppose that ker = ey and Imf = G. By the latter property
for each g € G we may choose an element h, € H such that 6(hy) = g. Now if
s: G — H is the function g — h, then 0s(g) = 0(hy) = g for all g € G. It follows
that for all h € H,

0(s(0(h))h™") = 0(s(6(h)))0(h™") = O(R)I(h™") = O(hh™") = O(en) = ec,

ie. s(0(h))h™! € kerd = {ey}. It follows that sf(h) = h for all h € H and so s is
an inverse of 6.

Finally, suppose that 6 is an isomorphism and ¢1,g92 € G. Then

06" (9192)) = 9192
and
0(0~"(91)07" (92)) = (6" (91))0(67 " (92)) = 9192

since 6 is a homomorphism. Thus

07 (g192) = 071 (0(07 (9192))) = 071 (6071 (91)0(6 *(92)))) = 0~ (g1)0 " (g2)
as required. O

Lemma. The composite of two group homomorphisms is a group homomorphism.
In particular the composite of two isomorphisms is an isomorphism.
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Proof. Suppose 6,: H — G and 65: K — H are homomorpisms and ki, ky € K
then 91(02(]{}1]62)) = 01(02(]{31)92(]{2)) = 0192(k1)9192(k2) ie 9192 is a homomor-
phism. Finally, if 6; and 6 are invertible then 65 191_ 1is an inverse of 6;6s. O

Definition. We say that a group G is cyclic if there is a homomorphism f: Z — G
such that Im f = G. Given such a homomorphism f we call f(1) a generator of G.

Note that G is cyclic with generator g if and only if every element of G is of the
form ¢ with i € Z. More generally we say that a subset S of G generates G if
every element of G is a product of elements of S and their inverses — that is if G
the unique smallest subgroup of G containing S*'.

FEzxzamples.

(1) The identity map id: Z — Z; n — n and the ‘reflection about 0’ map s: Z — Z;
n — —n are both homomorphisms with image Z. Thus Z is cyclic and both 1
and —1 are generators. No other element generates Z.

(2) Z, is cyclic. In Numbers and Sets it is proven that an element of {0, 1,...,n—1}
generates Z,, if and only if it is coprime to n'?. The “f’ part is a conseqeunce
from Euclid’s algorithm; the only if part is elementary.

Lemma. Suppose that G is a group containing an element g with g" = e. There is
a unique group homomorphism f: Z, — G such that f(1) = g. In particular every
group of order n with an element of order n is isomorphic to Z,,.

Proof. Suppose that f: Z,, — G is a homomorphism such that f(1) = g. Then for
a=0,1,...n—1, fla+,1) = f(a)f(1) = f(a)g. Thus we can see inductively that
f(a) = g° for all a € Z,,. Thus if f exists then it is unique.

We now see how to construct f. We define f(a) = ¢g* for all a € Z,, and we
must prove that this defines a homomorphism. That is we must show that g+»® =
fla+,b) and g**t* = f(a)f(b) are equal for all a,b € Z,,. Since a+b— (a+,b) = kn
for some integer k and g™ = e, we see that

ga-i-bg—(a-i-nb) — (gn)k k
Thus g2+° = g*Tn? as claimed.

Suppose now that G has order n and g € G has order n. By the previous part
there is a homomorphism f: Z,, — G such that f(a) = g* for each a € Z,,. Suppose
that f(a) = f(b) for a,b € Z,,. Then f(b—, a) = g*~»* = e thus a = b else g would
have order strictly smaller than n. It follows that ker f = {e} and |Im f| has n
elements and so must be the whole of G. Thus f is an isomorphism. O

Notation. We'll write C,, for any group that is cyclic of order n. We've verified
that any two such groups are isomorphic.

HThe curious will be reflecting on why G should have a unique smallest subgroup containing
S. Their reflections will do them good

12Recall that non-negative integers a, b are coprime if and only if their only common factor is
1.
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Recall that we showed that Do, = {r® r’s |i=0,1,...,n — 1} where r denotes
a rotation by 27/n and s denotes a reflection. And that

R p————l
rForls = phtalg
rhs.rt = pFte(=hg and
rks . rls = r’”"(*l).

Lemma. Let n > 2 and suppose that G is a group containing elements g, h such
that ¢g" = e, h?> = e and hgh™' = g~'. There is a unique group homomorphism
f: Dap, — G such that f(r) =g and f(s) = h. Moreover if o(g) = n and |G| = 2n
then f is an isomorphism.

Proof. This is similar to the last proof. Any homomorphsim f: Dy, — G such
that f(r) = g and f(s) = h must satisfy f(r’) = ¢* and f(r's) = g*h. So we must
show that this does define a homomorphism i.e. show that f(zy) = f(z)f(y) when
x,y € {r',ris} = Dsy,. We'll do the most difficult case and leave the rest as an
exercise. We can compute

Fks)f(r's) = g"hg'h = g (hgh™")! = gFg™" = gFT+ (D = f(rksrls)

as required.

For the last part suppose that o(g) = n and |G| = 2n. If 7' € ker f with
i € {0,1,...n — 1} then ¢ = e so as o(g) = n, i = 0. If ris € ker f then
g'h =eso h =g’ Then g-' = hgh™! = g°g9~" = g and so g = e contradicting
o(g) = n. Thus ker f = {e}. This means that f can’t take the same value twice:
if f(z) = f(y) then f(zy™') = e so # = y. That Im f = G now follows from the
pigeonhole principle. ([l

LECTURE 6

1.5. The Mobius Group. Informally, a Mdbius transformation is a function
f: C — C of the form
_ az+b
fizm— =1 d
with a,b,¢,d € C and ad — bc # 0. The reason for the condition ad — be # 0 is that
for such a function if z,w € C then

az+b aw+b

(z —w)
(cz 4+ d)(cw + d)

(ad — be)

so f would be constant if ad — bc were 0.3

Unfortunately the function is not well defined if z = —d/c since we may not
divide by zero in the complex numbers. This makes composition of Mdbius trans-
formations problematic since the image of one Mobius transformation may not
coincide with the domain of defintion of another. We will fix this by adjoining an
additional point to C called co.'

Notation. Let Co, := CU {oco} which we call the extended complex plane.

13This is bad because we’re really interested in invertible functions
Mand pronounced ‘infinity’.
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Definition. Given (a,b,c,d) € C* such that ad — bc # 0 we can define a function
f: Cyp — C as follows:

if ¢ # 0 then
axth itz e C\{—d/c};
f(z) =< oo if z=-d/g
afc if  z=o0;
if ¢ =0 then

aztb if e C
1) = { &z)+d if z=o0.
We call all functions from C, to C, that arise in this way Mdébius transformations
and let
M :={f: Cyx — Cx | f is a Mdbius transformation}.

We’ll see another way to interpret this definition later in the course involving
projective geometry. But for now we’ll work with it as it stands and also take for
granted a result that will will prove later.'®

Theorem. The set M defines a subgroup of S(Cs).

Lemma. Suppose that f € M such that f(0) =0, f(1) =1 and f(co) = co. Then
f=id.
Proof. If f = 22£b then f(o00) = oo forces ¢ = 0 and f(0) = 0 forces b = 0 and then

cz+d

f(1) =1 forces a/d =1 and so f: z — gjig = z for all z € C as required. O

Theorem (Strict triple transitivity of Mobius transformations). If (21, 22, 23) and
(w1, wa, w3) are two sets of three distinct points then there is a unique f € M such
that f(z;) = w; fori=1,2 and 3.

Proof. First we consider the case w; =0, wy = 1 and w3 = oc.

If none of z1, 22, 23 are co then f(z) = 22:27%;:23 does the job.
1

If some z; = oo then choose z4 € Coo\{z1,22,23} and let s(z) = — then
(s(z1),5(22), s(z3)) does not contain co so by the above we may find g € M such
that g(s(z1)) =0, g(s(z2)) =1 and g(s(z3)) = co. Then f = gs does the job.

In the general case we can find g,h € M such that g(z1) = 0, g(z2) = 1,
g(2z3) = 00 and h(w;) = 0, h(wz) = 1 and h(wz) = co. Then f = h~1g(z;) = w; for
i =1,2,3 and we’ve shown existence in general. Moreover if k is another such map
then hkg~! fixes 0,1 and oo so by the lemma is the identity. Thus k = h~'g = f

and we’ve shown uniqueness. (I

Definition. Given distinct points z1, 29, 23, 24 € Co the cross-ratio of z1, 29, 23, 24
written [z1, 2o, 23, 24] := f(z4) where f is the unique M6bius transformation such
that f(z1) =0, f(z2) =1 and f(z3) = 00.1°

_ (za—z1)(22—23) 17

Lemma. If 21,29, 23,24 € C then [z1, 22, 23, 24] = CEN=AE

5 There is a straight-forward if slightly fiddly way to prove it directly that demands care with
the point co. We will give a slightly more sophisticated but less fiddly proof.

16There are 6 essentially different definitions of cross-ratio depending on how we order 0, 1
and oo in this definition. It doesn’t really matter which we choose as long as we are consistent.

17We could’ve defined the cross-ratio by this formula but we’d need to be more careful when
some z; = 00.
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Proof. We've already computed that f(z) = (z2=2)(z=21) §g the ynique Mébius

(22—21)(2—-23)
transformation such that f(z1) =0, f(z2) =1 and f(z3) = oo and so

(21, 22, 23, 24] = [f(24)

is given by the required formula. ([
Theorem (Invariance of Cross-Ratio). For all z1,29,23,24 € Co and g € M,
[g(zl)a 9(22)3 9(23)3 9(24)} = [zla 22,23, 24]‘

Proof. Suppose that f(z1) =0, f(22) = 1 and f(z3) = co. Then (fg~1)(g(z1)) = 0,
(fg=")(g(22)) = 1 and (fg~')(g(23)) = co. Thus

[9(21),g(22),g(23) ( )] fg 1( (24)) :f(Z4) - [21722323724]

as required. O

Proposition. FEvery element of M is a composite of Mobius transformations of
the following forms.

(a) Dy: z— az = gjfl) with a € C\{0} (rotation/dilations);

(b)) Ty: z+— 2z+b= éjj_ll’ with b € C (translations);
(c) S:z—1/z= ?zié (inversion).
LECTURE 7

Proof. We'll give two proofs. First a ‘nailing to the wall’ type argument.

Suppose f € M. If f(oo) € C then ST_ (o) f(00) = S(0) = co. So, by replacing
f by ST_ ¢() f if necessary, without loss of generahty f(o0) = cot®,

Now since f(oo) = oo, f(0) # oo. Thus T_y() exists, T_;)f(0) = 0 and
T_¢(0y(00) = 00 s0 we may assume f fixes both 0 and oo.

Now since f(oo) = oo and f(0) = 0, f(1) € C\{0}. Thus D¢y exists and
Dl/f(l)(l) = 1, Dl/f(l)(o) = 0 and Dl/f(l)(oo) = 0o. Thus f = Df(l) and we're
done.

Alternatively if ¢ # 0 then Zzzidb =24 gbizfj) so f=T,/cDwe—ady/eSTaDe. 1f

¢ =0 then f = Tb/dDa/d' |

Definition. A circle in C is a subset that is either of the form {z € C | [z—a| =7}
for some a € C and r > 02 or of the form {z € C | aRe(z) + bIm(z) = ¢} U {oo}
for some a, b, c € R with (a,b) # (0,0)?°

It follows that any three distinct points in C,, determine a unique circle in C,
Lemma. The general equation of a circle in Co, is
AzZ+ BzZz+ Bz+C =0
with A,C € R, B € C and AC < |B|%2.*!

18Since if we can prove that ST_ () f is a product of the special maps then f can be obtained

by postcomposing this product with TﬂOO)S
19

20;

i.e. a usual circle in C
i.e. a line in C together with oo
2lyhere oo is understood to be a solution of this equation precisely if A =0
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Proof. First consider the case A # 0. Then
AzZ+ Bz +Bz+C =0 < |2+ B/A]? = |B|*/A* - C/A.

This latter defines a usual circle if and only if |B|?/A? > C/A i.e. |B|?> > AC.
Next consider the case A = 0. Then

Bz + Bz+C =0 <= 2Re(B)Re(z) + 2Im(B)Im(z) = —-C.
The latter defines a line in C if and only if B # 0 ie |B|?> > AC = 0. O

Theorem (Preservation of circles). If f € M and C is a circle in Co, then f(C)
is a circle in C.

Proof. If f is a rotation/dilation or translation the result is easy. Thus in light of
the last proposition we may assume that f: z — 1/z.

But 2 is a solution to A2z + Bz + Bz + C if and only if w = 1/2 is a solution to
Cww + Bw + Bw + A. O

Corollary. Four distinct points z1, z2, 23 and z4 in Co, lie on a circle if and only
if [21, 22, 23, 24] € R.

Proof. Using triple transitivity we can find f € M such that f(z1) =0, f(z2) =1
and f(z3) = oo. By preservation of circles z1, 29, 23 and 24 lie on a circle if and only
if f(z1), f(22), f(z3) and f(z4) lie on a circle i.e. if and only if f(z4) is real. But
[21,2’2,2’3,24] = f(Z4) O

Remark. Tt is possible to prove the corollary directly and then use a similar argu-
ment to deduce that Mobius transformations preserve of circles from it.

Definition. Given two elements z,y of a group G we say y is conjugate to x if

there is some ¢g € G such that y = grg~'.

Note that if y = grg~! then = g~ 1y(g~!)~! so the notion of being conjugate
is symmetric in  and y. Morever if also z = hyh~! then z = (gh)z(gh)~! so if 2
is conjugate to y and y is conjugate to x then z is conjugate to x.

Proposition. Every Mdobius transformation f except the identity has precisely one
or two fized points. If f has precisely one fixed point it is conjugate to the translation
zw— z+ 1. If f has precisely two fixed points it is conjugate to a map of the form
z +— az with a € C\{0}.

Proof. Let f be the map extending z — ijrrs and assume that f # id.

Suppose first that ¢ = 0. In this case co is a fixed point. Moreover for z € C, f
fixes z if and only if dz = az +b. The possible sets of solutions to this equation are
{b/(d—a)} (when d # a), C (when d = a and b =0), or @ (when d = a and b # 0).
Thus when ¢ = 0 and f has either one or two fixed points.

Next suppose that ¢ # 0 then f does not fix co. For z € C, z = f(z) if and only
if cz? +dz —az — b = 0. This is a quadratic equation and the coefficient of 22 is
non-zero so it has one or two solutions (two unless there is a repeated root). Thus
again f has 1 or 2 fixed points in this case.

Now suppose that f has precisely one fixed point w and pick x € C that is not
fixed by f. Then f(x) & {x,w}.?* Let g be the unique M&bius transformation such
that g(w) = oo, g(z) = 0 and g(f(x)) = 1. Now for 2z € Co, gfg (2) = z if and

221f f(z) = w then z = f~(w) = w
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only if fg~1(2) = g~ 1(2), i.e. if and only if g~1(2) is fixed by f. Since w is the only
fixed point of f, oo = g(w) is the only fixed point of gfg~'. Thus by the discussion

above gfg~! extends z gj_ts = z+b/a for some a,b € C\{0}. Since

9fg 1 (0) =gf(z) =1

we see that b/a = 1 as required.
Suppose instead that f has two distinct fixed points z; and z;. Let g be any
Mobius transformation such that g(z1) = 0 and g(z2) = co. Then

9fg7H(0) = gf(z1) = g(21) =0

and
9fg7"(00) = gf(22) = g(22) = 0.
Thus gfg~*(z) = az for some a € C. O

Remark. Suppose that f € M. If gfg~': z+— z + 1 then for each n > 0,

gf"g "t =(gfg )"z 24n

so f(2) = g~ (g(2)+n) for z € C, not fixed by f. Similarly if gfg~': z — az then
for n > 0, f*(2) = g~ (a"g(2)) for z not fixed by f. Thus we can use conjugation
to compute iterates of f € M in a simple manner.

LECTURE 8
2. LAGRANGE’S THEOREM

2.1. Cosets.

Definition. Suppose that (G, o) is a group and H is a subgroup. A left coset of
H in G is a set of the form go H := {goh | h € H} for some g € G. Similarly a
right coset of H in G is a set of the form H o g := {hg | h € H} for some g € G.
We write G/H to denote the set of left cosets of H in G and H\G to denote the
set of right cosets of H in G*3.

As usual we will often suppress the o and write gH or Hg.

FEzxzamples.

(1) Suppose n € Z, so that nZ := {an | a € Z} is a subgroup of (Z,+). Then
0+nZ =nZ =n+nZ. 1+nZ={14+an|a € Z} =(1—-n)+nZ More
generally, b + nZ is the set of integers x such that z — b is a multiple of n.%*

(2) Suppose that G = Dg = {e,r,7%,5,7s,72s} and H = {e, s} then

eH ={es} =sH
rH ={r,rs} =rsH
r?H = {r?r?s} =r?sH.

23This latter is a little unfortunate in the \ is normally used to denote set-theoretic difference
but this should not cause confusion. Why?

24Note that because the operation on Z is addition we don’t suppress it when we name cosets,
i.e. we write a + nZ rather than anZ because the latter would create confusion.
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However,
He ={e,s} =Hs
Hr ={rr?s} = Hr’s
Hr* ={r?rs} = Hrs.
Thus left cosets and right cosets need not agree when the group is not abelian.
However if K = {e,r,7?} < Dg then K = ¢K =rK = r’K = Ke = Kr = Kr?
and {s,rs,r%s} = sK = rsK = r?’sK = Ks = Krs = Kr%s. So in this case
the left and right cosets are the same.
(3) Suppose that M is the Mobius group and H = {f € M | f(0) = 0}. Then, for
gEeM,

gH = {feM]f(0)=g(0)} whereas
Hg = {feM]|f7(0)=g7"(0)}
We'll return to this idea later in the course.
2.2. Lagrange’s Theorem.

Theorem (Lagrange’s Theorem). Suppose that G is a group and H is a subgroup
of G then the left cosets of H in G partition G. In particular if G is finite then |H|
divides |G|.

Proof. To show that the left cosets of H in G partition G we must show (i) that
every element of G lives inside some left coset; and (ii) if two left cosets have a
common element then they are equal.

For (i) notice that for all g € G, g € gH since e € H and ge = g.

For (ii) suppose that g € g1H N goH. Then we may find hq, he € H such that
g = g1h1 = gaha. Then for all h € H, gih = gh'h = gahohy *h. Since hohi'h €
H, we see that g1 H C goH. By symmetry we may conclude that goH C g1 H and
so g1H = goH as required.

Now for the last part we observe that when G is finite, H must also be finite
since it is a subset of G. Moreover, |G| = > peq g lgH|. Now for each left
coset gH there is an invertible function l,: H — ¢gH; h — gh — the function
lg_l is given by gh — g~ lgh = h. Thus |gH| = |H| for every left coset gH and
G| =|G/H]| - |H]. O

Remark. By a very similar argument the right cosets of H in G also partition G.
Corollary. If G is a finite group, then every element of G has order dividing |G]|.

Proof. Suppose g € G and let f: Z — G be the homomorphism defined by f(n) =
g". We claim that the order of g is precisely | Im f| which divides |G| by Lagrange.
To prove the claim we first observe that Im f = {e,g,¢?%,...,9°9 '} since if n € Z
there are integers ¢,r with 0 < r < o(g) and n = go(g) + r and then ¢g" =
(g°9))4g" = g". Moreover the elements e, g, ..., g9~ are distinct since if g* = g
with 0 < i < j < o(g) then ¢/ =% = e contradicting the definition of o(g). O

Proposition. Suppose that p is prime. Then every group of order p is isomorphic
to Cp.

Proof. Let G be a group of order p and g € G\{e}. Since |G| = p and o(g) divides
|G| and is not 1 we must have o(g) = p. Thus g generates G by counting and an
earlier lemma tells us that G is isomorphic to Cp. (]
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2.3. Groups of order at most 8. In this section we will classify all groups of
order at most 8 under the perspective that two groups are the same precisely if
they are isomorphic. We’ve already seen that every group of order 2,3,5 or 7 is
isomorphic to the cyclic group of the same order. It is evident that the trivial group
is the only group of order 1 up to isomorphism.

Before we begin this we’ll need the following construction that enables us to
build new groups from old ones.

FEzample. Suppose that G and H are groups. We can define a binary operation on
G x H via (gl,hl)(gg,hg) = (glgg,hlhg) for 91,92 € G and hl,hg € H. We claim
that this makes G x H into a group.

Proof of claim. Since

((g1,h1)(92, h2)) (g3, h3) = (919293, hihah3) = (g1, h1)((92, h2) (g3, h3))

for all g1, 92,93 € G and hq, ha, h3 € H, the operation on G x H is associative.
Since (eg,en)(g,h) = (g9,h) = (g,h)(eq,en), (eq,en) is an identity for the
operation on G x H.
Finally since (g7, h=')(g,h) = (eg,erx) = (g,h)(g~',h~1) the operation on
G x H has inverses. (]

Exercise. Show that if G1,G2 and G3 are groups then G x Gy is isomorphic to
Gy x G1 and (G7 X G2) x G is isomorphic to G X (G2 x Gs).

LECTURE 9

Theorem (Direct Product Theorem). Suppose that Hy, Hy < G such that
(Z) H NH; = {6},‘

(ii) if hy € Hy and he € Ha then hy and he commute;

(iii) for all g € G there are hy € Hy and he € Hy such that g = hihs.

Then there is an isomorphism Hy x Hy — G.

Proof. Let f: Hy X Hy — G be given by f(h1,hs) = hihe. Now if hy, k; € H; and
ho, ko € Hsy then
F((h, k1) (ha, k2)) = f((hihg, kik2)) = hahokiks
and
f((h1, k1)) f((h2, k2)) = hakihoks.
Since k1 and he commute (by (ii)), we see that f is a homomorphism. Now if
(h1,hy) € ker f then hihy = e so hy = hy' € Hy N Hy = {e} (by (i)). Thus

ker f = {e}. Finally Im f = {h1hy | hy € Hy,hy € Hy} = G (by (iii)) and so f is
the required isomorphism. O

We also need the following result that also appeared on the first example sheet.

Lemma. If G is a group such that every non-identity element has order two®® then
G is abelian.

250f course in any group the identity has order 1
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Proof. Suppose that =,y € G. We must show that zy = yz.

Note that for all ¢ € G, g?> = e. So by uniqueness of inverses every element of
G is self-inverse, i.e. g = g~'. In particular (zy)~! = xy. By the shoes and socks
lemma it follows that y~'2~' = zy. Since 27! = z and y~! = y, yx = 2y as

required. ([l

We also recall that every a group of order n with an element of order n is
isomorphism to C,, and that every group of order 2n that has an element g of order
n and an element h of order 2 such that hg = g~ 'h is isomorphic to D,,.

Proposition. FEvery group of order 4 is isomorphic to precisely one of Cy and
Cg X Cg.

Proof. First we’ll show that Cy and Cy x Cy are not isomorphic. Suppose (g, h) €
Co x Cy. Then (g,h)? = (e, e). So every element of Cy x Cy has order 2 but C has
an element of order 4 thus they cannot be isomorphic.2¢

Now suppose that G is any group of order 4. If G contains an element of order 4
then it is isomorphic to C4 so suppose not. By Lagrange every non-identity element
of G has order 2. Let g, h be two distinct such elements. Let H; = {e, g} ~ C3 and
Hy = {e, h} ~ C5. It suffices to show that the three conditions of the direct product
theorem hold. Condition (i) is immediate since g # h. Condition (ii) follows from
the last lemma since it tells us that G must be abelian. Finally, since ¢ € Ho,
gHs> # Hy and G is partitioned by Hy and gHy by Lagrange. Thus condition (iii)
holds. O

Proposition. Every group of order 6 is isomorphic to precisely one of Cg or Dg.

Proof. We can easily see that Cg and Dg are not isomorphic since Cy is abelian
and Dy is not?7.

Now suppose that G is any group of order 6. If G contains an element of order 6
then it is isomorphic to Cg so suppose not. By Lagrange every non-identity element
of G has order 2 or 3. If there were no element of order 3 then any two non-identity
elements would generate a subgroup of order 4 contradicting Lagrange. Thus G
contains an element g of order 3. Let K = {e, g, g} be the subgroup of G’ generated
by g which is isomorphic to C3. By Lagrange for any h ¢ K, G is partitioned by
K and hK ie. G = {e,g,¢% h,hg,hg?}. Now consider h?: h? ¢ hK else h € K?5.
Thus h? € K. If h? is g or g2 then h has order 6 contradicting our assumption that
G has no elements of order 6. Thus h? = e.

By the right coset version of Lagrange, GG is also partitioned by K and Kh thus
Kh = hK and {h,gh,g?h} = {h,hg,hg*}. So gh € {hg,hg*}. If gh = hg then
(gh)? = g2 and (gh)® = h. Thus gh does not have order 1, 2 or 3, a contradiction®’.
Thus gh = hg~* And we can deduce that G ~ Ds. O

Example. The following set of matrices form an non-abelian group Qg of order 8

o )= 5) =) =00}

2671¢ f: Z4 — O3 x Co were an isomorphism then f(2) = f(1)? = e giving f a non-trivial kernel.

271¢ f: D¢ — Cg were an isomorphism then for all g1,92 € Ds, f(9192) = f(91)f(g92) =
f(g2)f(g1) = f(g291) s0 g201 = g192.

28if h2 = hk then h = k

2%had we not made the assumption about no elements of order 6 then in this case we’d get
that gk has order 6 so G ~ Cg
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It is common to write

1 0\. (i 0. (0 1 (0 i
(o 9= (0 S (o) e (70),

Then Qg = {£1, £i, £j, £k}. Then we can compute that 1 is an identity, —1 has
order 2 commutes with everything and multiplies as you’d expect given the notation.
Morever i,j and k all have order 4 (all of them square to —1), ij = k = —ji,
ki = j =ik and jk =i = —kj.

Exercise. Verify that Qg is a group.

LECTURE 10

Proposition. Fvery group of order 8 is isomorphic to precisely one of Cs, Cy x Cy,

CQ X CQ X CQ, Dg or Qg.

Proof. Let G be a group of order 8.

If G has an element of order 8 then G ~ Cs.

If every non-identity element of G has order 2 then G is abelian. Moreover any
two non-identity elements g1, g2 generate a subgroup H; of G of order 4 necessarily
isomorphic to Cy x C3.%° If g5 € G\ H; then Hy = {e, g3} is a subgroup of order 2.
One can easily verify that G >~ Hy; x Hy ~ C5 x Cy x (5 in a similar fashion to the
argument above for Cy x Cy.3

So we're reduced to classifying groups G of order 8 with no element of order 8
and at least one element g of order 4. In this setting the set K = {e, g, 9%, ¢%} is a
subgroup of GG isomorphic to Cj.

Let h € G\K. Then G = KUhK by Lagrange so G = {e, g, g%, ¢°, h, hg, hg?, hg®}.
Moreover h? € K else h? € hK whence h € K.

If h2 = g or h? = g~! then h has order 8 contradicting our assumption that G
has no such elements. So there are two cases remaining: case A where h? = e and
case B where h% = ¢2.

Suppose that we're in case A and h? = e. Then consider the product gh. By
Lagrange again, gh € hK = {h, hg, hg?, hg®}. If gh = hg® then h~'gh = g% and

g="h7gh’ = b7 (W gh)h = ' g'h = (W7 gh)' = (¢')' = g" 2
Thus ¢ = 1 or 3. If i = 1 then G is abelian and we can use the direct product
theorem to show that G ~ K x {e,h} ~ C4 x Cs. If instead ¢« = 3 then G has an
element ¢ of order 4 and an element h of order 2 such that gh = hg~! so as G has
order 8 we know that G ~ Ds.

Finally suppose we're in case B and h? = ¢g?. Again consider the product gh €
{h,gh,g*h,g*h} = Kh = hK = {h,hg,hg? hg®}. Since g?h = h3 = hg?, gh = hg
or gh = hg>. If gh = hg then

(gh)* =g’h* =g' =¢
so {e,gh} < G and G ~ K X {e,gh} ~ C4 x Cy by the direct product theorem.

30the elements are e,g1,92 and g1g2 it is easy to check that these are distinct and form a
subgroup.
31Gee also Example Sheet 1 Q14

32gince h2 = e
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If gh = hg® then do some renaming. Write 1 :=e¢, —1:=h? =g¢% i:=g, j:=h,
k := gh. Then
G = {£1, +i, +j, £k}
and we can verify that multiplication is as for Qs.
Ezercise. Complete the proof by showing that no two of the listed groups are
isomorphic. ([

2.4. The Quaternions.

Definition. The quaternions are the set of matrices
H:= {al+bi+cj+dk]|a,b,c,d € R} C Maty(C)

where as before

10\ . (i 0. (0 1 (0 i
(0 1) )= ) mee=(00)

The sum or product of two elements of H lives in H and + and - obey the
same associativity and distributivity laws as Q,R and C with identities 0 and 1
respectively. Although the multiplication in H is not commutative (since ij = —ji),
(H,+) is an abelian group and (H\{0},-) is a (non-abelian) group.** To see the
latter we can define ‘quaternionic conjugation’ by

(al+bi+c¢j+dk)" =al —bi—cj—dk
and then verifying that if x = al + bi 4 ¢j + dk then
rx* =%z = (a® +b* 4+ & 4+ d?)1

worl=— 1
SO0 T = a2+b2+02+d2x for x 7é 0.

2.5. Fermat—Euler theorem. We can define a multiplication operation on the

set Z, ={0,1,...,n— 1} by setting a -, b to be the remainder after dividing ab by
n.

Definition. Let U, := {a € Z,, | 3b € Z,, s.t. a -, b = 1} be the set of invertible
elements of Z, with respect to -,.

It is a result from Numbers and Sets that follows from Euclid’s algorithm that
|U,| = ¢(n) where p(n) denotes the number of elements of Z,, coprime to n. Indeed
U,={a€Z,| (a,n)=1}.

Lemma. (U,,-y,) s an abelian group.

Proof. -, defines an associative and commutative operation on Z, with an identity
1.34 If a1, as € U, then there are by, by € U, such that a; -, b; = 1. Then
(a1 9 a2) n (b1 nb2) = (a1 nb1) n(a2pb)=1-,1=1

so -, restricts to an associative binary operation on U,,. 1 € U, is an identity and
if a € U,, then thereis b € Z,, witha -, b =b-,a=1. Then b€ U, and b = a~ L.
So U,, has inverses. O

Theorem (Fermat-Euler Theorem). If (a,n) = 1 then a*™ =1 mod n.

33We say that H is a division algebra. R, C and H are the only division algebras that are finite
dimensional as vector spaces over R.
3gor a,b,c € Zn, an(b-nc)=abc=(anb)nc modn
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Proof. Since (Uy, -,) is a group of order ¢(n) it is consequence of Lagrange’s the-
orem that every element of (U,,-,) has order dividing ¢(n). The result follows
immediately. O

LECTURE 11
3. GROUP ACTIONS

We started the course by saying that groups are fundamentally about symmetry
but the connection has been opaque for the last three lectures. In this chapter we
will discuss how to recover the notion of symmetry from the group axioms.

3.1. Definitions and examples.

Definition. An action of a group G on a set X is a function
2 GEGxX = X;(g,x)—g-x
such that for all z € X

(i) e-xz=uz;
(ii) g- (h-z) = (gh) -« for all g,h € G.

Examples.

(1) Isom(Z) acts on Z via f -n = f(n).

(2) The Mobius group M acts on the extended complex plane Co, via f -z = f(z).

(3) Generalising both the examples above, if H < S(X) then H acts on X via
h -z = h(z). We call this the natural action of H on X.

(4) M also acts on the set of circles in Co,. We proved in §1.5 that if f € M
and C C Cy is a circle then f(C) C C4 is also a circle so (f,C) — f(C) is a
function. Moreover for all circles C' the conditions id(C') = C and f(g(C)) =
(fg)(C) for f,g € M are both clear.

(5) Dq, acts on the set of points a regular n-gon. Ds, also acts on the set of
vertices of a regular n-gon and on the set of edges of a regular n-gon.

(6) If X is a regular solid then Sym(X) acts on the set of points (and on the sets
of vertices/edges/faces) of X.

(7) If H < G then G acts on G/H, the set of left cosets of G in H via g-kH = gkH
for g,k € G. To see this we need to check that if kH = k’'H then gkH = gk'H.
But if kH = k'H then k' = kh for some h € H so gk’ = gkh € gk’ HNgkH and
gkH = gk’H by Lagrange. Given this we see that for all k € G, ekH = kH
and g1(gokH) = (g192)kH for all g1, g2 € G.

(8) For any group G and set X we can define the trivial action via g -x = x for all
g€ Gandz e X.

Theorem. For every group G and set X there is a 1 — 1 correspondence
{actions of G on X} «— {0: G — S(X) | 0 is a homomorphism}

such that an action -: Gx X — X corresponds to the homomorphism 0: G — S(X)

given by 0(g)(x) =g - x.

Proof. First we must show that if -: G x X — X is a action then the formula
0(g)(z) = g - « does define a homomorphism G — S(X).
For each g € G, define 0(g): X — X via 6(g)(z) = g - z. So that

0:G—{f: X - X}.
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Then for g, h € G we can compute

0(gh)(z) = (gh) -z =g (h-x) =0(g) 0 O(h)(x)
ie O(gh) = 6(g)0(h). So to show that 6 defines a homomorphism G — S(X) it
suffices to show that 0(g) € S(X) for each g € G; i.e. that each 6(g) is invertible.
But
0(9)0(g~") = b(e) = (g~ ")0(g)
s0 to show this it suffices to show that (e) isidx. But 8(e)(z) = e-z = z = idx (z).
So we’re done.

To finish we must show that every homomorphism 6: G — S(X) arises like this
in precisely one way. So suppose that 6 is any such homomorphism, 6 corresponds
to an action -: G x X — X precisely if g -z = 0(g)(x) defines an action. So it
remains to check that e-x =z and g- (h-x) = (gh) -z for all x € X and g,h € G.
But

e-r=0(e)(r) =idx(x) = 2
and
g- (h-2) = 0(g) (O() (@) = B(gh) (@) = (gh) -
as required. O
Definition. We say that an action of G on X is faithful if the kernel of the corre-
sponding homomorphism G — S(X) is the trivial group.
3.2. Orbits and Stabilisers.

Definition. Suppose a group G acts on a set X and that z € X. The orbit of
under the action is given by

Orbg(z) :={g9-z|g€ G} C X.
The stabiliser of x under the action is given by
Stabg(z) :={g€ G|g-z =2} CG.
Thus an action is faithful precisely if [,y Stabg(z) = {e}.

Ezxzamples.
(1) Under the natural action of Isom(Z) on Z, for all n € Z

OrbIsom(Z) (n) =7
and
Stabisom(z) = {id, m = 2n —m}
(2) Under the natural action of M on C, for all z € Co
Orbpa(z) = Coo

and b
az
Stabay(c0) = {z — 0ot d | ad # 0}.
(3) Under the action of Ds, on the set of points of a regular n-gon the orbit of a
vertex of the n-gon is the set of all vertices of the n-gon and the stabliser of a
vertex consists of the identity and reflection in the line through the centre of
the n-gon and the vertex.?%

35Since 6 is a homomorphism it must send the identity of G to the identity of S(X).
361 would be instructive to think about what the orbits and stabilisers of other points of n-gon
are under the action of Da,.
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(4) For the left coset action of G on G/H defined earlier
Orbg(eH) =G/H
and
Stabg(eH) ={9€ G|gH =eH}=H.
More generally
Stabg(kH) ={g € G | gkH =kH} ={g € G | k™ 'gkH = H} = kHE™".
(5) For the trivial action of G on X and any z € X,
Orbg(z) = {z} and Stabg(z) = G.

Lemma. Suppose that G is a group acting on a set X.
(i) Each stabiliser Stabg(z) is a subgroup of G.
(i) The orbits Orbg(z) partition X. In particular if X is finite and the distinct
orbits are O1,...,Oy, then

X1=3"104
=1

LECTURE 12

Proof. (i) Let x € X. Since e-x = x, e € Stabg(x). Suppose that g, h € Stabg(z).
Then
(gh)-x=g-(h-2)=g-z=x
so gh € Stabg(z) and
r=e-x=(g"g)x=9"(g-x)=g "2
so g~ € Stabg(x). Thus Stabg(x) < G as required.*”

(ii) Since for any z € X, x = e -z so € Orbg(x), it suffices to prove that
for any x,y € X either Orbg(z) = Orbg(y) or Orbg(z) N Orbg(y) = . Suppose
that z € Orbg(z) N Orbg(y). Then there are some elements g,h € G such that
g-x=2z=h-y. Thus z = (¢g7'h) -y. Now if w € Orbg(x) then there is some
f € G such that w = f-2. Whence we can compute w = (fg~'h) -y and so
Orbg(z) C Orbg(y). By symmetry Orbg(y) C Orbg(z). Now we can see that
Orbg(z) = Orbg(y) as required.® O

Definition. We say that an action of G on X is transitive if there is only one orbit
ie. if X = Orbg(z) for any z € X.

Theorem (Orbit-Stabiliser Theorem). Suppose a group G acts on a set X and
x € X. There is a (natural) invertible function

G/ Stabg(z) — Orbg(z).
In particular if G is finite
|G| = | Orbg(z)| - | Stabg ().
3TWe used the same argument for a special case of this in Lecture 4 when we showed that
Stabrgom(z) (0) < Isom(Z).
38You should spend some time thinking about the relationship between this proof and the

proof of Lagrange’s Theorem. Can you find an action of H on G making Lagrange a special case
of this result?
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Proof. For y € Orbg(x), {g € G| g-x =y} is a left coset of Stabg(x) in G since
it is non-empty and if g - ¢ = y then for h € G

h-z=y <= g'(h-2)=2x
<= g 'hc Stabg()
<= h € gStabg(x).

Thus there is a function G/ Stabg(x) — Orbg(x) given by hStabg(x) — h - x
with inverse Orbg(x) — G/ Stabg(z) given by y — {g € G | g - = y}.

Now if G is finite then |Orbg(x)| = |G/ Stabg(z)| = |G|/|Stabg(x)| by La-
grange.*’ (]

Ezxzamples.

(1) For the natural action of Isom(Z) on Z the set of left cosets of Stabsom(z)(0) =
{e,n+— —n} in Isom(Z) is in bijection with Z. We secretly used this fact when
we computed Isom(Z) in the first lecture.

(2) For the usual action of Dy, on the vertices of the n-gon and v such a vertex we
see that |Da,| = |Stabp,, (v)|| Orbp,, (v)| = 2n. Again we secretly used this
when we computed |Dz,| = 2n.

(3) The symmetric group S, acts on X = {1,2,...,n} via the natural action
f-x = f(x). Then Orbg, (n) = X since for each ¢ € X the function f;: X — X;
fiti) = n, filn) =4, fi(z) = x for x ¢ {i,n} is an element of S,,. Thus
|Sn| = nStabg, (n). But Stabg, (n) is isomorphic to S,,_; by restricting f € S,
that fixes n to a permutation of {1,...,n — 1}. Thus |S,| = n|S,—1]. Since
|S1| = 11 we deduce that |S,| = n!.

LECTURE 13

Fact. If f: R3 — R3 is an isometry that fixes 4 non-coplanar points then f is
the identity.

(4) Let X be a regular tetrahedron. Then Sym(X) acts transitively on the set of
4 vertices of X and the stabiliser of a vertex v € X consists of three rotations
and three reflections. Thus |Sym(X)| =6-4 = 24.

This calculation enables us to prove that Sym(X) ~ Sy: if we label the
vertices by the numbers 1,2,3,4 then the action of Sym(X) on the vertices
defines a homomorphism #: Sym(X) — S;. Since any isometry of R? fixing all
four vertices is the identity we can conclude that ker § = {id}. By counting we
can deduce Im 6 = Sy.

(5) Let X be a cube. Then Sym(X) acts transitively on the set of 6 faces of X and
the stabiliser H := Stabgyy(x)(F) of a face F' acts transitively on the set of 4
vertices contained in it*!. If v is one of these vertices and w is the diagonally
opposite vertex in F' then

Stabg (v) = {e, reflection in plane containing v,w and the centre of X }*2.

39You might like to think about whether you can do this last part without recourse to Lagrange.

400y if you prefer [So| = 1

41This can be seen by considering rotations about an axis through the centre of F' and the
centre of its opposite face.

42Gince if an isometry of R? fixes all vertices of F' and the centre of X then it is the identity.



GROUPS 27

Thus
Sym(X) =6|H| =6-|Orbg(v)||Staby (v)] =6-4-2 = 48.
3.3. Conjugacy classes.

Definition. If G is a group then the conjugation action of G on itself is given by

G xG =G g =gxg .

Note that the conjugation action is indeed an action since for g, h,x € G,

e-r=ere ' =x

and
g-(h-z)=g(hah™")g~! = (gh)x(gh)~" = (gh) - z.

Definition. The orbits of G on itself under the conjugation action are called the
conjugacy classes of G: the orbit of z € G will be denoted ccl(z); i.e.

cl(z) = {gzg™" | g € G}.*

The stabliser of x € G under this action is called the centraliser of x and will be
denoted Cq ().

FEzxamples.

(1) Suppose G = Isom(Z) = {to:n — a+n,s:n — a—n | a € Z}. Let
H := {t, | a € Z} denote the subgroup of translations We know that for any
a,bezZ,

totaty ' =t
and for n € Z,
sptasy () = spta(b—n) = spla+b—n)=n—a
ie
sbtasgl =1_,
so for a # 0
Ca(te) = H and ccl(t,) = {ta,t_o}**.
Similarly for n € Z
tysaty 1(n) = tpsa(n —b) = ty(a — (n — b)) = (2b+ a — n) = sp1a(n)
and
spSasy H(n) = spsa(b—n) = sp(a— (b—n)) =b—(a+n—0) =2b—a—n = syp_4(n)

so as a = —a mod 2

Cai(sa) = {to, sa} and ccl(sy) = {sat2p | b € Z}.

That is there are two conjugacy classes of reflections ccl(sg) and ccl(sy).*?

43Since conjugacy classes are orbits of an action they partition G; that is every element of G
lies in precisely one conjugacy class.

440f course Cg(to) = G and ccl(to) = {to}.

45\What is the geometric meaning of this?
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(2) We saw in section 1.5 that in the Mdobius group M the conjugacy class of
z +— z+ 1 consists of all Mobius transformations with precisely one fixed point
ie.

ccl(z— 24 1) = {f € M| f has precisely one fixed point}

and that every Mobius transformation with precisely two fixed points is in the
same conjugacy class as a Mobius transformation of the form z — az. We will
return later to the question of when ccl(z — az) = ccl(z — bz) and what the
centralisers of these elements are.’® Of course ccl(id) = {id} and C,(id) = M.

Definition. The kernel of the homomorphism G — S(G) given by the conjugation
action of G on itself is called the centre of G and written Z(G).

Lemma. Suppose that G is a group.
(a) Forxz € G, Cg(z) ={g9 € G| zg = gz}.
(b) Z(G)={9 € G| gz =xg forallz € G} =, Ca(x).
(c) Z(G) ={g € G| ccl(g)| = 1}.
Proof. (a) For g,z € G, g € Cg(x) if and only if grg~! = x that is if and only if
gr = xg.

(b) For g € G, g € Z(G) if and only if grg~! = x for all z € G i.e. if and only if
gr = zg for all z € G. The other equality follows immediately from (a).

(c) This follows easily from (b): g € Z(G) if and only if g = xg for all x € G
i.e. if and only if zgz~! = g for all z € G. (]

3.4. Cayley’s Theorem. Cayley’s Theorem will tell us that every group is iso-
morphic to a subgroup of a symmetric group.

Definition. If G is a group then the left reqular action of G on itself is given by
the function -: G X G — G; g - = = gx.

FEzxzample. The left regular action of Z on itself is by translations. i.e. the corre-
sponding homomorphism Z — S(Z) is given by n + t,.%7

Lemma. The left reqular action of G on G is an action that is both transitive and
faithful.

Proof. First we should check that the left regular action is indeed an action: for all
g, h,x € G e-x=ex=xand g-(h-z)=ghx=(gh)-z.

Next we observe that Orbg(e) = G and Stabg(e) = {e} since for all g € G,
g+ e =g. Thus the left regular action is transitive and faithful. O

LECTURE 14

Theorem (Cayley’s Theorem). If G is a group then G is isomorphic to a subgroup
of S(G).

46gpoiler: ccl(z — az) = ccl(z — bz) if and only if b € {a,1/a}, Ca(z — z+1) =
{translations in M} and, for a # 1, Cg(z — az) = {dilations/rotations in M}. Can you prove
these facts now? Hint: if g(z + az)g~! = 2z + bz for ¢ € M what can you say about g(0) and
g(00)?

47 ecall tn denotes translation by n
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Proof. The left-regular action defines a homomorphism 6: G — S(G). Since Im 6
is a subgroup of G we may view this as a homomorphism G — Im # whose image is
still Im@. Since the action is faithful, ker = {e} and we see that G is isomorphic
to Im 6. O

It perhaps should be said that this theorem is simultaneously deep and almost
useless. Deep because it tells us that anything satisfying our abstract definition of a
group can be viewed as symmetries of something. Almost useless because knowing
this doesn’t really help prove things about groups.

3.5. Cauchy’s Theorem.

Theorem (Cauchy’s Theorem). Supppose that p is a prime and G is a finite group
whose order is a multiple of p. Then G contains an element of order p.

Proof. Consider the action of Z, on G? via

Q- (907 gi,--- ,gpfl) = (gi7gl+pia s 7g(p—1)+pi)
i.e. by cyclic permutation. This is an action since 0 -z = z for all x € GP and

(i+pJ) (90,91 9p=1) = (Gitps» Gitpivtpis - Ip—1)+pitps)
= (- (90,915 9p-1))
for all 4,7 € Z,, and go,...,gp—1 € G.

Let X = {(g0,---,9p-1) € G? | gog1-+-gp—1 = €} C GP. Then |X| = |G|P~!
since however we choose go, ..., gp—2 € G there is precisely one choice of g,_1 € G
such gog1 -+~ gp—1 = e*8. Moreover the ‘constant tuple’ (g,g,...,g) is in X if and
only g? = e — and if g # e this is equivalent to o(g) = p.

Now the cyclic permutation action of Z, on G? restricts to an action on X since
if gog1 -+ - gp—1 = e and i € Zj, then

GiG14pi Yp—1)4pi = (90 9i—1) " (g0 gp—1)(go - gi—1) = €.

Since Z, has prime order the orbit-stabiliser theorem tells us that every orbit
Orbg, () has order 1 or p for € X. Since the orbits partition X and p is a factor
of | X]| it follows that the number of orbits of size 1 in X is a multiple of p.

Since the constant tuple (e,e,...,e) is an orbit in X of size 1 there must be
at least p — 1 other such orbits. If (go,...,gp—1) is one such orbit then, since
i-(90y---,9p—1) = (go,---,gp—1) for all i € Z,,, we can conclude that g; = go for all
i € Z, and so gh = e. O

4. QUOTIENT GROUPS

4.1. Normal subgroups. Suppose that G is a group. Let &(G) denote the set of
subsets of G, i.e. the power set of G. There is a natural binary operation on Z(G)
given by
AB:={ab|ac Abe B}.

Ezamples.
(1) If A e Z(G) then AP =0 = DA. If A is non-empty then AG = G = GA.
(2) If H < G then the binary operation on &(G) restricts to a binary operation

on Z(H).
(3) If H < G then the sets {g}H are precisely the left cosets gH of H in G.

48That is gp—1 = (gog1 -+ gp—2) L.
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Lemma. This operation on P(QG) is associative and has an identity but does not
have inverses.

Proof. Suppose that A, B,C € Z2(G) then
(AB)C = {(ab)c|a€ A,be B,ce C}
= {a(bc)|a€ A,be B,ce C}
A(BQC)
If A is any subset of G then {e}A = A so {e} is an identity. Also always AQ = (),

so 0 has no inverse. *? O

We'll be particularly interested in the product of two cosets under this operation
— in particular if H < G we’d like to use it to put a group structure on the set of
left cosets G/H of H in G. If G is abelian then this is straightforward:

g1HgoH = {g1hi1g2ha | hi,ho € H} = {g1g2h1ha | hi,ha € H} = g1g2H

and one can easily®® show that this does define a group structure on G/ H. However
in general things are not so straightforward.

Ezample. Consider G = Dg = {e,r,72,5,75,7%s} where r denotes a non-trivial
rotation in the group and s a reflection.

If H is the subgroup of rotations {e,r,r?} then the cosets of H in G are H and
sH. We can compute

HH = H
HsH = sH
sHH = sH and

sHsH = H.

So G/H with this operation is isomorphic to Ca.
However if K is the subgroup {e, s} of G then
rKr?K = {r,rs}{r? r?s} = {e,r?s,s,7?}
which is not a left coset of K in G.

Proposition. Suppose H < G. The product of two left cosets of H in G is always
a left coset of H in G if and only if gHg™' = H®' for all g € G. In this case
g1HgoH = g19:H for all g1,92 € G.

LECTURE 15

Proof. For g1, g2 € G we compute
g1HgoH = {g1h1gaha | h1,ho € H} = {g19295 "h1gaha | b1, ho € H}.

Thus if gz_ngg = H then g1HgoH = g1g2H as claimed.
Moreover in general g1goH C g1HgeoH since we may take h; = e above. Thus
for gy Hgo H to be a left coset we must have g1 Hgo H = g1 g2 H as claimed. For this

49We note in passing that we didn’t use that G has inverses so a version of this result is still
true for G any set with an associative binary operation with an identity such as (Z,-) or (No, +).

50and we will later

51Here gHg—! means {g}H{g~ 1}
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we need g 'higs € H for all hy € H since (g192)gy “higee € g1HgoH. So if the
product of any two left cosets is a left coset then g "' Hg C H for all ¢ € G. Then

H=yg(g"'Hg)g~' CyHg™ ' CH

so we have equalities throughout. [

Remark. Notice that along the way we proved that whenever gHg~! C H for all
g € G,in fact gHg~' = H for all g € G.

Definition. We say that a subgroup H of a group G is normal if gHg~! = H for
all g € G.

Warning. To show that a subset of G is a normal subgroup we must show
that it is a subgroup as well as that it satisfies the above conditon.

Ezxamples.

(1) If G is abelian then every subgroup is normal.

(2) The group Isom™(Z) is normal in Isom(Z) but the subgroup {idz, s: n + —n}
is not normal is Isom(Z).

(3) The subgroup of rotations in Dy, is normal in Ds,, but no subgroup generated
by a reflection is normal in Da,,.

(4) Stabag(oo) is not a normal subgroup of M.

Lemma. A subgroup H of a group G is normal if and only if every left coset is a
right coset.”?

Proof. Suppose that gHg™! = H. Then gH = gHg 'g = Hg so the left coset gH
is a right coset.

Conversely suppose that every left coset is a right coset and g € G. Then
gH = HF for some k € G. So g = hk for some h € H. Thus

gH = Hk = Hkg 'g=Hh 'g=Hyg

L' = H as required. O

and gHg~
Proposition. If H is a normal subgroup of G then the restriction of the binary
operation on P(G) makes G/H into a group such that gy HgoH = g19-H.

Definition. We call G/H the quotient group of G by H.

Proof of Proposition. We've already seen that the binary operation on Z(G) re-
stricts to an associative binary operation on G/H when H is normal and moreover
that ngggH = glggH.

Suppose that gH € G/H. Then eHgH = gH = gHeH so eH = H is an identity
in G/H. Finally gHg 'H = eH = g~ 'HgH so G/H has inverses. O

52We'll often just say coset in this case.
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4.2. The isomorphism theorem.

Theorem (The (first) isomorphism theorem). Suppose that f: G — H is a group
homomorphism. Then ker f is a normal subgroup of G, Im f is a subgroup of H
and f induces an isomorphism

f:G/ker f = Imf
given by f(gker f) = f(g).

Proof. We've already seen that ker f < G and Im f < H. So first we must show
that g(ker f)g—* = ker f for all g € G.
Suppose that k € ker f and g € G. Then

Flgkg™) = f(@)f(k)f(g™") = flg)ef(g) ' =e
since f(k) = e. Thus g(ker f)g~* C ker f. As remarked above this suffices to see
that ker f is normal.
Now if gker f = g'ker f then g~ '¢g’ € ker f and so f(g)~ f(¢') = f(g7tg) =
Thus f(g) = f(g') and f(gker f) = f(g) is a well-defined function whose image is
Im f. Moreover

flgiker fgaker f) = f(grgz ker f) = f(g192) = f(91)f(g92) = f(g1 ker f) f(go ker f)

so f is a homomorphism from G/ H to Im f with Im f = Im f. Finally if f(gker f) =
ethen f(g) = ei.e. g € ker f. Soker f = {ker f} = {eq/ker s} and the result follows
from the special case of the first isomorphism theorem proven in section 1.4. (Il

Remark. Often a good way to prove that a subset of a group G is a normal subgroup
is to show that it is the kernel of some homomorphism from G to another group.

LECTURE 16

Ezample. The homomorphism Z — Z,, that sends a to the remainder after dividing
a by n has kernel nZ and image Z,,. Thus it induces an isomorphism Z/nZ 57,5

Example. Let 0: (R,+) — (C\{0},) be given by 0(r) = e?*™". Then 0(r + s) =
e?™(r+s) = §(r)f(s) so 6 is a homomorphism. Moreover
Imf=S8":={2eC||z| =1},
the unit circle in C and
kerf =7
thus we can deduce that R/Z ~ S*.

Ezample. Let 6: Dy, — {£1} such that

0(g) = +1 if g is a rotation
9= -1 it g is a reflection.

Then we can verify that 6 is a homomorphism since the product of two reflections
or two rotations is a rotation and the product of a rotation and a reflection in
either order is a reflection. Moreover Im# = {£1} and ker € is the subgroup of all
rotations of the regular n-gon. Thus Dy, /{rotations in Da,} ~ Cs.

53The notation Z, as we have defined it is rarely used and instead Z/nZ is used to describe
essentially the same thing.
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Ezample (Group-theoretic understanding of gth powers mod p). Let p and ¢ be
distinct primes and G = (Z,\{0}, -,). Define

0:G— G;x— 24

Then for z,y € G, 0(zy) = (zy)? = 29Y? = §(x)0(y) i.e. 0 is a homomorphism.
Then

ker@={zeG|z?=1}={z € G|o(x)=1or ¢}

We now divide into two cases.

First suppose that ¢ is not a factor of p— 1. Since |G| = p—1, G has no elements
of order ¢ by Lagrange. Thus ker § = {1}. Tt follows that § induces an isomorphism
G ~ Imé6. By counting we can conclude that Im@ = G. In particular we see that
every element of Z,, is a qth power when p is not 1 mod gq.

Next suppose that ¢ is a factor of p — 1. In this case G does have an element
of order ¢ by Cauchy’s Theorem. Thus |kerf| > ¢.%* Since G/kerf ~ Im6 and
|G/ ker 0| = |G|/| ker 0| < % we see that Z, has at most % +1 gth-powers when

pis 1 mod ¢.%°

Ezample. If G acts on a set X and K = {g € G | g(z) = xforallz € X} =
N.ex Stabg(z) then the homomorphism G — S(X) given by the action induces
an isomorphism from G/K to a subgroup of S(X). Thus the action of G on X
induces a faithful action of G/K on X .°°

Example. Suppose that X is a regular tetrahedron in R®. X has six edges and each
edge has four neighbours.” Thus we can partition the set of edges into three pairs
with each pair consisting of non-adjacent edges. Let P denote the set of such pairs.
Then the action of Sym(X) on X induces an action on P since if f € Sym(X) and v
and w are non-adjacent edges of X then f(v) and f(w) are also non-adjacent edges
of X. Thus by the last example there is a homomorphism 6: Sym(X) — S(P).
It is easy to verify by hand that Im# = S(P). Then the isomorphism theorem we
can deduce that Sym(X)/ker § ~ S(P). We showed earlier than Sym(X) ~ S, and
it is straightforward to see that S(P) =~ S3.°® Thus we can deduce that S; has a
normal subgroup K such that Sy/K ~ S3.5

LECTURE 17
5. MATRIX GROUPS

Suppose that throughout this section F denotes either R or C.

54Gince an element of order q generates a subgroup of order g contained in the kernel. In fact
it is not too hard to prove that ker 6 has precisely ¢ elements.

5511 fact precisely this many.

56This means that to understand all actions of a group G it is equivalent to understand all
faithful actions of all quotients of G.

57There are two edges sharing each vertex of a given edge.

580r S(P) ~ Dy if you prefer

59Can you say which elements of Sy live in K7 There must be four of them by Lagrange. If
you find this too hard at this stage then try again when you revise the course having studied the
groups Sy, in more detail.
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5.1. The general and special linear groups. Let M, (IF) denote the set of n xn
matrices with entries in F.
Here are some facts proven in Vectors and Matrices.

Facts.

(1) Every element A of M, (F) defines a linear map A: F* — F" via A: v > Av.%
Moreover every linear map F” — F™ arises in this way and A can be recovered
from A since the ith column of A is A(e;) where e; denotes the element of F™
with ¢th entry 1 and all other entries 0.

(2) AB corresponds to the composite Ao B. Thus associativity of multiplication of
(square) matrices follows from associativity of composition of functions F" —
F™.

(3) The matrix I,, with 1s down the main diagonal and Os elsewhere is an identity
for matrix multiplication on M, (F). Moreover I,, = idgn.

(4) There is a function det: M, (F) — F such that A has an inverse in M, (F) if and
only if det A # 0. Moreover det(AB) = det(A)det(B) for any A, B € M, (F)
and det I,, = 1.

Definition. The general linear group GL,,(F) := {A € M, (F) | det A # 0} is the
group of invertible n X n matrices with entries in F.

Proposition. GL,(F) is a group under matriz multiplication.

Proof. Since for A,B € M, (F), det AB = det Adet B, if A,B € GL,(F) then
det A # 0 and det B # 0 so det AB # 0. Thus AB € GL,(F) and matrix multipli-
cation defines an associative binary operation on GL,,(FF).

Since det I, = 1, I,, € GL,(F) so GL,(F) has an identity.

Finally if A € GL,,(F), since det A # 0, there is a matrix B such that AB = I,, =
BA. Then det Adet B=det AB =detl, =1. Sodet B#0 and B € GL,(F). O

Remark. There is a natural action of GL,(F) on F” via (A,v) — Av. One can
show that the homomorphism GL,(F) — S(F") coming from this action induces
an isomorphism GL,(F) with the subgroup of S(F") consisting of all invertible
linear maps F" — F”.

Lemma. The function det: GL,(F) — (F\{0},-) is a group homomorphism with
image F\{0}.

Proof. That it is a homomorphism follows immediately from fact 4 above: for
A,B € GL,(F), det AB = det Adet B. To see its image we compute

A0 .0
det | 0! R
. . 0
0 0 1
O
Definition. The special linear group SL, (F) is the kernel of det: GL, (F) — F\{0}

i.e.

SLn(F) := {A € M,(F) | det A = 1}.

60Recall that A is linear means that A(Av+pw) = AA(v)+pA(w) for all A, . € F and v, w € F™.
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Remarks.

(1) The action of GL,(F) on F™ induces an action of SL,,(F) on F™ by restriction
and the resulting homomorphism SL,, (F) — S(F") induces an isomorphism
of SL,(F) with the subgroup of S(F™) consisting of volume preserving linear
maps F™" — F™.

(2) SL,(F) a normal subgroup of GL,(F and GL,(F)/SL,(F) ~ F\{0}.

FExamples.

GLy(F) = {(“ Z)adbc;éO} and

SLy(F) = {(‘; z)ad—dc:l}

5.2. Mobius maps as projective linear transformations.

o

Notation. Given v € C?\{0} let [v] denote the (unique) line {\v | A € C} through
0 and v in C2. The set of all such lines is called the complex projective line typically
written P1(C).

The following lemma gives a parameterisation of the elements of P(C).
Lemma. Every element of P1(C) is either of the form [(i)] with z € C or

[(é)} Moreover these lines are all distinct.

Proof. Suppose v € C?\{0}. Then v = (Zl> for some vy, v2 € C not both 0.
2

(=] & VLY oo (o
If vy # 0 then [v] = K i )] since \ (v2> = U\ ( i >
1 . 1
If vo = 0 then [v] = {(0)] since Av = v1 A (O)
Finally if G) = (‘f) then A =1 and z = w. And \ (‘i) = (1>

0
impossible. ([

is evidently

It follows that we may identify Co and P!(C) via z [(i)} for z € C and

. 1
00 o)l
Proposition. GL3(C) acts on P1(C) via (A, [v]) — [Av] for v € C*\{0}.
Proof. First we must show that (A, [v]) — [Av] is a well-defined function

GLy(C) x P(C) — P*(C)

i.e. that if A € GLy(C) and v € C2\{0} then Av # 0, and if [v] = [w] then [Av] =
[Aw]. Now, if Av =0 then v = A"1Av = A=(0) = 0 and if [v] = [w] there is some
non-zero p € C such that v = pw. Then for A € C, A(Aw) = MNA(pv) = (Ap)Av so
[Aw] C [Av]. By symmetry we must have [Av] = [Aw].

It remains to observe that [Iov] = [v] and that [A(Bv)] = [(AB)v] for all [v] €
P(C) and A, B € GL2(C). O
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(o 1] - ()]~ [(5E)] w4
(¢ 2)- [CP) -G
(¢ ) Q)] = ()] = ()] om0
G 2 1©)]-16)]

Thus, under the identification of Co, with P1(C
0: GLy(C) — S(Cx

the homomorphism
)s P
)

corresponding to this action sends the matrix (Z d) to the Mobius map repre-

sented by z — Zjis, and so Im# = M. Thus M is a subgroup of S(C,).

b) fixing every line through

. . . . a
Moreover ker 6 consists of invertible matrices (c d

the origin in C2.

T s ([()]) -1 2) comeriens).
StabGLz(C)d((l))D {( >6GL2(<C5=0} and
sutenso ([()]) ={(¢ %) com@asimesa)

Since a Mobius transformation that fixes three distinct points is the identity, ker 6
is the intersection of these three sets i.e.

ker(GLa(C) — M) = {(g 0> la# o}
is the group of non-zero scalar matrices.5!
Thus PGL2(C) := GLy(C)/{A\ | A € C # 0} ~ M. It is not hard to see that a
similar argument shows that PSLy(C) := SLy(C)/{XI} ~ M.
We can summarize this discussion with the following theorem.

Theorem. The action of GL2(C) onP!(C) induces an isomorphism from PG Ly(C)
to M. In particular M is a subgroup of S(Cs).

61We can sece this another way: the kernel of 0 is certainly contains in the intersection of these
three stabilisers so it would suffice to check that any scalar matrix is in the kernel ie [AI2v] = [v]
for all non-zero A in C. Indeed this is how we showed that a Mdbius map that fixes 0, 1 and oo is
the identity in §1.5.
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LECTURE 18

5.3. Change of basis. Recall that if A is a linear map F"” — F™ corresponding to
the matrix A and eq,...,e, is the standard basis for F” then A(e;) = Z;—;l Ajie;.
If f1,..., fn is another basis for F" then there is an invertible linear map P such
that P(e;) = f; fori =1,...,n. i.e. P corresponds to the matrix P whose columns
fi,--s fnand f; = Z?zl Pjie; fori=1,...,n. It follows that for j =1,...,n,

n

ZP’f_jlfk - Zpk_jl Zplkel = Z(Ppil)ljez = e;.
k=1 k=1 =1

=1
Then

A(fi) = AP(e)

(AP)jie;

M= 11-

(AP);i(> Py fr)
1 k=1

-
I

(P~YAP) i fi

I
M§

=
Il
—

Thus P~'AP represents A with respect to the basis fi,..., fn.
Proposition. GL,(F) acts on My, (F) by conjugation.
Proof. Consider
-t GL,(F) x M, (F) — M, (F); (P,X) — PXP~'.
Then for X € Mat,,(F),
L, X=LXI]'=X
and

P(XQ™NP™! = (PQ)X(PQ)™!
for all P,Q € GL,(F). O

It is now straightforward to see that two distinct matrices in M, (F) represent
the same linear map with respect to different bases if and only if they are in the
same G L, (IF)-orbit under this conjugation action.

Example (See Vectors and Matrices). If A: C?> — C? is a linear map then precisely
one of the following three things is true:

(i) there is a basis for C2 such that A is represented by a matrix of the form

A0

0 n
with A\, u € C distinct — in this case {\, u} is determined by A% but they
may appear in either order in the matrix;

62) and 1 are its eigenvalues and the basis vectors are the corresponding eigenvectors
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(i) there is a basis for C? such that A is represented by a matrix of the form

A0
0 A
with A € C — in this case A is determined by A indeed A = Aid¢2 and A is

represented by this matrix with respect to every basis;
(iii) there is a basis for C? such that A is represented by a matrix of the form

o 3)

We may interpret this group-theoretically: every GLs(C)-orbit in M5(C) with
respect to the conjugation action is one of the following:

Oxui= Orbar,(c) ((é 2)) with A\, u € C distinct,

again \ is determined by A.%3

O = Orbap,(c) ((3 2)) with A € C and

O(AQ) = OrbGLQ(C)((G)\ i)) with A € C.

These are all disjoint except that Oy , = O, . More explicitly,
Oxp={A € My(C) | det(tly — A) = (t — A\)(t — p) for all t € C},
ol = {ALL} and
0 = {A € My(C) | det(t] — A) = (t — \) for all t € C, A # AI,}.

We can also compute
A 0\ [a b\ [fax DA
0 u)\e d)  \cu du

a b\ (X 0\ [(a\ bu
c dJ\0O u)  \ex du
so that for \ # p,

(3 9)- {5 2)1r)

and StabGLz(C)(/\Ig) = GLy(C).
Similarly

A1\ fa b\ [ar+c bA+d

0 XN \ec d) cA d\
a b A1) [faX a+DbA
c d)\0 XN \eh c+dX

Al a b
s (3 D)-{(s o)

All other stabilisers are conjugate to these ones. We can easily read off the conju-
gacy classes and centralisers in GLo(C) by restricting to the case A, u # 0.

and

and

63i¢ is the unique eigenvalue of A and A # Aidc.
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Ezercise. Deduce that in M ~ PGLy(C), ccl(z — az) = ccl(z — z — bz) if and
only if b € {a,1/a} thus provide a description of all the conjugacy classes in M
and compute centralisers of suitable representatives of each class.

LECTURE 19

5.4. The orthogonal and special orthogonal groups. Recall that any (square)
matrix A has a transpose A7 with Az;- = Aj; and det AT = det A. Moreover if A, B
are square matrices of the same size then (AB)T = BT AT,

Definition. The orthogonal group O(n) :== {A € M,,(R) | ATA =1, = AAT} C
GL,(R) is the group of orthogonal n x n matrices.
Lemma. O(n) is a subgroup of GL,(R).
Proof. I, € O(n) and if A, B € O(n) then BT = B~! so
(ABY'AB ' = (B YTATAB ' = (B Y IB" =(BB Y =1 =1,

and similarly (AB~1)(AB~YHT = I,,. O

Recall that R™ comes with an inner product v - w = Z?:l v;w; which defines a
length function on R” via |v| = (v-v)'/2. We also recall the definition of Kronecker’s

delta
P 1 if i=y;
YT 0 i i £
A basis f1,..., fn of R™ is said to be orthonormal if f; - f; = (5”_‘64

Lemma.

(a) If {f1,..., fn} CR™ such that f;- f; = 0;; for all1 <i,j < n, then {f1,..., fu}
is an orthonormal basis for R™.

(b) If v,w € R™ then v-w = 1(jv +w|> — [v — w|?).
Proof. (a) Suppose > i Aif; = 0. Then for j =1,...,n,

0= (Z)\ifi> =D N ) = A
i=1 i=1

ThuGS5 {f1,.-., fn} is linearly independent. Since it has n elements it must span
n
: (b) We compute

(v+w) - v+w)=v-v+tv-wtw-v+w w
and

(v—w)-v—w)=v-v—v-W—W-V—W-W
subtracting and using symmetry of the inner product we see that

v+ w* —|v—w|®=4v-w

as required. (Il

64There is a little apparent notational ambiguity here since we use subscripts to index the
basis vectors as well as to index the coordinates of a vector. Each f; is in R™ so can be written

as 3op_y (fidker and fi - f; = 3703 (f)k(fi)k-
651 fact if v € R, v=>" (v fi)fs-
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Proposition. Suppose that A € M, (R). The following are equivalent:
(i) A€0m);

(i) Av-Aw =v-w for all v,w € R™;

(iii) the columns of A form an orthonormal basis;

(iv) |Av| = |v| for all v € R™.

Proof. Suppose that A € O,, and v,w € R™. Then

n

Av-Aw = Z(Av)i(Aw)i
i=1
= Z ZAijUj (Z Aik’wk>
=1 \j=1 k=1

n

= Y (AT A)

k=1
= E ’ujwj =vV-w.
J

Thus (i) = (ii).

Suppose now that Av-Aw = v-w for all v,w € R™. Then in particular Ae;-Ae; =
e;-€e; = 0;; foreach 1 < 4,5 <n and Aey,... , Ae,, %% is an orthonormal basis for R™
by part (a) of the last lemma. Thus (ii) = (iii).

Next, if Aeq,..., Ae, form an orthonormal basis then for 1 <i,j < n

(Sij = Aei . Aej

> Aridi; = (ATA);
k=1

and ATA = I,,. Thus (iii) = (i).
(ii) = (iv) is immediate from the definitions. To see that (iv) = (ii) we use
(b) of the lemma:

Av - Aw = i(\A(v+w)|2 A — w)]?

and )

vow = Z(|v—|—w|2 — v —wl]?).
If (iv) holds then RHSs of these equations to be equal for all v,w and thus the
LHSs are equal for all v,w and (ii) also holds. d

Thus O(n) is isomorphic to the subgroup of S(F™) consisting of linear maps that
preserve the scalar product or equivalently to the subgroup of S(F™) consisting of
linear maps that preserve length.

The conjugation action GL,(R) on M, (R) restricts to an action of O(n) on
M, (R). The equivalence of (i) and (iii) in the propostion shows that two distinct
matrices in M, (R) are in the same O(n)-orbit if and only if they represent the same
linear map with respect to two different orthonormal bases (see the last lecture).

Proposition. det: O(n) — (R\{0},-) has image {£1}.

66i 6. the set of columns of A
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Proof. If A € O(n) then det A = det AT so 1 = det I,, = det AAT = (det A)? and
det A = £1. Since

-1 0
0 1 0
€ O(n)
0 1
has determinant —1 both 1 and —1 are in the image. O

Definition. The special orthogonal group
SO(n) :== O(n) N SL,(R) = ker(det: O(n) — {£1}).

SO(n) is isomorphic to the subgroup of S(R™) consisting of linear maps that
preserve the scalar product and orientation.’” It is a normal subgroup of O(n) and
O(n)/SO(n) ~ Cs.

There are complex versions of the orthogonal group and the special orthogonal
group called the unitary group and the special unitary group. We won’t have time
to discuss them but they do appear on Example Sheet 4.

LECTURE 20
5.5. Reflections.
Definition. Suppose that n € R" has length 1 then the reflection in the plane

normal to n is the function R, : R™ — R™ given by
R.(z) =z —2(z-n)n.

Note that if y - n = 0 then R, (y) =y, and R,(n) =n —2n = —n.
Lemma. Suppose n € R™ has length 1 then
(a) R, € O(m);
(b) R™ has a basis with respect to which R,, is represented by a diagonal matriz D

such that D11 = —1, Dy =1 for 2 <i < m;
(¢c) (R,)? =idgm and;
(d) det R, = —1.
Proof. (a) First we show that R, is linear: if z,y € R™ and A, x € R then
Ry(Ax+py) = (Az+py) —2((Az + py) -n)n

M@ — (20 m)n) + uly — (29 - n)n)
= ARn(2) + pRn(y).

Now we show that R,, preserves the inner product: if x,y € R then

Ry(z) - Ru(y) = (z—2(x-n)n)-(y—2(y-n)n)
= z-y—2(-n)(n-y) -2y -n)(z n)+4x n)(y-n)(n-n)
= xz-y.

(b) Notice that U := {y € R™ | y-n = 0} = ker(R™ - Ry —y-n) is a
subspace of R™ of dimension m — 1 by the rank-nullity theorem. Moreover n ¢ U.

671 have not defined an orientation of R™. One way would be as an SO(n)-orbit of orthonormal
bases for R™ which would make this completely tautological. There are more sophisticated ways
that make it less so. With this definition the next sentence gives that there are exactly two
orientations of R™.
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So we may find a basis fi,..., fi, for R™ such that fi = n and fo,..., f, € U.
Then R, (f1) = —f1 and R, (f;) = f; for 2 < i < m as required.

(c), (d) If P is the change of basis matrix so that P~"1R,,P = D then P~}(R,,)*P =
(P~'R,P)? =1I,,. Thus (R,)? = PI,,,P~! = I,,,. Moreover

—1=det D = (det P)"'det R,, det P = det R,

as required. (I

Proposition. Ifz,y € R™ with x # y but x-x =y -y then there is n € R™ of unit
length such that Ry, (x) = y. Moreover n may be chosen to be parallel to x — y.

groof. Let n = m so that n-n = 1. Then R,(z) = v — 2(z - n)n.
ut

20-(z—y)=2z-2-2v-y=(r—y) (r—vy)

since x - =y - y. Thus 2(z - n)n = z — y as required. a

Theorem. Every element of O(3) is a product of at most three reflections of the
form R,, with n € R® of length 1. ©°

Proof. Let A € O(3). For this proof only we’ll write Ry to denote idgs.
Consider A(ep). If A(e1) = e; then let n; = 0. Otherwise use the proposition to
find ny of unit length such that R,,, A(e;) = e;. In either case, R,, A(e1) = e3.
Next consider R,, A(ez). If Ry, A(e2) = ez let ny = 0. Otherwise

RnlA(eg) €1 = €2-€1 = 0

since R,, A is orthogonal and fixes e;. Thus we may use the proposition to find
ng of unit length parallel to R,,, A(es) — ea such that R,, R, A(e2) = ea. Morever
ny - 1 = 0 since ny is parallel to R,, A(e2) — es and R,, A(e2) and ey are both
orthogonal to e;. Thus R,,R,, A fixes e; and ey in every case.

Now R,,R,, A(es) has length 1 and is orthogonal to both e; and es since es
is orthogonal to both e; and e, and R,,R,, A is orthogonal and fixes e; and es.
Thus Ry, Rn, A(es) = tes. If Ry, Ry, A(es) = e3 let ng = 0, otherwise let ng = es.
In either case we can compute that R,, R, R,, A fixes ey, es and e3. Thus as it is
a linear map it must be the identity. We conclude A = R,,, Ry, Ry, since each R,
has order 1 or 2 according as n; = 0 or n; # 0. In particular A is a product of at
most three reflections. [l

Proposition. If A € O(2) then either
(i) A= SO(2) and there is some 0 < 0 < 27 such that
A ( cos sin(‘)) 0

—sinf cosf

(ii) A ¢ SO(2) and A = R, for some n € R? of unit length.

682 £ ¢ means (z —y) - (x —y) > 0.
69T here is nothing special about three here. In general every element of O(m) is a product of
at most m reflections of the form R,,. The proof is exactly similar to this one.

"0 e. A is a rotation
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Proof. In either case we know

for some a,b, c,d € R such that

a b\ (a c
(c d) (b d>:I2'
Thus a®? + 02 =2 +d> =1, ac+ bd = 0 and ad — be = £1.
Let a =cosf, b =sinf, c =sin¢ and d = cos ¢ with 0 < 0,¢ < 27w. Then

0 = cosfsin ¢ + cos ¢sinh = sin(f + ¢)
and
ad — be = cos 6 cos ¢ — sin O sin ¢ = cos(0 + ¢).

In case (i) ad — be = 1, 6 + ¢ is a multiple of 27 and cos(¢) = cos(—6) = cos(6)
and sin(¢) = sin(—f0) = —sin§ as required.
In case (ii) ad—bc = —1, and 0+ ¢ is 7 or 37 and cos(¢) = cos(m —0) = — cos(h).

Then
cosf  sinf sinf/2 \ _ (sin—0/2\ _ [ sinf/2
sinf —cosf) \—cosf/2)  \ cosf/2 | —cosf/2
and
cosf sinf cos@/2\  (cosf/2
sinf —cosf) \sinf/2)  \sinf/2)"
Since
sinf/2 \ (cos6/2 —0
—cos6/2 sinf/2)
we see that A = R,, for n = < sin6/2 ).71 O
—cosf/2

Theorem. If A € SO(3) then there is some non-zero v € R® such that Av = v.™

Proof. By the last theorem A is a product of at most three reflections R,,. Since
det A = 1 and each R,, has determinant —1, A must be a product of either 0 or 2
reflections. If 0 then A = idgs and any v will work. If A = R,,, R,,, with n,ny of
unit length. Then consider the linear map

R® - Rz — (xnl)

T - ng

By the rank-nullity theorem it has non-trivial kernel. i.e. there is v € R? such that
v-ny =v-ng =0. Then Ry, Ry, (v) = Ry, (v) = v. O

"1T6 handle case (ii) we could instead appeal to the result that any element of O(2) is a product
of at most 2 reflections and the product of 0 or 2 reflections is in SO(2).
"2That is every rotation in R® has an axis.



44 SIMON WADSLEY

LECTURE 21

Corollary. Every A in SO(3) is conjugate in SO(3) to a matrix of the form

1 0 0
0 cosf sinf
0 —sinf cosf

Proof. Suppose A € SO(3) and v; € R? non-zero such that Av; = v;. By replacing
vy by v1/|v1] we may assume |v;| = 1. Let U := ker(R® — R;z — z-v;). By
the rank-nullity theorem dimU = 2. We can choose an orthonormal basis wvs, v3
for U. Then v;,vq,vs is an orthonormal basis for R3 and so the matrix P with
columns vy, vy and vz is in O(3). If det P = —1 then we may swap ve and vz so
that P € SO(3). We claim that B := P~1AP is of the required form.

Certainly B € SO(3) and B(e;) = P~*Av; = P~!(v1) = e;. Moreover

€1~B€2:B€1'B€2=€1~62=0

and similarly e; - Beg = 0. So

1 0 0
B=10 Cn Ci2
0 Coa Oy

for some C' € M3(R).
Then BT B = I3 gives CTC = I,.™ Since det B =1, det C = 1 and C € SO(2).
The result follows from the last proposition about O(2). O

6. PERMUTATIONS

Recall that a permutation of a set X is an element of the group S(X); that is
an invertible function X — X. In this chapter we will study permutations of finite
sets. More particularly we will study permutations of [n] := {1,2,...,n}. Since
there is a 1-1 correspondence (i.e. invertible function) between any finite set and
[n] for some value of n this amounts to the same thing.

6.1. Permutations as products of disjoint cycles.

Definition. We say that a permutation o: [n] — [n] is a cycle if the natural action
of the cyclic subgroup of S,, generated by o has precisely one orbit of size greater
than one.

Ezample. If o: [5] — [5] such that o(1) = 3, 0(2) = 2, 0(3) = 5, 0(4) = 4 and
o(5) =1 then o € S5. We can draw o as follows:

D L O

We can compute 0*(2) = 2 and o¥(4) = 4 for all k € Z. We can also compute
o%(1) =o(3) =5, 0%(3) = o(5) = 1 and 02(5) = o(1) = 3. Finally 03(1) = o(5) =
1, 03(3) = 0(1) = 3 and ¢3(5) = 0(3) = 5. So ¢ = id, the group generated by o
is {id, 0,02} and the orbits are {1,3,5}, {2} and {4}. Thus o is a cycle.

73Alternatively we could’ve shown that B acts on the span of e2 and e3 by a length preserving
transformation C' and so C € O(2).
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Suppose that ¢ is a cycle of order k. Then o generates the subgroup
(o) == {id,0,...,a" 1}
For any b € [n] in an orbit of size 1
o'(b) =bforalli € Z
and if a € [n] is in the orbit of size greater than one then for ¢ = 07 (a) € Orb(,)(a),
o'(c) = o' (a) = 0¥ (o' (a)).

Thus ¢'(c) = ¢ whenever ¢(a) = a. ie. o' € Staby,(a) only if ¢* = id. Thus
Stab sy (a) = {e} and | Orb(y(a)| = k.

Notation. If ¢ is a cycle of order k such that the orbit of size greater than one
contains the element a € [n] then we write

o = (ac(a)d(a)--- " (a)).

The discussion above shows that the elements a, o(a), ..., ¥ 1(a) are all distinct
and exhaust the orbit of @ under (o). Thus (ac(a)---c*~!(a)) uniquely determines
o since o(b) = b for b & {a,0(a),...,c"¥ (a)} and o(c?(a)) = o1 (a).

Ezample. If o: [5] — [5] is as in the example above then o = (135) = (351) = (513).

Definition. We say that (ai,...,a;) and (by,...,b;) are disjoint cycles if
{a1,...,ak}ﬂ{bl,...,bl} = @

Lemma.
(a) For ay,...,an € [n] distinct

(a1a2 .. .am) = (a2a3 .. .amal) = (a3a4. . .amalaQ) — ...

i.e. cycles can be cycled.
(b) If o and 7 are disjoint cycles then oT = 10 i.e. disjoint cycles commute.

Proof. (a) comes from choosing different elements of the non-trivial orbit to start
the cycle.

(b) Suppose that k € [n]. Since o and 7 are disjoint either o fixes k or 7 fixes k
(or possibly both).

Without loss of generality we may assume o(k) = k. Then 7o (k) = 7(k). Thus
to show 7o(k) = o7 (k) it suffices to show that o fixes 7(k).

If 7(k) = k then o7(k) = (k) = k = 7(k).

If 7(k) # k then Orb.y(7(k)) = Orb, (k) is the non-trivial (r)-orbit so by
disjointness of o and 7 any element of it, in particular 7(k), is fixed by o as required.

O

Theorem (Disjoint cycle decomposition). Every m € S,, may be written as a (possi-
bly empty) product of disjoint cycles. Moreover the representation of w as a product
of disjoint cycles is unique up to reordering.

Ezample. Consider (135) and (145) in S5. How is (135)(145) expressed as a product
of disjoint cycles? We can chase elements one at a time. (145) sends 1 to 4 and
(135) fixes 4. (145) sends 4 to 5 and (135) sends 5 to 1. Thus (14) is one of the
cycles in the disjont cycle decompositon of (135)(145). 2 is fixed by both (145) and
(135) so we can ignore it. (145) fixes 3 and (135) sends 3 to 5. (145) sends 5 to 1
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and (135) sends 1 to 3. So (35) is another cycle in the decomposition. It follows
that (135)(145) = (14)(35). Pictorally

i.e. (145)(135) = (13)(45).

LECTURE 22

Proof of disjoint cycle decomposition theorem. Suppose that 7 € S,. The (m)-
orbits partition [n],
m
] =J o
i=1

say. By re-ordering the orbits we may assume that k; := |O;| > 1 for i = 1,...1
and |O;| =1 fori=1+1,...m."™
For 1 < i <1 pick a; € O; and define

o = (aim(a;) - 77 (ay)).

Since the O; are disjoint, the o; are disjoint cycles. We claim that m = Hl 1 0.

i=
To prove the claim suppose that a € [n]. Since the O; partition [n], a € O;, for
precisely one i, € [m].

If ig > 1 then 7(a) = a and o;(a) = a for all ¢ € [{]. Thus

!
m(a) =a= (H UZ) (a).

If iy <1 then o;(a) = a for i € [I\{i,} and o;,(a) = 7(a) by definition. Thus

as required.
"we allow [ = 0 or [ = m in which cases one of these lists is empty
"5Since the o; are disjoint the order in the product does not matter by part (b) of the last
lemma.
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Uniqueness follows easily from the construction above — a cycle o will appear
in the product if and only if its non-trivial orbit O is a non-trivial orbit of (7) and
o(a) =m(a) for all a € O. O

Lemma. If 7 is a product of disjoint cycles of order ni,na,...,n; then
o(m) =lem(ny, ..., ng).

Proof. Let m = Hle o; with o; pairwise disjoint and o(o;) = n;. Then 7" =
Hle o} since the o; commute. Moreover 7" = id if and only if o}* = id for each
.70 Thus 7™ = id if and only if n; divides n for each i = 1,...k i.e. if and only if
n is a multiple of the lem of the n;. |

6.2. Permuations as products of transpositions.
Definition. We call a cycle of order 2 a transposition.
Lemma. FEvery w € S, is a product of transpositions.

Proof. By the decomposition into disjoint cycles theorem it suffices to show that
every cycle is a product of transpositions. One may easily check that

(ar1az2---ag) = (ar1a2)(agas) - - - (ag—1ak).
O

Remark. The representation of 7 as a product of transpositions is not unique. For
example

(12)(23)(34) = (1234) = (14)(13)(12).

Despite the remark it is true that = € S, cannot be written both as a prod-
uct of an even number of transpositions and as a product of an odd number of
transpositions.

Theorem. Given w € S,, let I(w) be the number of orbits of (w) in [n]. For any
7w € Sy and any transposition (ab) € S,

I(m(ab)) = I(r) £ 1.

Proof. Suppose first that a and b are in the same orbit in 7. i.e. when we write m
as a product of disjoint cycles m = H:’;l o; one of the 0 = (azxy - - TpbTryo - T).
Then we can compute

oj(ab) = (axpt2 - Tm)(bxo - - T).

Since a and b don’t appear in any of the other cycles we see that [(7(ab)) = I(7)+1
in this case.””

Suppose instead that a and b lie in different orbits in n. Then some o; =
(aze---x) and some o; = (by--- y;).”® Then oi0j(ab) = (ay2---yibxra - - xy).
Since a and b don’t appear in any of the other cycles we see that I(m(ab)) = I(7) —1
in this case. ™

Thus in every case [(mw(ab)) = I(7) = 1. O

76This can be seen by considering what 7™ does to the non-trivial orbit of each o;.

"TThe orbits are the same except that the orbit containing a and b splits into two.

"8If q or b is fixed by 7 this isn’t quite true but one can check that the argument can be
adapted is a straightforward manner by allowing ’cycles of length 1’ in the decomposition.

"9This time the orbits are the same except that the orbits containing a and b are joined
together.
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Corollary. There is a well-defined group homomorphism
e: S, — ({£1},)

such that e(m) = 1 if ® is a product of an even number of transpositions and
e(r) = =1 if ® is a product of an odd number of transpositions. Moreover, for
n>2 Ime={£1}.

Proof. Suppose that 7 = H;’;l 7; with each 7; a transposition. By induction on m

we see that [(7m) = I(id) +m mod 2. Thus if also T = H:i1 o; with each o; a trans-
position then m = m’ mod 2 and the function € as defined in the statement makes
sense.® It is now easy to verify that e is a homomorphism and, since €((12)) = —1,
that Ime = {£1} for n > 2. O

Definition. Given 7 € S,, we say that 7 is even if e(m) = 1 and that 7 is odd if
e(m) = —1.

Remark. Notice that a cycle of odd order is even and a cycle of even order is odd.®!

Definition. The alternating group on [n], A, := ker(e: S,, — {£1}) is the normal
subgroup of S,, consisting of all even permutations.

Since |S,| = n! it follows easily from the isomorphism theorem that, for n > 2,
‘Anl = %'

LECTURE 23

6.3. Conjugacy in S, and in A,. We now try to understand the conjugacy
classes in S,, and in A,,. In S,, they have a remarkably simple description.

Lemma. Ifo €5, and (a1 ---an) is a cycle then
olar - am)o "t = (o(ay) - o(am)).

Proof. If a € [n] then consider

olaran)o o) = { St Lesw

Since every b € [n] is uniquely o(a) for some a € [n] we deduce that
a(ar-ap)o (b)) = (o(ar) -~ o(am))(b)

for all b € [n] as claimed. O

Theorem (Conjugacy classes in S,,). Two elements of Sy, are conjugate if and only
if they are the product of the same number of disjoint cycles of each length.®?

80This is really the content of the corollary. Without the Theorem, or something like it, this
is not at all clear.

81This is just another of those frustrating facts of life.

82We sometimes say that they have the same cycle type.
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Proof. The lemma tells us that if 7 = Hle(aﬂaig " Qim(i)) i a decomposition of
7 into a product of disjoint cycles then

m

omo !t = H(U(ailaﬂ"'aim(i))o_l)
=1
= [J(e(an)o(ai2) - o(@im)-
i=1

Since the right-hand-side is a product of disjoint cycles we see that anything con-
jugate to m must be a product of the same number of disjoint cycles of the same
length.
Suppose now that 7 = Hf:]_(bilbiQ -+ bim(i)) 18 a decomposition of 7 into a
product of disjoint cycles (with the same number of each length as for 7). Then let
{ao1, ..., a0m@)} = [n]\{as; |1 <i <k 1<) < m(i)}%3
and

{bo1, -+ bom(oy } = []\{bij | 1 <i <k, 1<j<m(i)}®
Then we define o(a;;) = b;j for 0 < i < kand 1 < j < m(é). Thus ¢ € S,, and
7 = omwo~! by the lemma. O

Example. Conjugacy classes in Sy

representative element e | (12) | (12)(34) | (123) | (1234)
cycle type 141212 22 3.1 4
number of elements in class | 1 3 8 6
size of centraliser 24| 4 8 3 4
sign 1] -1 1 1 -1

Corollary (Conjugacy classes in A,). If T € A,, then its conjugacy class in A,, is
equal to its conjugacy class in Sy, if and only if Cs, (7) contains an odd element.
Moreover if Cg, (m) C A, then the conjugacy class of m in S, is a union of two
conjugacy classes in A, of equal size.

Proof. Under the conjugation action of A,, and S, respectively Orby, () C Orbg, (7).
It follows that it suffices to show that
_ [ |Orbg, (m)| if Cg,(7) € Ay
| Orba, (m)] = { 110rbs, (m)|  if Cs. (m) C An.
Moreover by the orbit-stabiliser theorem

18 o o 1Cs.()
|0 (M) = 15T = 2@, )~ | O laieg myn AL
|

Thus if Cg, (1) C A,, then we see that | Orby, ()| = 3| Orbg,, (7)].
Otherwise consider ¢|cg (x): Cs, () — {£1}. Since €(Cs, (7)) # {1} we see
that Im 6|Csn(‘ﬂ') = {il} and

Cs,(m)/Ca,(m) = Cs, (m)/ kere|cg, () ~ {£1}.
It follows by Lagrange that |Cg, ()| = 2|Ca, (7)| and Orby, (7) = Orbg, (7). O

8330 > orom(i) =n and every element of [n] is equal to precisely one a;;.
845, every element of [n] is also equal to precisely one b;;.
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Ezample (Conjugacy classes in Ay).

The even cycle types in Sy are 14, 22 and 3.1. Now (12) € Cs,(e) and (12) €
Cs,((12)(34)) so the centralisers of elements of conjugacy classes of cycle type 14
and 22 contain elements of odd order. Thus these classes are the same in 44 and
Sy.

Since Cg,((123)) has order 3 it must be generated by (123) and so it is equal to
C4,((123)). Thus the conjugacy class with cycle type 3.1 splits into two parts of
equal size.

representative element e | (12)(34) | (123) | (132)
cycle type 1% 22 3.1 3.1
number of elements in class | 1 3 4 4
size of centraliser 12 4 3 3

Corollary. A, has no subgroup of index 2.

Proof. It H < A4 were index 2 then it would be normal (Example Sheet 3 Q1) and
so be a union of conjugacy classes (Example Sheet 3 Q3). But |A4]/2 =12/2 =6
and H must contain id. No set of conjugacy classes including {e} has a total of 6
elements. O

LECTURE 24
6.4. Simple groups.

Definition. We say a non-trivial group G is simple if G has no normal subgroups
except itself and its trivial subgroup.

Since if N is a normal subgroup of G one can view G as ‘built out of’ N and
G/N, one way to try to understand all groups is to first understand all simple
groups and then how they can fit together.

Ezample. If p is prime then C), is simple since €}, has no non-trivial proper sub-
groups. These are the only abelian simple groups.

Theorem. As is simple.

Proof. The cycle types of even elements of S5 are 1°, 22.1, 3.12 and 5. These
have 1, 5 x 3 = 15, (g) x 2 = 20 and 4! = 24 elements respectively — note that
1+ 15+ 20+ 24 =60 = |As| so we have got them all.

The element (12) is in the centralisers of id, (12)(34) and (345) so the classes
with cycle type 1°, 22.1, and 3.12 have centralisers containing odd elements and so
these classes do not split as conjugacy classes in As.

Since there are 4! 5-cycles in S5, |Cg,((12345))| = 5!/4! = 5. But all powers of
(12345) commute with (12345) so Cs,((12345)) = ((12345)) C As. Thus the class
with cycle type 5 in S5 splits into two classes of order 12 in As.

In summary,

representative element e | (12)(34) | (123) | (12345) | (12345)2
cycle type 1° 221 3.1% 5 5
number of elements in class | 1 15 20 12 12
size of centraliser 60 4 3 5 5

Now if N is a non-trivial proper normal subgroup of As then it is a union of
conjugacy classes including the class 1°. Moreover |N| is a factor of 60 by Lagrange.
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If we take the identity and one of the smallest non-trivial classes (of size 12)
we already have 13 elements so such an N must have order 15, 20 or 30. It is
straightforward to check that no union of conjugacy classes including {e} can have
these orders. (]

The remainder of the course is non-examinable.
In fact we can prove a stronger result.

Theorem. A, is simple for alln > 5.

Remark. Ay is not simple since it has a normal subgroup of order 4 namely V :=
{id, (12)(34), (13)(24), (14)(23)}. A3 ~ C5 is simple, A, is trivial so not simple.

Proof. First we show that all 3-cycles are conjugate in A, (for n > 5). Using
our theorem about conjugacy classes in A, this follows from the fact that (45) €
Cy, (123) is odd.

Next we show that A,, is generated by 3-cycles. We know that every element of
A, is a product of an even number of transpositions. So we must show that every
product of two transpositions is also a product of 3-cycles. Suppose a,b,c and d
are distinct. Then (ab)(ab) = id, (ab)(bc) = (abc) and (ab)(ed) = (abe)(bed). Thus
A, is indeed generated by 3-cycles.

Now it suffices to show that every non-trivial normal subgroup N of A,, contains
a 3-cycle — if N contains one it must contain all and so it generates A, and so it
is A,,. To this end we pick m € N\{e} with the most fixed points. We show that 7
is a 3-cycle.

If 7 has two transpositions in its decomposition as a product of disjoint cycles say
7 swaps a and b and also swaps c and d. Let o = (cde) for some e & {a, b, c,d}. Then
7 := 1 Y(omo~t) € N since N is a normal subgroup of A,. Moreover 7(a) = a,
7(b) = b, 7(e) = c # e, and if w(i) =i for i # e then 7(i) = 4. Thus 7 # id and 7
has more fixed points than 7 which contradicts our definition of .

Now we suppose that (m) has an orbit of size at least 3 and is not a 3-cycle.
Suppose a,7(a), 72(a), b, c are all distinct and not fixed by 7. ®° Let o = (72(a)bc)
and 7 = (omo~!)m~1 € N since N is a normal subgroup of A,, this time we compute
7(n(a)) = m(a), 7(7%(a)) = b # 7%(a), and if i is fixed by 7 then i is also fixed by
7. Thus 7 # id has more fixed points than . O

A triumph of late 20th century mathematics was the classification of all finite
simple groups. Roughly speaking this says that every finite simple group is either
e cyclic of prime order;
an alternating group;
a matrix group over a field of finite order (for example PSL,(Z/pZ));
one of 26 so-called sporadic simple groups the largest of which is known as
‘the monster’ and has approximately 8 x 10°% elements.

One first important step in the proof was a result by Feit and Thompson that there
is no non-abelian simple group of odd order that first appeared as a circa 250 page
paper in 1963. The first proof of the whole classification theorem was annouced in
the early 1980s. It ran to over ten of thousand pages spread across a large number
of journal articles by over 100 authors. It turned out not to be quite complete. In
2004 it appeared to experts to be complete.

85if there were precisely 4 points that m does not fix then m would be a 4-cycle which would
be odd or a product of disjoint transpositions which we have already ruled out.
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In this course we have seen a little of how symmetry can be understood using
the language of groups. But even when considering only finite groups there is much
more to learn.



	Purpose of notes
	Lecture 1
	1. Examples of groups
	1.1. A motivating example
	1.2. Some initial definitions

	Lecture 2
	1.3. Further geometric examples

	Lecture 3
	1.4. Subgroups and homomorphisms

	Lecture 4
	Lecture 5
	Lecture 6
	1.5. The Möbius Group

	Lecture 7
	Lecture 8
	2. Lagrange's Theorem
	2.1. Cosets
	2.2. Lagrange's Theorem
	2.3. Groups of order at most 8

	Lecture 9
	Lecture 10
	2.4. The Quaternions
	2.5. Fermat–Euler theorem

	Lecture 11
	3. Group Actions
	3.1. Definitions and examples
	3.2. Orbits and Stabilisers

	Lecture 12
	Lecture 13
	3.3. Conjugacy classes
	3.4. Cayley's Theorem

	Lecture 14
	3.5. Cauchy's Theorem

	4. Quotient Groups
	4.1. Normal subgroups

	Lecture 15
	4.2. The isomorphism theorem

	Lecture 16
	Lecture 17
	5. Matrix groups
	5.1. The general and special linear groups
	5.2. Möbius maps as projective linear transformations

	Lecture 18
	5.3. Change of basis

	Lecture 19
	5.4. The orthogonal and special orthogonal groups

	Lecture 20
	5.5. Reflections

	Lecture 21
	6. Permutations
	6.1. Permutations as products of disjoint cycles

	Lecture 22
	6.2. Permuations as products of transpositions

	Lecture 23
	6.3. Conjugacy in  and in 

	Lecture 24
	6.4. Simple groups


